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Summary

With the rapidly increasing usage of voice-activated devices worldwide, verbal commu-
nication with computers is steadily becoming more common. Although speech is the
principal natural manner of human communication, it is still challenging for computers,
and users had been growing accustomed to adjusting their speaking style for comput-
ers. Such adjustments occur naturally, and typically unconsciously, in humans during
an exchange to control the social distance between the interlocutors and improve the
conversation’s efficiency. This phenomenon is called accommodation and it occurs on
various modalities in human communication, like hand gestures, facial expressions, eye
gaze, lexical and grammatical choices, and others. Vocal accommodation deals with
phonetic-level changes occurring in segmental and suprasegmental features. A decrease
in the difference between the speakers’ feature realizations results in convergence, while
an increasing distance leads to divergence. The lack of such mutual adjustments made
naturally by humans in computers’ speech creates a gap between human-human and
human-computer interactions. Moreover, voice-activated systems currently speak in ex-
actly the same manner to all users, regardless of their speech characteristics or realiza-
tions of specific features. Detecting phonetic variations and generating adaptive speech
output would enhance user personalization, offer more human-like communication, and
ultimately should improve the overall interaction experience. Thus, investigating these
aspects of accommodation will help to understand and improving human-computer in-
teraction.

This thesis provides a comprehensive overview of the required building blocks for
a roadmap toward the integration of accommodation capabilities into spoken dialogue
systems. These include conducting human-human and human-computer interaction ex-
periments to examine the differences in vocal behaviors, approaches for modeling these
empirical findings, methods for introducing phonetic variations in synthesized speech,
and a way to combine all these components into an accommodative system. While each
component is a wide research field by itself, they depend on each other and hence should
be jointly considered. The overarching goal of this thesis is therefore not only to show
how each of the aspects can be further developed, but also to demonstrate and motivate
the connections between them. A special emphasis is put throughout the thesis on the
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importance of the temporal aspect of accommodation. Humans constantly change their
speech over the course of a conversation. Therefore, accommodation processes should
be treated as continuous, dynamic phenomena. Measuring differences in a few discrete
points, e.g., beginning and end of an interaction, may leave many accommodation events
undiscovered or overly smoothed.

To justify the effort of introducing accommodation in computers, it should first be
proven that humans even show any phonetic adjustments when talking to a computer
as they do with a human being. As there is no definitive metric for measuring ac-
commodation and evaluating its quality, it is important to empirically study humans
productions to later use as references for possible behaviors. In this work, this investi-
gation encapsulates different experimental configurations to achieve a better picture of
accommodation effects. First, vocal accommodation was inspected where it naturally
occurs, namely in spontaneous human-human conversations. For this purpose, a col-
lection of real-world sales conversations, each with a different representative-prospect
pair, was collected and analyzed. These conversations offer a glance into accommoda-
tion effects in authentic, unscripted interactions with the common goal of negotiating
a deal on the one hand, but with the individual facet of each side of trying to get the
best terms on the other hand. The conversations were analyzed using cross-correlation
and time series techniques to capture the change dynamics over time. It was found
that successful conversations are distinguishable from failed ones by multiple measures.
Furthermore, the sales representative proved to be better at leading the vocal changes,
i.e., making the prospect follow their speech styles rather than the other way around.
They also showed a stronger tendency to take that lead at an earlier stage, all the more
so in successful conversations. The fact that accommodation occurs more by trained
speakers and improves their performances fits anecdotal best practices of sales experts,
which are now also proven scientifically. Following these results, the next experiment
came closer to the final goal of this work and investigated vocal accommodation effects
in human-computer interaction. This was done via a shadowing experiment, which of-
fers a controlled setting for examining phonetic variations. As spoken dialogue systems
with such accommodation capabilities (like this work aims to achieve) do not exist yet, a
simulated system was used to introduce these changes to the participants, who believed
they help with the testing of a language learning tutoring system. After determining
their preference concerning three segmental phonetic features, participants were listen-
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ing to either natural or synthesized voices of male and female speakers, which produced
the participants’ dispreferred variation of the aforementioned features. Accommodation
occurred in all cases, but the natural voices triggered stronger effects. Nevertheless,
it can be concluded that participants were accommodating toward synthetic voices as
well, which means that social mechanisms are applied in humans also when speaking
with computer-based interlocutors. The shadowing paradigm was utilized also to test
whether accommodation is a phenomenon associated only with speech or with other vo-
cal productions as well. To that end, accommodation in the singing of familiar and novel
music was examined. Interestingly, accommodation was found in both cases, though in
different ways. While participants seemed to use the familiar piece merely as a refer-
ence for singing more accurately, the novel piece became the goal for complete replicate.
For example, one difference was that mostly pitch corrections were introduced in the
former case, while in the latter also key and rhythmic patterns were adopted. Some of
those findings were expected and they show that people’s more salient features are also
harder to modify using external auditory influence. Lastly, a multiparty experiment
with spontaneous human-human-computer interactions was carried out to compare ac-
commodation in human-directed and computer-directed speech. The participants solved
tasks for which they needed to talk both with a confederate and with an agent. This
allows a direct comparison of their speech based on the addressee within the same con-
versation, which has not been done so far. Results show that some participants’ vocal
behavior changed similarly when talking to the confederate and the agent, while others’
speech varied only with the confederate. Further analysis found that the greatest factor
for this difference was the order in which the participants talked with the interlocutors.
Apparently, those who first talked to the agent alone saw it more as a social actor in
the conversation, while those who interacted with it after talking to the confederate
treated it more as a means to achieve a goal, and thus behaved differently with it. In
the latter case, the variations in the human-directed speech were much more prominent.
Differences were also found between the analyzed features, but the task type did not
influence the degree of accommodation effects. The results of these experiments lead to
the conclusion that vocal accommodation does occur in human-computer interactions,
even if often to lesser degrees.

With the question of whether people accommodate to computer-based interlocutors
as well answered, the next step would be to describe accommodative behaviors in a
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computer-processable manner. Two approaches are proposed here: computational and
statistical. The computational model aims to capture the presumed cognitive process
associated with accommodation in humans. This comprises various steps, such as detect-
ing the variable feature’s sound, adding instances of it to the feature’s mental memory,
and determining how much the sound will change while taking into account both its
current representation and the external input. Due to its sequential nature, this model
was implemented as a pipeline. Each of the pipeline’s five steps corresponds to a specific
part of the cognitive process and can have one or more parameters to control its output
(e.g., the size of the feature’s memory or the accommodation pace). Using these param-
eters, precise accommodative behaviors can be crafted while applying expert knowledge
to motivate the chosen parameter values. These advantages make this approach suitable
for experimentation with pre-defined, deterministic behaviors where each step can be
changed individually. Ultimately, this approach makes a system vocally responsive to
users’ speech input. The second approach grants more evolved behaviors, by defining
different core behaviors and adding non-deterministic variations on top of them. This
resembles human behavioral patterns, as each person has a base way of accommodating
(or not accommodating), which may arbitrarily change based on the specific circum-
stances. This approach offers a data-driven statistical way to extract accommodation
behaviors from a given collection of interactions. First, the target feature’s values of
each speaker in an interaction are converted into continuous interpolated lines by draw-
ing one sample from the posterior distribution of a Gaussian process conditioned on the
given values. Then, the gradients of these lines, which represent rates of mutual change,
are used to defined discrete levels of change based on their distribution. Finally, each
level is assigned a symbol, which ultimately creates a symbol sequence representation
for each interaction. The sequences are clustered so that each cluster stands for a type
of behavior. The sequences of a cluster can then be used to calculate n-gram probabili-
ties that enable the generation of new sequences of the captured behavior. The specific
output value is sampled from the range corresponding to the generated symbol. With
this approach, accommodation behaviors are extracted directly from data, as opposed
to manually crafting them. However, it is harder to describe what exactly these behav-
iors represent and motivate the use of one of them over the other. To bridge this gap
between these two approaches, it is also discussed how they can be combined to benefit
from the advantages of both. Furthermore, to generate more structured behaviors, a
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hierarchy of accommodation complexity levels is suggested here, from a direct adoption
of users’ realizations, via specified responsiveness, and up to independent core behaviors
with non-deterministic variational productions.

Besides a way to track and represent vocal changes, an accommodative system also
needs a text-to-speech component that is able to realize those changes in the system’s
speech output. Speech synthesis models are typically trained once on data with certain
characteristics and do not change afterward. This prevents such models from introducing
any variation in specific sounds and other phonetic features. Two methods for directly
modifying such features are explored here. The first is based on signal modifications ap-
plied to the output signal after it was generated by the system. The processing is done
between the timestamps of the target features and uses pre-defined scripts that modify
the signal to achieve the desired values. This method is more suitable for continuous
features like vowel quality, especially in the case of subtle changes that do not neces-
sarily lead to a categorical sound change. The second method aims to capture phonetic
variations in the training data. To that end, a training corpus with phonemic representa-
tions is used, as opposed to the regular graphemic representations. This way, the model
can learn more direct relations between phonemes and sound instead of surface forms
and sound, which, depending on the language, might be more complex and depend on
their surrounding letters. The target variations themselves don’t necessarily need to be
explicitly present in the training data, all time the different sounds are naturally distin-
guishable. In generation time, the current target feature’s state determines the phoneme
to use for generating the desired sound. This method is suitable for categorical changes,
especially for contrasts that naturally exist in the language. While both methods have
certain limitations, they provide a proof of concept for the idea that spoken dialogue
systems may phonetically adapt their speech output in real-time and without re-training
their text-to-speech models.

To combine the behavior definitions and the speech manipulations, a system is re-
quired, which can connect these elements to create a complete accommodation capability.
The architecture suggested here extends the standard spoken dialogue system with an
additional module, which receives the transcribed speech signal from the speech recogni-
tion component without influencing the input to the language understanding component.
While language the understanding component uses only textual transcription to deter-
mine the user’s intention, the added component process the raw signal along with its
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phonetic transcription. In this extended architecture, the accommodation model is acti-
vated in the added module and the information required for speech manipulation is sent
to the text-to-speech component. However, the text-to-speech component now has two
inputs, viz. the content of the system’s response coming from the language generation
component and the states of the defined target features from the added component. An
implementation of a web-based system with this architecture is introduced here, and its
functionality is showcased by demonstrating how it can be used to conduct a shadowing
experiment automatically. This has two main advantage: First, since the system rec-
ognizes the participants’ phonetic variations and automatically selects the appropriate
variation to use in its response, the experimenter saves time and prevents manual an-
notation errors. The experimenter also automatically gains additional information, like
exact timestamps of utterances, real-time visualization of the interlocutors’ productions,
and the possibility to replay and analyze the interaction after the experiment is finished.
The second advantage is scalability. Multiple instances of the system can run on a server
and be accessed by multiple clients at the same time. This not only saves time and the
logistics of bringing participants into a lab, but also allows running the experiment with
different configurations (e.g., other parameter values or target features) in a controlled
and reproducible way.

This completes a full cycle from examining human behaviors to integrating accom-
modation capabilities. Though each part of it can undoubtedly be further investigated,
the emphasis here is on how they depend and connect to each other. Measuring changes
features without showing how they can be modeled or achieving flexible speech syn-
thesis without considering the desired final output might not lead to the final goal of
introducing accommodation capabilities into computers. Treating accommodation in
human-computer interaction as one large process rather than isolated sub-problems lays
the ground for more comprehensive and complete solutions in the future.
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Zusammenfassung (Deutsch)

Heutzutage wird die verbale Interaktion mit Computern immer gebräuchlicher, was der
rasant wachsenden Anzahl von sprachaktivierten Geräten weltweit geschuldet ist. Aller-
dings stellt die computerseitige Handhabung gesprochener Sprache weiterhin eine große
Herausforderung dar, obwohl sie die bevorzugte Art zwischenmenschlicher Kommuni-
kation repräsentiert. Dieser Umstand führt auch dazu, dass Benutzer ihren Sprachstil
an das jeweilige Gerät anpassen, um diese Handhabung zu erleichtern. Solche Anpas-
sungen kommen in menschlicher gesprochener Sprache auch in der zwischenmenschlichen
Kommunikation vor. Üblicherweise ereignen sie sich unbewusst und auf natürliche Weise
während eines Gesprächs, etwa um die soziale Distanz zwischen den Gesprächsteilneh-
mern zu kontrollieren oder um die Effizienz des Gesprächs zu verbessern. Dieses Phä-
nomen wird als Akkommodation bezeichnet und findet auf verschiedene Weise während
menschlicher Kommunikation statt. Sie äußert sich zum Beispiel in der Gestik, Mimik,
Blickrichtung oder aber auch in der Wortwahl und dem verwendeten Satzbau. Vokal-
Akkommodation beschäftigt sich mit derartigen Anpassungen auf phonetischer Ebene,
die sich in segmentalen und suprasegmentalen Merkmalen zeigen. Werden Ausprägun-
gen dieser Merkmale bei den Gesprächsteilnehmern im Laufe des Gesprächs ähnlicher,
spricht man von Konvergenz, vergrößern sich allerdings die Unterschiede, so wird dies als
Divergenz bezeichnet. Dieser natürliche gegenseitige Anpassungsvorgang fehlt jedoch auf
der Seite des Computers, was zu einer Lücke in der Mensch-Maschine-Interaktion führt.
Darüber hinaus verwenden sprachaktivierte Systeme immer dieselbe Sprachausgabe und
ignorieren folglich etwaige Unterschiede zum Sprachstil des momentanen Benutzers. Die
Erkennung dieser phonetischen Abweichungen und die Erstellung von anpassungsfähi-
ger Sprachausgabe würden zur Personalisierung dieser Systeme beitragen und könnten
letztendlich die insgesamte Benutzererfahrung verbessern. Aus diesem Grund kann die
Erforschung dieser Aspekte von Akkommodation helfen, Mensch-Maschine-Interaktion
besser zu verstehen und weiterzuentwickeln.

Die vorliegende Dissertation stellt einen umfassenden Überblick zu Bausteinen be-
reit, die nötig sind, um Akkommodationsfähigkeiten in Sprachdialogsysteme zu integrie-
ren. In diesem Zusammenhang wurden auch interaktive Mensch-Mensch- und Mensch-
Maschine-Experimente durchgeführt. In diesen Experimenten wurden Differenzen der
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vokalen Verhaltensweisen untersucht und Methoden erforscht, wie phonetische Abwei-
chungen in synthetische Sprachausgabe integriert werden können. Um die erhaltenen
Ergebnisse empirisch auswerten zu können, wurden hierbei auch verschiedene Modellie-
rungsansätze erforscht. Fernerhin wurde der Frage nachgegangen, wie sich die betreffen-
den Komponenten kombinieren lassen, um ein Akkommodationssystem zu konstruieren.
Jeder dieser Aspekte stellt für sich genommen bereits einen überaus breiten Forschungs-
bereich dar. Allerdings sind sie voneinander abhängig und sollten zusammen betrachtet
werden. Aus diesem Grund liegt ein übergreifender Schwerpunkt dieser Dissertation dar-
auf, nicht nur aufzuzeigen, wie sich diese Aspekte weiterentwickeln lassen, sondern auch
zu motivieren, wie sie zusammenhängen. Ein weiterer Schwerpunkt dieser Arbeit befasst
sich mit der zeitlichen Komponente des Akkommodationsprozesses, was auf der Beob-
achtung fußt, dass Menschen im Laufe eines Gesprächs ständig ihren Sprachstil ändern.
Diese Beobachtung legt nahe, derartige Prozesse als kontinuierliche und dynamische
Prozesse anzusehen. Fasst man jedoch diesen Prozess als diskret auf und betrachtet
z.B. nur den Beginn und das Ende einer Interaktion, kann dies dazu führen, dass viele
Akkommodationsereignisse unentdeckt bleiben oder übermäßig geglättet werden.

