15 research outputs found

    Predicting Panel Ratings for Semantic Characteristics of Lung Nodules

    Get PDF
    In reading CT scans with potentially malignant lung nodules, radiologists make use of high level information (semantic characteristics) in their analysis. CAD systems can assist radiologists by offering a “second opinion” - predicting these semantic characteristics for lung nodules. In our previous work, we developed such a CAD system, training and testing it on the publicly available Lung Image Database Consortium (LIDC) dataset, which includes semantic annotations by up to four human radiologists for every nodule. However, due to the lack of ground truth and the uncertainty in the dataset, each nodule was viewed as four distinct instances when training the classifier. In this work, we propose a way of predicting the distribution of opinions of the four radiologists using a multiple-label classification algorithm based on belief decision trees. We evaluate our results using a distance-threshold curve and, measuring the area under this curve, obtain 69% accuracy on the testing subset. We conclude that multiple-label classification algorithms are an appropriate method of representing the diagnoses of multiple radiologists on lung CT scans when a single ground truth is not available

    Multi-Label Takagi-Sugeno-Kang Fuzzy System

    Full text link
    Multi-label classification can effectively identify the relevant labels of an instance from a given set of labels. However,the modeling of the relationship between the features and the labels is critical to the classification performance. To this end, we propose a new multi-label classification method, called Multi-Label Takagi-Sugeno-Kang Fuzzy System (ML-TSK FS), to improve the classification performance. The structure of ML-TSK FS is designed using fuzzy rules to model the relationship between features and labels. The fuzzy system is trained by integrating fuzzy inference based multi-label correlation learning with multi-label regression loss. The proposed ML-TSK FS is evaluated experimentally on 12 benchmark multi-label datasets. 1 The results show that the performance of ML-TSK FS is competitive with existing methods in terms of various evaluation metrics, indicating that it is able to model the feature-label relationship effectively using fuzzy inference rules and enhances the classification performance.Comment: This work has been accepted by IEEE Transactions on Fuzzy System

    Hyper-heuristic decision tree induction

    Get PDF
    A hyper-heuristic is any algorithm that searches or operates in the space of heuristics as opposed to the space of solutions. Hyper-heuristics are increasingly used in function and combinatorial optimization. Rather than attempt to solve a problem using a fixed heuristic, a hyper-heuristic approach attempts to find a combination of heuristics that solve a problem (and in turn may be directly suitable for a class of problem instances). Hyper-heuristics have been little explored in data mining. This work presents novel hyper-heuristic approaches to data mining, by searching a space of attribute selection criteria for decision tree building algorithm. The search is conducted by a genetic algorithm. The result of the hyper-heuristic search in this case is a strategy for selecting attributes while building decision trees. Most hyper-heuristics work by trying to adapt the heuristic to the state of the problem being solved. Our hyper-heuristic is no different. It employs a strategy for adapting the heuristic used to build decision tree nodes according to some set of features of the training set it is working on. We introduce, explore and evaluate five different ways in which this problem state can be represented for a hyper-heuristic that operates within a decisiontree building algorithm. In each case, the hyper-heuristic is guided by a rule set that tries to map features of the data set to be split by the decision tree building algorithm to a heuristic to be used for splitting the same data set. We also explore and evaluate three different sets of low-level heuristics that could be employed by such a hyper-heuristic. This work also makes a distinction between specialist hyper-heuristics and generalist hyper-heuristics. The main difference between these two hyperheuristcs is the number of training sets used by the hyper-heuristic genetic algorithm. Specialist hyper-heuristics are created using a single data set from a particular domain for evolving the hyper-heurisic rule set. Such algorithms are expected to outperform standard algorithms on the kind of data set used by the hyper-heuristic genetic algorithm. Generalist hyper-heuristics are trained on multiple data sets from different domains and are expected to deliver a robust and competitive performance over these data sets when compared to standard algorithms. We evaluate both approaches for each kind of hyper-heuristic presented in this thesis. We use both real data sets as well as synthetic data sets. Our results suggest that none of the hyper-heuristics presented in this work are suited for specialization – in most cases, the hyper-heuristic’s performance on the data set it was specialized for was not significantly better than that of the best performing standard algorithm. On the other hand, the generalist hyper-heuristics delivered results that were very competitive to the best standard methods. In some cases we even achieved a significantly better overall performance than all of the standard methods

    Characterizing model uncertainty in ensemble learning

    Get PDF

    From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique

    Get PDF
    For reasoning under uncertainty the Bayesian network has become the representation of choice. However, except where models are considered 'simple' the task of construction and inference are provably NP-hard. For modelling larger 'real' world problems this computational complexity has been addressed by methods that approximate the model. The Naive Bayes classifier, which has strong assumptions of independence among features, is a common approach, whilst the class of trees is another less extreme example. In this thesis we propose the use of an information theory based technique as a mechanism for inference in Singly Connected Networks. We call this a Mutual Information Measure classifier, as it corresponds to the restricted class of trees built from mutual information. We show that the new approach provides for both an efficient and localised method of classification, with performance accuracies comparable with the less restricted general Bayesian networks. To improve the performance of the classifier, we additionally investigate the possibility of expanding the class Markov blanket by use of a Wrapper approach and further show that the performance can be improved by focusing on the class Markov blanket and that the improvement is not at the expense of increased complexity. Finally, the two methods are applied to the task of diagnosing the 'real' world medical domain, Acute Abdominal Pain. Known to be both a different and challenging domain to classify, the objective was to investigate the optiniality claims, in respect of the Naive Bayes classifier, that some researchers have argued, for classifying in this domain. Despite some loss of representation capabilities we show that the Mutual Information Measure classifier can be effectively applied to the domain and also provides a recognisable qualitative structure without violating 'real' world assertions. In respect of its 'selective' variant we further show that the improvement achieves a comparable predictive accuracy to the Naive Bayes classifier and that the Naive Bayes classifier's 'overall' performance is largely due the contribution of the majority group Non-Specific Abdominal Pain, a group of exclusion

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI
    corecore