
A MapReduce Algorithm for Polygon Retrieval in Geospatial
Analysis

Qiulei Guo Balaji Palanisamy Hassan A. Karimi

School of Information Sciences, University of Pittsburgh
{qiulei, bpalan, hkarimi }@pitt.edu

Abstract—The proliferation of data acquisition devices like 3D
laser scanners had led to the burst of large-scale spatial terrain
data which imposes many challenges to spatial data analysis
and computation. With the advent of several emerging cloud
technologies, a natural and cost-effective approach to managing
such large-scale data is to store and process such datasets
in a publicly hosted cloud service using modern distributed
computing paradigms such as MapReduce. For several key
spatial data analysis and computation problems, polygon retrieval
is a fundamental operation which is often computed under real-
time constraints. However, existing sequential algorithms fail to
meet this demand effectively given that terrain data in recent
years have witnessed an unprecedented growth in both volume
and rate. In this work, we present a MapReduce-based parallel
polygon retrieval algorithm which aims at minimizing the IO
and CPU loads of the map and reduce tasks during spatial data
processing. Our proposed algorithm first hierarchically indexes
the spatial terrain data using a quad-tree index, with the help
of which, a significant amount of data is filtered out in the pre-
processing stage based on the query object. In addition, a prefix
tree based on the quad-tree index is built to query the relationship
between the terrain data and query area in real time which
leads to significant savings in both I/O load and CPU time. The
performance of the proposed techniques is evaluated in a Hadoop
cluster and the results demonstrate that the proposed techniques
are scalable and lead to more than 35% reduction in execution
time of the polygon retrieval operation over existing distributed
algorithms.

I. INTRODUCTION

The proliferation of cost-effective data acquisition devices
like 3D laser scanners has enabled the acquisition of massive
amounts of terrain data at an ever-growing volume and rate.
With the advent of several emerging collaborative cloud tech-
nologies, a natural and cost-effective approach to managing
such large-scale data is to store and share such datasets in
a publicly hosted cloud service and process the data within
the cloud itself using modern distributed computing paradigms
such as MapReduce. Examples of applications that process
such terrain data include urban environment visualization,
shadow analysis, visibility computation, and flood simulation.
Many geo-spatial queries on such large datasets are intrinsi-
cally complex to solve and are often computed under real-time
constraints, thus requiring fast response times for the queries.
However, most existing sequential algorithms fail to meet
this demand effectively given that terrain data in the recent
years have witnessed an unprecedented growth in both volume
and rate. Therefore, a common approach to speed up spatial
query processing is parallelizing the individual operations on
a cluster of commodity servers.

Polygon retrieval is a fundamental geospatial operation

which is often computed under real-time constraints. Polygon
retrieval involves retrieval of all terrain data within a given
polygon’s boundary [4], [5] to access the spatial data within
a specific area of interest for further analysis. We note that
terrain data is usually represented using one of the common
data structures to approximate surface, for example, digital ele-
vation model (DEM) and triangulated irregular network(TIN).
Among these existing structures, TIN[6] is a widely used
model and it consists of irregularly distributed nodes and lines
arranged in a network of non-overlapping triangles. Compared
to other spatial data structures, TIN requires considerably
higher storage as it can be used to represent surfaces with
much higher resolution and detail. For instance, a TIN dataset
for the city of Pittsburgh would require up to 60GB of storage
and for the state of Pennsylvania would require up to 60TB.
Therefore, real-time processing of such a large amount of
data is not possible through sequential computations and a
distributed parallel computation is needed to meet the fast
response time requirements.

