
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

3-2012

Implementing Network Protocols as Distributed
Logic Programs
Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Loo, B., Implementing Network Protocols as Distributed Logic Programs, Association of Logic Programming (ALP) Newsletter, March 2012

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/686
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Boon Thau Loo, "Implementing Network Protocols as Distributed Logic Programs", . March 2012.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/686
mailto:libraryrepository@pobox.upenn.edu


Implementing Network Protocols as Distributed Logic Programs

Abstract
Declarative networking [2, 4, 3, 1] is an application of database query-language and processing techniques to
the domain of networking. Declarative networking is based on the observation that network protocols deal at
their core with computing and maintaining distributed state (e.g., routes, sessions, performance statistics)
according to basic information locally available at each node (e.g., neighbor tables, link measurements, local
clocks) while enforcing constraints such as local routing policies. Recursive query languages studied in the
deductive database literature [6] are a natural fit for expressing the relationship between base data, derived
data, and the associated constraints. Simple extensions to these languages and their implementations enable
the natural expression and efficient execution of network protocols. Declarative networking aims to accelerate
the process of specifying, implementing, experimenting with and evolving designs for network architectures.
Declarative networking can reduce program sizes of distributed protocols by orders of magnitude relative to
traditional approaches. In addition to serving as a platform for rapid prototyping of network protocols,
declarative networking also open up opportunities for automatic protocol optimization and hybridization,
program checking and debugging. This paper presents an introduction to declarative networking using a
simple routing protocol example. For more details on declarative networking related projects, refer to the
NetDB@Penn website [5], and the RapidNet [7] declarative networking engine.

Disciplines
Computer Sciences

Comments
Loo, B., Implementing Network Protocols as Distributed Logic Programs, Association of Logic Programming
(ALP) Newsletter, March 2012

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/686

http://repository.upenn.edu/cis_papers/686?utm_source=repository.upenn.edu%2Fcis_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages


Implementing Network Protocols as Distributed
Logic Programs

Boon Thau Loo

University of Pennsylvania

boonloo@cis.upenn.edu

Declarative networking [2, 4, 3, 1] is an application of database query-language
and processing techniques to the domain of networking. Declarative networking is
based on the observation that network protocols deal at their core with comput-
ing and maintaining distributed state (e.g., routes, sessions, performance statis-
tics) according to basic information locally available at each node (e.g., neighbor
tables, link measurements, local clocks) while enforcing constraints such as local
routing policies. Recursive query languages studied in the deductive database
literature [6] are a natural fit for expressing the relationship between base data,
derived data, and the associated constraints. Simple extensions to these lan-
guages and their implementations enable the natural expression and efficient
execution of network protocols.

Declarative networking aims to accelerate the process of specifying, imple-
menting, experimenting with and evolving designs for network architectures.
Declarative networking can reduce program sizes of distributed protocols by or-
ders of magnitude relative to traditional approaches. In addition to serving as a
platform for rapid prototyping of network protocols, declarative networking also
open up opportunities for automatic protocol optimization and hybridization,
program checking and debugging.

This paper presents an introduction to declarative networking using a simple
routing protocol example. For more details on declarative networking related
projects, refer to the NetDB@Penn website [5], and the RapidNet [7] declarative
networking engine.

Declarative Networking By Example

The Network Datalog (NDlog) language used in declarative networking is based
on extensions to traditional Datalog, a well-known recursive query language de-
signed for querying graph-structured data in a centralized database. NDlog’s
integration of networking and logic is unique from the perspectives of both do-
mains. As a network protocol language, it is notable for the absence of any
communication primitives like “send” or “receive”; instead, communication is
implicit in a simple high-level specification of data partitioning. In comparison
to traditional logic languages, it is enhanced to capture typical network reali-
ties including distribution, link-layer constraints on communication (and hence
deduction), and soft-state semantics.



We introduce Network Datalog (NDlog), the declarative network using an
example program shown below that implements the Path-vector protocol, which
computes in a distributed fashion, for every node, the shortest paths to all other
nodes in a network. The path-vector protocol is used as the base routing protocol
for exchanging routes among Internet Service Providers.

sp1 path(@Src,Dest,Path,Cost) :- link(@Src,Dest,Cost),

Path = f init(Src,Dest).

sp2 path(@Src,Dest,Path,Cost) :- link(@Src,Nxt,Cost1),

path(@Nxt,Dest,Path2,Cost2),

Cost = Cost1+Cost2,

Path = f concatPath(Src,Path2).

sp3 spCost(@Src,Dest,min<Cost>) :- path(@Src,Dest,Path,Cost).

sp4 shortestPath(@Src,Dest,Path,Cost) :- spCost(@Src,Dest,Cost),

path(@Src,Dest,Path,Cost).

Query shortestPath(@Src,Dest,Path,Cost).

The program has four rules (which for convenience we label sp1-sp4), and
takes as input a base (extensional) relation link(Src, Dest, Cost). Rules sp1-sp2
are used to derive “paths” in the graph, represented as tuples in the derived (in-
tensional) relation path(Src,Dest,Path,Cost). The Src and Dest fields represent
the source and destination endpoints of the path, Path is the actual path from
Src to node Dest. The number and types of fields in relations are inferred from
their (consistent) use in the program’s rules.