Um die Entwicklung eines vokalen Akkommodationssystems zu rechtfertigen, muss
zuerst bewiesen werden, dass Menschen bei der vokalen Interaktion mit einem Computer
ein ähnliches Anpassungsverhalten zeigen wie bei der Interaktion mit einem Menschen.
Da es keine eindeutig festgelegte Metrik für das Messen des Akkommodationsgrades
und für die Evaluierung der Akkommodationsqualität gibt, ist es besonders wichtig,
die Sprachproduktion von Menschen empirisch zu untersuchen, um sie als Referenz für
mögliche Verhaltensweisen anzuwenden. In dieser Arbeit schließt diese Untersuchung
verschiedene experimentelle Anordnungen ein, um einen besseren Überblick über Ak-
kommodationseffekte zu erhalten. In einer ersten Studie wurde die vokale Akkommoda-
tion in einer Umgebung untersucht, in der sie natürlich vorkommt: in einem spontanen
Mensch-Mensch Gespräch. Zu diesem Zweck wurde eine Sammlung von echten Ver-
kaufsgesprächen gesammelt und analysiert, wobei in jedem dieser Gespräche ein anderes
Handelsvertreter-Neukunde Paar teilgenommen hatte. Diese Gespräche verschaffen einen
Einblick in Akkommodationseffekte während spontanen authentischen Interaktionen,
wobei die Gesprächsteilnehmer zwei Ziele verfolgen: zum einen soll ein Geschäft verhan-
delt werden, zum anderen möchte aber jeder Teilnehmer für sich die besten Bedingungen
aushandeln. Die Konversationen wurde durch das Kreuzkorrelation-Zeitreihen-Verfahren
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analysiert, um die dynamischen Änderungen im Zeitverlauf zu erfassen. Hierbei kam
zum Vorschein, dass sich erfolgreiche Konversationen von fehlgeschlagenen Gesprächen
deutlich unterscheiden lassen. Überdies wurde festgestellt, dass die Handelsvertreter die
treibende Kraft von vokalen Änderungen sind, d.h. sie können die Neukunden eher dazu
zu bringen, ihren Sprachstil anzupassen, als andersherum. Es wurde auch beobachtet,
dass sie diese Akkommodation oft schon zu einem frühen Zeitpunkt auslösen, was beson-
ders bei erfolgreichen Gesprächen beobachtet werden konnte. Dass diese Akkommodation
stärker bei trainierten Sprechern ausgelöst wird, deckt sich mit den meist anekdotischen
Empfehlungen von erfahrenen Handelsvertretern, die bisher nie wissenschaftlich nach-
gewiesen worden sind. Basierend auf diesen Ergebnissen beschäftigte sich die nächste
Studie mehr mit dem Hauptziel dieser Arbeit und untersuchte Akkommodationseffek-
te bei Mensch-Maschine-Interaktionen. Diese Studie führte ein Shadowing-Experiment
durch, das ein kontrolliertes Umfeld für die Untersuchung phonetischer Abweichungen
anbietet. Da Sprachdialogsysteme mit solchen Akkommodationsfähigkeiten noch nicht
existieren, wurde stattdessen ein simuliertes System eingesetzt, um diese Akkommo-
dationsprozesse bei den Teilnehmern auszulösen, wobei diese im Glauben waren, ein
Sprachlernsystem zu testen. Nach der Bestimmung ihrer Präferenzen hinsichtlich dreier
segmentaler Merkmale hörten die Teilnehmer entweder natürlichen oder synthetischen
Stimmen von männlichen und weiblichen Sprechern zu, die nicht die bevorzugten Varia-
tion der oben genannten Merkmale produzierten. Akkommodation fand in allen Fällen
statt, obwohl die natürlichen Stimmen stärkere Effekte auslösten. Es kann jedoch gefol-
gert werden, dass Teilnehmer sich auch an den synthetischen Stimmen orientierten, was
bedeutet, dass soziale Mechanismen bei Menschen auch beim Sprechen mit Computern
angewendet werden. Das Shadowing-Paradigma wurde auch verwendet, um zu testen,
ob Akkommodation ein nur mit Sprache assoziiertes Phänomen ist oder ob sie auch
in anderen vokalen Aktivitäten stattfindet. Hierzu wurde Akkommodation im Gesang
zu vertrauter und unbekannter Musik untersucht. Interessanterweise wurden in beiden
Fällen Akkommodationseffekte gemessen, wenn auch nur auf unterschiedliche Weise. Wo-
hingegen die Teilnehmer das vertraute Stück lediglich als Referenz für einen genaueren
Gesang zu verwenden schienen, wurde das neuartige Stück zum Ziel einer vollständigen
Nachbildung. Ein Unterschied bestand z.B. darin, dass im ersteren Fall hauptsächlich
Tonhöhenkorrekturen durchgeführt wurden, während im zweiten Fall auch Tonart und
Rhythmusmuster übernommen wurden. Einige dieser Ergebnisse wurden erwartet und
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zeigen, dass die hervorstechenderen Merkmale von Menschen auch durch externen audi-
torischen Einfluss schwerer zu modifizieren sind. Zuletzt wurde ein Mehrparteienexperi-
ment mit spontanen Mensch-Mensch-Computer-Interaktionen durchgeführt, um Akkom-
modation in mensch- und computergerichteter Sprache zu vergleichen. Die Teilnehmer
lösten Aufgaben, für die sie sowohl mit einem Konföderierten als auch mit einem Agen-
ten sprechen mussten. Dies ermöglicht einen direkten Vergleich ihrer Sprache basierend
auf dem Adressaten innerhalb derselben Konversation, was bisher noch nicht erforscht
worden ist. Die Ergebnisse zeigen, dass sich das vokale Verhalten einiger Teilnehmer im
Gespräch mit dem Konföderierten und dem Agenten ähnlich änderte, während die Spra-
che anderer Teilnehmer nur mit dem Konföderierten variierte. Weitere Analysen ergaben,
dass der größte Faktor für diesen Unterschied die Reihenfolge war, in der die Teilnehmer
mit den Gesprächspartnern sprachen. Anscheinend sahen die Teilnehmer, die zuerst mit
dem Agenten allein sprachen, ihn eher als einen sozialen Akteur im Gespräch, während
diejenigen, die erst mit dem Konföderierten interagierten, ihn eher als Mittel zur Er-
reichung eines Ziels betrachteten und sich deswegen anders verhielten. Im letzteren Fall
waren die Variationen in der menschgerichteten Sprache viel ausgeprägter. Unterschiede
wurden auch zwischen den analysierten Merkmalen festgestellt, aber der Aufgabentyp
hatte keinen Einfluss auf den Grad der Akkommodationseffekte. Die Ergebnisse die-
ser Experimente lassen den Schluss zu, dass bei Mensch-Computer-Interaktionen vokale
Akkommodation auftritt, wenn auch häufig in geringerem Maße.

Da nun eine Bestätigung dafür vorliegt, dass Menschen auch bei der Interaktion
mit Computern ein Akkommodationsverhalten aufzeigen, liegt der Schritt nahe, dieses
Verhalten auf eine computergestützte Weise zu beschreiben. Hier werden zwei Ansätze
vorgeschlagen: ein Ansatz basierend auf einem Rechenmodell und einer basierend auf ei-
nem statistischen Modell. Das Ziel des Rechenmodells ist es, den vermuteten kognitiven
Prozess zu erfassen, der mit der Akkommodation beim Menschen verbunden ist. Dies
umfasst verschiedene Schritte, z.B. das Erkennen des Klangs des variablen Merkmals,
das Hinzufügen von Instanzen davon zum mentalen Gedächtnis des Merkmals und das
Bestimmen, wie stark sich das Merkmal ändert, wobei sowohl seine aktuelle Darstellung
als auch die externe Eingabe berücksichtigt werden. Aufgrund seiner sequenziellen Natur
wurde dieses Modell als eine Pipeline implementiert. Jeder der fünf Schritte der Pipe-
line entspricht einem bestimmten Teil des kognitiven Prozesses und kann einen oder
mehrere Parameter zur Steuerung seiner Ausgabe aufweisen (z.B. die Größe des Ge-
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dächtnisses des Merkmals oder die Akkommodationsgeschwindigkeit). Mit Hilfe dieser
Parameter können präzise akkommodative Verhaltensweisen zusammen mit Experten-
wissen erstellt werden, um die ausgewählten Parameterwerte zu motivieren. Durch diese
Vorteile ist diesen Ansatz besonders zum Experimentieren mit vordefinierten, determi-
nistischen Verhaltensweisen geeignet, bei denen jeder Schritt einzeln geändert werden
kann. Letztendlich macht dieser Ansatz ein System stimmlich auf die Spracheingabe
von Benutzern ansprechbar. Der zweite Ansatz gewährt weiterentwickelte Verhaltens-
weisen, indem verschiedene Kernverhalten definiert und nicht deterministische Variatio-
nen hinzugefügt werden. Dies ähnelt menschlichen Verhaltensmustern, da jede Person
eine grundlegende Art von Akkommodationsverhalten hat, das sich je nach den spezi-
fischen Umständen willkürlich ändern kann. Dieser Ansatz bietet eine datengesteuerte
statistische Methode, um das Akkommodationsverhalten aus einer bestimmten Samm-
lung von Interaktionen zu extrahieren. Zunächst werden die Werte des Zielmerkmals
jedes Sprechers in einer Interaktion in kontinuierliche interpolierte Linien umgewandelt,
indem eine Probe aus der a posteriori Verteilung eines Gaußprozesses gezogen wird, der
von den angegebenen Werten abhängig ist. Dann werden die Gradienten dieser Linien,
die die gegenseitigen Änderungsraten darstellen, verwendet, um diskrete Änderungsni-
veaus basierend auf ihren Verteilungen zu definieren. Schließlich wird jeder Ebene ein
Symbol zugewiesen, das letztendlich eine Symbolsequenzdarstellung für jede Interaktion
darstellt. Die Sequenzen sind geclustert, sodass jeder Cluster für eine Art von Verhal-
ten steht. Die Sequenzen eines Clusters können dann verwendet werden, um N-Gramm
Wahrscheinlichkeiten zu berechnen, die die Erzeugung neuer Sequenzen des erfassten
Verhaltens ermöglichen. Der spezifische Ausgabewert wird aus dem Bereich abgetastet,
der dem erzeugten Symbol entspricht. Bei diesem Ansatz wird das Akkommodationsver-
halten direkt aus Daten extrahiert, anstatt manuell erstellt zu werden. Es kann jedoch
schwierig sein, zu beschreiben, was genau jedes Verhalten darstellt und die Verwendung
eines von ihnen gegenüber dem anderen zu motivieren. Um diesen Spalt zwischen diesen
beiden Ansätzen zu schließen, wird auch diskutiert, wie sie kombiniert werden könn-
ten, um von den Vorteilen beider zu profitieren. Darüber hinaus, um strukturiertere
Verhaltensweisen zu generieren, wird hier eine Hierarchie von Akkommodationskomple-
xitätsstufen vorgeschlagen, die von einer direkten Übernahme der Benutzerrealisierungen
über eine bestimmte Änderungssensitivität und bis hin zu unabhängigen Kernverhalten
mit nicht-deterministischen Variationsproduktionen reicht.
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Neben der Möglichkeit, Stimmänderungen zu verfolgen und darzustellen, benötigt ein
akkommodatives System auch eine Text-zu-Sprache Komponente, die diese Änderungen
in der Sprachausgabe des Systems realisieren kann. Sprachsynthesemodelle werden in der
Regel einmal mit Daten mit bestimmten Merkmalen trainiert und ändern sich danach
nicht mehr. Dies verhindert, dass solche Modelle Variationen in bestimmten Klängen
und anderen phonetischen Merkmalen generieren können. Zwei Methoden zum direkten
Ändern solcher Merkmale werden hier untersucht. Die erste basiert auf Signalverarbei-
tung, die auf das Ausgangssignal angewendet wird, nachdem es vom System erzeugt
wurde. Die Verarbeitung erfolgt zwischen den Zeitstempeln der Zielmerkmale und ver-
wendet vordefinierte Skripte, die das Signal modifizieren, um die gewünschten Werte zu
erreichen. Diese Methode eignet sich besser für kontinuierliche Merkmale wie Vokalqua-
lität, insbesondere bei subtilen Änderungen, die nicht unbedingt zu einer kategorialen
Klangänderung führen. Die zweite Methode zielt darauf ab, phonetische Variationen in
den Trainingsdaten zu erfassen. Zu diesem Zweck wird im Gegensatz zu den regulä-
ren graphemischen Darstellungen ein Trainingskorpus mit phonemischen Darstellungen
verwendet. Auf diese Weise kann das Modell direktere Beziehungen zwischen Phone-
men und Klang anstelle von Oberflächenformen und Klang erlernen, die je nach Sprache
komplexer und von ihren umgebenden Buchstaben abhängen können. Die Zielvariationen
selbst müssen nicht unbedingt explizit in den Trainingsdaten enthalten sein, solange die
verschiedenen Klänge natürlich immer unterscheidbar sind. In der Generierungsphase
bestimmt der Zustand des aktuellen Zielmerkmals das Phonem, das zum Erzeugen des
gewünschten Klangs verwendet werden sollte. Diese Methode eignet sich für kategoriale
Änderungen, insbesondere für Kontraste, die sich natürlich in der Sprache unterscheiden.
Obwohl beide Methoden eindeutig verschiedene Einschränkungen aufweisen, liefern sie
einen Machbarkeitsnachweis für die Idee, dass Sprachdialogsysteme ihre Sprachausgabe
in Echtzeit phonetisch anpassen können, ohne ihre Text-zu-Sprache Modelle wieder zu
trainieren.

Um die Verhaltensdefinitionen und die Sprachmanipulation zu kombinieren, ist ein
System erforderlich, das diese Elemente verbinden kann, um ein vollständiges akkom-
modationsfähiges System zu schaffen. Die hier vorgeschlagene Architektur erweitert den
Standardfluss von Sprachdialogsystemen um ein zusätzliches Modul, das das transkri-
bierte Sprachsignal von der Spracherkennungskomponente empfängt, ohne die Eingabe
in die Sprachverständniskomponente zu beeinflussen. Während die Sprachverständnis-
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komponente nur die Texttranskription verwendet, um die Absicht des Benutzers zu be-
stimmen, verarbeitet die hinzugefügte Komponente das Rohsignal zusammen mit seiner
phonetischen Transkription. In dieser erweiterten Architektur wird das Akkommoda-
tionsmodell in dem hinzugefügten Modul aktiviert und die für die Sprachmanipulati-
on erforderlichen Informationen werden an die Text-zu-Sprache Komponente gesendet.
Die Text-zu-Sprache Komponente hat jetzt zwei Eingaben, nämlich den Inhalt der Sys-
temantwort, der von der Sprachgenerierungskomponente stammt, und die Zustände der
definierten Zielmerkmale von der hinzugefügten Komponente. Hier wird eine Implemen-
tierung eines webbasierten Systems mit dieser Architektur vorgestellt und dessen Funk-
tionalitäten wurden durch ein Vorzeigeszenario demonstriert, indem es verwendet wird,
um ein Shadowing-Experiment automatisch durchzuführen. Dies hat zwei Hauptvortei-
le: Erstens spart der Experimentator Zeit und vermeidet manuelle Annotationsfehler,
da das System die phonetischen Variationen der Teilnehmer erkennt und automatisch
die geeignete Variation für die Rückmeldung auswählt. Der Experimentator erhält au-
ßerdem automatisch zusätzliche Informationen wie genaue Zeitstempel der Äußerungen,
Echtzeitvisualisierung der Produktionen der Gesprächspartner und die Möglichkeit, die
Interaktion nach Abschluss des Experiments erneut abzuspielen und zu analysieren. Der
zweite Vorteil ist Skalierbarkeit. Mehrere Instanzen des Systems können auf einem Ser-
ver ausgeführt werden, auf die mehrere Clients gleichzeitig zugreifen können. Dies spart
nicht nur Zeit und Logistik, um Teilnehmer in ein Labor zu bringen, sondern ermög-
licht auch die kontrollierte und reproduzierbare Durchführung von Experimenten mit
verschiedenen Konfigurationen (z.B. andere Parameterwerte oder Zielmerkmale).