We argue that such large scale spatial datasets can ef-
fectively leverage the MapReduce programming model[2]
to compute spatial operations in parallel. In doing so, key
challenges include how to organize, partition and distribute
a large scale spatial dataset across 10s of 100s of nodes in a
cloud data center so that applications can query and analyze
the data quickly and cost-effectively. Furthermore, polygon
retrieval is a CPU-intensive operation whose performance
heavily depends on the computation load causing performance
bottlenecks when dealing with very large datasets. Therefore, a
suitable algorithm needs to minimize the computation load on
the individual map and reduce tasks as well. In this paper, we
develop a MapReduce-based parallel algorithm for distributed
processing of polygon retrieval operation in Hadoop [3]. Our
proposed algorithm first hierarchically indexes the spatial
terrain data using a quad-tree index, with the help of which, a
significant amount of data is filtered out in the pre-processing
stage based on the query object. In addition, a prefix tree
based on the quad-tree index is built to query the relationship
between the terrain data and query area in real time which
leads to significant savings in both I/O load and CPU time. We
evaluate the performance of the proposed algorithm through
experiments on our Hadoop cluster consisting of 20 virtual
machines. Our experiment results show that the proposed algo-
rithm is scalable and performs faster than existing distributed
algorithms.

The rest of the paper is organized as follows: Section
2 reviews the related work and in Section 3, we provide

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/33562747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a background on TIN and overview the polygon retrieval
problem. Section 4 describes our proposed MapReduce based
polygon retrieval algorithm and the optimization techniques.
We discuss the experiment results in Section 5 and conclude
in Section 6.

II. RELATED WORK

Polygon retrieval is a common operation for a diverse
number of spatial queries in many GIS applications. Willard
et. al [4] proposed the polygon retrieval problem formally
and devised an algorithm that runs in O(N log4

6) time in the
worst-case. To speed up this query further, several efficient
sequential algorithms have been proposed. The most notable
among these include the algorithms presented in [5], [12], [14],
[15]. However, with the recent massive growth in terrain data,
these sequential algorithms fail to meet the demands of real-
time processing.

As cloud computing has emerged to be a cost-effective
and promising solution for both compute and data intensive
problems, a natural approach to ensure real-time processing
guarantees is to process such spatial queries in parallel effec-
tively leveraging modern cloud computing technologies. In this
context, some earlier work [16] had explored the feasibility of
using Google App Engine, the cloud computing technology
by Google, to process TIN data. Since MapReduce/Hadoop
has become the defacto standard for distributed computa-
tion on a massive scale, some recent works have developed
several MapReduce-based algorithms for GIS problems. The
authors in [17] propose and implement a MapReduce algo-
rithm for distributed polygon overlay computation in Hadoop.
The authors in [18] present a MapReduce-based approach
that construct inverted grid index and processes kNN query
over large spatial data sets. The technique presented in [19]
creates a unique spatial index and Voronoi diagram for given
points in 2D space and enables efficient processing of a
wide range of geospatial queries such as RNN, MaxRNN
and kNN with the MapReduce programming model. Hadoop-
GIS[20] and Spatial-Hadoop[21], [10] are two scalable and
high-performance spatial data processing system for running
large-scale spatial queries in Hadoop. These systems provide
support for some fundamental spatial queries including the
minimal bounding box query. However, they do not directly
support polygon retrieval operation addressed in our work. In
our work, we primarily focus on the polygon retrieval queries
on spatial data and we devise specific optimization techniques
for an efficient implementation of the parallel polygon retrieval
operation in MapReduce.

III. BACKGROUND

In this section, we provide the required background and
preliminaries about the TIN spatial data storage format and
a brief overview of MapReduce based parallel processing of
large-scale datasets.

A. TIN Data

TIN[6] is a commonly used model for representing spatial
data and it consists of irregularly distributed nodes and lines

arranged in a network of non-overlapping triangles. TIN data
typically gets generated from raster data such as LIDAR (Light
Detection and Ranging) which is a remote sensing method
that uses light in the form of a pulsed laser to measure
ranges to the Earth surface. These light pulsescombined with
other data recorded by the airborne system generate precise,
three-dimensional information about the shape and surface
characteristics. In our work, we consider TIN data generated
from LIDAR data using the Delaunay triangulation algorithm
implemented by the LASTool [30]. An example of LIDAR
data and its corresponding TIN representation is shown in
Figure 1(a) and Figure 1(b) respectively.

