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ABSTRACT

This paper presents Cologne, a declarative optimization platform
that enables constraint optimization problems (COPs) to be declar-
atively specified and incrementally executed in distributed systems.
Cologne integrates a declarative networking engine with an off-the-
shelf constraint solver. We have developed the Colog language that
combines distributed Datalog used in declarative networking with
language constructs for specifying goals and constraints used in
COPs. Cologne uses novel query processing strategies for process-
ing Colog programs, by combining the use of bottom-up distributed
Datalog evaluation with top-down goal-oriented constraint solving.
Using case studies based on cloud and wireless network optimiza-
tions, we demonstrate that Cologne (1) can flexibly support a wide
range of policy-based optimizations in distributed systems, (2) re-
sults in orders of magnitude less code compared to imperative im-
plementations, and (3) is highly efficient with low overhead and
fast convergence times.

1. INTRODUCTION

In distributed systems management, operators often have to con-
figure system parameters that optimize performance objectives
given constraints in the deployment environment. For instance, in
distributed data centers, cloud operators need to optimize place-
ment of virtual machines (VMs) and storage resources to meet cus-
tomer service level agreements (SLAs) while keeping operational
costs low. In a completely different scenario of a wireless mesh
network, each wireless device needs to configure its selected chan-
nel for communication in order to ensure good network throughput
and minimize data losses.

This paper presents Cologne (COnstraint LOGic EngiNE), a
declarative optimization platform that enables constraint optimiza-
tion problems (COPs) to be declaratively specified and incremen-
tally executed in distributed systems. Traditional approaches in im-
plementing COPs use imperative languages like C++ [2] or Java [[1]].
This often results in thousands lines of code, that are difficult to
maintain and customize. Moreover, due to scalability issues and
management requirements imposed across administrative domains,
it is often necessary to execute a COP in a distributed setting, where
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multiple local solvers coordinate with each other and each one han-
dles a portion of the whole problem to together achieve a global
objective.

The paper makes the following contributions:

e Declarative platform. Central to our optimization platform is
the integration of a declarative networking [19|] engine with an
off-the-shelf constraint solver [2]. We have developed the Colog
language that combines distributed Datalog used in declarative
networking with language constructs for specifying goals and
constraints used in COPs.

e Distributed constraint optimizations. To execute Colog pro-
grams in a distributed setting, Cologne integrates Gecode [2]], an
off-the-shelf constraint solver, and the RapidNet declarative net-
working engine 5] for communicating policy decisions among
different solver nodes. Supporting distributed COP operations
requires novel extensions to state of the art in distributed Data-
log processing, which is primarily designed for bottom-up evalu-
ation. One of the interesting aspects of Colog, from a query pro-
cessing standpoint, is the integration of RapidNet (an incremen-
tal bottom-up distributed Datalog evaluation engine) and Gecode
(a top-down goal-oriented constraint solver). This integration al-
lows us to implement a distributed solver that can perform in-
cremental and distributed constraint optimizations — achieved
through the combination of bottom-up incremental evaluation
and top-down constraint optimizations. Our integration is
achieved without having to modify RapidNet or Gecode, hence
making our techniques generic and applicable to any distributed
Datalog engine and constraint solver.

e Use cases. We have applied our platform to two representative
use cases that allow us to showcase key features of Cologne.
First, in automated cloud resource orchestration [|16], we use
our optimization framework to declaratively control the creation,
management, manipulation and decommissioning of cloud re-
sources, in order to realize customer requests, while conform-
ing to operational objectives of the cloud service providers at the
same time. Second, in mesh networks, policies on wireless chan-
nel selection [14] are declaratively specified and optimized, in
order to reduce network interference and maximize throughput,
while not violating constraints such as refraining from channels
owned exclusively by the primary users. Beyond these two use
cases, we envision our platform has a wide-range of potential ap-
plications, for example, optimizing distributed systems for load
balancing, robust routing, scheduling, and security.

e Evaluation. We have developed a prototype of Cologne and
have performed extensive evaluations of our above use cases.
Our evaluation demonstrates that Cologne (1) can flexibly sup-
port a wide range of policy-based optimizations in distributed



systems, (2) results in orders of magnitude less code compared
to imperative implementations, and (3) is highly efficient with
low overhead and fast convergence times.

The rest of the paper is organized as follows. Section 2] presents
an architecture overview of Cologne. Section 3] describes our two
main use cases that are used as driving examples throughout the
paper. Section [] presents the Colog language and its execution
model. Section[5|next describes how Colog programs are compiled
into distributed execution plans. Section [f] presents our evaluation
results. We then discuss related work in Section [7] and conclude in
Section

2. SYSTEM OVERVIEW

Cologne Cologne
Colog Program Colog Program
Constraint Distributed | | ____ Ly Distributed Constraint
Solver Query Engine Query Engine Solver
A SRR A A
System Optimization System Optimization
States Commands States Commands

Node Configuration Layer ‘ ‘ Node Configuration Layer

Physical
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Figure 1: Cologne overview in distributed mode.

Figure [I| presents a system overview of Cologne, which is de-
signed for a distributed environment comprising of several net-
worked nodes. Cologne can be deployed in a centralized or dis-
tributed mode:

In the centralized deployment mode, the entire distributed sys-
tem is configured by one centralized Cologne instance. It takes as
input system states gathered from all nodes in the network, and a
set of policy constraints and goals specified using Colog declara-
tive language. These specifications are then used by a constraint
solver to automatically generate optimization commands. These
commands are then input into each node’s configuration layer, to
generate physical operations to directly manipulate resources at
each node.

In the distributed deployment mode, there are multiple Cologne
instances, typically one for each node. In a general setting, each
node has a set of neighbor nodes that it can directly communicate
with (either via wireless communication links, dedicated backbone
networks, or the Internet). A distributed query engine [5] is used to
coordinate the exchange of system states and optimization output
amongst Cologne instances, in order to achieve a global objective
(this typically results in an approximate solution).

A distributed deployment brings two advantages.  First,
distributed environments like federated cloud [9] may be adminis-
tered by different cloud providers. This necessitates each provider
running its own Cologne instance for its internal configuration, but
coordinating with other Cologne instances for inter data center con-
figurations. Second, even if the entire distributed system is entirely
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under one administrative domain, for scalability reasons of con-
straint optimization, each node may choose to configure a smaller
set of resources using local optimization commands.

The configuration layer is specific to individual use case (Sec-
tion E]) For instance, in a cloud environment, each node can rep-
resent a data center’s resource controller. Hence, the configuration
layer is a cloud orchestration engine [[17]. On the other hand, in a
wireless mesh network setting, each node denotes a wireless node,
and the configuration layer may refer to a node’s routing [|15] or
channel configuration layer [[14].

3. USE CASE EXAMPLES

We present two use cases of Cologne, based on cloud resource
orchestration [|16}|17]] and wireless network configuration [[14f]. The
two cases are vastly different in their deployment scenarios — hence
are useful at demonstrating the wide applicability of Cologne. We
will primarily frame our discussions of the use cases in terms of
COP expressed mathematically, and defer the declarative language
specifications and runtime support for realizing these COP compu-
tations to later sections.

3.1 Cloud Resource Orchestration

Our first use case is based on cloud resource orchestration (16|,
which involves the creation, management, manipulation and de-
commissioning of cloud resources, including compute, storage and
network devices, in order to realize customer SLAs, while con-
forming to operational objectives of the cloud service providers at
the same time.

Cologne allows cloud providers to formally model cloud resources
and formulate orchestration decisions as a COP given goals and
constraints. Based on Figure[I] the distributed system consists of
a network of cloud controllers (nodes), each of which runs a cloud
resource orchestration engine [17]] as its configuration layer, co-
ordinating resources across multiple distributed data centers. At
each node, each Cologne engine utilizes a constraint solver for ef-
ficiently generating the set of orchestration commands, and a dis-
tributed query engine for communicating policy decisions among
different Cologne instances.

Cologne provides a unified framework for mathematically mod-
eling cloud resources orchestration as a COP. Operational objec-
tives and customer SLAs are specified in terms of goals, which are
subjected to a number of constraints specific to the cloud deploy-
ment scenario. These specifications are then fed to Cologne, which
automatically synthesizes orchestration commands.