Dies schließt einen vollständigen Zyklus von der Untersuchung des menschlichen Ver-
haltens bis zur Integration der Akkommodationsfähigkeiten ab. Obwohl jeder Teil da-
von zweifellos weiter untersucht werden kann, liegt der Schwerpunkt hier darauf, wie
sie voneinander abhängen und sich miteinander kombinieren lassen. Das Messen von
Änderungsmerkmalen, ohne zu zeigen, wie sie modelliert werden können, oder das Errei-
chen einer flexiblen Sprachsynthese ohne Berücksichtigung der gewünschten endgültigen
Ausgabe führt möglicherweise nicht zum endgültigen Ziel, Akkommodationsfähigkeiten
in Computer zu integrieren. Indem diese Dissertation die Vokal-Akkommodation in der
Mensch-Computer-Interaktion als einen einzigen großen Prozess betrachtet und nicht
als eine Sammlung isolierter Unterprobleme, schafft sie ein Fundament für umfassendere
und vollständigere Lösungen in der Zukunft.
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Chapter 1

Introduction

Spoken human communication is complex and dynamic. One reason for that is the
influence interlocutors have on each other while talking. The rise of voice-activated

devices challenges the way people use their voice to communicate. Since computers
do not pose the same inert tendency to be influenced by human speech, it is an open
question whether human communicate the same with computers and whether computers
can simulate these natural dynamic changes. This chapter provides the motivation for
studying verbal human-computer interaction and the main goals of this work.



1.1 Motivation and goals

1.1 Motivation and goals

People tend to adopt certain behavioral patterns from one another while interacting.
These may range from simple physical postures to language usage and even emotional
reactions. The overarching term for this phenomenon is accommodation and it is com-
monly occurring in human-human interaction. As explained by communication accom-
modation theory from the 1970s, accommodation often has a social motive and it is used,
even if unconsciously, to identify oneself with certain addressees or to trigger greater lik-
ability among a social group (Giles, 2007). It is theorized that the intrinsic motivation
for this mechanism is a decrease (or an increase) of the social distance between inter-
locutors and the improvement of the interaction’s overall efficiency (Gallois and Giles,
2015). Various empirical experiments have found accommodation effects in a variety of
modalities, like facial expressions (Kinsbourne and Jordan, 2009), eye gaze (Leong et al.,
2017), lexical choices (Brennan, 1996), and more. Changes in speech, and especially low-
level phonetic ones, are sometimes more subtle and harder to spot, e.g., than a mimic
of body posture or the repeated use of a specific word. Nevertheless, accommodation
effects have been found in speech-related features, like speech rate (Local, 2007; Levitan
and Hirschberg, 2011) and pitch contour (Babel and Bulatov, 2012).

The automatic utilization of accommodation strategies by speakers makes it an in-
tegral part of human communication. However, in recent years, the everyday usage of
voice-activated devices has been consistently increasing. This kind of interaction in-
troduces new challenges and coerces humans to adjust their verbal communication to
cope with the limited capabilities of computer-based interlocutors. While similar ac-
commodation effects have also been found in human-computer interaction in different
experimental settings (e.g., Bell et al., 2003; Parent and Eskenazi, 2010; Levitan, 2013),
the effects were present mostly on the human side, whereas the systems’ accommoda-
tion capabilities were considerably more limited at best. Such one-sided adaptation is
incongruous with the mutual, dynamic exchanges occurring in human-human interac-
tion. Expanding the effect to computer interlocutors to simulate the aforementioned
conversational dynamics still poses a challenge. This challenge comprises both technical
and modeling facets. The former deals with the ability of a system to detect phonetic
changes in the human’s speech and to manipulate the corresponding features in its out-
put speech in real-time, while the latter refers to determining the relationship between a
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user’s realizations and the way they influence the system’s productions. Direct control
over synthesized speech is challenging due to the limitations of current text-to-speech
synthesis methods, which almost exclusively use a trained model that cannot be modified
on-the-fly. Even if such capabilities are achieved, accommodation models are required
for establishing the way the system responds to users’ speech variations. This involves
some design decisions. For example, should the system try to simulate behaviors ob-
served in human-human interactions or simply follow the user’s lead? Should the system
initiate changes or only react to user variation? Could the course of the interaction be
influenced by the way the system adapts towards the user? All these decisions are part of
defining the dynamics between the human and computer interlocutors and may change
depending on the specific application.

Integration of accommodation capabilities can be especially beneficial for spoken di-
alogue systems, as they are typically the core of verbal human-computer interaction.
Like improvements in other aspects of spoken dialogue systems, vocal accommodation
capabilities will contribute to their enhancement toward more human-like conversational
behavior (Weise, 2017). Considering the assumptions of communication accommodation
theory, interacting with a system that simulates behaviors familiar from human-human
interaction should ease the process for the user and ultimately make it more efficient
and fluent. Furthermore, with the usage growth of voice-activated devices like personal
assistants, accommodative speech would offer additional degrees of personalization for
users. For instance, the speech of a personal assistant owned by one user might differ
from that of another and could change when encountering a new user – therefore re-
flecting the adjustments performed by humans. Furthermore, studying accommodation
in human-computer interaction sheds light on the way humans perceive non-human in-
terlocutors in social contexts and whether they want to communicate with them in a
similar manner as with other humans. Beňuš et al. (2018) show that a computer-based
interlocutor gained more trust from human companions when it exhibited some level of
vocal accommodation.

This work investigates the building blocks on the way to achieving vocal accommo-
dation in human-computer interaction. These include experiments for collecting evi-
dence of accommodative behaviors in human-human interaction and human-computer
interaction, approaches for modeling these behaviors in a computer-compatible fashion,
methods for integrating accommodation models into real-time text-to-speech synthesis,
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and implementation of a spoken dialogue system that support vocal accommodation.
Previous work has addressed these concepts, mostly independently of each other. Lev-
itan et al. (2016) introduce an approach for integrating prosodic-acoustic convergence
into a conversational avatar, but without considering different types of accommodative
behaviors. Similarly, Beňuš (2014) examines social aspects of entrainment in spoken
interactions, but does not demonstrate how those can be harnessed to measure them
and develop models. Obviously, the scope of each study cannot possibly cover all topics.
However, in addition to the depth of each of these concepts, the connections between
them for introducing a complete solution should be considered as well. For example, the
manner in which the experimental findings are converted into a model defines the flexi-
bility and degree of variation of the system. It is therefore important to jointly address
both the theoretical and technical facets of the topic, as they can benefit each other. On
the one hand, the technical capability to manipulate speech needs a modeled knowledge
about the possible (and plausible) changes that might occur; and on the other hand, ac-
cumulating empirical data without showing how it models the phenomenon in question
makes it highly challenging to demonstrate the essence of the captured evidence.

Offering such a comprehensive overview of this multidisciplinary theme and present-
ing the individual topics in a wider context were the primary inspirations for this work.
A further motivation was to suggest a more structural approach to accommodation de-
scription in computers, namely a hierarchy of accommodation levels. Each level builds
on the previous one and progressively increases the complexity and variability of the
accommodative behavior, from direct mirroring of users’ productions to independent re-
sponses To that end, empirical data is required for observing a range of behaviors, and
appropriate computational means need to be utilized to prevent too simple or unneces-
sarily complex behaviors. This distinguishment between different types of behavior has
received little to no attention so far and can help to better define the desired behavior
of a system, based on user’s expectation and the target application. Lastly, an emphasis
is put on the temporal aspect of conversation – and by extension, of accommodation ef-
fects – throughout the work, which is often neglected in studies, but provides important
insights on the interactions’ dynamics.
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1.2 Outline

This work lies at the intersection of two communication phenomena, viz. phonetic ac-
commodation and human-computer interaction. Both of these topics play a role when
talking with any kind of spoken dialogue system. The challenges in combining them
stem from the complexity and variability of accommodation processes and the absence
of this inherent human capability in computers. The core parts are structured to reflect
the journey from theoretical ideas and empirical experiments, through modeling, and
ultimately implementation of potential applications.

Part I introduces the main topics related to this intertwinement of research areas.
Chapter 2 provides an overview of the theoretical, social, and linguistic aspects of ac-
commodation in general, and in spoken language in particular. This includes types
of mutual variation throughout a conversation and measurement of accommodation in
human-computer interaction. A survey of the ways humans interact with machines is
presented in Chapter 3. The properties and challenges of verbal interaction with com-
puters are discussed as well. This chapter also introduces spoken dialogue systems, along
with their typical architecture and examples of common modern applications of them.
Finally, a suggested roadmap for integrating accommodation capabilities into spoken
dialogue systems is explained, together with terminology for differentiating some levels
of accommodation in computers.

The main contributions are subsequently divided into three parts: Experiments,
Modeling, and Application. A series of empirical accommodation experiments are de-
scribed in Part II, each in a different social context and constellation of interlocutors.
Chapter 4 shows vocal accommodation effects and their utilization in real-world human-
human interaction. Examining these effects in such conversations helps to determine
the gaps between the analysis of conversations in the wild and lab setting. Due to the
length of these conversations, analyses of both dynamic changes over time and more
general classification of speaker type are possible. Chapter 5 presents shadowing tasks
combining both human-human interaction and human-computer interaction contexts.
These tasks were carried out in closely controlled experimental settings for direct com-
parison between the two contexts. Further evidence of accommodation in a different
context is explored in a study of vocal accommodation in singing. Lastly, a multiparty
human-human-computer interaction study is outlined in Chapter 6. This more evolved
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mix of speakers sheds light on accommodation effects influenced by the addressee of the
specific utterance or by the presence of another human interlocutor.

Part III comprises two approaches for modeling accommodation to be used in a
spoken dialogue system. A computational model composed of empirically-motivated
parameters is introduced in Chapter 7. This model aims to provide a descriptive way
to depict accommodation and craft desired behaviors. The approach taken in Chapter 8
is statistical in nature. It identifies different speaker tendencies, even if those cannot be
explicitly be broken into specific properties. Nevertheless, these can be used for defining
a target behavior for a system. The use of these two approaches in conjunction is also
discussed.

Part IV contains implementations of components required for responsive spoken di-
alogue systems. The technical details of a module linking between the speech input
and output of a system are described in Chapter 9. This includes an additional module
for handling accommodation-related processes, like detecting variable sounds and run-
ning the model, and a brief survey of real-time, on-demand manipulation of synthesized
speech, which enables the required control over a system’s output needed for realizing ac-
commodation effects. Together with the modeling information and the techniques from
Part III, these components are utilized in the system introduced in Chapter 10. The
extended architecture, usage possibilities, and graphical visualizations of this system are
demonstrated via a use-case display.
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Chapter 2

Phonetic Accommodation

In this chapter, the concept of accommodation is introduced. Types of linguistic
changes and the related terminology used in this work are explained as well. Finally,

a survey of works on phonetic convergence in human-computer interaction is presented
and discussed to lay the ground for the contributions of this work.



2.1 Communication accommodation theory

2.1 Communication accommodation theory

Communication is a fundamental part of life. In addition to offering a means for exchang-
ing information and expressing emotions and desires, it also exhibits salient markers of
social membership. Human communication is a complex concept concealing many facets
and sub-processes within it. This Complexity stems from two main aspects: First, each
individual is unique and communicates differently – in general as well as across specific
interactions – based on inherent traits, emotional state, personal preferences, situational
circumstances, and more. Moreover, an interlocutor may belong to or represent a certain
group (e.g., a social group or an organization), which may also influence the nature of the
exchange. Secondly, some forms of communication, in particular face-to-face, harness
combinations of modalities. This results in a large amount of information one needs to
process in real-time to achieve efficient communication. Furthermore, despite common
social conventions, not every person perceives and processes this information the same
way, which requires all interlocutors to be attentive as to how they comprehend oth-
ers and vice versa. Therefore, each exchange is unique and shaped by various personal
and environmental factors, which often makes interactions hard to analyze and predict
(ass discussed in Section 3.3.1). To cope with such highly variable dynamics, people
must have some way to know – whether unconsciously, intuitively, or deliberately – how
to adjust their communicative behavior with respect to the other interlocutors in the
conversation.

Communication accommodation theory (CAT) is a theoretical framework of commu-
nication which aims to explain the personal and social motivations in verbal and non-
verbal human communication. A core motivation in CAT is social distance (Giles, 1973;
Giles et al., 1991; Giles, 2007), which suggests that to reduce social distance, a speaker
may converge toward the conversation partner(s), whereas divergence would lead to an
increase in social distance. When and how social distance should be altered depends
on the social class of the speakers, their formal role and personal goals in the interac-
tion, etc. Particularly, these changes occur with respect to how the other conversation
partners speak, from overall psychological, social, and linguistic behaviors to specific
features (like those introduced in Section 2.2). For example, different communication
styles would probably be utilized when speaking to a childhood friend, a colleague, or a
company’s executive. In each of these situations, the speakers would likely use different
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language registers (e.g., slang words and politeness markers) in an attempt to fit into the
social groups and become closer to its members. Another example is the use of “elder
language” when talking to old people (e.g., using slower speech, extended use of hand
gestures, etc.), to make it easier for them to understand the speaker. Such adjustments
can be, to some extent, conscious, but often occur automatically. Ideally, both speakers
eventually find their comfort zone during the conversation. However, there exists the
notion of over-accommodation, which is usually caused by very conscious speakers that
intentionally exploit this phenomenon. If realized by a conversation partner, this might
be perceived as pretentious or fake behavior and even mockery. Similarly, accommoda-
tion can serve a speaker with audience design when talking to a larger group of people.
The adjustments may be reflected simultaneously in different modalities, like hand ges-
tures, body posture, facial expression, eye gaze, lexical choices, and speech. This work
concentrates on the latter. While CAT advocates these changes, it is worth mention-
ing that there are other further frameworks that explain them as well. For instance,
the Interactive Alignment Model (Pickering and Garrod, 2004, 2013) offers a model
where adjustments in communicative behavior are described as alignment as opposed
to accommodation, hinting that the process is rather one-sided and uni-directional (see
Table 2.1). Despite this difference and others, all these frameworks describe a process
where the similarity between interlocutors increases or decreases with respect to certain
features over the course of their communication. Section 2.1.1 sheds more light on the
difference between the numerous terms used to describe this process and how they are
used in the literature.

2.1.1 Variation types – terminology

The term “convergence” is a central notion in this work. This term’s definition in this
work is different from its meaning in other fields, like machine learning (ML). Moreover,
various terms are used in the literature synonymously to describe the same phenomenon,
although there are often subtle differences or emphases on certain facets of it. Disam-
biguating these terms should help to avoid confusion and allow a more fine-grained de-
scription of such processes. The core meaning of convergence is explained here in detail,
followed by a list of related terms and explanations about their use in the literature.
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The verb to converge is defined in Cambridge Dictionary1 as “moving toward, or
merging into, the same point (e.g., roads)”. A more non-materialistic definition is pro-
vided as well: “If ideas and opinions converge, they gradually become similar”. Another,
somewhat more general, definition to the noun convergence is given in Merriam-Webster
dictionary2: “the act of converging and especially moving toward union or uniformity”.
As these definitions suggest, the core idea of this concept is two (or more) entities that
change (potentially in different degrees) toward some physical or abstract point and ul-
timately meet. In some time-dependent cases, like spoken interactions, there might not
be enough time for the speakers to meet, but they can still become more similar to one
another nonetheless. This matches the definition of phonetic convergence proposed by
Pardo (2006): “[…] increase in segmental and suprasegmental similarities between two
speakers”. This also resembles the definition suggested by Xia et al. (2014): “[…] behav-
iors become more similar over time”, with “behaviors” referring to different modalities
of communications in conversation, e.g., facial expressions, gestures, lexical choices, etc.
Other terms are sometimes used to describe similar processes or different aspects, and
it is important to make the distinction between them. Note that some of the terms are
used interchangeably, as synonyms, or as hypernyms and hyponyms in other works.

