666 research outputs found

    Vocal accommodation in human-computer interaction : modeling and integration into spoken dialogue systems

    Get PDF
    With the rapidly increasing usage of voice-activated devices worldwide, verbal communication with computers is steadily becoming more common. Although speech is the principal natural manner of human communication, it is still challenging for computers, and users had been growing accustomed to adjusting their speaking style for computers. Such adjustments occur naturally, and typically unconsciously, in humans during an exchange to control the social distance between the interlocutors and improve the conversation’s efficiency. This phenomenon is called accommodation and it occurs on various modalities in human communication, like hand gestures, facial expressions, eye gaze, lexical and grammatical choices, and others. Vocal accommodation deals with phonetic-level changes occurring in segmental and suprasegmental features. A decrease in the difference between the speakers’ feature realizations results in convergence, while an increasing distance leads to divergence. The lack of such mutual adjustments made naturally by humans in computers’ speech creates a gap between human-human and human-computer interactions. Moreover, voice-activated systems currently speak in exactly the same manner to all users, regardless of their speech characteristics or realizations of specific features. Detecting phonetic variations and generating adaptive speech output would enhance user personalization, offer more human-like communication, and ultimately should improve the overall interaction experience. Thus, investigating these aspects of accommodation will help to understand and improving human-computer interaction. This thesis provides a comprehensive overview of the required building blocks for a roadmap toward the integration of accommodation capabilities into spoken dialogue systems. These include conducting human-human and human-computer interaction experiments to examine the differences in vocal behaviors, approaches for modeling these empirical findings, methods for introducing phonetic variations in synthesized speech, and a way to combine all these components into an accommodative system. While each component is a wide research field by itself, they depend on each other and hence should be jointly considered. The overarching goal of this thesis is therefore not only to show how each of the aspects can be further developed, but also to demonstrate and motivate the connections between them. A special emphasis is put throughout the thesis on the importance of the temporal aspect of accommodation. Humans constantly change their speech over the course of a conversation. Therefore, accommodation processes should be treated as continuous, dynamic phenomena. Measuring differences in a few discrete points, e.g., beginning and end of an interaction, may leave many accommodation events undiscovered or overly smoothed. To justify the effort of introducing accommodation in computers, it should first be proven that humans even show any phonetic adjustments when talking to a computer as they do with a human being. As there is no definitive metric for measuring accommodation and evaluating its quality, it is important to empirically study humans productions to later use as references for possible behaviors. In this work, this investigation encapsulates different experimental configurations to achieve a better picture of accommodation effects. First, vocal accommodation was inspected where it naturally occurs, namely in spontaneous human-human conversations. For this purpose, a collection of real-world sales conversations, each with a different representative-prospect pair, was collected and analyzed. These conversations offer a glance into accommodation effects in authentic, unscripted interactions with the common goal of negotiating a deal on the one hand, but with the individual facet of each side of trying to get the best terms on the other hand. The conversations were analyzed using cross-correlation and time series techniques to capture the change dynamics over time. It was found that successful conversations are distinguishable from failed ones by multiple measures. Furthermore, the sales representative proved to be better at leading the vocal changes, i.e., making the prospect follow their speech styles rather than the other way around. They also showed a stronger tendency to take that lead at an earlier stage, all the more so in successful conversations. The fact that accommodation occurs more by trained speakers and improves their performances fits anecdotal best practices of sales experts, which are now also proven scientifically. Following these results, the next experiment came closer to the final goal of this work and investigated vocal accommodation effects in human-computer interaction. This was done via a shadowing experiment, which offers a controlled setting for examining phonetic variations. As spoken dialogue systems with such accommodation capabilities (like this work aims to achieve) do not exist yet, a simulated system was used to introduce these changes to the participants, who believed they help with the testing of a language learning tutoring system. After determining their preference concerning three segmental phonetic features, participants were listen-ing to either natural or synthesized voices of male and female speakers, which produced the