We use the following two scenarios (ACloud and Follow-the-
Sun) as our driving examples throughput the paper. Both examples
are representative of cloud resource orchestration scenarios within
and across data centers, respectively.

3.1.1 ACloud (Adaptive Cloud)

In ACloud, a customer may spawn new VMs from an existing
disk image, and later start, shutdown, or delete the VMs. In today’s
deployment, providers typically perform load balancing in an ad-
hoc fashion. For instance, VM migrations can be triggered at an
overloaded host machine, whose VMs are migrated to a randomly
chosen machine currently with light load. While such ad-hoc ap-
proaches may work for a specific scenario, they are unlikely to re-
sult in configurations that can be easily customized upon chang-
ing policy constraints and goals, whose optimality cannot be easily
quantified.

As an alternative, Cologne takes as input real-time system states
(e.g. CPU and memory load, migration feasibility), and a set of
policies specified by the cloud provider. An example optimization
goal is to reduce the cluster-wide CPU load variance across all host



machines, so as to avoid hot-spots. Constraints can be tied to each
machine’s resource availability (e.g. each machine can only run up
to a fixed number of VMs, run certain classes of VMs, and not
exceed its physical memory limit), or security concerns (VMs can
only be migrated across certain types of hosts).

Another possible policy is to minimize the total number of VM
migrations, as long as a load variance threshold is met across all
hosts. Alternatively, to consolidate workloads one can minimize
the number of machines that are hosting VMs, as long as each ap-
plication receives sufficient resources to meet customer demands.
Given these optimization goals and constraints, Cologne can be ex-
ecuted periodically, triggered whenever imbalance is observed, or
whenever VM CPU and memory usage changes.

3.1.2  Follow-the-Sun

Our second motivating example is based on the Follow-the-Sun
scenario [26f, which aims to migrate VMs across geographical dis-
tributed data centers based on customer dynamics. Here, the ge-
ographic location of the primary workload (i.e. majority of cus-
tomers using the cloud service) derives demand shifts during the
course of a day, and it is beneficial for these workload drivers to be
in close proximity to the resources they operate on. The migration
decision process has to occur in real-time on a live deployment with
minimal disruption to existing services.

In this scenario, the workload migration service aims to optimize
for two parties: for providers, it enables service consolidation to
reduce operating costs, and for customers, it improves application
performance while ensuring that customer SLAs of web services
(e.g. defined in terms of the average end-to-end experienced latency
of user requests) are met. In addition, it may be performed to reduce
inter-data center communication overhead [30) [7]]. Since data cen-
ters in this scenario may belong to cloud providers in different ad-
ministrative domains (similar to federated cloud [9]), Follow-the-
Sun may be best suited for a distributed deployment, where each
Cologne instance is responsible for controlling resources within
their data center.

We present a COP-based mathematical model of the Follow-the-
Sun scenario. In this model, there are n autonomous geographically
distributed data centers C1, ..., C), at location 1, 2, ..., n. Each data
center is managed by one Cologne instance. Each site C; has a re-
source capacity (set to the maximum number of VMs) denoted as
R;. Each customer specifies the number of VMs to be instantiated,
as well as a preferred geographic location. We denote the aggre-
gated resource demand at location j as D;, which is the sum of
total number of VMs demanded by all customers at that location.
Given the resource capacity and demand, C;; currently allocates A ;;
resources (VMs) to meet customer demand D) at location j.

In the formulation, Mj;; denotes the number of VMs migrated
from C; to C; to meet Dj. Migration is feasible only if there is a
link L;; between C; and C;. When M, > 0, the cloud orchestra-
tion layer will issue commands to migrate VMs accordingly. This
can be periodically executed, or executed on demand whenever sys-
tem parameters (e.g. demand D or resource availability R) change
drastically.

A naive algorithm is to always migrate VMs to customers’ pre-
ferred locations. However, it could be either impossible, when the
aggregated resource demand exceeds resource capacity, or subop-
timal, when the operating cost of a designated data center is much
more expensive than neighboring ones, or when VM migrations
incur enormous migration cost.

In contrast, Cologne’s COP approach attempts to optimize based
on a number of factors captured in the cost function. In the model,
we consider three main kinds of cost: (1) operating cost of data cen-
ter C; is defined as OC};, which includes typical recurring costs of
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operating a VM at Cj; (2) communication cost of meeting resource
demand D; from data center C; is given as CCl;; (3) migration
cost M Cj; is the communication overhead of moving a VM from
C; to Cj. Given the above variables, the COP formulation is:

min

(aggOC + aggCC + aggMC) 1

n

aggOC = > " (> (Aij + > Myji) * OCy)

(@)

j=1 i=1 k=1
aggCC = > ((Aij + Y Myji) * CCij) 3)

j=li=1 k=1
aggMC:ZZ((Z maz(M;jx,0)) * MCyj) 4)

i=1j=1 k=1
subject to:

ViiR; =Y (A + Y M) ®)

i=1 k=1

Vi, g,k t Myji + Mjix =0 (6)

Optimization goal. The COP aims to minimize the aggregate
cost of cloud providers. In the above formulation, it is defined as
the sum of the aggregate operating cost aggOC' in across all
data centers, the aggregate communication cost aggCC' in (@) to
meet customer demands served at various data centers, and the ag-
gregate VM migration cost aggM C' in (@), all of which are com-
puted by summing up OC;, CCj;, and M C;; for the entire system.

Constraints. The COP is subjected to two representative con-
straints. In Constraint (3)), each data center cannot allocate more
resources than it possesses. Constraint () ensures the zero-sum
relation between migrated VMs between C; and C; for demand k.

3.2 Wireless Network Configuration

Our second use case is based on optimizing wireless networks by
adjusting the selected channels used by wireless nodes to commu-
nicate with one another [14]]. In wireless networks, communication
between two adjacent nodes (within close radio range) would re-
sult in possible interference. As a result, a popular optimization
strategy performed is to carefully configure channel selection and
routing policies in wireless mesh networks [[11} |12]. These pro-
posals aim to mitigate the impact of harmful interference and thus
improve overall network performance. For reasonable operation of
large wireless mesh networks with nodes strewn over a wide area
with heterogeneous policy constraints and traffic characteristics, a
one-size-fits-all channel selection and routing protocol may be dif-
ficult, if not impossible, to find.

To address the above needs, Cologne serves as a basis for de-
veloping intelligent network protocols that simultaneously control
parameters for dynamic (or agile) spectrum sensing and access, dy-
namic channel selection and medium access, and data routing with
a goal of optimizing overall network performance.

In Cologne, channel selection policies are formulated as COPs
that are specified using Colog. The customizability of Colog al-
lows providers a great degree of flexibility in the specification and
enforcement of various local and global channel selection policies.
These policy specifications are then compiled into efficient con-
straint solver code for execution. Colog can be used to express
both centralized and distributed channel selection protocols.

Appendix [A.T] gives examples of wireless channel selection ex-
pressed as mathematical COP formulations.



4. COLOG LANGUAGE

Cologne uses a declarative policy language Colog to concisely
specify the COP formulation in the form of policy goals and con-
straints. Using as examples ACloud and Follow-the-Sun from Sec-
tion |3.1} we present the Colog language and briefly describe its
execution model. Additional examples involving wireless network
configurations are presented in Appendix[A.2]and [A3]

Colog is based on Datalog, a recursive query language used in
the database community for querying graphs. Our choice of Data-
log as a basis for Colog is driven by Datalog’s conciseness in speci-
fying dependencies among system states, including distributed sys-
tem states that exhibit recursive properties. Its root in logic pro-
vides a convenient mechanism for expressing solver goals and con-
straints. Moreover, there exists distributed Datalog engines [5]] that
will later facilitate distributed COP computations. In the rest of this
section, we first introduce centralized Colog (without constructs for
distribution), followed by distributed Colog.

4.1 Datalog Conventions

In our paper, we use Datalog conventions in [22], in presenting
Colog. A Datalog program consists of a set of declarative rules.
Each rule has the formp <- g1, g2, ., an., which can be read
informally as “q1 and g2 and ... and gn implies p”. Here, p is the
head of the rule, and g1, q2,...,qn is a list of literals that constitutes
the body of the rule. Literals are either predicates with attributes, or
boolean expressions that involve function symbols (including arith-
metic) applied to attributes. The predicates in traditional Datalog
rules are relations, and we will refer to them interchangeably as
predicates, relations, or tables.

