89,142 research outputs found

    Cologne: A Declarative Distributed Constraint Optimization Platform

    Get PDF
    This paper presents Cologne, a declarative optimization platform that enables constraint optimization problems (COPs) to be declaratively specified and incrementally executed in distributed systems. Cologne integrates a declarative networking engine with an off-theshelf constraint solver. We have developed the Colog language that combines distributed Datalog used in declarative networking with language constructs for specifying goals and constraints used in COPs. Cologne uses novel query processing strategies for processing Colog programs, by combining the use of bottom-up distributed Datalog evaluation with top-down goal-oriented constraint solving. Using case studies based on cloud and wireless network optimizations, we demonstrate that Cologne (1) can flexibly support a wide range of policy-based optimizations in distributed systems, (2) results in orders of magnitude less code compared to imperative implementations, and (3) is highly efficient with low overhead and fast convergence times

    Implementing Network Protocols as Distributed Logic Programs

    Get PDF
    Declarative networking [2, 4, 3, 1] is an application of database query-language and processing techniques to the domain of networking. Declarative networking is based on the observation that network protocols deal at their core with computing and maintaining distributed state (e.g., routes, sessions, performance statistics) according to basic information locally available at each node (e.g., neighbor tables, link measurements, local clocks) while enforcing constraints such as local routing policies. Recursive query languages studied in the deductive database literature [6] are a natural fit for expressing the relationship between base data, derived data, and the associated constraints. Simple extensions to these languages and their implementations enable the natural expression and efficient execution of network protocols. Declarative networking aims to accelerate the process of specifying, implementing, experimenting with and evolving designs for network architectures. Declarative networking can reduce program sizes of distributed protocols by orders of magnitude relative to traditional approaches. In addition to serving as a platform for rapid prototyping of network protocols, declarative networking also open up opportunities for automatic protocol optimization and hybridization, program checking and debugging. This paper presents an introduction to declarative networking using a simple routing protocol example. For more details on declarative networking related projects, refer to the NetDB@Penn website [5], and the RapidNet [7] declarative networking engine

    Dynamic Optimization and Migration of Continuous Queries Over Data Streams

    Get PDF
    Continuous queries process real-time streaming data and output results in streams for a wide range of applications. Due to the fluctuating stream characteristics, a streaming database system needs to dynamically adapt query execution. This dissertation proposes novel solutions to continuous query adaptation in three core areas, namely dynamic query optimization, dynamic plan migration and partitioned query adaptation. Runtime query optimization needs to efficiently generate plans that satisfy both CPU and memory resource constraints. Existing work focus on minimizing intermediate query results, which decreases memory and CPU usages simultaneously. However, doing so cannot assure that both resource constraints are being satisfied, because memory and CPU can be either positively or negatively correlated. This part of the dissertation proposes efficient optimization strategies that utilize both types of correlations to search the entire query plan space in polynomial time when a typical exhaustive search would take at least exponential time. Extensive experimental evaluations have demonstrated the effectiveness of the proposed strategies. Dynamic plan migration is concerned with on-the-fly transition from one continuous plan to a semantically equivalent yet more efficient plan. It is a must to guarantee the continuation and repeatability of dynamic query optimization. However, this research area has been largely neglected in the current literature. The second part of this dissertation proposes migration strategies that dynamically migrate continuous queries while guaranteeing the integrity of the query results, meaning there are no missing, duplicate or incorrect results. The extensive experimental evaluations show that the proposed strategies vary significantly in terms of output rates and memory usages given distinct system configurations and stream workloads. Partitioned query processing is effective to process continuous queries with large stateful operators in a distributed system. Dynamic load redistribution is necessary to balance uneven workload across machines due to changing stream properties. However, existing solutions generally assume static query plans without runtime query optimization. This part of the dissertation evaluates the benefits of applying query optimization in partitioned query processing and shows dramatic performance improvement of more than 300%. Several load balancing strategies are then proposed to consider the heterogeneity of plan shapes across machines caused by dynamic query optimization. The effectiveness of the proposed strategies is analyzed through extensive experiments using a cluster

    A MapReduce Algorithm for Polygon Retrieval in Geospatial Analysis

    Get PDF
    The proliferation of data acquisition devices like 3D laser scanners had led to the burst of large-scale spatial terrain data which imposes many challenges to spatial data analysis and computation. With the advent of several emerging cloud technologies, a natural and cost-effective approach to managing such large-scale data is to store and process such datasets in a publicly hosted cloud service using modern distributed computing paradigms such as MapReduce. For several key spatial data analysis and computation problems, polygon retrieval is a fundamental operation which is often computed under real-time constraints. However, existing sequential algorithms fail to meet this demand effectively given that terrain data in recent years have witnessed an unprecedented growth in both volume and rate. In this work, we present a MapReduce-based parallel polygon retrieval algorithm which aims at minimizing the IO and CPU loads of the map and reduce tasks during spatial data processing. Our proposed algorithm first hierarchically indexes the spatial terrain data using a quad-tree index, with the help of which, a significant amount of data is filtered out in the pre-processing stage based on the query object. In addition, a prefix tree based on the quad-tree index is built to query the relationship between the terrain data and query area in real time which leads to significant savings in both I/O load and CPU time. The performance of the proposed techniques is evaluated in a Hadoop cluster and the results demonstrate that the proposed techniques are scalable and lead to more than 35% reduction in execution time of the polygon retrieval operation over existing distributed algorithms

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    Constraint-based Query Distribution Framework for an Integrated Global Schema

    Full text link
    Distributed heterogeneous data sources need to be queried uniformly using global schema. Query on global schema is reformulated so that it can be executed on local data sources. Constraints in global schema and mappings are used for source selection, query optimization,and querying partitioned and replicated data sources. The provided system is all XML-based which poses query in XML form, transforms, and integrates local results in an XML document. Contributions include the use of constraints in our existing global schema which help in source selection and query optimization, and a global query distribution framework for querying distributed heterogeneous data sources.Comment: The Proceedings of the 13th INMIC 2009), Dec. 14-15, 2009, Islamabad, Pakistan. Pages 1 - 6 Print ISBN: 978-1-4244-4872-2 INSPEC Accession Number: 11072575 Date of Current Version : 15 January 201

    SQPR: Stream Query Planning with Reuse

    Get PDF
    When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions. In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads
    • …
    corecore