2,339 research outputs found

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Inferring team task plans from human meetings: A generative modeling approach with logic-based prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed-upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our hybrid approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans, enabling us to overcome the challenge of performing inference over a large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentations and show that it is able to infer a human team's final plan with 86% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work to integrate a logical planning technique within a generative model to perform plan inference.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002

    Supporting students in the analysis of case studies for professional ethics education

    Get PDF
    Intelligent tutoring systems and computer-supported collaborative environments have been designed to enhance human learning in various domains. While a number of solid techniques have been developed in the Artificial Intelligence in Education (AIED) field to foster human learning in fundamental science domains, there is still a lack of evidence about how to support learning in so-called ill-defined domains that are characterized by the absence of formal domain theories, uncertainty about best solution strategies and teaching practices, and learners' answers represented through text and argumentation. This dissertation investigates how to support students' learning in the ill-defined domain of professional ethics through a computer-based learning system. More specifically, it examines how to support students in the analysis of case studies, which is a common pedagogical practice in the ethics domain. This dissertation describes our design considerations and a resulting system called Umka. In Umka learners analyze case studies individually and collaboratively that pose some ethical or professional dilemmas. Umka provides various types of support to learners in the analysis task. In the individual analysis it provides various kinds of feedback to arguments of learners based on predefined system knowledge. In the collaborative analysis Umka fosters learners' interactions and self-reflection through system suggestions and a specifically designed visualization. The system suggestions offer learners the chance to consider certain helpful arguments of their peers, or to interact with certain helpful peers. The visualization highlights similarities and differences between the learners' positions, and illustrates the learners' level of acceptance of each other's positions. This dissertation reports on a series of experiments in which we evaluated the effectiveness of Umka's support features, and suggests several research contributions. Through this work, it is shown that despite the ill-definedness of the ethics domain, and the consequent complications of text processing and domain modelling, it is possible to build effective tutoring systems for supporting students' learning in this domain. Moreover, the techniques developed through this research for the ethics domain can be readily expanded to other ill-defined domains, where argument, qualitative analysis, metacognition and interaction over case studies are key pedagogical practices

    Foundations of Human-Aware Planning -- A Tale of Three Models

    Get PDF
    abstract: A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Holistic Approach for Authoring Immersive and Smart Environments for the Integration in Engineering Education

    Get PDF
    Die vierte industrielle Revolution und der rasante technologische Fortschritt stellen die etablierten Bildungsstrukturen und traditionellen Bildungspraktiken in Frage. Besonders in der Ingenieurausbildung erfordert das lebenslange Lernen, dass man sein Wissen und seine Fähigkeiten ständig verbessern muss, um auf dem Arbeitsmarkt wettbewerbsfähig zu sein. Es besteht die Notwendigkeit eines Paradigmenwechsels in der Bildung und Ausbildung hin zu neuen Technologien wie virtueller Realität und künstlicher Intelligenz. Die Einbeziehung dieser Technologien in ein Bildungsprogramm ist jedoch nicht so einfach wie die Investition in neue Geräte oder Software. Es müssen neue Bildungsprogramme geschaffen oder alte von Grund auf umgestaltet werden. Dabei handelt es sich um komplexe und umfangreiche Prozesse, die Entscheidungsfindung, Design und Entwicklung umfassen. Diese sind mit erheblichen Herausforderungen verbunden, die die Überwindung vieler Hindernisse erfordert. Diese Arbeit stellt eine Methodologie vor, die sich mit den Herausforderungen der Nutzung von Virtueller Realität und Künstlicher Intelligenz als Schlüsseltechnologien in der Ingenieurausbildung befasst. Die Methodologie hat zum Ziel, die Hauptakteure anzuleiten, um den Lernprozess zu verbessern, sowie neuartige und effiziente Lernerfahrungen zu ermöglichen. Da jedes Bildungsprogramm einzigartig ist, folgt die Methodik einem ganzheitlichen Ansatz, um die Erstellung maßgeschneiderter Kurse oder Ausbildungen zu unterstützen. Zu diesem Zweck werden die Wechselwirkung zwischen verschiedenen Aspekten berücksichtigt. Diese werden in den drei Ebenen - Bildung, Technologie und Management zusammengefasst. Die Methodik betont den Einfluss der Technologien auf die Unterrichtsgestaltung und die Managementprozesse. Sie liefert Methoden zur Entscheidungsfindung auf der Grundlage einer umfassenden pädagogischen, technologischen und wirtschaftlichen Analyse. Darüber hinaus unterstützt sie den Prozess der didaktischen Gestaltung durch eine umfassende Kategorisierung der Vor- und Nachteile immersiver Lernumgebungen und zeigt auf, welche ihrer Eigenschaften den Lernprozess verbessern können. Ein besonderer Schwerpunkt liegt auf der systematischen Gestaltung immersiver Systeme und der effizienten Erstellung immersiver Anwendungen unter Verwendung von Methoden aus dem Bereich der künstlichen Intelligenz. Es werden vier Anwendungsfälle mit verschiedenen Ausbildungsprogrammen vorgestellt, um die Methodik zu validieren. Jedes Bildungsprogramm hat seine eigenen Ziele und in Kombination decken sie die Validierung aller Ebenen der Methodik ab. Die Methodik wurde iterativ mit jedem Validierungsprojekt weiterentwickelt und verbessert. Die Ergebnisse zeigen, dass die Methodik zuverlässig und auf viele Szenarien sowie auf die meisten Bildungsstufen und Bereiche übertragbar ist. Durch die Anwendung der in dieser Arbeit vorgestellten Methoden können Interessengruppen immersiven Technologien effektiv und effizient in ihre Unterrichtspraxis integrieren. Darüber hinaus können sie auf der Grundlage der vorgeschlagenen Ansätze Aufwand, Zeit und Kosten für die Planung, Entwicklung und Wartung der immersiven Systeme sparen. Die Technologie verlagert die Rolle des Lehrenden in eine Moderatorrolle. Außerdem bekommen die Lehrkräfte die Möglichkeit die Lernenden individuell zu unterstützen und sich auf deren kognitive Fähigkeiten höherer Ordnung zu konzentrieren. Als Hauptergebnis erhalten die Lernenden eine angemessene, qualitativ hochwertige und zeitgemäße Ausbildung, die sie qualifizierter, erfolgreicher und zufriedener macht
    corecore