Datalog rules can refer to one another in a mutually recursive
fashion. The order in which the rules are presented in a program
is semantically immaterial; likewise, the order predicates appear in
a rule is not semantically meaningful. Commas are interpreted as
logical conjunctions (AND). Conventionally, the names of predi-
cates, function symbols, and constants begin with a lowercase let-
ter, while attribute names begin with an uppercase letter. Func-
tion calls are additionally prepended by £.. Aggregate constructs
(e.g. SUM, MIN, MAX) are represented as functions with attributes
within angle brackets (<>).

4.2 Centralized Colog

Colog extends traditional Datalog with constructs for expressing
goals and constraints and also distributed computations. We defer
the discussion of distribution to Section[d.3] and primarily focus on
centralized Colog here.

Colog specifications are compiled into execution plans executed
by a Datalog evaluation engine that includes modules for constraint
solving. In Colog program, two reserved keywords goal and var
specify the goal and variables used by the constraint solver. The
type of goal is either minimize, maximize or satisfy. As its name
suggests, the first two minimizes or maximizes a given objective,
and the third one means to find a solution that satisfies all given
constraints.

Colog has two types of table attributes — regular and solver. A
regular attribute is a conventional Datalog table attribute, while a
solver attribute is either a constraint solver variable or is derived
from existing ones. The difference between the two is that the
actual value of a regular attribute is determined by facts within a
database, e.g. it could be an integer, a string, or an IP address. On
the other hand, the value of a solver attribute is only determined by
the constraint solver after executing its optimization modules.

We refer to tables that contain solver attributes as solver tables.
Tables that contain only regular attributes are referred to as regular

755

tables, which are essentially traditional Datalog based and derived
tables.

Given the above table types, Colog includes traditional Datalog
rules that only contain regular tables, and solver rules that contain
one or more solver tables. These solver rules can further be catego-
rized as derivation or constraint rules:

e A solver derivation rule derives intermediate solver variables
based on existing ones. Like Datalog rules, these rules have the
formp <- q1, q2, ., an., which results in the derivation of
p whenever the rule body (g1 and g2 and ... and gn) is true.
Unlike regular Datalog rules, the rule head p is a solver table.

e A solver constraint rule has the formp -> q1, 2, ., an.,
denoting the logical meaning that whenever the rule head p is
true, the rule body (g1 and g2 and ... and gn) must also be true
to satisfy the constraint. In Cologne, all constraint rules involve
one or more solver tables in either the rule body or head. Unlike a
solver derivation rule, which derives new variables, a constraint
restricts a solver attribute’s allowed values, hence representing
an invariant that must be maintained at all times. Constraints are
used by the solver to limit the search space when computing the
optimization goal.

A compiler can statically analyze a Colog program to determine
whether it is a Datalog rule, or a solver derivation/constraint rule.
For ease of exposition in the paper, we add a rule label prefix r,
4, and c to regular Datalog, solver derivation, and solver constraint
rules respectively.

As an example, the following program expresses a COP that aims
to achieve load-balancing within a data center for the ACloud re-
source orchestration scenario in Section This example is cen-
tralized, and we will revisit the distributed extensions in the next
section.

goal minimize C in hostStdevCpu(C) .

var assign(vid,Hid,V) forall toAssign(Vid,Hid) .
rl toAssign(Vid,Hid) <- vm(Vid, Cpu,Mem),
host (Hid, Cpu2,Mem2) .
dl hostCpu(Hid, SUM<C>) <- assign(Vid,Hid,V),
vm (Vid, Cpu,Mem), C==V*Cpu.
d2 hostStdevCpu (STDEV<C>) <- host (Hid, Cpu,Mem),
hostCpu (Hid, Cpu2), C==Cpu+Cpu2.
d3 assignCount (Vid, SUM<V>) <- assign(Vid,Hid,V).
cl assignCount (Vid,V) -> v==1.
d4 hostMem(Hid, SUM<M>) <- assign(Vid,Hid,V),
vm(Vid, Cpu,Mem), M==VxMem.
c2 hostMem(Hid,Mem) -> hostMemThres (Hid,M), Mem<=M.

Program description. = The above program takes as input
vm (Vid, Cpu,Mem) and host (Hid, Cpu,Mem) tables, which are reg-
ular tables. Each vm entry stores information of a VM uniquely
identified by vid. Additional monitored information (i.e. its CPU
utilization cpu and memory usage Mem) are also supplied in each
entry. This monitored information can be provided by the cloud in-
frastructure, which regularly updates CPU and memory attributes
in the vm table. The host table stores the hosts’ CPU utilization
cpu and memory usage Mem. Given these input tables, the above
program expresses the following:

e Optimization goal: Minimize the CPU standard deviation at-
tribute ¢ in hoststdevCpu.

e Variables: As output, the solver generates assign (vid, Hid, V)
entries. v are solver variables, where each entry indicates VM
vid is assigned to host mid if v is 1 (otherwise O).
assign(vid, Hid,v) is bounded via the keyword forall to
toAssign table, generated by joining vm with host in rule r1.



e Solver derivations: Rule d1 aggregates the CPU of all VMs
running on each host. Rule d2 takes the output from d1 and then
computes the system-wide standard deviation of the aggregate
CPU load across all hosts. The output from qd2 is later used by
the constraint solver for exploring the search space that meets
the optimization goal. In most (if not all) Colog programs, the
final optimization goal is derived from (or dependent on) solver
variables.

e Solver constraints: Constraint c1 expresses that each VM is as-
signed to one and only one host, via first aggregating the number
of VM assignments in rule 43. Similarly, constraint c2 ensures
that no host can accommodate VMs whose aggregate memory
exceeds its physical limit, as defined in hostMemThres.

To invoke actual constraint solving, Colog uses a reserved event
invokeSolver to trigger the optimization computation. This event
can be generated either periodically, or triggered based on an event
(local table updates or network messages). To restrict the maximum
solving time for each COP execution, one can set the parameter
SOLVER_-MAX_TIME.

Using Colog, it is easy to customize policies simply by modify-
ing the goals, constraints, and adding additional derivation rules.
For instance, we can add a rule (continuous query) that triggers
the COP program whenever load imbalance is observed (i.e. ¢ in
hostStdevCpu exceeds a threshold). Alternatively, we can opti-
mize for the fewest number of unique hosts used for migration
while meeting customer SLAs when consolidating workloads. If
the overhead of VM migration is considered too high, we can limit
the number of VM migrations, as demonstrated by the rules below.

d5 migrate(vid,Hidl,Hid2,C) <- assign(Vid, Hid1,V),

origin (Vid,Hid2), Hidl!=Hid2, (V==1)==(C==1).
dé migrateCount (SUM<C>) <- migrate (Vid,Hidl,Hid2,C).
c3 migrateCount (C) -> C<=max_migrates.

In rule as, the origin table records the current VM-to-host map-
pings, i.e. VM vid is running on host zid. Derivation rules ds-6
counts how many VMs are to be migrated after optimization. In
ds, (v==1)==(c==1) means that if v is 1 (i.e. VM vid is assigned
to host rid1), then c is 1 (i.e. migrate VM vid from host rid2 to
Hid1). Otherwise, c is not 1. Constraint rule c¢3 guarantees that the
total number of migrations does not exceed a pre-defined threshold

max_migrates.

4.3 Distributed Colog

Colog can be used for distributed optimizations, and we intro-
duce additional language constructs to express distributed compu-
tations. Colog uses the location specifier @ construct used in declar-
ative networking [19], to denote the source location of each corre-
sponding tuple. This allows us to write rules where the input data
spans across multiple nodes, a convenient language construct for
formulating distributed optimizations.