The list presented here aims to unequivocally distinguish these terms and grant them
useful relations to offer a meaningful common terminology, at the very least within the
scope of this work and hopefully in the community of this research area in general.
Table 2.1 summarizes the terms comparison.

accommodation – is often used in the literature as an overarching term derived from its
meaning in CAT and includes any dynamic mutual changes during an interaction.
Concretely, it includes both convergence and divergence, but also other forms of
change caused by influences of other interlocutors. An important aspect of any
accommodative effect is that it is a result of external input.

convergence – As explained above, convergence means an increase in similarity be-
tween speakers (see Figure 1 in Levitan and Hirschberg, 2011). Each speaker can
account for a different “amount” of the overall convergence effect, based on the

1http://dictionary.cambridge.org/dictionary/english/converge
2https://www.merriam-webster.com/dictionary/convergence
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Table 2.1: Comparison of variation types properties. The mutuality column marks
whether the process occurs in both interlocutors. directionality indicates whether the
process is defined in a specific direction (similarity or dissimilarity). Intention/awareness
imply that the process is performed consciously, and the last column shows whether the
process’ trajectory advances toward a specific, potentially relative, target value or not.
A (3) sign indicates that the property is fulfilled to some extent, or that it may be
implied or assumed in some cases. The ‘*’ signs mark the terms most widely used in the
literature.

mutuality directionality intention/awareness defined target
accommodation* (3)
convergence* (3) 3 (3)
mimicry (3) 3 (3) (3)
proximity 3

synchrony 3 (3)
mirroring 3 3 3

coordination 3 (3) 3 (3)
assimilation 3 (3) (3)
adaptation* (3) 3 3

chameleon eff. 3 (3)
priming 3 3

entrainment* 3 (3) (3)
alignment 3 (3) 3

imitation 3 3 3

speaker’s tendency to converge in the specific interaction and in general. There
may be great individual differences in this tendency, as shown in the experiments
in Part II. This tendency is referred to as the speaker’s sensitivity to external
changes in Section 7.3. Convergence can result in the speakers’ production values
meet somewhere in the middle (as in Figure 2.2) or closer to one of them, de-
pending on the social dynamics in the interaction. Similarly, divergence is the
reversed effect, i.e., when a decrease in the similarity between the speakers occurs.
Divergence is generally less common in human-human interaction (HHI), but may
occur in competitive (as opposed to collaborative) scenarios, or when a speaker,
intentionally or not, thrives to deliberately be distinguished from the other.

entrainment – is presented by Brennan (1996) as the possibly aware influence of an in-
terlocutor on another, e.g., imposing lexical units in an interaction, with emphasis
on the one-sided nature of the process. This means that one of the interlocutors
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established the use of an aforementioned term which created a bias by the conver-
sation partner to employ it as well. The change is sometimes seen as categorical
(similar to priming), which is a key difference from the definition of convergence
here. This is especially relevant in human-computer interaction (HCI), as it is
much easier for a computer, due to the vocabulary problem (Furnas et al., 1987),
to establish such uses. Lopes et al. (2013) describe entrainment as imposed by
a human speaker, where a computer-based interlocutor follows the lexical choices
of the user. This term is sometimes also used as a static measure of changes in
an interaction (cf. Section 2.2.2), as in Levitan (2013). Conversely, convergence
refers here to the potentially mutual dynamic measure, with the difference being
comparing discrete timestamps in the interaction (for example, between two halves
of a session, as done by Xia et al., 2014) versus changes occurring gradually over
its entire length. In addition to all the above, entrainment is often synonymous
with convergence or accommodation in more technical fields.

synchrony – refers to an ongoing process where the interlocutors are changing their
behavior similarly, i.e., synchronously. Importantly, this applies to the relative
changes in each speaker, but not to any absolute values. That is, the distance
is generally maintained while the individual ranges may differ (see example in
Figure 2.1 on page 20 and Figure 1 in Levitan and Hirschberg, 2011). When one
of the speakers is leading the synchrony, it becomes lagged, as shown in Figure 2.2.
Lagged phenomena and the speaker leading them are often determined using some
correlation measure, like Peasrson’s coefficient in Edlund et al. (2009) and Xia
et al. (2014). A deeper analysis of such an accommodation effect is presented in
Section 4.4.

adaptation – refers to the process of making intentional changes that suit certain con-
ditions or situations. As such, this term stresses the ambition of these aware mod-
ifications in vocal behavior made by an interlocutor to be more similar to a known
and defined target exhibited by another speaker. Kang (2010) and Hwang et al.
(2015) both examine the phonetic adaptation process that occurs gradually when
encountering a new sound environment, to which speakers want or are expected
to adapt. In these cases, the changes are also likely to be maintained outside the
scope of a specific interaction. Adaptation is also used to describe the technical
capability – or more often the lack thereof – in a machine to match its speech pro-
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duction to a user interacting with the system. This fits the definition of adaptation
being intentional and having a well-defined target to adapt towards. However, this
is still a very limited feature due to the current state of text-to-speech (TTS) tech-
nologies. The integration of such capabilities into spoken dialogue systems (SDSs)
and the involved challenges are discussed in Section 3.3 and Chapter 9.

priming – is similar to entrainment, but usually works in a larger scope, in terms of
both time and the degree of change. It is typically used in the context of psycholin-
guistics. As opposed to entrainment, e.g., on the lexical level, priming can influence
not just the use of one specific term, but a whole semantic field. For example, it
was shown in experiments by Meyer and Schvaneveldt (1971) and Schvaneveldt
and Meyer (1973) that people respond faster to words from a specific semantic
field after being exposed to other words from it over a long timespan. In more
general terms, priming changes the likelihood of a person to use specific behavior,
typically on some semantic or syntactic level. The temporal scope is different as
well. Priming can have an effect in a longer-term than a single interaction, ranging
from multiple interactions across several hours, days, and up to years. Therefore,
this term is often used when talking about language change in children (see, e.g.,
Huttenlocher et al., 2004; Wansink et al., 2012). Like entrainment, priming also
usually describes a categorical change (cf. Reitter et al., 2006; Pace-Sigge, 2013).

assimilation – implies a one-sided process, where one side changes in a certain way
to match the other. It is typically used to describe an accommodative process
with the motivation to associate oneself with a social group by adopting its vocal
characteristics. Therefore, assimilation is seen as a change that occurs as a result
of a specific situation or context, e.g., public speeches, as shown by Ohala (1990)
and discussed in Section 2.2.1. This resembles the use of this term in phonology
to describe a sound that changes to become similar to another sound with respect
to a certain property (see examples in Hall, 2011, pp. 89-98).

alignment – is a term derived from the Interactive Alignment Model (Pickering and
Garrod, 2004) and describes an increase in similarity between speakers. It describes
a process similar to assimilation, but with a certain motivation behind it. While
in assimilation the change is measured with respect to a social group or speech
style, alignment is often used to describe the adoption of speech characteristics of
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2.1 Communication accommodation theory

a speaker in a specific conversation. Specifically, it is claimed to contribute to the
overall ease and success of conversations by the interlocutors to behave similarly
on different linguistic levels (Garrod and Pickering, 2009).

mirroring – is a cognitive tool that aims to produce an output that follows some input.
A.k.a. “mirrored equivalence” (Messum, 2007; Messum and Howard, 2015), this
process differs from imitation by the lack of aim toward a well-defined target,
but rather an internal representation of the similarity between the speakers. This
may lead to a less planned and sometimes automatic effect of becoming closer to
an interlocutor, where the specifications of the change do not necessarily match
the input target. Less commonly, this term also refers to an effect opposite to
synchrony, where the directions of the respective changes are reversed instead of
similar (as if a mirror was put between them). Additionally, mirroring may also
refer to an effect similar to mimicry, but with greater emphasis on speech learning
and acquisition (e.g., Yoshikawa et al., 2003).

mimicry – is the tendency to behave, or speak, broadly like someone else. The emphasis
here is on the general inclination, which hints it can be done unintentionally, or,
alternatively, be deliberate, but without the goal to perfectly match the target (as
opposed to imitation). Gueguen et al. (2009) demonstrate how mimicry can earn
the mimicker more favorable judgment in social interactions. This is explained by
mimicking creating a greater feeling of affiliation and rapport in communication,
or with the more positive evaluation of the mimicked person due to an enhanced
familiarity established by the mimicker. Parrill and Kimbara (2006) show just how
natural mimicry in HHI is using an experiment in which participants’ behavior was
affected merely by watching mimicking takes place in another conversation.

imitation – is similar to mimicry, but is done intentionally and with the goal to match
as closely as possible to a target. In speech, it emphasizes the speaker’s intent to
completely match the auditory input (cf. Gueguen et al., 2009). The attempt to
deliberately repeat and accurately replicate another speaker’s productions distin-
guishes imitation from mirroring and mimicry.

chameleon effect – is a more general account of mimicry, but with complete non-
conscious adoption of an interlocutor’s behavior (Chartrand and Bargh, 1999). It
is a term from social psychology typically associated with a comprehensive change

18



Chapter 2 – Phonetic Accommodation

in multiple modalities and in the overall mannerisms. Gueguen et al. (2009) focus
on the social aspects of this effect and how it can change social judgment and
attitude toward the speaker. Both works describe it as ”monkey see, monkey do”,
which emphasizes the automaticity of it. Moreover, they state that it is a learning
mechanism for children and for humans in general before the development of unified
languages (Gueguen et al., 2009, p. 256).

proximity – describes general closeness between interlocutors (as illustrated in Figure 1
in Levitan and Hirschberg, 2011). This does not imply specific distance thresholds
or absolute value ranges. Furthermore, this is a rather passive, potentially merely
circumstantial, state, which does not involve a defined vocal target or an aspiration
to match it. The proximity at a specific point in time (e.g., around the start of a
conversation) can be used as a reference point for other measures.

coordination – implies cooperation – either seeming or real – between interlocutors.
Increase or decrease of communication features is in this case a side of effect of
this coordination. This provides another point of view on the process, namely not
to examine the speakers’ collaboration based on common changes, but looking at
these changes as part of this collaboration.

2.2 Linguistic accommodation

Accommodation occurs on various linguistic levels in HHI. Relative salient changes may
occur on the lexical level when one interlocutor shifts his lexical choices to match those
of another. This is more likely to happen when a lexical entity has multiple commonly
used alternatives, like synonyms or different names. For example, Jucks et al. (2008)
show how healthcare experts try to match their wording to patients in written inquiries.
In another experiment, Friedberg et al. (2012) found increasing lexical similarity over
the course of spoken discussions among students groups with better performances. Rácz
et al. (2020) even extended the analysis to morphological forms, suggesting that mor-
phological convergence occurs and creates generalizations in memory in real-time. Other
examples of lexical convergence have also been found in HCI when looking for informa-
tion (Lopes, 2013) or when playing (Bergqvist et al., 2020, and see Section 2.3.2). In all
these experiments, it was shown that lexical convergence had a positive effect on task
performance.

19



2.2
Linguistic

accom
m
odation

Figure 2.1: Example of pitch synchrony between two speakers in conversation number 2005 of the SwitchBoard corpus
(Godfrey et al., 1992). The turns of speaker A (red; top) and speaker B (blue; bottom) are marked by the respective vertical
bars. The circles in the corresponding colors show the individual production values. The locally estimated scatterplot
smoothing (LOESS) trend lines show the overall synchrony (with slight convergence) between the speakers over the course
of the conversation. The speech balance measure at the bottom is a value between 0 and 1 indicating how balanced is the
overall speaking time between the two speakers (the higher the more balanced, and the interactivity measure indicates the
frequency of floor change without (and with) backchanneling (0 points to only long monologues and 1 to floor change after
every turn). These measures are further explained in Section 4.4.2 on page 71.
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The focus in this work is on accommodation occurring in speech-related features, i.e.,
vocal accommodation. A core difference between lexical and vocal accommodation is the
mechanism for defining two instances as the same. For example, the word “window” is
written the same way regardless of who writes it, which makes it easy to associate tokens
with the same type. However, vocal features are strongly dependent on the speaker. The
signal representing a word would be different depending on the speaker’s physiological
properties (like vocal tract size), speaking rate, voice intensity, intonation, and many
more. Moreover, it is very unlikely that even the same speaker would pronounce the
same word in the same manner. This is especially true in conversation taking place in
different settings and environments, but also for two successive utterances in the same
conversation. Additionally, the relative differences, e.g., in vowel quality or speaking
rate, also differ from one person to another, which entails that more evidence might
be needed for a perceivable target for accommodation to emerge. An exception to
these differences could be categorical phonetic differences, where each category may be
perceived as a separate entity (similarly to the lexical case), making it easier to define
the target (and see Sections 5.3.1.1 and 9.2.2). This great variety in spoken language
makes the accommodation process more complex, as the targets might not always be
well-defined and static.

Vocal accommodation has been found in both segmental (Smith, 2007; Pardo et al.,
2010) and suprasegmental (Shockley et al., 2004; Walker and Campbell-Kibler, 2015)
phonetic features and both in conversational (Pardo, 2006; Lewandowski, 2012; Weise
and Levitan, 2018) and non-conversational (Shockley et al., 2004; Babel et al., 2014)
scenarios. There is evidence for it being both an internal mechanism (Pickering and Gar-
rod, 2004) and socially motivated (Giles et al., 1991; Babel, 2010; Kim et al., 2011). For
instance, phonetic convergence (Giles, 1973) or divergence (Bourhis and Giles, 1977) is
triggered by decreasing or increasing social distance between interlocutors, respectively.
Baumann (2020) even shows that feedback given by conversation partners can influence
the convergence process. Aubanel and Nguyen (2020) found that speakers accurately and
consistently converge to each other’s fundamental frequency (f0) in scripted read-aloud
dyadic conversation on a turn-by-turn basis. This shows the ability to track changing f0
both in perception and production. Similar effects were demonstrated by Pardo (2013)
with respect to multiple phonetic features. The study conducted by Babel and Bulatov
(2012) supports the importance of f0 in convergence effects by showing that filtering
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out the f0 frequencies in the signals the participants hear leads to reduced convergence.
Schweitzer et al. (2017b) show that convergence effects are stronger when conversation
partners can speak but not see each other, and divergence occurs more when they can
also see each other while talking. Moreover, the effects were stronger depending on the
degree of likability between them. This shows that accommodation can be influenced by
other, non-linguistic factors of the conversation. According to Lehnert-LeHouillier et al.
(2020), language skill level and greater f0 expressiveness also influence the degree of con-
vergence. Accommodation effects were also found in intensity levels of speakers: In an
experiment where participants heard an interviewer in different levels of vocal intensity,
Natale (1975) shows that their intensity was generally changed accordingly. In a second
experiment, the degree of intensity convergence could be predicted by a social desirabil-
ity test, which stands in line with the finding of f0 accommodation. A third commonly
studied feature is articulation rate (AR; or the related measure speaking rate). In an
exemplar-theoretic view in mind, Schweitzer and Walsh (2016) investigated how sylla-
ble frequency influences the degree of change. Evidently, stronger effects were found in
more frequent syllables, which supports this view. Relatedly, Edlund et al. (2009), Xiao
et al. (2015), and Cohen Priva et al. (2017) introduce ways to measure temporal prosodic
changes, like pauses, in conversation, which affect the speaking rate. Local (2007) and
Levitan and Hirschberg (2011) found convergence effects in all these three features (and
others) in collaborative games and everyday scenarios. Such a wide variety of evidence
suggests that, even in the vocal modality alone, accommodation is reflected in various
ways in HHIs. These features are investigated in this work in both HHI (Chapter 4) and
HCI (Chapter 6) contexts. In addition to these, other factors and phonetic features were
investigated for accommodation, such as voice quality (Borrie and Delfino, 2017), voice
onset time (Nielsen, 2011), and other timing-related phenomena (Putman and Street,
1984), second language proficiency (Law et al., 2020), interlocutors’ sex (Levitan et al.,
2012; Bailly and Martin, 2014), perceived attractiveness (Michalsky and Schoormann,
2017), word frequency (Nenkova et al., 2008), and more. A survey of methods for mea-
suring accommodation in HHI can be found in De Looze et al. (2014) and Lewandowski
and Jilka (2019).
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2.2.1 Long-term and short-term sound changes

All the sound changes discussed in this work are short-term changes occurring over
the timespan of a single, even if long, interaction (Chapter 4) or multiple sequential
interactions (Chapter 6). Similarly, the models and applications in Chapters 7 to 10 are
also designed to handle accommodation-related changes within the scope of individual
interactions. However, sound changes may occur continuously over long periods of time
– even years or decades. While short-term accommodative changes can be ascribed
to local social influences of specific interlocutors (as discussed in Section 2.1), long-
term changes may stem from larger cultural influences and independent evolution of a
person’s speech. The changes’ source can be both the speaker and the listener (Ohala,
1989, pp. 176-187) and is typically caused by confusion or correction (Ohala, 1993).
The latter is more relevant, for instance, for short-term assimilation, as demonstrated in
Ohala (1990). The former, however, is more dominant in long-term changes and cross-
language influences, e.g., when sounds in one language are replaced by similar sounds
in another in loanwords. This is also related to mutual influences of speakers in the
evolution of a language, or the way different speaking styles can be created within a
language to mark cultural, regional, and social differences. These reasons and others are
explained from the phonetic point of view in Sweet (1874).