When it comes to data representation, TINs are traditionally
stored as a file, in ASCII or the ESRI TIN dataset file
format. To improve the efficiency of processing large TIN
datasets, [22], [23] have proposed new TIN data structures and
operations for spatial databases that allow storing, querying
and reconstructing TINs more efficiently. However, we note
that there are no standards on the data structures and operations
for TIN [16]; Oracle has defined a proprietary data type
and operations for managing large TINs in their own spatial
database [24]. In our work, we adopt the data format from [16]
which comprises of two types of data entities: TIN Points
and TIN Triangles, as shown in Figure 2. Both types have
their unique IDs. The TIN Points type has five properties
and the TIN Triangles entity has three properties. For the
TIN Point, the Adj TriangleID[] array stores the IDs of its
adjacent triangles. For the TIN Triangle, the Point ID array
and Coordinate array contain the IDs and coordinates for the
three vertices of each triangle.

TIN_Point

Point_ID

Latitude

Longitude

Elevator

Adj_TriangleID[]

TIN_Trianlge

Triangle_ID

Point_ID[]

Coordinate[]

Fig. 2: TIN representation

B. Polygon Retrieval

In this subsection, we describe the polygon retrieval prob-
lem using data represented in TIN. Given the boundary of
a simple polygon, the polygon retrieval operation retrieves
all the terrain data, represented by TIN that intersects with
the polygon. As there could be many possible situations of
intersection [25], for the purpose of speed, in this work, we
consider an intersection when at least one of its vertex of
the TIN triangles intersects with the query area. We note that
point-in-polygon algorithms can be used to determine whether
a point is inside or outside the polygon. One such well-known
algorithm is ray tracing algorithm which is usually referred to
as crossing number algorithm or even-odd rule algorithm [23]

(a) LIDAR Point cloud (b) TIN surface

Fig. 1: LIDAR and TIN surface

in the literature.

C. MapReduce overview

In this work, we are focused on MapReduce-based parallel
processing of TIN for the polygon retrieval operation. We note
that in addition to the programming model, MapReduce [2]
also includes the system support for processing the MapRe-
duce jobs in parallel in a large scale cluster. Apache Hadoop[3]
is a popular open source implementation of the MapReduce
framework. Hadoop is composed of two major parts: storage
model, Hadoop Distributed File System (HDFS) and com-
pute model (MapReduce). A key feature of the MapReduce
framework is that it can distribute a large job into several
independent map and reduce tasks over several nodes of a
large data center and process them in parallel.

MapReduce can effectively leverage data locality and pro-
cessing on or near the storage nodes and result in faster
execution of the jobs. The framework consists of one master
node and a set of slave nodes. In the map phase, the master
node schedules and distributes the individual map tasks to
the worker nodes. A map task executing in a worker node
processes the smaller chunk of the file stored in HDFS and
passes the intermediate results to the appropriate reduce tasks
executing in a set of worker nodes. The reduce tasks collect the
intermediate results from the map tasks and combine/reduce
them to form the final output. Since each map operation
is independent of the others, all maps can be performed in
parallel. It is also the same with reducers as each reducer
works on a mutually exclusive set of intermediate results
produced by mappers.

IV. MAPREDUCE-BASED PARALLEL POLYGON RETRIEVAL

In this section, we first present a naive implementation
of parallel polygon retrieval operation using MapReduce and
illustrate its performance. We then present our proposed op-
timization techniques that significantly improves this basic
polygon retrieval algorithm.

A. Basic MapReduce Algorithm for Polygon Retrieval

An intuitive and straight-forward MapReduce-based poly-
gon retrieval implementation is to process all the terrain data
stored in HDFS as part of the MapReduce job. Each mapper
will process an input split and check whether a given point

is within the boundary of the query area or not. The HDFS
partitions the TIN data into several chunks (64 MB blocks by
default) and each map task would process one chunk of data in
parallel. Unfortunately this basic MapReduce algorithm (Al-
gorithm 10) has several key performance limitations. Firstly,
for each query the algorithm reads all terrain data from the
HDFS and processes them in the map phase. This approach
is not efficient in situations when the query area is a smaller
portion of the whole dataset, where the system does not need
to scan all terrain data to obtain accurate results. We also note
that the point in polygon computation in the map phase is a
reasonably CPU consuming operation and hence performing
this computation for a huge amount of data will result in
significantly longer job execution times.