participants’ dispreferred variation of the aforementioned features. Accommodation occurred in all cases, but the natural voices triggered stronger effects. Nevertheless, it can be concluded that participants were accommodating toward synthetic voices as well, which means that social mechanisms are applied in humans also when speaking with computer-based interlocutors. The shadowing paradigm was utilized also to test whether accommodation is a phenomenon associated only with speech or with other vocal productions as well. To that end, accommodation in the singing of familiar and novel music was examined. Interestingly, accommodation was found in both cases, though in different ways. While participants seemed to use the familiar piece merely as a reference for singing more accurately, the novel piece became the goal for complete replicate. For example, one difference was that mostly pitch corrections were introduced in the former case, while in the latter also key and rhythmic patterns were adopted. Some of those findings were expected and they show that people’s more salient features are also harder to modify using external auditory influence. Lastly, a multiparty experiment with spontaneous human-human-computer interactions was carried out to compare accommodation in human-directed and computer-directed speech. The participants solved tasks for which they needed to talk both with a confederate and with an agent. This allows a direct comparison of their speech based on the addressee within the same conversation, which has not been done so far. Results show that some participants’ vocal behavior changed similarly when talking to the confederate and the agent, while others’ speech varied only with the confederate. Further analysis found that the greatest factor for this difference was the order in which the participants talked with the interlocutors. Apparently, those who first talked to the agent alone saw it more as a social actor in the conversation, while those who interacted with it after talking to the confederate treated it more as a means to achieve a goal, and thus behaved differently with it. In the latter case, the variations in the human-directed speech were much more prominent. Differences were also found between the analyzed features, but the task type did not influence the degree of accommodation effects. The results of these experiments lead to the conclusion that vocal accommodation does occur in human-computer interactions, even if often to lesser degrees. With the question of whether people accommodate to computer-based interlocutors as well answered, the next step would be to describe accommodative behaviors in a computer-processable manner. Two approaches are proposed here: computational and statistical. The computational model aims to capture the presumed cognitive process associated with accommodation in humans. This comprises various steps, such as detecting the variable feature’s sound, adding instances of it to the feature’s mental memory, and determining how much the sound will change while taking into account both its current representation and the external input. Due to its sequential nature, this model was implemented as a pipeline. Each of the pipeline’s five steps corresponds to a specific part of the cognitive process and can have one or more parameters to control its output (e.g., the size of the feature’s memory or the accommodation pace). Using these parameters, precise accommodative behaviors can be crafted while applying expert knowledge to motivate the chosen parameter values. These advantages make this approach suitable for experimentation with pre-defined, deterministic behaviors where each step can be changed individually. Ultimately, this approach makes a system vocally responsive to users’ speech input. The second approach grants more evolved behaviors, by defining different core behaviors and adding non-deterministic variations on top of them. This resembles human behavioral patterns, as each person has a base way of accommodating (or not accommodating), which may arbitrarily change based on the specific circumstances. This approach offers a data-driven statistical way to extract accommodation behaviors from a given collection of interactions. First, the target feature’s values of each speaker in an interaction are converted into continuous interpolated lines by drawing one sample from the posterior distribution of a Gaussian process conditioned on the given values. Then, the gradients of these lines, which represent rates of mutual change, are used to defined discrete levels of change based on their distribution. Finally, each level is assigned a symbol, which ultimately creates a symbol sequence representation for each interaction. The sequences are clustered so that each cluster stands for a type of behavior. The sequences of a cluster can then be used to calculate n-gram probabilities that enable the generation of new sequences of the captured behavior. The specific output value is sampled from the range corresponding to the generated symbol. With this approach, accommodation behaviors are extracted directly from data, as opposed to manually crafting them. However, it is harder to describe what exactly these behaviors represent and motivate the use of one of them over the other. To bridge this gap between these two approaches, it is also discussed how they can be combined to benefit from the advantages of both. Furthermore, to generate more structured behaviors, a