Such long-term changes can also occur in the speech of a single person. Harrington
(2007) examined vowel changes in the Queen’s pronunciation in her annual Christmas
messages from 1952 to 2002. Some gradual changes were, indeed, found, but could
not be ascribed to age or varying speech style. The author, therefore, considered it an
independent, long-term sound change of an individual. Contrarily, in the pronunciations
around the 1980s assimilation was found towards accents associated with younger people
of lower classes (Harrington et al., 2000a,b). This suggests a potentially aware audience
design from the Queen’s side (Bell, 1984). Such use of communication falls under the
social motivation of CAT, although the interactions were one-sided. In this example, the
changes were not a result of interactions over a long period of time. However, this may
also happen between people who regularly speak with each other for many years. This is
relevant for HCIs that are designed to last a very long time, like personal assistants (PAs)
or social companion (see Section 3.2). Therefore, in such systems, accommodation effects
should be taken into account as well, but the modeling approach could take advantage of
the fact that there is a much longer timespan for the changes to shape. This can be used,
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for example, for accumulating more evidence before deciding on the appropriate change
from the system side (cf. exemplar approach in Chapter 7 and floor-change approach in
Chapter 8).

2.2.2 Measuring accommodation

Conversations are complex processes that require some expertise and quantitative analy-
sis tools for detecting and isolating specific patterns in them, especially since effects may
have long, non-linear relations. A behavior is a complex collection of conducts of a per-
son, particularly those towards a certain environment. The realization of one’s behavior
over the course of a conversation can communicate information regarding one’s state and
goals, especially with this deviates from the individual’s expected behavior. The behav-
ior leads to reactions to environmental input and can be modified due to reinforcements
from the environment or self-directed motives. These modifications can occur over time
quickly or slowly, consciously or unconsciously, and to a greater or lesser extends, which
makes them dynamic and thus cannot be defined discretely. All the above is true for
vocal behaviors as well, which are expressed in spoken interactions. Specifically, vo-
cal accommodation reflects dynamic changes during a conversation that can be affected
by the external speech input of other interlocutors. It can therefore be beneficial to
move away from value comparisons in favor of behavior descriptors to depict
an interaction. This is done by analyzing spoken interactions as entire events with a
continuous temporal dimension as opposed to a comparison between discrete points in
time. Examining the whole conversation can help, for example, to determine who was
leading the changes or when more accommodation occurred. In this work, such analyses
were utilized in Chapter 4 to determine the leading speaker in each conversation and in
Chapter 6 to expose the ongoing changes in the human speaker’s productions.

The way speakers accommodate to each other is very unlikely to be linear from
beginning to end and can change throughout the conversation. Therefore, comparing
the differences between two discrete, distant points in time might miss or oversimplify
some dynamics that occurred between them. Moreover, comparisons like that usually
take the view of one speaker instead of looking at the conversation as a complete entity.
Quantitative analyses often leave accommodation hidden or overly smoothed if done on
a turn-by-turn basis or by splitting it arbitrarily into two or more parts (often equally-
long, non-overlapping time intervals) and directly comparing them using raw values as in

24



Chapter 2 – Phonetic Accommodation

Heldner et al. (2010), Rahimi and Litman (2018), and Ibrahim et al. (2019). De Looze
et al. (2014, p. 15) point out that in these cases it is assumed that accommodation
is a strictly local phenomenon where a speaker’s utterance is linked exclusively to the
other interlocutor’s immediate preceding utterance. Such analyses result in a linear,
static representation of the conversation’s evolution, from which generalized conclusions
are hard to draw. They might even be inaccurate or misleading, especially when both
speakers change their output over time, as demonstrated by Cohen-Priva and Sanker
(2019). That work refers specifically to difference-in-difference (DiD) measurements,
where pairs of two discrete points in time are compared to measure accommodation
between speakers using the following distance formula3

DiDi⃗,s⃗
:=
√

(⃗in
t+1− s⃗n

t+1)2 +(⃗in
t − s⃗n

t )2 ≡ ∥⃗i− s⃗∥n. (2.2.1)

Figure 2.2 shows the interaction between two speakers’ productions in a hypothetical
conversation. By merely looking at the plot, it is clear that the two speakers do not
sustain the same behavior throughout the conversation. For example, between marks
A and B the orange speaker’s values go remarkably downwards (though not linearly),
while the green speaker remains roughly stable – i.e., divergence (although this can also
be seen as an independent change). Subsequently, the distance is generally maintained
between B and C. Between C and D convergence occurs in both speakers. Lastly,
lagged synchrony can be observed between marks D and E. If compared directly, the
lagging might make the value changes look somewhat random. However, looking at
the entire segment, it’s clear that the change is similar and is led by the green speaker.
None of these mutual behaviors can be captured by a DiD-based approach. For instance,
comparing the beginning (mark A) and end (mark E) of the conversation would lead to
the conclusion that there was no change in the values (illustrated by the corresponding
dashed lines). Similarly, splitting the conversation into two halves (A to D and D to E)
would make it look like the changes were symmetrical, missing the obviously different
behaviors of the speakers in these two halves. Additionally, the directionality of the

3Note that this way of measuring DiD is commutative and therefore doesn’t measure the changes
from the view of a specific speaker (unlike, e.g., Cohen-Priva and Sanker, 2019, p. 3).
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Figure 2.2: The evolution of a feature’s values produced by two speakers represented
by the green and orange solid lines. The dashed lines connect the corresponding initial
and final values of each speaker. The letters A to E mark timestamps with behavioral
changes. Each caption describes the behavior between the two corresponding marks.

convergence between marks C and D will be missed by simple DiD distance measures,
which might give the impression that the changed rooted from only one of the speakers.
This could be satisfactory when it can be assumed that such changes can only occur
in one speaker, like when talking with some computer-based interlocutor like a PA
(see Sections 5.3 and 6.2), but not when both speakers’ productions may be flexible,
like in HHI (Section 4.4) or ultimately adaptive spoken dialogue system (Section 3.3).
This limitation can be compensated to some extent by examining the relative occurring
changes gradually (Figure 6.8 and Section 6.4.2).

2.3 Vocal accommodation in human-computer interaction

2.3.1 Verbal interaction with computers

A human-human interaction (HHI) is a mutual or reciprocal relationship between two
(or more) interlocutors within a limited timespan. This is also true for interaction
with machines, though the beneficial side is typically the human speaker(s) while the
machine is used as a tool to achieve the humans’ goal. In more modern applications,
and especially when artificial intelligence (AI) is involved, the computer might also be
programmed to “benefit” from the interaction as well, e.g., by acquiring information for
future interactions or being able to finish a task more efficiently. One type of interaction
is a conversation, where the communication is language-based. This difference is more
prominent in HCI, since there are ways to interact with machines without using written
or spoken words, like using touchscreens, a computer mouse, or hand gestures. This can
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be compared to non-verbal – neither written nor spoken – human communication, but
purely non-verbal communication occurs more often with machines than with people.
The main reason for that is probably since machines are not, yet, capable of using lan-
guage as freely and verbosely as humans. The terms “interaction” and “conversation”
are often used interchangeably in this work, since the interactions in question are spoken
conversations. Nevertheless, interactions refer to a more general concept of communica-
tion that might involve other components than speech while conversations focus on the
language components of the communication.

Interestingly, humans almost always need to compromise on the way they interact
with computers or learn new interfaces (like those mentioned above) even for performing
simple tasks. Even in the case of spoken communication, which develops early on in
humans, compromises need to be made as to how to speak to the computer so that it
understands the user’s intention. For any of the system types mentioned in Section 3.2,
users need to learn how to modify their speech so that they can properly use the systems
(be it the speech style or wording), instead of the system being able to adapt to the user.
With the advances in speech technologies, this gap is shrinking, but there is still a way
to go before computers will be able to understand and produce spoken language well
enough for people to speak to computers the same as they speak to other human beings.
The topics in this work capitalize on this evolution, to see whether HHI phenomena like
vocal accommodation are transferred to HCI as talking to computers becomes easier and
more common. More generally, the question arises whether CAT holds for HCI as well.
This is supported, for example, by the Computers Are Social Actors (CASA) paradigm
(Nass et al., 1994; Nass and Moon, 2000), which argues that humans apply similar social
behaviors when interacting with computers because they ascribe human characteristics
to them. As a starting point, domain-specific systems with alternate turn-taking are
easier for computers, as they take away a lot of the complexity of spoken language and
reduce it to individual utterances that can be mapped to actions the systems support.
For example, a SDS for ordering train tickets will probably follow a very specific protocol
and react only to a specific input, as opposed, for example, for a general-purpose system
that could talk with the user about a planned trip and help booking tickets as part of a
longer, general-purpose conversation (see Table 3.1).
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2.3.2 Previous work

Section 2.2 discusses vocal accommodation in HHI, but this phenomenon has been stud-
ied in HCI as well. The key difference between the two settings is the lack of inert
changes in computers. Since accommodation is often ascribed to mutual social aspects
(as explained by CAT in Section 2.1), this introduces a limitation on the computer’s side.
Two main approaches are used to overcome this limitation in experiments: Simulating
a computer’s output in a wizard-of-Oz setting and integrating basic accommodation ca-
pabilities into a SDS. Wizard-of-Oz experiments have the advantage that the output of
the computer-based interlocutor can be directly controlled by the experimenter, usually
using pre-defined utterances. This grants precision and control over the experiment,
which makes it a very suitable approach for research. However, preparing the experi-
menter’s control interface and the utterances might be time-consuming, e.g., if they need
to be recorded or manually manipulated in a certain way. Another disadvantage is the
disability to deviate from a pre-defined script covered by the prepared utterances, limit-
ing the variety of interactions the simulated system can support. SDSs that support at
least some level of accommodation or real-time manipulation save the time and effort of
creating stimuli prior to the experiment. Though the quality of the output and the time
required to generate it might be affected, this setting better represents real-world HCIs
and can be more flexible in different scenarios. Just like real-world systems, it requires
a lot of time to develop SDSs with these capabilities, which often makes this option
impractical for research. Section 3.3 discusses further facets and possible solutions for
integrating accommodation capabilities into SDSs.

Using these two methods, various experiments have been conducted to measure ac-
commodation in HCI. Lopes et al. (2011) and Bergqvist et al. (2020), for example,
focused on dynamic entrainment and adaptation on the lexical level and found that
users adapt to a system’s terminology that differs from theirs. This also led to improved
performance in the given tasks. Parent and Eskenazi (2010) examined the correlation
between lexical choices and word frequency using the Let’s Go SDS (Raux et al., 2005)
and found that users adapt more to words that occur more often. While these studies
addressed the changes in experimental, scripted scenarios, the theoretical foundations
for studying these changes in spontaneous dialogue exist as well (Brennan, 1996). Levin
et al. (2000) and Gašić et al. (2013) provide examples of online adaptation for dialogue
policies and strategies. Noticeably, while all the studies mentioned above examined var-
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ious facets of dialogues, none of those are related to the auditory aspects of speech – the
primary modality used to interact with SDSs – but other did: Beňuš et al. (2018) found
relationships between the level of users’ trust toward an avatar and the degree of the
system’s vocal entrainment or disentrainment. Similarly, Levitan (2014, pp. 142-144)
shows relationships between prosodic entrainment and how much participants liked the
avatar they were interacting with. Bell et al. (2003) found that users’ speech rate can
be manipulated using a human-simulated SDS. Similar results were found when inten-
sity changes in children’s interaction with synthesized output were examined (Coulston
et al., 2002). All these experiments focus on HCI, while those in Section 2.2 concentrate
on HHI. However, accommodation in HHI and HCI has not been directly compared
within the same interaction, as done in Chapter 6. Furthermore, mainly suprasegmental
characteristics have been studied for accommodation in HCI, mostly due to technical
limitations (see Section 3.3 for details). A wizard-of-Oz experiment with a focus on
segmental features is described in Chapter 5.
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Chapter 3

Spoken Dialogue Systems

This chapter gives an overview on spoken dialogue systems, including common ar-
chitectures, different system types, and implementation techniques. The concept

of adaptive spoken dialogue systems, which is a core topic in this work, is introduced as
well, along with the challenges involved and examples of possible adaptation strategies
on different levels.



3.1 Architecture of spoken dialogue systems

Spoken dialogue systems (SDSs) offer a wide range of services and are used on daily
basis in various forms, both for commercial and personal purposes. The main difference
between them and other ways to communicate with computers is the use of speech –
and mostly speech alone – for interaction. This offers benefits to the users, like being
able to perform tasks while keeping their hands free, contrary to systems that require
textual input from a keyboard or haptic touch on a screen. We are witnessing an
ever-growing presence of voice-activated devices, like speech-activated cars, hands-free
medical assistants, and intelligent tutoring systems (ITSs). These devices support more
and more functionalities in a way that is more comfortable and intuitive for users. It can
be expected that in the near future such devices will be used not only by individuals but
also in more social contexts, including interactions where multiple humans are involved.
This makes the understanding and improvement of social skills in SDSs all the more
important.

The common architecture of SDSs is explained in Section 3.1, along with details
about each component and how it can be implemented. Section 3.2 gives an overview
of applications that use a SDS at their core to communicate with users. A roadmap
toward SDSs with vocal accommodation capabilities as well as the challenges involved
in that are discussed in Section 3.3. Ultimately, such capabilities would improve the
personalization and overall experience of the interaction.

3.1 Architecture of spoken dialogue systems

As shown in Figure 3.1, the architecture of a SDS is symmetric in terms of input and
output types. Each cycle starts and ends with speech signals, generated first by the user,
and then by the system (more sophisticated systems can also take the initiative). The
content of the utterance, usually referred to as intent, is then extracted to determine
the utterance’s objective. Similarly, the system’s speech output is based on generated
content that captures some intent. The “brain” at the core of the cycle decides what
intent is most suitable for the user’s input. This can be done purely by learning from
provided dialogue examples, using the help of external information or databases, based
on hand-crafted rules, or some combination of those. This simplified flow assumes that
the user and the system take turns alternately, one at a time. However, one interlocutor
may of course need multiple consecutive turns to convey the message due to length or no
response from the other interlocutor. Although each component is a whole research area
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Figure 3.1: A typical architecture of a spoken dialogue system. The interaction lifecycle
is symmetric, and for each analysis input step there is a corresponding generation output
step. The exchange usually starts with a user spoken utterance and ends with the
system’s spoken response.

by itself, there are numerous open-source implementations that help to quickly build a
basic fully functioning system and focus on a specific one. Brief overviews of these natural
language processing (NLP) tasks are given in Sections 3.1.1 to 3.1.5. Note that this is a
basic typical architecture and each component may be extended or modified. Specifically,
this architecture changes substantially in fully neural-based systems. However, even in
that case, the general flow (and by extension the training data) remains the same.