Our proposed algorithm employs a sequence of optimiza-
tion techniques that overcome the above-mentioned shortcom-
ings. First, our proposed technique divides the whole dataset
stored in HDFS into several chunks of files based on a quad-
tree prefix. Then for each range query, we use a prefix tree to
organize the set of quad-indices whose corresponding grids
intersect the query area. Prior to processing a query, we
employ these indices to filter the unnecessary TIN data as part
of the data filtering stage so that unwanted data processing is
minimized in the map phase. Finally, the proposed approach
pre-tests the relationship between the TIN data and the query
shape through the built prefix tree in the map function in order
to minimize the computation. We describe the essence and
details of these techniques in the following subsections.
Algorithm 1 Basic MapReduce Polygon Retrieval

1: point id: a point ID
2: TIN point: a TIN point in space
3: procedure MAP(point id, T IN point)
4: get the boundary of the query area from the global

share memory of Hadoop
5: if tin point is within the boundary then
6: emit the key-value pair (point id, T IN point)
7: else
8: return
9: end if

10: end procedure

a

bc

d

e

f

g

h

i

(a) Spatial area

a

bc

d

e

f

g

h

i

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

(b) Quad-index partitioning

Fig. 3: Spatial Grid Index

R3 R6

R1 R2 R4 R5

a b c d i h e f g

(a) R-tree

a

bc

d

e

f

g

h

i

R1

R2

R3

R4

R5

R6

(b) R-tree partitioning

Fig. 4: Example: R-tree representation

B. Indexing Terrain Data using Quad-tree

To accelerate the processing of terrain data, we divide the
entire space based on a quad-tree [13] and index each TIN
record using the quad-tree. Quad-tree is a common tree data
structure used in many geospatial applications which partitions
a two-dimensional space by recursively subdividing the space
into four equal regions. Compared with other spatial indices
such as R-tree or uniform grid index, the quad-tree has several
advantages for polygon retrieval. For instance, unlike the index
of R-tree which needs to be built by the insertion of the terrain
data one after another while maintaining the tree’s balance
structure which takes O(n∗ logn) time, quad- tree index does
not need to maintain a real tree and can be used to partition
the space directly as shown in Fig 3(b). In addition, with the
quad-tree index, we can even infer the topological relationship
of the terrain data and the query area from the indices’ prefix
directly.

An example that compares the index of R-tree and quad-
tree is illustrated in Figures 3 and 4. The original space is

shown in Figure 3(a). The circles represent the elements of a
terrain like the TIN points. Figure 3(b) shows the partitioning
of the whole space based on the quad-tree index of length
2 directly. In Figure 4(a), we find a R-tree representation of
the same space by going over the elements in the terrain and
inserting them to the tree for the spatial partition shown in
Figure 4(b). Next, we show how the quad-tree index helps
infer the topological relationships using the example shown in
Figure 3(b). In the figure, we find the query area shown as a
gray region and the set of grid indices that intersect with this
gray query area are {30, 31, 32, 33, 23, 21, 12, 13,03}. A
key observation here is that if a grid cell is within a query
area, then all its sub grids are also guaranteed to be within
the query area. Therefore the grids’ set {30, 31, 32, 33 } can
be combined into a single grid cell {3} and the indices set
in Figure 3(b) can be abbreviated to {3, 23, 21, 12, 13, 03
}. Thus, if the prefix of a spatial object’s quad-index exists
in a set, then the object is guaranteed to be within the query
area. This property of the proposed indexing scheme avoids
the point-in-polygon computation in the map phase enabling

the MapReduce jobs to complete significantly faster.

a

bc

d

e

f

g

h

i

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

Fig. 5: Polygon Retrieval
To decide whether the prefix of a quad-tree exists in a given

set of index entries, it would cost O(k ∗n) time for a straight-
forward algorithm, where k is the length of the quad-tree index
(also the depth of the quad-tree) and n is the number of entries
the indices set. Thus, when n and k get larger, the cost of
the algorithm will grow significantly. In the next subsection,
we propose a prefix tree structure organizing grid entries that
interact with the query area with the cost of only O(k) time.