hierarchy of accommodation complexity levels is suggested here, from a direct adoption of users’ realizations, via specified responsiveness, and up to independent core behaviors with non-deterministic variational productions. Besides a way to track and represent vocal changes, an accommodative system also needs a text-to-speech component that is able to realize those changes in the system’s speech output. Speech synthesis models are typically trained once on data with certain characteristics and do not change afterward. This prevents such models from introducing any variation in specific sounds and other phonetic features. Two methods for directly modifying such features are explored here. The first is based on signal modifications applied to the output signal after it was generated by the system. The processing is done between the timestamps of the target features and uses pre-defined scripts that modify the signal to achieve the desired values. This method is more suitable for continuous features like vowel quality, especially in the case of subtle changes that do not necessarily lead to a categorical sound change. The second method aims to capture phonetic variations in the training data. To that end, a training corpus with phonemic representations is used, as opposed to the regular graphemic representations. This way, the model can learn more direct relations between phonemes and sound instead of surface forms and sound, which, depending on the language, might be more complex and depend on their surrounding letters. The target variations themselves don’t necessarily need to be explicitly present in the training data, all time the different sounds are naturally distinguishable. In generation time, the current target feature’s state determines the phoneme to use for generating the desired sound. This method is suitable for categorical changes, especially for contrasts that naturally exist in the language. While both methods have certain limitations, they provide a proof of concept for the idea that spoken dialogue systems may phonetically adapt their speech output in real-time and without re-training their text-to-speech models. To combine the behavior definitions and the speech manipulations, a system is required, which can connect these elements to create a complete accommodation capability. The architecture suggested here extends the standard spoken dialogue system with an additional module, which receives the transcribed speech signal from the speech recognition component without influencing the input to the language understanding component. While language the understanding component uses only textual transcription to determine the user’s intention, the added component process the raw signal along with its phonetic transcription. In this extended architecture, the accommodation model is activated in the added module and the information required for speech manipulation is sent to the text-to-speech component. However, the text-to-speech component now has two inputs, viz. the content of the system’s response coming from the language generation component and the states of the defined target features from the added component. An implementation of a web-based system with this architecture is introduced here, and its functionality is showcased by demonstrating how it can be used to conduct a shadowing experiment automatically. This has two main advantage: First, since the system recognizes the participants’ phonetic variations and automatically selects the appropriate variation to use in its response, the experimenter saves time and prevents manual annotation errors. The experimenter also automatically gains additional information, like exact timestamps of utterances, real-time visualization of the interlocutors’ productions, and the possibility to replay and analyze the interaction after the experiment is finished. The second advantage is scalability. Multiple instances of the system can run on a server and be accessed by multiple clients at the same time. This not only saves time and the logistics of bringing participants into a lab, but also allows running the experiment with different configurations (e.g., other parameter values or target features) in a controlled and reproducible way. This completes a full cycle from examining human behaviors to integrating accommodation capabilities. Though each part of it can undoubtedly be further investigated, the emphasis here is on how they depend and connect to each other. Measuring changes features without showing how they can be modeled or achieving flexible speech synthesis without considering the desired final output might not lead to the final goal of introducing accommodation capabilities into computers. Treating accommodation in human-computer interaction as one large process rather than isolated sub-problems lays the ground for more comprehensive and complete solutions in the future.Heutzutage wird die verbale Interaktion mit Computern immer gebrĂ€uchlicher, was der rasant wachsenden Anzahl von sprachaktivierten GerĂ€ten weltweit geschuldet ist. Allerdings stellt die computerseitige Handhabung gesprochener Sprache weiterhin eine große Herausforderung dar, obwohl sie die bevorzugte Art zwischenmenschlicher Kommunikation reprĂ€sentiert. Dieser Umstand führt auch dazu, dass Benutzer ihren Sprachstil an das jeweilige GerĂ€t anpassen, um diese Handhabung zu erleichtern. Solche Anpassungen kommen in menschlicher gesprochener Sprache auch in der