48 research outputs found

    Semi-automatic liquid filling system using NodeMCU as an integrated Iot Learning tool

    Get PDF
    Computer programming and IoT are the key skills required in Industrial Revolution 4.0 (IR4.0). The industry demand is very high and therefore related students in this field should grasp adequate knowledge and skill in college or university prior to employment. However, learning technology related subject without applying it to an actual hardware can pose difficulty to relate the theoretical knowledge to problems in real application. It is proven that learning through hands-on activities is more effective and promotes deeper understanding of the subject matter (He et al. in Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. Erie, PA, USA, pp 1–9 (2016)). Thus, to fulfill the learning requirement, an integrated learning tool that combines learning of computer programming and IoT control for an industrial liquid filling system model is developed and tested. The integrated learning tool uses NodeMCU, Blynk app and smartphone to enable the IoT application. The system set-up is pre-designed for semi-automation liquid filling process to enhance hands-on learning experience but can be easily programmed for full automation. Overall, it is a user and cost friendly learning tool that can be developed by academic staff to aid learning of IoT and computer programming in related education levels and field

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    XVIII International Coal Preparation Congress

    Get PDF
    Changes in economic and market conditions of mineral raw materials in recent years have greatly increased demands on the ef fi ciency of mining production. This is certainly true of the coal industry. World coal consumption is growing faster than other types of fuel and in the past year it exceeded 7.6 billion tons. Coal extraction and processing technology are continuously evolving, becoming more economical and environmentally friendly. “ Clean coal ” technology is becoming increasingly popular. Coal chemistry, production of new materials and pharmacology are now added to the traditional use areas — power industry and metallurgy. The leading role in the development of new areas of coal use belongs to preparation technology and advanced coal processing. Hi-tech modern technology and the increasing interna- tional demand for its effectiveness and ef fi ciency put completely new goals for the University. Our main task is to develop a new generation of workforce capacity and research in line with global trends in the development of science and technology to address critical industry issues. Today Russia, like the rest of the world faces rapid and profound changes affecting all spheres of life. The de fi ning feature of modern era has been a rapid development of high technology, intellectual capital being its main asset and resource. The dynamics of scienti fi c and technological development requires acti- vation of University research activities. The University must be a generator of ideas to meet the needs of the economy and national development. Due to the high intellectual potential, University expert mission becomes more and more called for and is capable of providing professional assessment and building science-based predictions in various fi elds. Coal industry, as well as the whole fuel and energy sector of the global economy is growing fast. Global multinational energy companies are less likely to be under state in fl uence and will soon become the main mechanism for the rapid spread of technologies based on new knowledge. Mineral resources will have an even greater impact on the stability of the economies of many countries. Current progress in the technology of coal-based gas synthesis is not just a change in the traditional energy markets, but the emergence of new products of direct consumption, obtained from coal, such as synthetic fuels, chemicals and agrochemical products. All this requires a revision of the value of coal in the modern world economy

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems
    corecore