C. Organizing the index using Prefix Tree

A prefix tree, also called radix tree or trie, is an ordered tree
data structure that is used to store a dynamic set or associative
array where the keys are usually strings [11]. The idea behind a
prefix tree is that all strings that share a common prefix inherit
a common node. Thus with our prefix tree optimization, testing
a prefix of a quad-tree index in a given set can be accomplished
in just O(k) time. Figure 7 shows the prefix tree built from
the grid indices set {3,23, 21, 12, 13,03 } of the previous
example.

Next, we discuss in detail the optimized query processing
algorithm that minimizes the point-in-polygon computation
by building a prefix tree based on the grid index and their
intersection with the query area. In the pre-processing stage,
we first consider the first four grid cells and recursively test
them to find overlap with the query area. When a grid cell
intersects the query area, we subdivide the grid cell into four
sub-cells recursively unless we are at the deepest level of the
quad-tree. If the grid cell is within the query area, we stop
subdividing the grid cell and insert its index into the prefix
tree and mark the corresponding leaf node as ”within”. As
pointed out earlier, if the grid is within the query area, all its
sub grids will also be within the query area and hence this
leaf node will always be a leaf node. From the perspective of
prefix tree, if the prefix of a quad-tree ends in a leaf node,
it means that the corresponding TIN records are within the
query area. Finally if a grid cell is outside the query area,
we simply ignore it. Here we note that unlike the traditional
strategies that subdivide the grid cells based on how many
elements are within each grid, we subdivide each grid based on

their relation with the query area which significantly improves
the performance of our range query processing. We present a
complete pseudo code of this algorithm in Algorithm 17.
Algorithm 2 Prefix tree construction

1: depth: depth of the prefix tree
2: query shape: the geometric shape of the given query
3: grid queue : a queue containing the grid index entries
4: ptree: the output prefix tree
5: procedure BUILDPREFIXTREE(depth, query shape)
6: grid queue = {0, 1, 2, 3}
7: while grid queue.empty() == false do
8: g = grid queue.pop()
9: if query shape contains g or g.length() == depth

then
10: insert the index g into the prefix tree ptree
11: mark the leaf node as within or overlapping the query

area
12: else
13: Insert the four child nodes of g into grid queue
14: end if
15: end while
16: return ptree;
17: end procedure

Fig. 7: Prefix Tree
After the prefix tree is created in the pre-processing stage,

it is effectively used in the map function. When each mapper
receives a TIN record, the relation of the TIN record and
the query area is inferred based on the prefix tree created
in the pre-processing phase. We first try to search the longest
prefix of the TIN record’s quad-tree index in the prefix tree
which ends in a leaf node. If the search returns nothing,
it means that the TIN record is totally outside the query
area. If returned tree node is marked as ”within”, we will
output the TIN record directly. Only if not, we need to do
the point-in-polygon computation. Thus, the point-in-polygon
computation is avoided for a majority of cases making the
algorithm very efficient and scalable. We show a pseudo code
of this procedures in Algorithm 17.

D. Quad-tree Based File Organization

Finally, we discuss our proposed quad-tree prefix based TIN
file filtering strategy which tries to read in only the necessary
TIN data rather than scanning the whole dataset stored in
HDFS. Similar to how quad-tree organized by the prefix tree
is used to minimize CPU load of the map tasks, we use a
similar idea to reduce the amount of data processed by the
polygon retrieval query. The core idea behind the proposed

File_00

QuadIndex PointID Latitude Longitude Elevator Adj_TriangleIDs

00000 8349 40.44207 -79.95496 156 324,12,45

00000 23 40.44778 -79.97353 154 7894,72

00120 45624 40.44594 -79.96281 240 6014,914,326

………………………………………

Fig. 6: File Organization

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0.067E7

0.286E7

0.347E7

0.526E7

0.805E7

1.094E7

2.164E7

2.483E7

2.756E7

3.151E7

tim
e(

m
ill

i s
ec

on
ds

)