zwischenmenschlichen Kommunikation vor. Üblicherweise ereignen sie sich unbewusst und auf natürliche Weise wĂ€hrend eines GesprĂ€chs, etwa um die soziale Distanz zwischen den GesprĂ€chsteilnehmern zu kontrollieren oder um die Effizienz des GesprĂ€chs zu verbessern. Dieses PhĂ€nomen wird als Akkommodation bezeichnet und findet auf verschiedene Weise wĂ€hrend menschlicher Kommunikation statt. Sie Ă€ußert sich zum Beispiel in der Gestik, Mimik, Blickrichtung oder aber auch in der Wortwahl und dem verwendeten Satzbau. Vokal- Akkommodation beschĂ€ftigt sich mit derartigen Anpassungen auf phonetischer Ebene, die sich in segmentalen und suprasegmentalen Merkmalen zeigen. Werden AusprĂ€gungen dieser Merkmale bei den GesprĂ€chsteilnehmern im Laufe des GesprĂ€chs Ă€hnlicher, spricht man von Konvergenz, vergrĂ¶ĂŸern sich allerdings die Unterschiede, so wird dies als Divergenz bezeichnet. Dieser natürliche gegenseitige Anpassungsvorgang fehlt jedoch auf der Seite des Computers, was zu einer Lücke in der Mensch-Maschine-Interaktion führt. Darüber hinaus verwenden sprachaktivierte Systeme immer dieselbe Sprachausgabe und ignorieren folglich etwaige Unterschiede zum Sprachstil des momentanen Benutzers. Die Erkennung dieser phonetischen Abweichungen und die Erstellung von anpassungsfĂ€higer Sprachausgabe würden zur Personalisierung dieser Systeme beitragen und könnten letztendlich die insgesamte Benutzererfahrung verbessern. Aus diesem Grund kann die Erforschung dieser Aspekte von Akkommodation helfen, Mensch-Maschine-Interaktion besser zu verstehen und weiterzuentwickeln. Die vorliegende Dissertation stellt einen umfassenden Überblick zu Bausteinen bereit, die nötig sind, um AkkommodationsfĂ€higkeiten in Sprachdialogsysteme zu integrieren. In diesem Zusammenhang wurden auch interaktive Mensch-Mensch- und Mensch- Maschine-Experimente durchgeführt. In diesen Experimenten wurden Differenzen der vokalen Verhaltensweisen untersucht und Methoden erforscht, wie phonetische Abweichungen in synthetische Sprachausgabe integriert werden können. Um die erhaltenen Ergebnisse empirisch auswerten zu können, wurden hierbei auch verschiedene ModellierungsansĂ€tze erforscht. Fernerhin wurde der Frage nachgegangen, wie sich die betreffenden Komponenten kombinieren lassen, um ein Akkommodationssystem zu konstruieren. Jeder dieser Aspekte stellt für sich genommen bereits einen überaus breiten Forschungsbereich dar. Allerdings sind sie voneinander abhĂ€ngig und sollten zusammen betrachtet werden. Aus diesem Grund liegt ein übergreifender Schwerpunkt dieser Dissertation darauf, nicht nur aufzuzeigen, wie sich diese Aspekte weiterentwickeln lassen, sondern auch zu motivieren, wie sie zusammenhĂ€ngen. Ein weiterer Schwerpunkt dieser Arbeit befasst sich mit der zeitlichen Komponente des Akkommodationsprozesses, was auf der Beobachtung fußt, dass Menschen im Laufe eines GesprĂ€chs stĂ€ndig ihren Sprachstil Ă€ndern. Diese Beobachtung legt nahe, derartige Prozesse als kontinuierliche und dynamische Prozesse anzusehen. Fasst man jedoch diesen Prozess als diskret auf und betrachtet z.B. nur den Beginn und das Ende einer Interaktion, kann dies dazu führen, dass viele Akkommodationsereignisse unentdeckt bleiben oder übermĂ€ĂŸig geglĂ€ttet werden. Um die Entwicklung eines vokalen Akkommodationssystems zu rechtfertigen, muss zuerst bewiesen werden, dass Menschen bei der vokalen Interaktion mit einem Computer ein Ă€hnliches Anpassungsverhalten zeigen wie bei der Interaktion mit einem Menschen. Da es keine eindeutig festgelegte Metrik für das Messen des Akkommodationsgrades und für die Evaluierung der AkkommodationsqualitĂ€t gibt, ist es besonders wichtig, die Sprachproduktion von Menschen empirisch zu untersuchen, um sie als Referenz für mögliche Verhaltensweisen anzuwenden. In dieser Arbeit schließt diese Untersuchung verschiedene experimentelle Anordnungen ein, um einen besseren Überblick über Akkommodationseffekte zu erhalten. In einer ersten Studie wurde die vokale Akkommodation in einer Umgebung untersucht, in der sie natürlich vorkommt: in einem spontanen Mensch-Mensch GesprĂ€ch. Zu diesem Zweck wurde eine Sammlung von echten VerkaufsgesprĂ€chen gesammelt und analysiert, wobei in jedem dieser GesprĂ€che ein anderes Handelsvertreter-Neukunde Paar teilgenommen hatte. Diese GesprĂ€che verschaffen einen Einblick in Akkommodationseffekte wĂ€hrend spontanen authentischen Interaktionen, wobei die GesprĂ€chsteilnehmer zwei Ziele verfolgen: zum einen soll ein GeschĂ€ft verhandelt werden, zum anderen möchte aber jeder Teilnehmer für sich die besten Bedingungen aushandeln. Die Konversationen wurde durch das Kreuzkorrelation-Zeitreihen-Verfahren analysiert, um die dynamischen Änderungen im Zeitverlauf zu erfassen. Hierbei kam zum Vorschein, dass sich erfolgreiche Konversationen von fehlgeschlagenen GesprĂ€chen deutlich unterscheiden lassen. Überdies wurde festgestellt, dass die Handelsvertreter die treibende Kraft von vokalen Änderungen sind, d.h. sie können die Neukunden eher dazu zu bringen, ihren Sprachstil anzupassen, als andersherum. Es wurde auch beobachtet, dass sie diese Akkommodation oft schon zu einem frühen Zeitpunkt auslösen, was besonders bei erfolgreichen GesprĂ€chen beobachtet werden konnte. Dass diese Akkommodation stĂ€rker bei trainierten Sprechern ausgelöst wird, deckt sich mit den meist anekdotischen Empfehlungen von erfahrenen Handelsvertretern, die bisher nie wissenschaftlich nachgewiesen worden sind. Basierend auf diesen Ergebnissen beschĂ€fti