3.1.1 Automatic speech recognition

An essential condition for verbal communication is to be able to hear what the interlocu-
tor says and process it into words. For computer, this is done using automatic speech
recognition (ASR), which translates the audio signals produced by the user’s articulators
into a machine-readable form that can subsequently be fed to the natural language un-
derstanding (NLU) component. This step is crucial for vocal accommodation, as it is the
only component that accesses the audio signal. However, SDSs predominantly merely
use it to extract the said words and discard it afterwards. As a result, they know what
was said by the user but not how it was said. For any kind of responsive behavior, this
component must be extended to provide some additional information about the input
speech.
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3.1.1.1 Tools

Kaldi (Povey et al., 2011) and CMU Sphinx (Lamere et al., 2003) are free-to-use ASR
engines that offer various functionalities, including training a model on a custom dataset.
For the purpose of vocal accommodation, one benefit of using such modifiable toolkits
is the ability to access the phoneme times. This is crucial for detecting and tracking
certain phonetic features, and segmental ones in particular (as in Chapter 9).

3.1.2 Natural language understanding

After getting the words uttered by the user, the system needs to infer an intention from
them, i.e., what the user wanted to achieve in that turn. This is the role of the natural
language understanding (NLU) component. An intention can be as simple as asking
the SDS to perform a task (e.g., to turn on the radio in a voice-activated car). such
requests are mostly recognizable by pre-defined keywords the system can look for in
the transcribed input text. Other requests, like inquiring information about a place or
booking a flight, require the system to be able to withdraw – and properly formulate
– information from some source. Such tasks require further information (e.g., flight
origin and destination, date, price range, etc.) to be obtained, or, if that information is
not provided by the user, additional turns where the system asks for the missing bits.
This process is called slot-filling. More complex reactions, and especially in the case
of chatbots, demands deeper semantic analysis, as the intention might not be explicitly
articulated and in some cases, such a defined intention may not even exist.

3.1.3 Dialogue manager

After completing processing the user’s input, a decision must be made by the SDS as to
how to react. This is done by the dialogue manager (DM), which is the central component
of a SDS. The DM is typically divided into belief tracker and policy modules. The former
accumulates information regarding the user’s wish based on current and previous turns,
while the latter is responsible for determining the most appropriate response to that
intention. If any additional data is required for satisfying the user’s needs, e.g., some
information from the web or a database, the retrieval will be done by the DM. The
same goes for specific domain knowledge, which can be made available to the system.
Deciding on the best action can be achieved using a deterministic rule system for a small
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number of simple cases (a command and control (C&C) system, for example), but need
more sophisticated models for more involved situations. One commonly used technique
is reinforcement learning, which is suitable for making selecting an action based on a
given state. All these conditions determine how flexible and elaborate the system is, and
specifically what domain(s) it can handle.

3.1.4 Natural language generation

After deciding on the most appropriate response to the user, the system needs to convey
it in a human-understandable manner, namely words. The process is reversed to NLU,
i.e., generating text based on a given intent. Depending on the user’s input intent, the
system may respond with simple acknowledgment statements, repetition and information
approval, or completely newly formed full sentences. Additional challenges of this task
often root from things that could be reduced or ignored in NLU, but must be precise
in NLG. For example, using wrong verb conjugations and tenses will cause the system’s
response to sound ungrammatical or ill-formed in some cases, but could even lead to a
misunderstanding of the system’s response. Therefore, depending on the language, the
NLG component should be aware of the user’s gender, the number of users speaking to it,
the nature of the user’s intent and how it may be carried out, and more (in multimodal
systems, these may influence other modalities as well).

3.1.5 Text-to-speech synthesis

The last step in the flow is converting the text provided by the NLG component to
speech signal and play it to the user. This is performed using a text-to-speech (TTS)
module, which takes orthographic forms of words and outputs a voice that utters them.
Traditionally, voices are learned from recorded human speech by selecting and concate-
nating small units of it. Linguistic analyses are performed to translate the orthographic
forms to sound sequences, insert stresses and pauses, etc. Additional properties, like
the contour and duration, are usually determined in inference time. Newer methods are
mostly neural-based and can generate audio frames directly from text (e.g., Shen et al.,
2018). All these methods have the limitation of not being able to control the generation
process directly in each utterance, especially not on the segmental level. This makes it
hard to apply detected changes in the user’s speech, which is a major barrier on the way
to integrate accommodation capabilities into SDSs. Nevertheless, there are examples of

35



3.2 Types of spoken dialogue systems

SDSs that can adapt on various levels, including specific modifications in speech (see
Section 3.3).

3.1.5.1 Tools

Free TTS engines for training voices include Festival (Black and Taylor, 1997), espeak
(Duddington, 2012), and MaryTTS (Schröder et al., 2011). In addition to being used as
complete TTS pipelines, these systems can also provide intermediate analysis outputs
like phonetic transcriptions.

3.2 Types of spoken dialogue systems

By and large, SDSs can be divided into two main categories, which determine the com-
munication style and behavior of the system: task-oriented systems (e.g., Wen et al.,
2016; Zhao and Eskenazi, 2016) and chatbots systems (e.g., Vinyals and Le, 2015; Li et
al., 2016). The former has a well-defined scope and aims to achieve a specific goal, while
the latter is open-ended with no specific task in mind other than sustaining the conver-
sation with the user. Table 3.1 compares these two system types. Vocal accommodation
is relevant for both these system categories, but in different ways. Task-oriented systems
may need to accommodate faster and introduce changes more frequently. It might also
be required to reset the system’s speech for each interaction if it’s used by more than
one user or for different purposes. Chatbots, on the other hand, might be able to exploit
the fact that they are usually involved in longer conversations, giving them more time
to learn the user’s vocal behavior. This could lead to a slower, smoother process, which
should gradually improve the personalization of the system. Another category is voice-
activated command and control (C&C) systems, which are arguably not SDSs per se,
since they only rarely engage in conversation or trigger a multi-turn dialogue. Therefore,
such systems leave little room for accommodation to occur. Nevertheless, C&C systems
are considered a simple kind of task-oriented SDS in this work, as ultimately they are
designed to achieve a specific task, even if a dialogue is not necessarily required for that.
Indeed, task-oriented systems like personal assistants (PAs) often offer C&C interfaces
as well. SDSs can be utilized in various ways and be embedded in different types of
systems. Sections 3.2.1 to 3.2.5 survey some of the main system types with a SDS at
their core.
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Table 3.1: A comparison of some characteristics in task-oriented SDSs and chatbots.

Task-oriented Chatbots

Goal Help the user achieve a specific,
pre-defined goal

Converse as naturally and con-
tinuously as possible

Applications Personal assistants, C&C sys-
tems, in-car voice-activated sys-
tems, reservations, etc.

Free-form conversational AI ap-
plications: chitchat bots, social
robots, etc.

Domain Domain-specific and/or multi-
domain

Domain-free or robust cross-
domain

Modeling Statistical models and/or hand-
crafted rules

Typically sequence-to-sequence
(seq2seq) models with no-go fil-
ters

Evaluation Task completion rate and com-
pletion time, number of turns (+
subjective criteria)

Chat length, relevant replies ra-
tio, user engagement, general
user satisfaction

3.2.1 Personal assistants

A personal assistant (PA; also intelligent personal assistant or virtual personal assis-
tant4) is a software-based program embedded into a dedicated device (such as smart
speakers, see below) that in some way fills the role of a human-being personal assistant.
More often than not, this includes mainly straightforward tasks the human assistant can
perform, like managing schedules and tasks, but the support for more complex tasks is
rapidly increasing and nowadays may also include in-context question answering, smart
online shopping, and more. An advantage of PAs is their simple operation, which is
almost exclusively voice-based, making them accessible to the general public. Commer-
cial voiced-based PAs include Amazon Alexa, Apple Siri, Google Assistant, Microsoft
Cortana, and many other, less famous ones. In recent years, the market for commercial
PAs has grown rapidly. For example, Microsoft Cortana had 133 million active users in
2016 (Osborne, 2016) and Echo Dot was Amazon’s best-selling product between 2016
and 2018 (Dickey, 2017). Furthermore, 72% of people who own a smart speaker say

4The term virtual assistant is widely used as well. However, it is avoided here, since it also refers to
a different kind of occupation (cf. https://www.investopedia.com/terms/v/virtual-assistant.asp).
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they often use their devices as part of their daily routine (Kleinberg, 2018).
Besides making the operation of such voice-activated systems simple and user-friendly,

PAs also aim to let users interact with them in a comfortable, natural manner. One prop-
erty of natural interactions is the tendency to accommodate to the specific situation and
interlocutors to make the interactions more fluent and efficient (Gallois and Giles, 2015).
Linguistic accommodation is one aspect of this phenomenon, and it is found in various
human-human interaction (HHI) experiments (e.g., Pardo et al., 2017; Schweitzer et al.,
2017a). Chapter 6 presents a study of vocal accommodation in multiparty interactions
with a PA.

3.2.2 Smart speakers

Smart speakers (or intelligent speakers) are small loudspeakers typically used by one to
several users in a common household or working environment. The speakers themselves
merely offer audio transmission with some basic, hands-free operation. The “smart”
portion comes from the software installed on it, which is usually some variety of a PA
(see Section 3.2.1). Mainstream smart speakers device series (and the PA powering them)
include Amazon Echo (Alexa), Apple HomePod (Siri), Google Home (Google Assistant),
and Microsoft Invoke (Cortana). Newer devices, called smart displays, can also be
operated via a touchscreen. Their easy operation and the convenience they offer make
smart speakers very popular with steadily increasing user base, with some estimations
of more than 150 million units sold in the United States alone by the beginning of 20205

and a rapidly increasing usage in other countries6.

3.2.3 Chatbots

Chatbots (a.k.a. chatterbots and chitchat bots) are conversational agents that do not aim
to accomplish a specific in-domain task, but to create a human-like communication with
the user in lieu of a real human interlocutor. This makes the scope and evaluation of a
chatbot more complex, as the definition of the end-goal is not as well-defined (and cf.
Table 3.1). Due to their nature, chatbots can be utilized in a variety of ways, and are

5https://marketingland.com/more-than-200-million-smart-speakers-have-been-sold-why-arent-
they-a-marketing-channel-276012

6https://www.emarketer.com/content/global-smart-speaker-users-2019
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usually embedded in social robots, virtual agents, or smart speakers that offer one as a
separate functionality.

An early example of a program considered a chatbot with a defined purpose is ELIZA
(Weizenbaum, 1966), which tried to imitate the role of a therapist in a therapeutic
session. While ELIZA’s functionality can, for the most part, be reduced to simple word
matching, it was revolutionary at the time and opened the way to more sophisticated
methods. Nowadays, chatbots are used for improving experience and service in online
customer support and instant messaging apps. They have already been used in various
domains, such as education (Kerly et al., 2007; Benotti et al., 2014), elderly care (Iio
et al., 2020), cultural heritage (Pilato et al., 2005), healthcare (Kowatsch et al., 2017),
software development (Lebeuf et al., 2017), and others (Shawar and Atwell, 2007).

3.2.4 Embodied agents and social robots

Embodied agents (sometimes also interface agents) are communicative systems with
some visual form. Though the embodiment may be graphical only (see Section 3.2.5),
this term usually refers to systems that interact and communicate with the environment
through some physical shape. For social robots, this shape is normally human-like and
may include a full-body representation, like the NAO robot (Singh and Nandi, 2016)
or only a face, like the Furhat robot (Al Moubayed et al., 2012). Social robots gather
information in different modalities, like eye gaze and hand gestures, and may even gen-
erate some limited behavior in these modalities, but ultimately their primary means of
communication is almost always speech. Accommodation towards embodied interlocu-
tors is especially interesting, as it is closest to face-to-face HHI. Vocal accommodation
has been found in human-robot interaction, e.g., by Ibrahim et al. (2019).

3.2.5 Virtual humans and avatars

Though commonly used interchangeably in the literature, virtual humans (VHs) and
avatars refer to two similar yet distinct concepts. On-screen representations of an inter-
locutor are largely referred to as avatars. Those can be static images associated with
specific speakers (as in Cohn et al., 2020), but nowadays normally include at least some
basic facial expressions and animations. In addition, avatars are also used sometimes
as a general term for any virtual, graphically rendered interlocutor (including a VH).
VHs, on the other hand, are fully depicted humanoids that aim to portray a real hu-
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(a) An illustration of a device’s output, which is
not personalized for each user. The same spoken
output (in black) is played to all three users.

(b) An illustration of a device’s output, which
is personalized for each user. A different, cus-
tomized spoken output (in blue, green, and red)
is played to each user.

Figure 3.2: Schematic comparison between an interaction with static spoken outputs
(on the left) and an interaction with adaptive (i.e., personalized) spoken outputs (on the
right). The system that adapts to the user makes the interaction tailored to the user’s
behavior.

man being as closely as possible. This typically entails characters with full bodies, but
partial figures are used as well, depending on the application. Similar to agents with
a physical embodiment, these conversational agents are capable of multimodal commu-
nication. They can be used in various interactive activities, like language assessment
(Peterson, 2005) and therapy (DeVault et al., 2014). Experiments have shown vocal
accommodation effects in interactions with VHs with respect to features like speech rate
and fundamental frequency (Staum Casasanto et al., 2010; Gijssels et al., 2016).

3.3 Accommodative spoken dialogue systems

There are various motivations for speakers to change their behavior during spoken in-
teractions. This change can happen in different ways and on multiple levels (Shepard et
al., 2001; Gallois and Giles, 2015, and see Chapter 2 for more details), and the changes
are mostly driven by external input of other interlocutors. Many experiments have
shown that vocal accommodation occurs in HHI (and see Chapter 4), but only in recent
years similar experiments were conducted and found similar effects in human-computer
interaction (HCI) as well (and see Chapters 5 and 6). However, while in HHI the ac-
commodation is, in its nature, mutual, in HCI only the human speaker could adjust
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voice characteristics. This typically results in one-sided, weaker effects, as there is no
counterpart to reinforce the process. A major next step would be to add accommodation
capabilities to SDSs and make it mutual in HCI, too. According to Weise (2017), inte-
grating these capabilities into computer systems will enhance HCI and provide improved
tools for studying accommodation also from the computers’ side. He also notes that ac-
commodating dialogue systems could offer an additional layer of interaction, namely
responding to user’s behavior – either by observing user’s behavior and use it as ad-
ditional information for some analyses or by actively making use of accommodation to
encourage the user to speak in a specific way. Though done in a more planned and direct
way than in HHI, this offers another level of dynamics from the system’s side without
changing the interaction’s content. Oviatt et al. (2004) discuss the advantages of sys-
tems that dynamically adapt their speech output to that of the user, and the challenges
involved in developing and using these systems.

Dynamically changing the voice is a capability currently ascribed almost exclusively
to humans and exist only sparsely and simplistically in computer-based systems. As
illustrated in Figure 3.2, voice-activated devices always talk the same way, regardless
of how the user speaks to them, the environment and setting in which the interaction
takes place, the goal and role of the devices, etc. This capability, which comes naturally
to humans in social interactions, involves several steps of (partially unaware) decisions,
which together form the overall effect of becoming behaviorally more or less similar to
an interlocutor. These include both situational and knowledge-related facets like how it
is expected to behave in certain situations and which vocal changes fit those, as well as
the physiological ability to apply these matches. Humans can perform all these steps as
one conduct. For computers, however, these steps must be broken down, as they lack
the common social background knowledge and the intuition as to how to match their
voice to the situation. Ultimately, SDSs with such personalized speech style may offer
more natural and efficient interactions, as shown by Porzel et al. (2006), and advance
one more step away from the interface metaphor (Edlund et al., 2006) toward the human
metaphor (Carlson et al., 2006), to utilize new user approaches in spoken HCI.