Query Area(square meters)

HadoopTIN
SpatialHadoop*

(a) 5 VMs

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0.067E7

0.286E7

0.347E7

0.526E7

0.805E7

1.094E7

2.164E7

2.483E7

2.756E7

3.151E7

tim
e(

m
ill

i s
ec

on
ds

)

Query Area(square meters)

HadoopTIN
SpatialHadoop*

(b) 10 VMs

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0.067E7

0.286E7

0.347E7

0.526E7

0.805E7

1.094E7

2.164E7

2.483E7

2.756E7

3.151E7

tim
e(

m
ill

i s
ec

on
ds

)

Query Area(square meters)

HadoopTIN
SpatialHadoop*

(c) 15 VMs

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0.067E7

0.286E7

0.347E7

0.526E7

0.805E7

1.094E7

2.164E7

2.483E7

2.756E7

3.151E7

tim
e(

m
ill

i s
ec

on
ds

)

Query Area(square meters)

HadoopTIN
SpatialHadoop*

(d) 20 VMs

Fig. 8: Execution Time for various query area size

approach is to separate the TIN data into fairly smaller files
such that each file shares the same prefix. For instance, a large
terrain’s TIN data can be organized as multiple smaller files
such as File 00, File 01, File 02 and so on, see Figure 3.4 for
an example of a file with name File 00. After we organize the
terrains file in this manner, we use it in the file filtering stage
which scans only the required records to filter those files that
are outside the query area. For example, in Figure 3(b), if we
subdivide the TIN data into files based on a depth level of 2,
we can see that the set of grid indices that intersect the query
area correspond to {3, 23, 21, 12, 13, 03 }. Hence, we only

need to scan the files {30, 31, 32, 33, 23, 21, 12, 13, 03} in
the HDFS and thus minimizes the amount of data processed.

In practice we note that the length of the prefix constituting
the file’s name is an important parameter and it can affect the
efficiency of the job to a certain extent. Specifically, the longer
the prefix length becomes, the smaller is the size of the divided
file so that more data can be filtered. However, we notice that
Hadoop is not good at dealing with small sized files, especially
when the files are less than the input split size. In order to
balance this, we ensure that each TIN file size is a multiple
of or equal to the Hadoop data block size. We compute the

Algorithm 3 Optimized MapReduce Polygon Retrieval

1: quad index: the quad index
2: tin point: a TIN point in space
3: ptree: the prefix tree
4: procedure MAP(quad index, tin point)
5: read prefix tree, ptree from the global shared memory
6: read the query area from the global shared memory
7: search the prefix of quad index in the prefix tree,

ptree until it ends at a leaf node
8: if search returns null then
9: // it means that the grid is outside the query area

10: return
11: end if
12: if leaf node is marked as ”within” then
13: output tin point
14: else
15: perform point within boundary computation
16: end if
17: end procedure

prefix length l such that filesize
4l

≈ 64 MB, where filesize is
the size of the entire TIN dataset and 64 MB here corresponds
to the default input split size in Hadoop.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
our distributed polygon retrieval algorithm. We divide this
section into two parts. First, we introduce the dataset and the
computing environment used in our experimental study. We
then evaluate and compare with existing solutions how the time
cost of the spatial query jobs grows as the randomly generated
query areas get larger. Finally, we evaluate our algorithms on
various sizes of Hadoop cluster to measure the efficacy of our
approach across various cluster sizes.

A. Datasets and Experiment Environment

For our datasets, we use the LIDAR data of Pittsburgh
city and convert it into TIN format with the help of the
LASTool[22]. The data of Pittsburgh is originally divided into
5 ∗ 5 equally sized grid cells and each grid cell represents a
terrain of 10000 metes * 10000 meters. There are 3 million
points and 6 million triangles in each grid cell and the size of
each grid’s TIN file is approximately 500 MB. We conducted
our experiments on a cluster of virtual machines created by
OpenStack[8] hosted on a 5-node experimental cluster. Each
server in the cluster has an Intel Xeon 2.2GHz 4 Core with
16 GB RAM and 1 TB hard drive at 7200 rpm. Each virtual
machine in our setup had 1 VCPU with 2 GB RAM and 20
GB hard drive with Ubuntu Server 12.04(32 bit).