To provide a concrete distributed example, we consider a dis-
tributed implementation of the Follow-the-Sun cloud resource or-
chestration model introduced in Section @ At a high level, we
utilize an iterative distributed graph-based computation strategy, in
which all nodes execute a local COP, and then iteratively exchange
COP results with neighboring nodes until a stopping condition is
reached. In this execution model, data centers are represented as
nodes in a graph, and a link exists between two nodes if resources
can be migrated across them. The following Colog program imple-
ments the local COP at each node x:

goal minimize C in aggCost (@X,C).
var migvm(@X,Y,D,R) forall toMigVm(@X,Y,D).

rl toMigVm(@X,Y,D) <- setLink (@X,Y), dc(@X,D).
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| COP I Colog ‘
symbol R; resource (I,R)
symbol C} dc(1,C)
symbol L;; link (I, J)
symbol A;; curvm (I, J,R)
symbol M;j || migvm(I, J, K, R)
equation (T) rule goal, ds
equation (2) rule d4, d6
equation (3) rule d3, d5
equation rule a7
equation rule d9-10, c1-2
equation rule r2

Table 1: Mappings from COP to Colog.

//
d1

next-step VM allocations after migration
nextvVm (@X,D,R) <- curVm(@X,D,R1),
migVm(@X,Y,D,R2), R==R1-R2.

d2 nborNextvm(@X,Y,D,R) <- link(QY,X), curvVm(QY,D,R1l),
migVvm(@X,Y,D,R2), R==R1+R2.

// communication, operating and migration cost

d3 aggCommCost (@X, SUM<Cost>) <- nextVm(€X,D,R),
commCost (@X,D,C), Cost==R=*C.

d4 aggOpCost (@X, SUM<Cost>) <- nextVm(@X,D,R),
opCost (@X,C), Cost==RxC.

d5 nborAggCommCost (@X, SUM<Cost>) <- link (QY,X),
commCost (@Y,D,C), nborNextVm(@X,Y,D,R), Cost==RxC.

dé nborAggOpCost (@X, SUM<Cost>) <- link(QY,X),
opCost (@Y, C), nborNextVm(@X,Y,D,R), Cost==RxC.

d7 aggMigCost (@X, SUMABS<Cost>) <- migVm(@X,Y,D,R),
migCost (@X,Y,C), Cost==Rx*C.

// total cost

d8 aggCost (@X,C) <- aggCommCost (€X,C1),
aggOpCost (@X,C2), aggMigCost (@X,C3)
nborAggCommCost (@X,C4), nborAggOpCost (€X,C5),

C==C1+C2+C3+C4+C5.

// not exceeding resource capacity

d9 aggNextVm(Q@X, SUM<R>) <- nextVm(@X,D,R).

cl aggNextVm(@X,Rl) -> resource (@X,R2), RI<=R2.

dl0 aggNborNextVm(@X,Y, SUM<R>) <- nborNextVm(@X,Y,D,R).
c2 aggNborNextVm(@X,Y,R1l) -> link(QY,X),

resource (@Y,R2), R1<=R2.

// propagate to ensure symmetry and update allocations

r2 migvm(@Y,X,D,R2) <- setLink (@X,Y),
migvm(@X,Y,D,R1), R2:=-R1.

r3 curvm(@X,D,R) <- curVm(Q@X,D,R1),
migVm(@X,Y,D,R2), R:=R1-R2.

Program description. Table[T]summarizes the mapping from COP
symbols to Colog tables, and COP equations to Colog rules identi-
fied by the rule labels. For instance, each entry in table R; is stored
as a resource(I,R) tuple. Likewise, the =r attribute in
migvm (I, J,K,R) stores the value of M;;;. The distributed COP
program works as follows.

e Optimization goal: Instead of minimizing the global total cost
of all data centers, the optimization goal of this local COP is the
total cost ¢ in aggcost within a local region, i.e. node x and one
of its neighbors v.

e COP execution trigger: Periodically, each node x randomly
selects one of its neighbors v (denoted as a 1ink (ex,Y) entry)
to initiate a VM migration procesy | setLink (€%, Y) contains the

'To ensure that only one of two adjacent nodes initiates the VM mi-
gration process, for any given 1ink (x,Y), the protocol selects the
node with the larger identifier (or address) to carry out the subse-
quent process. This distributed link negotiation can be specified in
13 Colog rules, which we omit due to space constraints.



pair of nodes participating in the VM migration process. This
in essence results in the derivation of toMigvm in rule r1, which
directly triggers the execution of the local COP (implemented by
the rest of the rules). The output of the local COP determines the
quantity of resources migvm(@x,Y,D,R) that are to be migrated
between x and v forall entries in toMigvm.

e Solver derivations: During COP execution, rule d1 and 42 com-
pute the next-step VM allocations after migration for node x and
v, respectively. Rule d3-6 derive the aggregate communication
and operating cost for the two nodes. We note that rule 42 and
ds5-6 are distributed solver derivation rules (i.e. not all rule ta-
bles are at the same location), and node x collects its neighbor
v’s information (e.g. curvm, commCost and opCost) via implicit
distributed communications. Rule 47 derives the migration cost
via aggregate keyword sumars, which sums the absolute values
of given variables. Rule ds derives the optimization objective
aggCost by summing all communication, operating and migra-
tion cost for both node x and v.

e Solver constraints: Constraints c1 and c2 express that after mi-
gration node x and v must not have too many VMs which exceed
their resource capacity given by table resource. Rule c2 is a dis-
tributed constraint rule, where x retrieves neighbor v’s resource
table over the network to impose the constraint.

e Stopping condition: At the end of each COP execution, the mi-
gration result nigvm is propagated to immediate neighbor v to
ensure symmetry via rule r2. Then in rule r3 both node x and
v update their curvm to reflect the changes incurred by VM mi-
gration. Above process is then iteratively repeated until all links
have been assigned values, i.e. migration decisions between any
two neighboring data centers have been made. In essence, one
can view the distributed program as a series of per-node COPs
carried out using each node’s constraint solver. The complexity
of this program depends upon the maximum node degree, since
each node at most needs to perform m rounds of link negotia-
tions, where m is the node degree.

Our use of Colog declarative language provides ease in policy
customizations. For example, we can impose restrictions on the
maximum quantity of resources to be migrated due to factors like
high CPU load or router traffic in data centers, or impose con-
straints that the total cost after optimization should be smaller by
a threshold than before optimization. These two policies can be
defined as rules below.

dll aggMigVm(@X,Y, SUMABS<R>) <- migVm(@X,Y,D,R).

c3 aggMigvm(@X,Y,R) -> R<=max_migrates.

c4 aggCost (@X,C) -> originCost (@X,C2), C<=cost_thresxC2.

Rule d11 derives total VM migrations between x and y. Con-
straint c3 ensures that total migrations do not exceed a pre-defined
threshold max_migrates. Rule c4 guarantees that aggcost after mi-
gration is below the product of the original cost origincost and a
threshold cost_thres. originCost can be derived by additional 5
Colog rules which are omitted here.

In distributed COP execution, each node only exposes limited
information to their neighbors. These information includes curvm,
commCost, opCost and resource, as demonstrated in rules 42, d5-6
and c2. This leads to better autonomy for each Cologne instance,
since there does not exist a centralized entity which collects the in-
formation of all nodes. Via distributing its computation, Colog has
a second advantage: by decomposing a big problem (e.g. VM mi-
grations between all data centers) into multiple sub-problems (e.g.
VM migrations on a single link) and solving each sub-problem in
a distributed fashion, it is able to achieve better scalability as the
problem size grows via providing approximate solutions.
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S. EXECUTION PLAN GENERATION

This section describes the process of generating execution plans
from Colog programs. Cologne’s compiler and runtime system are
implemented by integrating a distributed query processor (used in
declarative networking) with an off-the-shelf constraint solver.

In our implementation, we use the RapidNet [5] declarative net-
working engine together with the Gecode [2] high performance
constraint solver. However, the techniques describe in this section
is generic and can be applied to other distributed query engines and
solvers as well.

5.1 General Rule Evaluation Strategy

Cologne uses a declarative networking engine for executing dis-
tributed Datalog rules, and as we shall see later in the section,
for implementing solver derivation and enforcing solver constraint
rules. A declarative networking engine executes distributed Dat-
alog programs using an asynchronous evaluation strategy known
as pipelined semi-naive (PSN) [18] evaluation strategy. The high-
level intuition here is that instead of evaluating Datalog programs
in fixed rounds of iterations, one can pipeline and evaluate rules
incrementally as tuples arrive at each node, until a global fixpoint
is reached. To implement this evaluation strategy, Cologne adopts
declarative networking’s execution model. Each node runs a set
of local delta rules, which are implemented as a dataflow consist-
ing of database operators for implementing the Datalog rules, and
additional network operators for handling incoming and outgoing
messages. All rules are executed in a continuous, long-running
fashion, where rule head tuples are continuously updated (inserted
or deleted) via a technique known as incremental view mainte-
nance [20] as the body predicates are updated. This avoids having
to recompute a rule from scratch whenever the inputs to the rule
change.