Since network protocols are typically computations over distributed network
state, one of the important requirements of NDlog is the ability to support rules
that express distributed computations. NDlog builds upon traditional Datalog
by providing control over the storage location of tuples explicitly in the syntax
via location specifiers. Each location specifier is a field within a predicate that
dictates the partitioning of the table. To illustrate, in the above program, each
predicate has an “@” symbol prepended to a single field denoting the location
specifier. Each tuple generated is stored at the address determined by its location
specifier. For example, each path and link tuple is stored at the address held in
its first field @Src.

Rule sp1 produces path tuples directly from existing link tuples, and rule
sp2 recursively produces path tuples of increasing cost by matching (joining)
the destination fields of existing links to the source fields of previously com-
puted paths. The matching is expressed using the repeated Nxt variable in
link(Src,Nxt,Cost1) and path(Nxt,Dest,Path2,Cost2) of rule sp2. Intuitively,
rule sp2 says that “if there is a link from node Src to node Nxt, and there is
a path from node Nxt to node Dest along a path Path2, then there is a path
Path from node Src to node Dest where Path is computed by prepending Src to
Path2”. The matching of the common Nxt variable in link and path corresponds
to a join operation used in relational databases.

Given the path relation, rule sp3 derives the relation spCost(Src,Dest,Cost)

that computes the minimum cost Cost for each source and destination for all
input paths. Rule sp4 takes as input spCost and path tuples and then finds



shortestPath(Src,Dest,Path,Cost) tuples that contain the shortest path Path

from Src to Dest with cost Cost. Last, as denoted by the Query label, the
shortestPath table is the output of interest.

Shortest Path Execution Example

We step through an execution of the shortest-path NDlog program above to il-
lustrate derivation and communication of tuples as the program is computed.
We make use of the example network in Figure 1. Our discussion is necessarily
informal since we have not yet presented our distributed implementation strate-
gies; in the next section, we show in greater detail the steps required to generate
the execution plan. Here, we focus on a high-level understanding of the data
movement in the network during query processing.

p(@a,b,[a,b],5)
p(@a,c,[a,c],1)a

b

c

d

Initially

l(@a,b,5)
l(@a,c,1)

l(@c,b,1)

l(@b,d,1)

5
1

1

a

b

c
5

1

1st Iteration

1 1
p(@c,b,[c,b],1)p(@b,d,[b,d],1)

p(@a,d,[a,b,d],6)
p(@a,b,[a,c,b],2) a

b

c
5

1

2nd Iteration

1
p(@c,d,[c,b,d],2)

el(@e,a,1)

1

p(@e,a,[e,a],1)
p(@e,b,[e,a,b],6)
p(@e,c,[e,a,c],2)

d

1

d

1

e e

1 1

Fig. 1. Nodes in the network are running the shortest-path program. We only show
newly derived tuples at each iteration.

For ease of exposition, we will describe communication in synchronized iter-
ations, where at each iteration, each network node generates paths of increas-
ing hop count, and then propagates these paths to neighbor nodes along links.
We show only the derived paths communicated along the solid lines. In actual
query execution, derived tuples can be sent along the bidirectional network links
(dashed links).

In the 1st iteration, all nodes initialize their local path tables to 1-hop paths
using rule sp1. In the 2nd iteration, using rule sp2, each node takes the input
paths generated in the previous iteration, and computes 2-hop paths, which are
then propagated to its neighbors. For example, path(@a,d,[a,b,d],6) is gener-
ated at node b using path(@b,d,[b,d],1) from the 1st iteration, and propagated
to node a. In fact, many network protocols propagate only the nextHop and
avoid sending the entire path vector.

As paths are computed, the shortest one is incrementally updated. For exam-
ple, node a computes the cost of the shortest path from a to b as 5 with rule sp3,



and then finds the corresponding shortest path [a,b] with rule sp4. In the next
iteration, node a receives path(@a,b,[a,c,b],2) from node c, which has lower cost
compared to the previous lowest cost of 5, and hence shortestPath(@a,b,[a,c,b],2)

replaces the previous tuple (the first two fields of source and destination are the
primary key of this relation).

Interestingly, while NDlog is a language to describe networks, there are no
explicit communication primitives. All communication is implicitly generated
during rule execution as a result of data placement specifications. For example,
in rule sp2, the path and link predicates have different location specifiers, and
in order to execute the rule body of sp2 based on their matching fields, link

and path tuples have to be shipped in the network. It is the movement of these
tuples that generates the messages for the resulting network protocol.

References

1. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 2006.

2. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking. In Communi-
cations of the ACM (CACM), 2009.

3. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Im-
plementing Declarative Overlays. In Proceedings of ACM Symposium on Operating
Systems Principles, 2005.

4. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In Proceedings of ACM SIGCOMM
Conference on Data Communication, 2005.

5. NetDB@Penn. http://netdb.cis.upenn.edu/.
6. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database

Systems. Journal of Logic Programming, 23(2):125–149, 1993.
7. RapidNet Declarative Networking Engine. http://netdb.cis.upenn.edu/

rapidnet/.


	University of Pennsylvania
	ScholarlyCommons
	3-2012

	Implementing Network Protocols as Distributed Logic Programs
	Boon Thau Loo
	Recommended Citation

	Implementing Network Protocols as Distributed Logic Programs
	Abstract
	Disciplines
	Comments


	tmp.1343239855.pdf.9_oU2