B. Time Cost vs Query Area

We first demonstrate how the time cost of the polygon
retrieval algorithm grows as a function of the query area size.
In this experiment, we use all of 4 grids’ of data of Pittsburgh
as input (2000 MB). For each polygon retrieval, we generated
a polygon area for the query randomly. For comparing our
results with existing distributed polygon retrieval techniques,

we chose Spatial-Hadoop[29] as the benchmark. Since Spatial-
Hadoop neither provides polygon retrieval nor supports the
TIN data format directly, for our experiments, we modified
their interfaces and we executed the polygon retrieval opera-
tion as suggested in the Spatial-Hadoop tutorial[29]. As sug-
gested, we performed the point within polygon computation
directly in the map function.

Figure 8(a) - Figure 8(d) show the relationship between
the time cost and the polygon query area using a 5, 10, 15
and 20 VM cluster respectively. From the figures, we notice
that as the query area gets larger, the time cost generally
increases as more TIN data gets processed in the map and
reduce phases. From the result, we also infer that our algorithm
on an average runs 20%-50% faster than the existing technique
in SpatialHadoop. As explained in Section IV, our proposed
algorithm significantly avoids the geometry floating point
computation in the map phase, especially when the query area
is not very large and therefore, when the query area becomes
larger, we notice that the I/O time dominates the CPU time
and hence the CPU time savings become less significant.

C. Time Cost Vs Cluster size

We next evaluate the effectiveness of our polygon retrieval
algorithm by varying the size of the Hadoop cluster in terms of
the number of VMs. For this experiment, we generated several
random query shapes and used them to run queries on different
cluster sizes. Figure 9(a) and Figure 9(b) show the time cost
on various cluster sizes when the query area is 2.7e + 7m2

and 3.5e + 7m2 respectively. We infer from Figure 9(a) and
Figure 9(b) that the execution time decreases gradually as the
cluster size becomes larger. Overall, we find that the proposed
technique scales well with the number of nodes in the Hadoop
cluster showing a significant reduction in job execution time
with increase in cluster size.

VI. CONCLUSION

In this paper, we presented a distributed polygon retrieval
algorithm based on MapReduce to provide fast real-time
responses to spatial queries over large-scale spatial datasets.
Our proposed algorithm first hierarchically indexes the spatial
terrain data using a quad-tree which filters out a significant
amount of data in the pre-processing stage based on the query
object. It then dynamically builds a prefix tree based on the
quad-tree index to query the relationship between the terrain
data and query area in real time which leads to significant
savings in both I/O load and CPU time. The evaluation results
of the techniques in a Hadoop cluster show that our techniques
achieve significant reduction in job execution time for the
queries and and shows a good scalability. As part of future
work, we plan to develop distributed algorithms for other
commonly used geospatial operations such as terrain visibility
computation, flood simulation and 3D navigation.

REFERENCES

[1] B. Igou “User Survey Analysis: Cloud-Computing Bud-
gets Are Growing and Shifting; Traditional IT Services
Providers Must Prepare or Perish”. Gartner Report, 2010

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 6 8 10 12 14 16 18 20

tim
e

(m
ill

i s
ec

)

Number of VMs

HadoopTIN
SpatialHadoop*

(a) Execution time for an area of 2.7e+7

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 6 8 10 12 14 16 18 20

tim
e

(m
ill

i s
ec

)

Number of VMs

HadoopTIN
SpatialHadoop*

(b) Execution time for an area of 3.5e+7

Fig. 9: Impact of number of VMs

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[3] Hadoop. http://hadoop.apache.org.
[4] Willard, D.E. “Polygon retrieval”. SIAM Journal on

Computing 11.1 (1982): 149-165.
[5] Mark de Berg, O.C., Marc van Kreveld, Mark Overmars.