A key component of Cologne is the integration of a distributed
query processor and a constraint solver running at each node. At
a high level, Colog solver rules are compiled into executable code
in RapidNet and Gecode. Our compilation process maps Colog’s
goal, var, solver derivations and constraints into equivalent COP
primitives in Gecode. Whenever a solver derivation rule is exe-
cuted (triggered by an update in the rule body predicates), Rapid-
Net invokes Gecode’s high-performance constraint solving mod-
ules, which adopts the standard branch-and-bound searching ap-
proach to solve the optimization while exploring the space of vari-
ables under constraints.

Gecode’s solving modules are invoked by first loading in appro-
priate input regular tables from RapidNet. After executing its op-
timization modules, the optimization output (i.e. optimization goal
goal and variables var) are materialized as RapidNet tables, which
may trigger reevaluation of other rules via incremental view main-
tenance.

5.2 Solver Rules Identification

In order to process solver rules, Cologne combines the use of
the basic PSN evaluation strategy with calls to the constraint solver
at each node. Since these rules are treated differently from regular
Datalog rules, the compiler needs to identify solver rules via a static
analysis phase at compile time.

The analysis works by first identifying initial solver variables de-
fined in var. Solver attributes are then identified by analyzing each
Colog rule, to identify attributes that are dependent on the initial
solver variables (either directly or transitively). Once an attribute is
identified as a solver attribute, the predicates that refer to them are
identified as solver tables. Rules that involve these solver tables are
hence identified as solver rules. Solver derivation and constraint
rules are differentiated trivially via rule syntax (<- vs ->).



Example. To demonstrate this process, we consider the ACloud ex-
ample in Section assign, hostCpu, hostStdevCpu, assignCount,
nostMem are identified as solver tables as follows:

e Attribute v in var is a solver attribute of table assign, since v
does not appear after forall.

e In rule 41, given the boolean expression c==v«Cpu, c is identified
as a solver attribute of table nostcpu. Hence, transitively, c is a
solver attribute of hostStdevcpu in rule d2.

e In rule 43, v is a known solver attribute of assign and it appears
in rule head, so v is a solver attribute of table assignCount.

e Finally, in rule 44, since M depends on v due to the assignment
M==V«Mem, one can infer that v is a solver attribute of hostMem.

Once the solver tables are identified, rules di-qd4 are trivially
identified as solver derivation rules. Rules c1 and c2 are legal solver
constraint rules since their rule heads assigncount and hostMem are
solver tables.

In the rest of this section, we present the steps required for pro-
cessing solver derivation and constraint rules. For ease of expo-
sition, we first do not consider distributed evaluation, which we
revisit in Section[3.3}

5.3 Solver Derivation Rules

To ensure maximum code reuse, solver derivation rules leverage
the same query processing operators already in place for evaluat-
ing Datalog rules. As a result, we focus only on the differences
in evaluating these rules compared to regular Datalog rules. The
main difference lies in the treatment of solver attributes in selection
and aggregation expressions. Since solver attribute values are un-
defined until the solver’s optimization modules are executed, they
cannot be directly evaluated simply based on existing RapidNet ta-
bles. Instead, constraints are generated from selection and aggrega-
tion expressions in these rules, and then instantiated within Gecode
as general constraints for reducing the search space. Cologne cur-
rently does not allow joins to occur on solver attributes, since ac-
cording to our experience, there is no such use cases in practice.
Furthermore, joins on solver attributes are prohibitively expensive
to implement and complicate our design unnecessarily, since they
require enumerating all possible values of solver variables.
Example. We revisit rule d1 in the ACloud example in Section4.2]
The selection expression c==v«Cpu involves an existing solver at-
tribute v. Hence, a new solver variable c is created within Gecode,
and a binding between c and v is expressed as a Gecode constraint,
which expresses the invariant that c has to be equal to vcpu.

Likewise, in rule 44, the aggregate sum is computed over a solver
attribute . This requires the generation of a Gecode constraint that
binds a new sum variable to the total of all m values.

5.4 Solver Constraint Rules

Unlike solver derivation rules, solver constraint rules simply im-
pose constraints on existing solver variables, but do not derive new
ones. However, the compilation process share similarities in the
treatment of selection and aggregation expressions that involve
solver attributes. The main difference lies in the fact that each
solver constraint rule itself results in the generation of a Gecode
constraint.
Example. We use as example rule c2 in Section 2] to illustrate.
Since the selection expression Mem<=M involves solver attribute u,
we impose a Gecode solver constraint expressing that host memory
v should be less than or equal to the memory capacity vem. This has
the effect of pruning the search space when the rule is evaluated.

5.5 Distributed Solving

Finally, we describe plan generation involving Colog rules with
location specifiers to capture distributed computations. We focus
on solver derivation and constraint rules that involve distribution,
and describe these modifications with respect to Sections [5.3] and
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At a high level, Cologne uses RapidNet for executing distributed
rules whose predicates span across multiple nodes. The basic mech-
anism is not unlike PSN evaluation for distributed Datalog pro-
grams [18]. Each distributed solver derivation or constraint rule
(with multiple distinct location specifiers) is rewritten using a local-
ization rewrite [[19] step. This transformation results in rule bodies
that can be executed locally, and rule heads that can be derived and
sent across nodes. The beauty of this rewrite is that even if the
original program expresses distributed derivations and constraints,
this rewrite process will realize multiple centralized local COP op-
erations at different nodes, and have the output of COP operations
via derivations sent across nodes. This allows us to implement a
distributed solver that can perform incremental and distributed con-
straint optimization.

Example. We illustrate distributed solving using the Follow-the-

Sun orchestration program in Sectiond.3] Rule a2 is a solver deriva-

tion rule that spans across two nodes x and y. During COP execu-

tion, d2 retrieves rule body tables 1ink and curvm from node v to

perform solver derivation. In Cologne, 42 is internally rewritten as

following two rules via the localization rewrite:

d21 tmp(@X,Y,D,R1) <- link(@Y,X), curVm(@Y,D,R1).

d22 nborNextVm(@X,Y,D,R) <- tmp(€X,Y,D,R1),
migVvm(@X,Y,D,R2), R==R1+R2.

Rule a21 is a regular distributed Datalog rule, whose rule body
is the tables with location v in d2. Its rule head is an intermediate
regular table tmp, which combines all the attributes from its rule
body. In essence, rule d21 results in table tmp generation at node v
and sent over the network to x. This rewrite is handled transparently
by RapidNet’s distributed query engine. Rule qa22 is a centralized
solver derivation rule, which can be executed using the mechanism
described in Section[3.3]

6. EVALUATION

This section provides a performance evaluation of Cologne. Our
prototype system is developed using the RapidNet declarative net-
working engine [5]] and the Gecode [2] constraint solver. Cologne
takes as input policy goals and constraints written in Colog, and
then generates RapidNet and Gecode in C++, using the compila-
tion process described in Section 5}

Our experiments are carried out using a combination of realis-
tic network simulations, and actual distributed deployments, using
production traces. In our simulation-based experiments, we use
RapidNet’s built-in support for the ns-3 simulator [3]], an emerging
discrete event-driven simulator which emulates all layers of the net-
work stack. This allows us to run Cologne instances in a simulated
network environment and evaluate Cologne distributed capabilities.
In addition, we can also run our experiments under an implementa-
tion mode, which enables users to run the same Cologne instances,
but uses actual sockets (instead of ns-3) to allow Cologne instances
deployed on real physical nodes to communicate with each other.

Our evaluation aims to demonstrate the following. First, Cologne
is a general platform that is capable of enabling a wide range of dis-
tributed systems optimizations. Second, most of the policies spec-
ified in Cologne result in orders of magnitude reduction in code
size compared to imperative implementations. Third, Cologne in-
curs low communication overhead and small memory footprint, re-
quires low compilation time, and converges quickly at runtime for
distributed executions.