    Directional adposition use in English, Swedish and Finnish

    Get PDF
    Directional adpositions such as to the left of describe where a Figure is in relation to a Ground. English and Swedish directional adpositions refer to the location of a Figure in relation to a Ground, whether both are static or in motion. In contrast, the Finnish directional adpositions edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) solely describe the location of a moving Figure in relation to a moving Ground (Nikanne, 2003). When using directional adpositions, a frame of reference must be assumed for interpreting the meaning of directional adpositions. For example, the meaning of to the left of in English can be based on a relative (speaker or listener based) reference frame or an intrinsic (object based) reference frame (Levinson, 1996). When a Figure and a Ground are both in motion, it is possible for a Figure to be described as being behind or in front of the Ground, even if neither have intrinsic features. As shown by Walker (in preparation), there are good reasons to assume that in the latter case a motion based reference frame is involved. This means that if Finnish speakers would use edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) more frequently in situations where both the Figure and Ground are in motion, a difference in reference frame use between Finnish on one hand and English and Swedish on the other could be expected. We asked native English, Swedish and Finnish speakers’ to select adpositions from a language specific list to describe the location of a Figure relative to a Ground when both were shown to be moving on a computer screen. We were interested in any differences between Finnish, English and Swedish speakers. All languages showed a predominant use of directional spatial adpositions referring to the lexical concepts TO THE LEFT OF, TO THE RIGHT OF, ABOVE and BELOW. There were no differences between the languages in directional adpositions use or reference frame use, including reference frame use based on motion. We conclude that despite differences in the grammars of the languages involved, and potential differences in reference frame system use, the three languages investigated encode Figure location in relation to Ground location in a similar way when both are in motion. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslingiuistic evidence. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (Eds.) Language and Space (pp.109-170). Massachusetts: MIT Press. Nikanne, U. (2003). How Finnish postpositions see the axis system. In E. van der Zee & J. Slack (Eds.), Representing direction in language and space. Oxford, UK: Oxford University Press. Walker, C. (in preparation). Motion encoding in language, the use of spatial locatives in a motion context. Unpublished doctoral dissertation, University of Lincoln, Lincoln. United Kingdo