A roadmap towards such systems is discussed in Section 3.3.2 and terminology de-
scribing the different levels and ways to achieve accommodative vocal behavior in ma-
chines is introduced in Section 3.3.3. Finally, examples of existing accommodative SDSs
are presented in Section 3.3.4.
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3.3.1 Dialogue is hard

As described in Section 2.2, accommodation occurs naturally in HHI as an integral
part of dialogues. The social conventions and unwritten rules of dialogue are implicitly
learned by humans, who intuitively know how to apply them and when they can be
altered. This is an automatic process that is still too complex for integrating into com-
puters. Therefore, the way we interact with computers is often immensely different from
communication with other human beings (Section 2.3.1), making it hard for computers
to handle. Another reason dialogue is hard is the infinitely many possible trajectories
of each measured aspect. It is always possible to create a dialogue that hasn’t been
produced before, even concerning a single aspect like chosen words, floor change, vocal
properties, length, or any feature of any modality. As if language understanding isn’t
a hard enough task for computers, the relations between all these aspects and their in-
fluence on one another make this task even more complex (Gordon et al., 2018). The
complexity of this task is long acknowledged and it was posed by Turing (1950) as an
AI-complete problem. Therefore, it is assumed that substantial, maybe human-like, in-
telligence is required to address its unexpected circumstance, and no specific algorithm
or machine learning (ML) method can solve it alone (see further reasoning and examples
in Shapiro, 1992, pp. 54-57). Notably, many aspects need to be explicitly split into
separate steps and rules for the computer, although human process them as one concept
(or at least don’t consciously divide it into smaller sub-tasks). One example of this is
that humans don’t strictly distinguish between task-oriented and chitchat dialogues (Ta-
ble 3.1), whereas modeling approaches do. Humans can also switch between the two, as
they use both as part of one dynamic dialogue. For example, people are good at having
an off-topic small-talk at the beginning of a business meeting before switching, gradually
or not, to the goal topic (cf. discussion about conversation structure and speaker role
in Section 4.1.1). Furthermore, humans intuitively know how to behave based on the
situational context, like when to take the floor, when to stop talking, when to barge in,
etc., without the need for explicit signals from the other interlocutor. Although there are
approaches for teaching computers these dynamic changes (e.g., Skantze and Schlangen,
2009), the gap is still substantial.

As a process that happens as part of a dialogue, accommodation involves some of
these challenges (e.g., there may always occur pattern never seen before), but within
a limited scope. Moreover, accommodation entails the additional challenge of no “cor-
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rect answer”, i.e., there is no measure of good or bad accommodation in a dialogue.
Humans might be able to point out if an interlocutor uses accommodation in an un-
doubtedly wrong way (for example, continuously perfectly imitating or demonstratively
attempting to talk differently), but probably wouldn’t notice how and whether their
conversation partners accommodate to them. This poses difficulties in both evaluation
and learning, because it is not possible to put labels on accommodation measures with-
out making numerous assumptions. Therefore, the modeling approaches present in this
work (Chapters 7 and 8) concentrate on the behavior of a speaker within a conversation
rather than modeling how well accommodation was utilized. The approach suggested in
Section 3.3.2 can be taken as a general scheme for any kind of mutual dynamics in HCI,
which is here applied to vocal properties.

3.3.2 Suggested roadmap

The lack of accommodative speech in computer-based systems roots from what is more
often than not natural and even automatic for humans, namely realizing how and how
much to change their vocal behavior, the physiological means to express those differ-
ences, and the ability to combine the two into a coherent production in an interaction.
Figure 3.3 shows an overview of a schematic roadmap to integrating adaptive capabilities
into a SDS. In addition to the standard functionality of the SDS, three main elements are
required: First, knowledge about the nature and properties of accommodative behaviors
in humans is required. This includes both empiric experimental data and integrable
models. Furthermore, the technical capability to control the speech output on demand
is essential for introducing flexibility in the system’s base voice. This also includes a
mechanism for accumulating phonetic evidence from the user’s input relevant for the
feature representations used for the accommodation process. As these manipulations
must be applied in real-time, re-training the TTS model to capture every change is not
only insufficient but not practical as well. This means that the manipulations are done
on top of the existing TTS model, either by modifying the outputted waveform directly
or by training a model that can consider specific changes in feature description (as done
in Section 9.2.2). To link between the modeled knowledge and the audio processing im-
plementations, an additional component must be introduced in the system. The role of
this component is to feed the system’s flexible voice parameters result from the models
to express vocal changes, which are ultimately conveyed to the user. This emphasizes

43



3.3 Accommodative spoken dialogue systems

Behavior models

Real-time TTS
manipulations

Responsive spoken
dialogue system

Empirical experiments

+

+

=

Figure 3.3: A suggested roadmap from static outputs (top left) to personalized outputs
(bottom right) in SDSs (and see Figure 3.2). The green, orange, and blue blocks stand
for the modeling, manipulation, and integration components described in the text, re-
spectively. The ‘+’ signs represent direct addition to a static system and the arrows go
from components required as a feed to others.

the aforementioned notion of separating what the system says (determined by the NLG
module) and how to say it (to be determined by the TTS with the help of this additional
component).

This work addresses each of those facets, each with its own challenges that require a
profound work to investigate. For a SDS to accommodate its speech, it would not only
need to support dynamic, on-demand changes of its TTS component’s output, but would
also need its ASR component to be able to identify and track specific features in the
user’s speech to update its representation of those features. Completing the cycle, these
representations can then be used as additional input for the TTS components to deter-
mine how those would influence the system’s speech output. This process is individual
for each speaker and may occur over long periods or multiple interactions, depending
on the desired degree and characteristics of accommodation. Furthermore, this process
may involve other components of the SDS as well. For instance, the DM might consider
changes in the user’s speech when making decisions, e.g., based on apparent mood and
calmness. The NLG component could make alterations to its output to better fit the
vocal changes of the system and the user’s dynamic state, such as shortening sentences
and omit additional information if phonetic indicators of hurry or urgency are detected
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in the speech input (Edworthy et al., 2003).

3.3.3 Accommodation levels – terminology

In addition to all the above, another design choice for accommodative SDSs, which is
not explicitly required in human speech, concerns the overall level of accommodation the
system introduces. This determines the fundamental behavior and form of variation in
the system’s speech, regardless of specific phonetic features, utterance contents, etc. The
variation levels (or properties) described below can potentially be combined in different
ways to achieve the desired system behavior. They are, at least to some extent, analogous
to the aforementioned processes conducted by humans in social interactions, with the key
difference that humans don’t need to defined and think about them separately, if at all.
The utilization of these levels is demonstrated in the context of phonetic accommodation,
which is one case of dynamic change of speech (Beňuš, 2014; Schweitzer and Walsh, 2016;
Weise et al., 2019). Chapter 10 further discusses and demonstrates the integration of
such properties into a SDS.

Different terms are used in the literature to describe systems that can change their
output. This often leads to inconsistencies and mix-ups in terminology. Definitions
of five core properties of accommodative TTS that should, once accomplished, grant a
more dynamic appearance, along with their suggested use and potential fusion with one
another, are suggested below. These terms seek to distinguish between the different ca-
pabilities that can be integrated into SDSs and the way they relate to humans’ behaviors
and each other.

Adaptive – the vocal behavior evolves between and/or during interactions.
This property refers to the system’s use of any mean to dynamically change its
speech-related behavior, regardless of the source of influence or specific realizations.
That means, for example, modifying the base behavior, extending the variability,
or reflecting the system’s changes earlier. This can happen between interactions
or within a single, usually longer, interaction. The former could be more useful for
C&C systems or task-oriented SDSs that are used by many users, while the latter is
more suitable for social systems like chatbots and PAs (see Section 3.2). Ultimately,
this is a means for the system to improve its performance and accessibility based
on previous interactions. However, for some applications, like a computer-assisted
pronunciation training (CAPT) system, for example, it would be better to “reset”
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their behavior between each use to offer a better experience.

Flexible – on-demand speech manipulation without retraining the voice.
This property refers to the technical capability to alter the system’s speech output
on request, which is achieved either via modifications in the voice’s representation
and parameters or by manipulating the outputted waveform directly using signal
processing methods. Note that this does not entail the way this capability is
used, and especially not that it is applied automatically. Moreover, as mentioned
above, the technical capability to control the voice alone is not enough to create an
accommodative behavior. This would also require additional data to be transferred
to the TTS component to determine what manipulation to perform. To that end,
the modeling steps can be built on top of this technical ground. It is important to
note that this property compensates for the inherent ability in humans to control
their voice at will, and therefore does not directly represent any specific element
of humans’ speech behavior like the other properties.

Responsive – changes are influenced by some external speech input.
A responsive system can, for instance, detect some target features in the user’s
speech input and, after comparing them to the system’s representation of these
features, guide the TTS on how to update them (typically, to make them more
similar to the user’s input). This requires a model that simulates these steps (as
the one in Chapter 7). Yet this model would not have an independently defined
behavior and it could only directly become more similar (or dissimilar) to the user
in some fashion. Such models can be designed to imitate the user’s immediate out-
put from previous turns (like in Levitan et al., 2016) or to gradually match it based
on some parameters like sensitivity and interaction’s history, as demonstrated in
Raveh et al. (2017b). This property represents the idea that humans change their
speech (and behavior in general) when interacting with other people, which is a
key aspect of the communication accommodation theory (CAT).

Characterized (Profiled) – the system’s voice has its own base behavior.
Giving a “character” (or a profile) to a voice means that it has a specified base
behavior, which might include general properties of accommodation. This can also
be seen as a role the system plays in a conversation, e.g., if built based on a certain
HHI scenario (Silber-Varod et al., 2018). In that case, the system would try to
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stick to some pre-defined model, which contains the required information to fulfill
said role. A system might also have several profiles to switch between based on the
settings and goals of the interaction. In the context of accommodation, that would
include, for example, the degree of accommodation, its timing, or how strongly
the system will try to influence the user’s speech. This property represents the
fact that a human being has a certain – however complex – personality. More
specifically, a vocal identity, which will be expressed in spoken interactions. This
idea is the basis for the simulations presented in Chapter 8, where each generative
model can be seen as a core behavior.

Variable – variations on top of the base behavior are yielded.
Some variations can be introduced based on the base profile. These are relatively
minor differences that deviate from the voice’s characteristics or enhance them in
some way. From a system’s point of view, the main purpose of such variations
is to make the output style non-deterministic and therefore less repetitive and
predictable. From the human point of view, this coincides with the difficulty to re-
produce identical utterances in exactly the same way every time. Moreover, people,
though having their individual personality, would speak differently based on vari-
ous factors outside a conversation like their mood, the environmental conditions,
time constraints, etc. This property comes, therefore, to grant some smaller-scale
dynamics to the voice, in particular when its base behavior is deterministic. Chap-
ter 8 explains in details an approach to achieve such variational behaviors.

This work concentrates on facets concerning the properties responsive (Chapter 7),
characterized, and variable (Chapter 8), which have been given little attention in SDS
research. Together, these properties result in a flexible, non-deterministic output derived
from a defined core behavior, which might vary. Added to the responsive output of a
system, this creates a system that adapts to the user according to its own base behavior
and probabilistic variations.

3.3.4 Systems with accommodation capabilities

With the advancement of speech and NLP technologies, the development of SDSs has
been accelerated in recent years. These technologies are closing the gaps between com-
puter and human speech quality and therefore help to investigate vocal accommodation
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in HCI with systems that can more closely simulate human performance. Particularly,
the overall quality and dynamic manipulation of modern TTS methods make it possible
to change certain aspects in a system’s voice (see Section 9.2.2 for further details and ex-
amples). SDSs with vocal accommodation capabilities typically focus on a few phonetic
features at most, and sometimes only a single one. Even though this does not provide
a comprehensive coverage of all vocal changes that can be introduced in a conversation,
the method of tracking and adapting the one feature can often be applied to others. An
overview of the development process of adaptive SDSs and relevant methods is given by
Bernsen et al. (1998) and Levitan (2020).

Suzuki et al. (2003) introduce a system with pure prosodic vocal capabilities with no
lexical content. In an experiment, it communicated with the participants used hummed
sounds with different fundamental frequency (f0), intensity, and “speech” rate values.
The system was adapting to the participants to different degrees over the several in-
teractions, after which the participants rated the system on different communication
aspects, like cooperation and friendliness. It was found that interaction series in which
the system converged to the users with some degree of independence rather than cases
where the system directly changed toward the user or completely mimicked the user’s
vocal behavior. This is an important insight, since this is also not likely to happen in
HHI, as each speaker has a different general speaking style which varies differently if and
when accommodating to an interlocutor (and see definitions in Section 3.3.3). Another
approach was taken by Acosta and Ward (2011), whose system explicitly used mimicking
for conveying emotions. The assumption was that if participants use certain vocal char-
acteristics to convey specific emotions, they would also perceive the same emotions from
an interlocutor’s speech with the same characteristics. Lubold et al. (2015) investigated
pitch accommodation in HCI with a system that supports different accommodation pat-
terns. One of these patterns was used while participants interacted with the system over
multiple short tutoring sessions. Ratings of perceived rapport showed that the method
using pitch shifting of the system’s pitch towards the user while keeping the original
intonation was most successful. Like before, these results are in line with the approach
of converging with respect to some concrete features while retaining more general be-
havioral patterns. Tackling vocal accommodation from a different direction, Ward and
Nakagawa (2004) developed a system that predicts the speech rate of phone operators
based on their interlocutors’ speech. While the method was somewhat simplistic and
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was applied to monotonic conversations with predictable content, it nonetheless shows
that some general tendencies can be found based on vocal behavior in a conversation. As
for implementation and integration, Levitan et al. (2016) use a modular way for adding
accommodation capabilities to a SDS while separating the technical methods from the
modeling details. This approach is similar to the one used in this work, with a major
difference that here temporal aspects and non-linear methods were used to measure and
analyze accommodation. While the system in Levitan et al. (2016) always directly con-
verges towards the user at a defined rate, the modeling in this work aims to give the
system an individual way to respond to the user’s behavior based on some core profile,
as explained in Section 3.3.3 and Figure 8.9.
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Chapter 4

Vocal Accommodation in
Real-World Sales Calls

Vocal accommodation occurs in spontaneous human-human interaction. Its effects
are investigated in this chapter using a collection of authentic sales calls. As

speaking is an essential part of sales representatives’ everyday work, controlling their
voice is key for success. In addition to the extent of the effects, it is also examined which
of the speakers leads the accommodation process in succussful and failed calls.



4.1 Harnessing speech alignment in conversation intelligence

4.1 Harnessing speech alignment in conversation intelli-
gence

Sales managers have always been impelled to be able to reason why some of their rep-
resentatives (henceforth reps or account executives (AEs)) consistently attain and even
exceed their goals while others do not (Kovac and Frick, 2017). Yet, sales executives
rely on data that are inherently flawed, as it is based on reports from sources like cus-
tomer relations management (CRM) systems. Such systems contain only “dry” details
about deals’ stage, along with high-level numeric data and some, typically subjective,
estimations regarding their potential in the following stages. That leaves the executives
in the dark regarding the happenings at the front lines and the small-scale, day-to-day
conducts and modi operandi, which are critical for AEs’ success. As a result, the rea-
sons for losing or winning a deal often remain a riddle, making sales seem more like art
based on anecdotes rather than a scientifically explainable practice (Yohn, 2016; Martin,
2017). In his seminal book, Gladwell (2006) states that “Part of what it means to have
a persuasive personality is that you can draw others into your own rhythms and dictate
the terms of the interaction” (p. 83). Supporting that, Orlob (2018) found that star
reps7 are able to make prospects increase their speaking rate to match theirs, bringing
the two sides closer with respect to this speech property. However, the scientific analysis
is far from their everyday work, and such phenomena are passed on as general tips and
are not taught or explained in detail to the AEs. Conversation intelligence (C-IQ or CI)
systems aim to bridge over this gap and connect the scientific side of sales to the field to
help reps to improve their performance using measured, interpretable methods. Being
part of verbal interaction, vocal accommodation is a facet that can shed light on certain
processes occurring during a sales call. Indeed, this phenomenon has been given atten-
tion in analyses and evaluations of AEs. It was found, for example, that distinguished
sales reps let the prospects talk more and keep certain parts of the calls shorter than
low-performing reps (Orlob, 2017a).