Our evaluation section is organized around various use cases
that we have presented in Section These include: (1) ACloud
load balancing orchestration (Section [.2); (2) Follow-the-Sun or-
chestration (Section [4.3)), and (3) wireless channel selection (Sec-
tion[3.2). Our cloud orchestration use cases derive their input data
from actual data center traces obtained from a large hosting com-
pany. In our evaluations, we use a combination of running Cologne
over the ns-3 simulator, and deployment on an actual wireless
testbed [4]].

6.1 Compactness of Colog Programs

We first provide evidence to demonstrate the compactness of our
Colog implementations, by comparing the number of rules in Colog
and the generated C++ code.

| Protocol [ Colog | Imperative (C++) |
ACloud (centralized) 10 935
Follow-the-Sun (centralized) 16 1487
Follow-the-Sun (distributed) 32 3112
Wireless (Centralized) 35 3229
Wireless (Distributed) 48 4445

Table 2: Colog and Compiled C++ comparison.

Table 2] illustrates the compactness of Colog, by comparing the
number of Colog rules (2nd column) for the five representative pro-
grams we have implemented against the actual number of lines of
code (LOC) in the generated RapidNet and Gecode C++ code (3rd
column) using sloccount. Each Colog program includes all rules
required to implement Gecode solving and RapidNet distributed
communications. The generated imperative code is approximately
100X the size of the equivalent Colog program. The generated
code is a good estimation on the LOC required by a programmer
to implement these protocols in a traditional imperative language.
In fact, Colog’s reduction in code size should be viewed as a lower
bound. This is because the generated C++ code implements only
the rule processing logic, and does not include various Cologne’s
built-in libraries, e.g. Gecode’s constraint solving modules and the
network layers provided by RapidNet. These built-in libraries need
to be written only once, and are reused across all protocols written
in Colog.

While a detailed user study will allow us to comprehensively
validate the usability of Colog, we note that the orders of magnitude
reduction in code size makes Colog programs significantly easier to
fast model complex problems, understand, debug and extend than
multi-thousand-line imperative alternatives.

6.2 Use Case #1: ACloud

In our first set of experiments, we perform a trace-driven evalu-
ation of the ACloud scenario. Here, we assume a single cloud con-
troller deployed with Cologne, running the centralized ACloud pro-
gram written in Colog (Section4.2)). Benchmarking the centralized
program first allows us to isolate the overhead of the solver, without
adding communication overhead incurred by distributed solving.

Experimental workload. As input to the experiment, we use
data center traces obtained from a large hosting company in the
US. The data contains up to 248 customers hosted on a total of
1,740 statically allocated physical processors (PPs). Each customer
application is deployed on a subset of the PPs. The entire trace is
one-month in duration, and the trace primarily consists of sampling
of CPU and memory utilization at each PP gathered at 300 seconds
interval.

Based on the trace, we generate a workload in a hypothetical
cloud environment similar to ACloud where there are 15 physical
machines geographically dispersed across 3 data centers (5 hosts
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each). Each physical machine has 32GB memory. We preallocate
80 migratable VMs on each of 12 hosts, and the other 3 hosts serve
as storage servers for each of the three data centers. This allows
us to simulate a deployment scenario involving about 1000 VMs.
We next use the trace to derive the workload as a series of VM
operations:

e VM spawn: CPU demand (% PP used) is aggregated over all
PPs belonging to a customer at every time interval. We compute
the average CPU load, assuming that load is equally distributed
among the allocated VMs. Whenever a customer’s average CPU
load per VM exceeds a predefined high threshold (80% in our
experiment) and there are no free VMs available, one additional
VM is spawned on a random host by cloning from an image tem-
plate.

e VM stop and start: Whenever a customer’s average CPU load
drops below a predefined low threshold (20% in our experiment),
one of its VMs is powered off to save resources (e.g. energy and
memory). We assume that powered-off VMs are not reclaimed
by the cloud. Customers may bring their VMs back by powering
them on when the CPU demands become high later.

Using the above workload, the ACloud program takes as input
vm (Vid, Cpu,Mem) and host (Hid, Cpu,Mem) tables, which are con-
tinuously being updated by the workload generator as the trace is
replayed.

Policy validation. We compare two ACloud policies against two
strawman policies (default and heuristic):

e ACloud. This essentially corresponds to the Colog program pre-
sented in Section[d.2] We configure the ACloud program to pe-
riodically execute every 10 minutes to perform a COP compu-
tation for orchestrating load balancing via VM migration within
each data center. To avoid migrating VMs with very low CPUs,
the vm table only includes VMs whose CPU utilization is larger
than 20%.

e ACloud (M). To demonstrate the flexibility of Colog, we provide
a slight variant of the above policy, that limits the number of VM
migrations within each data center to be no larger than 3 for each
interval. This requires only minor modifications to the Colog
program, by adding rules d5-¢ and 3 as shown in Section[4.2]

e Default. A naive strategy, which simply does no migration after
VMs are initially placed on random hosts.

e Heuristic. A threshold-based policy that migrates VMs from
the most loaded host (i.e. with the highest aggregate CPU of the
VMs running on it) to the least one, until the most-to-least load
ratio is below a threshold K (1.05 in our experiment). Heuristic
emulates an ad-hoc strategy that a cloud operator may adopt in
the absence of Cologne.

Figure[2]shows the average CPU standard deviation of three data
centers achieved by the ACloud program over a 4 hours period. We
observe that ACloud is able to more effectively perform load bal-
ancing, achieving a 98.1% and 87.8% reduction of the degree of
CPU load imbalance as compared to Default and Heuristic, respec-
tively. ACloud (M) also performs favorably compared to Default
and Heuristic, resulting in a marginal increase in standard devia-
tion.

Figure [3] shows that on average, ACloud migrates 20.3 VM mi-
grations every interval. On the contrary, ACloud (M) (with migra-
tion constraint) substantially reduces the number of VM migrations
to 9 VMs per interval (3 per data center).
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Figure 2: Average CPU standard devia-
tion of three data centers (ACloud). (ACloud).

Compilation and runtime overhead. The Colog program is
compiled and executed on an Intel Quad core 2.33GHz PC with
4GB RAM running Ubuntu 10.04. Compilation takes on average
0.5 seconds (averaged across 10 runs). For larger-scale data centers
with more migratable VMs, the solver will require exponentially
more time to terminate. This makes it hard to reach the optimal
solution in reasonable time. As a result, we limit each solver’s
COP execution time to 10 seconds. Nevertheless, we note from our
results that the solver output still yields close-to-optimal solutions.
The memory footprint is 9MB (on average), and 20MB (maximum)
for the solver, and 12MB (relatively stable) for the base RapidNet
program.

6.3 Use Case #2: Follow-the-Sun

Our second evaluation is based on the Follow-the-Sun scenario.
We use the distributed Colog program (Section[d.3) for implement-
ing the Follow-the-Sun policies. The focus of our evaluation is
to validate the effectiveness of the Follow-the-Sun program at re-
ducing total cost for cloud providers, and to examine the scala-
bility, convergence time and overhead of distributed solving using
Cologne. Our evaluation is carried out by running Cologne in sim-
ulation mode, with communication directed across all Cologne in-
stances through the ns-3 simulator. We configure the underlying
network to use ns-3’s built-in 10Mbps Ethernet, and all communi-
cation is done via UDP messaging.

Experimental workload. Our experiment setup consists of mul-
tiple data centers geographically distributed at different locations.
We conducted 5 experimental runs, where we vary the number of
data centers from 2 to 10. For each network size, we execute the
distributed Colog program once to determine the VM migrations
that minimize the cloud providers’ total cost. Recall from Sec-
tion [A.3] that this program executes in a distributed fashion, where
each node runs a local COP, exchanges optimization outputs and
reoptimizes, until a fixpoint is reached.

The data centers are connected via random links with an aver-
age network degree of 3. In the absence of actual traces, our ex-
perimental workload (in particular, operating and communication
and migration costs) here are synthetically generated. However,
the results still provide insight on the communication/computation
overhead and effectiveness of the Follow-the-Sun program.