“Simplex Range Searching”. Computational Geome-
try,2008

[6] Peucker, Thomas K., et al. “The triangulated irregular
network”. Amer. Soc. Photogrammetry Proc. Digital
Terrain Models Symposium. Vol. 516. 1978..

[7] White, Tom. “Hadoop: The definitive guide”. O’Reilly
Media, Inc.,2012.

[8] Openstack: http://www.openstack.org/
[9] Google App Engine. “Basic Geospatial Queries in Google

App Engine”. https://code.google.com/p/geomodel/,2009
[10] Eldawy, Ahmed, and Mohamed F. Mokbel. “A demon-

stration of SpatialHadoop: an efficient mapreduce frame-
work for spatial data”. Proceedings of the VLDB Endow-
ment 6.12 (2013): 1230-1233.

[11] Cormen, T., Stein, C., Rivest, R., and Leiserson, C.
Introduction to Algorithms. In McGraw-Hill Higher
Education.

[12] Sioutas, Spyros, et al. “Canonical polygon queries on the
plane: A new approach”. arXiv preprint arXiv:0805.2681
(2008)

[13] Samet, Hanan. The Quadtree and Related Hierarchical
Data Structures. In ACM Computing Surveys, 1984

[14] Tung, Lun Hsing, and Irwin King. “A two-stage frame-
work for polygon retrieval”. Multimedia Tools and
Applications 11.2 (2000): 235-255.

[15] Paterson, Michael S., and F. Frances Yao. “Point retrieval
for polygons”. Journal of Algorithms 7.3 (1986): 441-447.

[16] Karimi, Hassan Ali, Duangduen Roongpiboonsopit, and
Haopeng Wang. “Exploring RealTime Geoprocessing
in Cloud Computing: Navigation Services Case Study”.
Transactions in GIS 15.5 (2011): 613-633.

[17] Puri, Satish, et al. “MapReduce algorithms for GIS
polygonal overlay processing” Parallel and Distributed

Processing Symposium Workshops and PhD Forum
(IPDPSW), 2013 IEEE 27th International. IEEE, 2013..

[18] Ji, Changqing, et al. “Inverted grid-based knn query pro-
cessing with mapreduce”. ChinaGrid Annual Conference
(ChinaGrid), 2012 Seventh. IEEE, 2012.

[19] Akdogan, Afsin, et al. “Voronoi-based geospatial query
processing with mapreduce”. Cloud Computing Tech-
nology and Science (CloudCom), 2010 IEEE Second
International Conference on. IEEE, 2010.

[20] Aji, Ablimit, et al. “Hadoop GIS: a high performance
spatial data warehousing system over mapreduce”. Pro-
ceedings of the VLDB Endowment 6.11 (2013): 1009-
1020.

[21] Eldawy, Ahmed, et al. “CG Hadoop: computational
geometry in MapReduce”. Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2013.

[22] Hanjianga, Xiong, Tang Limina, and Sun Longa. “A
Strategy to Build a Seamless Multi-Scale TIN-DEM
Database”. The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences
37.

[23] Al-Salami, A. “TIN support in an open source spatial
database”. MS Thesis, International Institute for Geo-
information Science and Earth Observation (ITC), En-
schede, The Netherlands (2009).

[24] Kothuri, Ravi, Albert Godfrind, and Euro Beinat. “Pro
oracle spatial for oracle database 11g”. Berkeley: Apress,
2007.

[25] Clementini, Eliseo, Jayant Sharma, and Max J. Egen-
hofer. “Modelling topological spatial relations: Strategies
for query processing” . Computers & graphics 18.6
(1994): 815-822.

[26] Shimrat, Moshe. “Algorithm 112: position of point
relative to polygon”. Communications of the ACM 5.8
(1962): 434.

[27] Wikipedia. Trie. //http://en.wikipedia.org/wiki/Trie
[28] LAStools. http://www.cs.unc.edu/ isenburg/lastools/
[29] SpatialHadoop: http://spatialhadoop.cs.umn.edu/operations.html
[30] Lastools: http://www.cs.unc.edu/ĩsenburg/lastools/.