    Proceedings of the LREC 2018 Special Speech Sessions

    Get PDF
    LREC 2018 Special Speech Sessions "Speech Resources Collection in Real-World Situations"; Phoenix Seagaia Conference Center, Miyazaki; 2018-05-0

    Shared Perception in Human-Robot Interaction

    Get PDF
    Interaction can be seen as a composition of perspectives: the integration of perceptions, intentions, and actions on the environment two or more agents share. For an interaction to be effective, each agent must be prone to “sharedness”: being situated in a common environment, able to read what others express about their perspective, and ready to adjust one’s own perspective accordingly. In this sense, effective interaction is supported by perceiving the environment jointly with others, a capability that in this research is called Shared Perception. Nonetheless, perception is a complex process that brings the observer receiving sensory inputs from the external world and interpreting them based on its own, previous experiences, predictions, and intentions. In addition, social interaction itself contributes to shaping what is perceived: others’ attention, perspective, actions, and internal states may also be incorporated into perception. Thus, Shared perception reflects the observer's ability to integrate these three sources of information: the environment, the self, and other agents. If Shared Perception is essential among humans, it is equally crucial for interaction with robots, which need social and cognitive abilities to interact with humans naturally and successfully. This research deals with Shared Perception within the context of Social Human-Robot Interaction (HRI) and involves an interdisciplinary approach. The two general axes of the thesis are the investigation of human perception while interacting with robots and the modeling of robot’s perception while interacting with humans. Such two directions are outlined through three specific Research Objectives, whose achievements represent the contribution of this work. i) The formulation of a theoretical framework of Shared Perception in HRI valid for interpreting and developing different socio-perceptual mechanisms and abilities. ii) The investigation of Shared Perception in humans focusing on the perceptual mechanism of Context Dependency, and therefore exploring how social interaction affects the use of previous experience in human spatial perception. iii) The implementation of a deep-learning model for Addressee Estimation to foster robots’ socio-perceptual skills through the awareness of others’ behavior, as suggested in the Shared Perception framework. To achieve the first Research Objective, several human socio-perceptual mechanisms are presented and interpreted in a unified account. This exposition parallels mechanisms elicited by interaction with humans and humanoid robots and aims to build a framework valid to investigate human perception in the context of HRI. Based on the thought of D. Davidson and conceived as the integration of information coming from the environment, the self, and other agents, the idea of "triangulation" expresses the critical dynamics of Shared Perception. Also, it is proposed as the functional structure to support the implementation of socio-perceptual skills in robots. This general framework serves as a reference to fulfill the other two Research Objectives, which explore specific aspects of Shared Perception. For what concerns the second Research Objective, the human perceptual mechanism of Context Dependency is investigated, for the first time, within social interaction. Human perception is based on unconscious inference, where sensory inputs integrate with prior information. This phenomenon helps in facing the uncertainty of the external world with predictions built upon previous experience. To investigate the effect of social interaction on such a mechanism, the iCub robot has been used as an experimental tool to create an interactive scenario with a controlled setting. A user study based on psychophysical methods, Bayesian modeling, and a neural network analysis of human results demonstrated that social interaction influenced Context Dependency so that when interacting with a social agent, humans rely less on their internal models and more on external stimuli. Such results are framed in Shared Perception and contribute to revealing the integration dynamics of the three sources of Shared Perception. The others’ presence and social behavior (other agents) affect the balance between sensory inputs (environment) and personal history (self) in favor of the information shared with others, that is, the environment. The third Research Objective consists of tackling the Addressee Estimation problem, i.e., understanding to whom a speaker is talking, to improve the iCub social behavior in multi-party interactions. Addressee Estimation can be considered a Shared Perception ability because it is achieved by using sensory information from the environment, internal representations of the agents’ position, and, more importantly, the understanding of others’ behavior. An architecture for Addressee Estimation is thus designed considering the integration process of Shared Perception (environment, self, other agents) and partially implemented with respect to the third element: the awareness of others’ behavior. To achieve this, a hybrid deep-learning (CNN+LSTM) model is developed to estimate the speaker-robot relative placement of the addressee based on the non-verbal behavior of the speaker. Addressee Estimation abilities based on Shared Perception dynamics are aimed at improving multi-party HRI. Making robots aware of other agents’ behavior towards the environment is the first crucial step for incorporating such information into the robot’s perception and modeling Shared Perception