Each data center has a resource capacity of 60 units of migrat-
able VMs (the unit here is by no means actual, e.g. one unit can
denote 100 physical VMs). Data centers have a random placement
of current VMs for demands at different locations, ranging from 0O
to 10. Given that data centers may span across geographic regions,
communication and migration costs between data centers may dif-
fer. As a result, between any two neighboring data centers, we
generate the communication cost randomly from 50 to 100, and the

1.5

Figure 3: Number of VM migrations
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Figure 4: Total cost as distributed solv-
ing converges (Follow-the-Sun).

migration cost from 10 to 20. The operating cost is fixed at 10 for
all data centers.

Policy validation. Figure[]shows the total costs (migration, op-
erating, and communication) over time, while the Follow-the-Sun
program executes to a fixpoint in a distributed fashion. The total
cost corresponds to the aggcost (optimization goal) in the program
in Section To make it comparable across experimental runs
with different network sizes, we normalize the total cost so that its
initial value is 100% when the COP execution starts. We observe
that in all experiments, Follow-the-Sun achieves a cost reduction
after each round of distributed COP execution. Overall the cost
reduction ranges from 40.4% to 11.2%, as the number of data cen-
ters increases from 2 to 10. As the network size gets larger, the
cost reduction is less apparent. This is because distributed solving
approximates the optimal solution. As the search space of COP
execution grows exponentially with the problem size, it becomes
harder for the solver to reach the optimal solution.

To demonstrate the flexibility of Colog in enabling different
Follow-the-Sun policies, we modify the original Follow-the-Sun
program slightly to limit the number of migrations between any two
data centers to be less than or equal to 20, achieved with rules d11
and c3 as introduced in Section This modified policy achieves
comparable cost reduction ratios and convergence times as before,
while reducing the number of VM migrations by 24% on average.

Compilation and runtime overhead. The compilation time of
the program is 0.6 seconds on average for 10 runs. Figure [4]indi-
cates that as the network size scales up, the program takes a longer
time to converge to a fixpoint. This is due to more rounds of link
negotiations. The periodic timers between each individual link ne-
gotiation is 5 seconds in our experiment. Since the solver computa-
tion only requires input information within a node’s neighborhood,
each per-link COP computation during negotiation is highly effi-
cient and completes within 0.5 seconds on average. The memory
footprint is tiny, with 172KB (average) and 410KB (maximum) for
the solver, and 12MB for the RapidNet base program.

In terms of bandwidth utilization, we measure the communi-
cation overhead during distributed COP execution. The per-node
communication overhead is shown in Figure[5] We note that Cologne
is highly bandwidth-efficient, with a linear growth as the number of
data centers scales up. For 10 data centers, the per-node communi-
cation overhead is about 3.5 K Bps.

6.4 Use Case #3: Wireless Channel Selection
In our final set of experiments, we perform evaluations of using
Cologne to support declarative wireless channel selection policies
(Section[3.2]and Appendix [A).
Experimental setup. Our experimental setup consists of de-
ploying Cologne instances on ORBIT [4]], a popular wireless testbed
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that consist of machines arranged in a grid communicating with
each other using 802.11. Each ORBIT node is equipped with 1
GHz VIA Nehemiah processors, 64KB cache and 512MB RAM.
We selected 30 ORBIT nodes in a 8m x 5m grid to execute one
Cologne instance each. Each of these 30 nodes utilizes two Atheros
ARS5212-based 802.11 a/b/g cards as their data interfaces.

Policy validation. In our evaluation, we execute three channel
selection protocols Centralized (Appendix [A2), Distributed (Ap-
pendix[A.3) and Cross-layer, a distributed cross-layer protocol [[14]
written in Colog that integrates and optimizes across channel selec-
tion and routing policy decisions. We compare with two base line
protocols Identical-Ch and I-Interface. In I-Interface all nodes
communicate with each other using one interface and hence a com-
mon channel. In Identical-Ch [|12], the same set of channels are as-
signed to the interfaces of every node, and a centralized constraint
solver then assigns each link to use one of these interfaces.

We injected packets into Cologne instances with increasing send-
ing rate, and then measure the aggregate network throughput de-
fined in terms of network-wide aggregate data packet transmissions
that are successfully received by destination nodes. The result is
depicted in Figure[§] We make the following observations. First,
centralized and distributed protocols implemented in Cologne sig-
nificantly outperform single-interface and identical channel assign-
ment solutions. The relative differences and scalability trends of
these protocols are consistent with what one would expect in imper-
ative implementations. Second, cross-layer protocol outperforms
other protocols and exhibits the best overall performance in terms
of high throughput and low loss rate.

In our second experiment, we fix the channel selection proto-
col to be cross-layer and vary the channel selection policies. We
use a simulated network setup with 30 nodes. Figure [/|highlights
the capabilities of Cologne to handle policy variations with minor
changes to the input Colog policy rules. Specifically, we vary the
policies in two ways. First, Restricted Channels reduces the num-
ber of available channels for each node by an average of 20%. This
emulates the situation where some channels are no longer available
due to external factors, e.g. decreased signal strength, the presence
of primary users, or geographical spectrum usage limits. Second,
1-hop Interference uses a different cost assignment function to con-
sider only one-hop interference [28]]. As a basis of comparison, 2-
hop Interference shows our original channel selection policy used
in prior experiments. We observe that for Restricted Channels, the
throughput decreases by 35.9%. With the additional use of one-hop
interference model, the throughput further reduces by an average of
6.9%, indicating that the two-hop interference model does a better
job in ensuring channel diversity.

Compilation and runtime overhead. The compilation time of

4 6 8
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Figure 6: Aggregate ORBIT through-
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put (varying policies).

Centralized and Distributed is 1.2 seconds and 1.6 seconds respec-
tively. In terms of convergence time, Centralized requires less than
30 seconds to perform channel selection. The execution time is
dominated by the computation overhead of the Gecode solver. The
distributed protocols converge quickly as well — at 40 seconds and
80 seconds respectively for Distributed and Cross-layer. Since the
solver computation only requires input channel information within
a node’s neighborhood, each per-link COP computation during ne-
gotiation is highly efficient and completes within 0.2 seconds. For
bandwidth utilization, Distributed, Cross-layer are both bandwidth
efficient, requiring only per-node average bandwidth utilization of
1.57K Bps, 1.58 K Bps respectively for computing channel selec-
tion from scratch. In all cases, memory footprint is modest (about
12MB).

7. RELATED WORK

In our prior work, we made initial attempts at developing special-
ized optimization platforms tailored towards centralized cloud re-
source orchestration [[16] and wireless network configuration [[14].
This paper generalizes ideas from these early experiences, to de-
velop a general framework, a declarative programming language,
and corresponding compilation techniques. Consequently, Cologne
is targeted as a general-purpose distributed constraint optimization
platform that can support the original use cases and more. In doing
so, we have also enhanced the ACloud and Follow-the-Sun policies
through the use of Colog.

Prior to Cologne, there have been a variety of systems that use
declarative logic-based policy languages to express constraint op-
timization problems in resource management of distribute com-
puting systems. [27] proposes continuous optimization based on
declaratively specified policies for autonomic computing. [24] de-
scribes a model for automated policy-based construction as a goal
satisfaction problem in utility computing environments. The XSB
engine [|6] integrates a tabled Prolog engine with a constraint solver.
Rhizoma [29] proposes using rule-based language and constraint
solving programming to optimize resource allocation. [21] uses
a logic-based interface to a SAT solver to automatically generate
configuration solution for a single data center. [[10|] describes com-
piling and executing centralized declarative modeling languages to
Gecode programs.

Unlike the above systems, Cologne is designed to be a gen-
eral declarative distributed platform for constraint optimizations. It
first provides a general declarative policy language—Colog, which
is user-friendly for constraint solving modeling and results in or-
ders of magnitude code size reduction compared to imperative al-
ternatives. Another unique feature of Cologne is its support for
distributed optimizations, achieved by using the Colog language



which supports distribution, and the integration of a distributed
query engine with a constraint solver. Cologne platform supports
both simulation and deployment modes. This enables one to first
simulate distributed COP execution within a controllable network
environment and then physically deploy the system on real devices.

8. CONCLUSION

In this paper, we have presented the Cologne platform for declar-
ative constraint optimizations in distributed systems. We argue that
such a platform has tremendous practical value in facilitating ex-
tensible distributed systems optimizations. We discuss two con-
crete use cases based on cloud resource orchestration and wireless
network configurations, and demonstrate how the Colog language
enables a wide range of policies to be customized in support of
these two scenarios. We have proposed novel query processing
functionalities, that extend basic distributed Datalog’s PSN [18]]
evaluation strategies with solver modules, and compilation tech-
niques that rewrite rule selection and aggregation expressions into
solver constraints. We have implemented a complete prototype
based on RapidNet declarative networking engine and Gecode con-
straint solver. Our evaluation results demonstrate the feasibility of
Cologne, both in terms of the wide range of policies supported, and
the efficiency of the platform itself.

As future work, we plan to explore additional use cases in a wide
range of emerging domains that involve distributed COPs, includ-
ing decentralized data analysis and model fitting, resource alloca-
tions in other distributed systems, network design and optimiza-
tions, etc.
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APPENDIX
A. DECLARATIVE CHANNEL SELECTION

We first formulate wireless channel selection as a constraint op-
timization problem (COP), followed by presenting its equivalent
Colog programs (both centralized and distributed).

A.1 COP Formulation

In wireless channel selection, the optimization variables are the
channels to be assigned to each communication link, while the val-
ues are chosen from candidate channels available to each node. The
goal in this case is to minimize the likelihood of interference among
conflicting links, which maps into the well-known graph-coloring
problem [[13].

We consider the following example that avoids interference based
on the one-hop interference model [28]]. In this model, any two
adjacent links are considered to interfere with each other if they
both use channels whose frequency bands are closer than a certain
threshold. The formulation is as follows:

Input domain and variables: Consider a network G = (V, E),
where there are nodes V = {1,2,...,N}andedges E CV x V.
Each node z has a set of channels P, currently occupied by primary
users within its vicinity. The number of interfaces of each node is
ig.

Optimization goal: For any two adjacent nodes =,y € V, oy
denotes the link between x and y. Channel assignment selects a
channel ¢, for each link I, to meet the following optimization
goal:

min E

loylaz€EE,y#2

cost(Cay, Coz)

)
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where cost(czy, cz-) assigns a unit penalty if adjacent channel
assignments c;,, and c,. are separated by less than a specified fre-
quency threshold Fiindiff:

1 if |e —C < F .
cost(Cay, Coz) = { 0 otileigwise oz mindif f

®

Constraints: The optimization goal has to be achieved under the
following three constraints:

Viey € E, cay & Pe ©9)
Vigy € E,Cay = cya (10)
vz eV, U Cay| < in an

loy€E

() expresses the constraint that a node should not use channels
currently occupied by primary users within its vicinity. (T0) re-
quires two adjacent nodes to communicate with each other using
the same channel. (TI) guarantees the number of assigned chan-
nels is no more than radio interfaces.

A.2 Centralized Channel Selection

In centralized channel selection [23] |8], a channel manager is
deployed on a single node in the network. Typically, this node
is a designated server node, or is chosen among peers via a sepa-
rate leader election protocol. The centralized manager collects the
network status information from each node in the network — this
includes their neighborhood information, available channels, and
any additional local policies. The following Colog program takes
as input the 1ink table, which stores the gathered network topology
information, and specifies the one-hop interference model COP for-
mulation described in Section [A]

goal minimize C in totalCost (C)
var assign(X,Y,C) forall link(X,Y)

//
dl

cost derivation rules
cost (X,Y,2,C) <- assign(X,Y,Cl), assign(X,Z,C2),
Y!=2, (C==1)==(|Cl-C2|<F_mindiff).

d2 totalCost (SUM<C>) <- cost(X,Y,Z,C).
// primary user constraint
cl assign(X,Y,C) -> primaryUser(X,C2), C!=C2.

//
c2

channel symmetry constraint
assign(X,Y,C) -> assign(Y,X,C).

//
d3
c3

interface constraint
uniqueChannel (X, UNIQUE<C>) <- assign(X,Y,C).
uniqueChannel (X, Count) -> numInterface (X,K),

Optimization goal and variables: The goal in this case is to
minimize the cost attribute ¢ in totalcost, while assigning channel
variables assign for all communication links. Each entry of the
assign (X, Y,C) table indicates channel c is used for communication
between x and v.

Solver derivations: Rule 41 sets cost ¢ to 1 for each
cost (%,Y,2,C) tuple if the chosen channels that x uses to commu-
nicate with adjacent nodes v and z are interfering. Rule d2 sums the
number of interfering channels among adjacent links in the entire
network, and stores the result in totalCost.

Solver constraints: The constraints c1-c3 encode the three con-
straints introduced in COP formulation in Section[A 1]

In some wireless deployments, e.g. IEEE 802.11, the two-hop
interference model [28]] is often considered a more accurate mea-
surement of interference. This model considers interference that
results from any two links using similar channels within two hops
of each other. The two-hop interference model requires minor mod-
ifications to rule d1 as follows:

Count<=K.
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d3 cost(X,Y,%Z,W,C) <- assign(X,Y,Cl),
assign(z,wW,C2), X!=w, Y!=W, Y!=Z,

(C==1)==(|C1-C2|<F_mindiff) .

link (Z,X),

The above rule considers four adjacent nodes w, z, x, and v,
and assigns a cost of 1 to node x’s channel assignment with v
(assign(x,Y,c1)), if there exists a neighbor z of x that is currently
using channel c2 that interferes with c1 to communicate with an-
other node w. The above policy requires only adding one additional
link (z,x) predicate to the original rule d1, demonstrating the cus-
tomizability of Colog. Together with rule 41, one can assign costs
to both one-hop and two-hop interference models.

A.3 Distributed Channel Selection

We next demonstrate Cologne’s ability to implement distributed
channel selection. Our example here is based on a variant of dis-
tributed greedy protocol proposed in [25]. This example highlights
Cologne’s ability to support distributed COP computations, where
nodes compute channel assignments based on local neighborhood
information, and then exchange channel assignments with neigh-
bors to perform further COP computations.

The protocol works as follows. Periodically, each node randomly
selects one of its links to start a link negotiation process with its
neighbor. This is similar to distributed Colog program for Follow-
the-Sun in Section 3] Once a link is selected for channel assign-
ment, the result of link negotiation is stored in table setLink (X, Y).
The negotiation process then solves a local COP and assigns a
channel such that interference is minimized. The following Colog
program implements the local COP operation at every node x for
performing channel assignment. The output of the program sets
the channel assign (x,v,c) for one of its links 1ink (x,Y) (chosen
for the current channel negotiation process) based on the two-hop
interference model:

goal minimize C in totalCost (@X,C)
var assign(@X,Y,C) forall setLink (@X,Y)

// cost derivation for two-hop interference model

dl cost(@X,Y,Z,W,C) <- assign(@X,Y,Cl), link(QZ,X),
assign(Q@z,wW,C2), X!=Ww, Y!=W, Y!=Z,
(C==1)==(|C1l-C2|<F_mindiff) .

d2 totalCost (@X,SUM<C>) <- cost(@X,Y,Z,W,C).

// primary user constraint

cl assign(@X,Y,C) -> primaryUser (@X,C2), C!=C2.

c2 assign(@X,Y,C) -> primaryUser (@Y,C2), C!=C2.

// propagate channels to ensure symmetry

rl assign(QY,X,C) <- assign(@X,Y,C).

The distributed program is similar to the centralized equivalent
presented in Section[A-2] with the following differences:

While the centralized channel selection searches for all combina-
tions of channel assignments for all links, the distributed equivalent
restricts channel selection to a single link one at a time, where the
selected link is represented by setLink (@X, v) based on the negoti-
ation process. For this particular link, the COP execution takes as
input its local neighbor set (1ink) and all currently assigned chan-
nels (assign) for itself and nodes in the local neighborhood. This
means that the COP execution is an approximation based on local
information gathered from a node’s neighborhood.

Specifically, distributed solver rule d1 enables node x to collect
the current set of channel assignments for its immediate neighbors
and derive the cost based on the two-hop interference model. In
executing the channel selection for the current link, constraint c1-2
express that the channel assignment for 1ink (ex, v) does not equal
to any channels used by primaryuser. Once a channel is set at
node x after COP execution, the channel-to-link assignment is then
propagated to neighbor v, hence resulting in symmetric channel as-
signments (rule r1).
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