    Towards Integration of Cognitive Models in Dialogue Management: Designing the Virtual Negotiation Coach Application

    Get PDF
    This paper presents an approach to flexible and adaptive dialogue management driven by cognitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R cognitive architecture, together with human actors are participating in a (meta)cognitive skills training within a negotiation scenario. The agent  employs instance-based learning to decide about its own actions and to reflect on the behaviour of the opponent. We show that task-related actions can be handled by a cognitive agent who is a plausible dialogue partner.  Separating task-related and dialogue control actions enables the application of sophisticated models along with a flexible architecture  in which  various alternative modelling methods can be combined. We evaluated the proposed approach with users assessing  the relative contribution of various factors to the overall usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction were correlated with various objective performance metrics, e.g. number of (in)appropriate system responses, recovery strategies, and interaction pace. It was observed that the dialogue system usability is determined most by the quality of agreements reached in terms of estimated Pareto optimality, by the user's negotiation strategies selected, and by the quality of system recognition, interpretation and responses. We compared human-human and human-agent performance with respect to the number and quality of agreements reached, estimated cooperativeness level, and frequency of accepted negative outcomes. Evaluation experiments showed promising, consistently positive results throughout the range of the relevant scales

    Gesture and Speech in Interaction - 4th edition (GESPIN 4)

    Get PDF
    International audienceThe fourth edition of Gesture and Speech in Interaction (GESPIN) was held in Nantes, France. With more than 40 papers, these proceedings show just what a flourishing field of enquiry gesture studies continues to be. The keynote speeches of the conference addressed three different aspects of multimodal interaction:gesture and grammar, gesture acquisition, and gesture and social interaction. In a talk entitled Qualitiesof event construal in speech and gesture: Aspect and tense, Alan Cienki presented an ongoing researchproject on narratives in French, German and Russian, a project that focuses especially on the verbal andgestural expression of grammatical tense and aspect in narratives in the three languages. Jean-MarcColletta's talk, entitled Gesture and Language Development: towards a unified theoretical framework,described the joint acquisition and development of speech and early conventional and representationalgestures. In Grammar, deixis, and multimodality between code-manifestation and code-integration or whyKendon's Continuum should be transformed into a gestural circle, Ellen Fricke proposed a revisitedgrammar of noun phrases that integrates gestures as part of the semiotic and typological codes of individuallanguages. From a pragmatic and cognitive perspective, Judith Holler explored the use ofgaze and hand gestures as means of organizing turns at talk as well as establishing common ground in apresentation entitled On the pragmatics of multi-modal face-to-face communication: Gesture, speech andgaze in the coordination of mental states and social interaction.Among the talks and posters presented at the conference, the vast majority of topics related, quitenaturally, to gesture and speech in interaction - understood both in terms of mapping of units in differentsemiotic modes and of the use of gesture and speech in social interaction. Several presentations explored the effects of impairments(such as diseases or the natural ageing process) on gesture and speech. The communicative relevance ofgesture and speech and audience-design in natural interactions, as well as in more controlled settings liketelevision debates and reports, was another topic addressed during the conference. Some participantsalso presented research on first and second language learning, while others discussed the relationshipbetween gesture and intonation. While most participants presented research on gesture and speech froman observer's perspective, be it in semiotics or pragmatics, some nevertheless focused on another importantaspect: the cognitive processes involved in language production and perception. Last but not least,participants also presented talks and posters on the computational analysis of gestures, whether involvingexternal devices (e.g. mocap, kinect) or concerning the use of specially-designed computer software forthe post-treatment of gestural data. Importantly, new links were made between semiotics and mocap data
    • 

    corecore