Some phonetic features, such as Fundamental frequency (f0), can be interpreted

7Sales representative whose performances (and specifically their closed-deals rate) are exceptionally
high are often referred to as star reps. The specific criteria typically include a wide range of behavioral
and business metrics, but those are defined internally per company and do not have a common absolute
definition.
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and explained by people with no phonetic training, like AEs. Furthermore, speakers
can easily control it, making it a tangible tool for the AEs to exploit in their sales
calls. This, as opposed to more complex acoustic features like mel-frequency cepstral
coefficients (MFCCs) or changes in the long-term average spectrum (LTAS) that are often
used in phonetic accommodation studies (e.g., Levitan and Hirschberg, 2011; Borrie et
al., 2019) and are hard to directly control during a conversation. For this reason, the
analyses presented in this chapter focus on f0, although other suprasegmental features
showed similar effects. To that end, a large-scale corpus of real-world sales conversations
was collected (Section 4.2). Beside the size advantage, the use of such a corpus takes the
study of vocal accommodation out from the controlled laboratory environment into the
wild for a practical goal. The conversations in this corpus are therefore highly flexible
and generally structure-free, unlike lab experiments like those presented in Chapter 5.
It is also important to note that beside the overall goal of closing a good deal, there
are no specific instructions given to the speakers on both sides regarding how to speak
or what to say. By extension, they are also more authentic and spontaneous, since
the interlocutors are driven solely by their own behavior and motivation to succeed
and are not given an artificial temporary role. Cross-recurrence quantification analysis
(CRQA) (Zbilut et al., 1998), a bivariate correlation technique, was used for the analysis
(Section 4.3). This method finds instances where coordinates of two time series occur
close to each other within a certain radius in a phase-space continuum.only Since CRQA
evaluates the degree to which the similarity of two time series changes over time and
can also determine the leading relationship between them, it is suitable and informative
for analyzing accommodation. The contributions of this study are therefore both in the
methodology for measuring accommodation and its practical application in a real-world
scenario.

4.1.1 Conversation intelligence

The way people communicate and behave in inter-person situation influences the manner
in which conversations unfold. These influences can be analyzed and interpreted to
uncover conversation-level trends, which may differ from the linear turn-by-turn changes.
Conversation intelligence (C-IQ or CI) is a relatively newly coined term and a field of
research that flourished due to advancements in neuroscience, communication science,
and machine learning. It complements other types of human intelligence, like emotional
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intelligence (c.f. Theory of Multiple Intelligences (Gardner, 1983; Davis et al., 2011)),
as the ensemble of conversational aspects in human communication beyond the surface
words and shared information. Glaser (2016) explains and demonstrates how C-IQ can
be learned and improved, with emphasis on the ability to gain trust and maintain more
successful communication. Although C-IQ comprises many further aspects that are
beyond the scope of this work, the overarching idea that communication quality is a
defined, learnable skill that can be refined is highly relevant for vocal accommodation
but has not been explored in previous work.

Narrowing down this broad idea, Silber-Varod (2018) discusses how conversations can
be managed. This includes both the structure and evolution of a conversation over time
and the dynamics between the interlocutors’ based on their roles in it. Noticeably, it is
concluded that some speech-related phenomena in conversations tend to be more complex
and unpredictable than they seem in their surface form. One of those phenomena is
phonetic entrainment, which was found in long-term influences of the speakers on each
other. Such works dealing with managing spoken interactions become even more relevant
with the growing interest in intelligent conversational systems for personal usage (Mehr,
2017). Recently, the importance of C-IQ has pervaded the enterprise sector and created
new businesses. Two main motivations were the utilization of computer-based customer
services (Gnewuch et al., 2017) and the use of conversation intelligence services for inside
sales calls to train AEs and improve their performance (Orlob, 2017a,b).

4.1.2 Inside sales

In recent years, many companies have adopted the concept of inside sales, where business-
to-business (B2B) sales are done using web-based conferencing solutions, as opposed to
face-to-face meetings with the clients. Recent technological advancements allow auto-
matic recording and transcription of those inside sales calls and aggregation of large-scale
datasets. These datasets include the audio of the calls and sometimes annotations such
as the speaker turns and performance rating of the AE. These conversations have a
typical process: First, a sales development representative (SDR) reaches out to a po-
tential client (the prospect) who has expressed interest in the company’s product, which
initiates a lead. Subsequently, the SDR shares basic details about the product and how
it can help the prospect. Finally, if the SDR has managed to elicit initial interest, the
lead turns into an opportunity, and a demo call with a sales representative is scheduled.
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Such demo calls are often done using a web conferencing tool, such as Zoom8 or Go-
ToMeeting9, which allows both sides to share their webcams and screens. A collection
of such initial opportunity calls is analyzed in here (Section 4.2). It is known in the B2B
industry that since these calls are the first personal contact, the behavior and verbal
skills of the AE have a large weight in the success of the call.

4.1.3 Influence of speaker roles

Although accommodation is not a traditional measure in C-IQ, there have been attempts
to use it as an additional factor in conversation evaluations. Glaser (2016) emphasizes
the importance of the turn-level alignment between speakers in a business call. Lack of
alignment may result in a skeptic and even resisting behavior that might lower the suc-
cess chances of the call (see Table 2 in Glaser and Tartell, 2014). At the very least, this
demonstrates effect of interlocutors being attentive not only to the content of the conver-
sation, but also to the way it is delivered. In B2B calls, this is especially relevant for the
AEs. Silber-Varod (2018) shows how convergence effects indicate power relations facets
of C-IQ analyses. Specifically, speaker “dominancy” is often hard to spot on the surface,
but becomes more prominent when examining the vocal relations between the speakers.
Furthermore, Abrego-Collier et al. (2011) discuss how the judgment of a speaker’s role
in a conversation influences the phonetic productions and vice versa. Analyses like these
improve the understanding of vocal behaviors in human-human interaction (HHI). The
idea of speakers’ behavior being modified due to their role in the conversation and their
perception of the other interlocutor is a key concept for the presented study.

4.2 Dataset and feature extraction

A collection of real-world calls with similar characteristics to those described in Sec-
tion 4.1.2 was used in the study presented here. These calls were all made by trained
sales representatives and were aimed at high-stakes deals10. To make the collection

8https://zoom.us
9https://www.gotomeeting.com

10In this case, around US$100,000 each, as opposed to occasional mass calls to random people for
selling small products where the stakes and risks are very small in comparison. The reps know that their
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more homogeneous, calls of a single sales company were selected. Another constraint
was that the collection comprised only calls from a very early stage of the sales opportu-
nity (see Section 4.1.2) that is also the first encounter between the participating AE and
the prospect. Therefore, the observed behavior patterns in these conversation are not
influenced by the previous verbal interactions between the two speakers. the structure
of these calls typically includes an overview of the prospect’s business, followed by a
deeper explanation of the sold product by the salesperson, and typically further nego-
tiations. It is important to note that although professional AEs prepare for these calls
as part of the daily work, they are still spontaneous and are in no way scripted. The
calls in this collection were conducted using the Zoom video conferencing platform and
were recorded automatically – without any intervention from either side – by an exter-
nal conversation intelligence service. The calls were transcribed and diarized using the
internal automatic speech recognition (ASR) system of the service. Participants were
notified of the recording, in compliance with all relevant laws and rights.

In total, 708 calls were analyzed, spanning more than 442 hours (mean 37.5 ±15
minutes). Furthermore, only calls longer than 15 minutes were selected, as shorter calls
are often unsuccessful connection attempts or brief updates that are not representative
of the desired conversation structure and dynamics. A single AE and a single prospect
participated in each call. Call recording started immediately following the first greet from
the prospect’s side, and stopped when the AE terminated it. This eliminates segments
during which one party is waiting for the other to join, and keeps only segments where
both parties are present. Each prospect only ever spoke with one of the 26 AEs (12
female). Both interlocutors in all the conversation were native speakers of American
English and worked in an English-speaking company. For the purpose of this study,
a call was defined as successful if a follow-up call under a more advanced stage was
initiated or when an advancement in the opportunity was marked within one month.
These criteria follow common success measure conventions of B2B calls11. This resulted
in 51 calls (7.2%) being defined as successful, which is within the industry-standard

performances are evaluated, pushing them to do their best in every single call.
11The benchmarks for successful deals are much more elaborate in practice and usually consider an

entire selling process that comprises a series of calls. However, many of those criteria are not relevant
or cannot be enforced in the scope of this study.
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ratio for such early-stage calls.
To increase temporal resolution, the audio signals were split into two-second slices (cf.

Section 6.3). This increases the number of datapoints the CRQA considers. Splitting
the turns also creates equal, consecutive, continuous time units in the conversations,
which are more comparable, without introducing artificial boundaries by dividing it into
a pre-defined number of parts based on some arbitrary criterion. The slicing was done
per turn, so that a slice contains only the speech of a single speaker. Any remainder of a
turn got a slice of its own. When a speaker was not speaking (e.g., during the turn of the
other interlocutor), it was assumed that the last produced value was maintained until
the speech is renewed and a new value can be measured. This way, no discontinuities
are created and the same number of datapoints can be extracted for both speakers to
create a better temporal representation of the conversation. Feature extraction was
done using the system described in Chapter 10 (and see Raveh et al., 2018). The values
were measured using Praat (Boersma, 2018) scripts that extracted the f0 value from the
middle of each slice. Afterward, the list of measures was turned into two equally long
time series: First, the values for each speaker were separated into two lists. Subsequently,
missing values, e.g., due to non-speech slice, were replaced by the most recent valid value
of their respective speaker, as motivated above. Finally, if there were missing values at
the beginning of a list, the first valid value of that list was used, under the assumption
that the first utterance represents the immediate time prior to it. The resulting two
lists had the same number of values representing the same timestamps along a single
conversation, and were used as the input time series for the CRQA, which can be assumed
to be non-seasonal and non-stationary. This process was performed independently for
each conversation.

4.3 Cross-recurrence quantification analysis for measuring
vocal accommodation in conversations

4.3.1 Capturing accommodation with CRQA

Depending on the circumstances, HHI may involve different communication channels,
such as facial expression, hand gestures, and eye gaze. The analyses here concentrate on
the phonetic level, as it is the primary modality used for conveying information in sales
calls, even when video or screen sharing functionalities are available as well. It has been
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shown in studies based on communication accommodation theory (CAT) (Section 2.1)
that mutual vocal adjustments in HHI increase the success rates of conversations (Pick-
ering and Garrod, 2004) and affects the social distance between speakers (Schweitzer
et al., 2017a). Accordingly, effects of the same nature have been found in B2B sales
calls as well (Orlob, 2019).

Linear methods for measuring accommodation rely on the chronological, turn-by-turn
order of the interaction. As explained in Section 2.2.2 and Figure 2.2, these methods
are limited to the detection of local effects that evolve gradually across adjacent turns.
Non-linear methods, on the other hand, do not rely on turn adjacency and can find
long-term relations between the speakers’ speech productions on the conversation level.
For instance, accommodation may occurred at some point in the beginning and be
continued at a later time. This is especially useful for long interaction, like the sales
calls in the corpus used here, where the insights from more general view are useful for
improving performance. This encourages treating the interactions as continuous event
rather discrete parts, and opens a variety of time series analysis methods. CRQA is one
such method, which offers more than the direct comparison of large pre-defined chunks
of neighboring turns, as is typically done in accommodation studies in spontaneous
conversations (e.g., Levitan, 2013; Rahimi and Litman, 2018). It utilizes phase-space
embedding, which describes the temporal evolution of trajectories of a dynamic system
by projecting their embedding onto some common space.

An overview of the CRQA method is given by Wallot and Leonardi (2018). At its
core, this method compares delayed instances of the phase-space trajectories of two time
series. This allows for finding more general patterns in the time series characteristics and
how they interact. It is especially suitable for studying accommodation and related phe-
nomena, as it detects times in which the time series (here, the speakers’ productions)
are similar. Moreover, it can mathematically show which of the time series lead the
alignments or whether the changes were done in synchrony. This is useful for describing
different the types of accommodation described in Section 2.1.1, like synchronicity and
alignment. CRQA has already been used in HHI research. For instance, Duran and
Fusaroli (2017) used it for analyzing and predicting speech differences in scenarios with
disagreement and deception tasks. A similar method was used by (Borrie et al., 2019)
to measure conversational entrainment for assessing speech pathology. It was found
that sessions with longer periods of synchronization were rated as more successful by
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therapists. This is a good example of a cooperative interaction with a common goal that
accommodation contributes to its success. In sum, CRQA can be used to objectively
quantify and describe accommodation between speakers dynamically across entire con-
versations. Sections 4.3.2 and 4.3.3 explain the technicalities of CRQA, how its output
can be interpreted, and how it is used in the study presented in this chapter.

4.3.2 Recurrence detection

Recurrence quantification analysis (RQA) is a method for non-linear data analysis that
quantifies the number and duration of recurrences within a dynamical system presented
by its state-space trajectory, which is typically the realization of a sampled time series.
It was introduced by Zbilut and Webber Jr (1992) and later extended by Marwan et al.
(2002) and Webber Jr and Zbilut (2005). A recurrence (also, re-visitation) is a time in
which the trajectory returns to a state it has visited before. Recurrence can, therefore,
be defined as the binary function

Ri,j =

1, if ∥x⃗(i)− x⃗(j)∥d ≤ ε

0, otherwise
, (4.3.1)

where i and j are samples of the time series, d is the number of embedding dimensions,
and ε is the threshold radius distance below which two cross-trajectory points are consid-
ered similar, as explained in Section 4.3.3. CRQA is an extension of RQA for analyzing
recurrence quantification between two different time series rather than a single one. As
such, CRQA is a quantification technique for non-linear data analysis that describes
when and to what extent concurrences (or co-visitations) occur in the two time series.
These quantification techniques are based on recurrence plots that for each pair of sam-
ples i and j from the two time series show the times at which a phase space trajectory is
similar, i.e., when TSi ≈ TSj (and see Figure 4.1). The recurrent points Ri,j are colored
if their value is 1 or remain unmarked otherwise. The main diagonal of the plot is called
the line of synchrony (LoS). A high number of recurrences along this line indicates syn-
chrony between the time series. However, diagonal recurrence lines can be formed above
and below the LoS. Such diagonals, especially longer ones, represent delayed (lagged)
synchrony between the time series and can be used as an assessment of similarity between
the processes. In the context of accommodation, these diagonals imply accommodative
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Figure 4.1: A recurrence plot generated for one of the analyzed conversations. The y-
axis marks the conversation timeline, in slices, of the AE, and the x-axis of the prospect.
Each blue dot represents a co-visitation of a similar state. Blue dots forming a diagonal
line indicate sustained recurrence between the two speakers (see description of NRLINE
in Section 4.4.1 for details). Note that the timestamps on the axes are not the slices,
but the embedded call time. For example, the diagonal structures between timestamps
100 and 200 of the x-axis show such lasting recurrence. Diagonal lines above the line of
synchrony (LoS; the central diagonal line) indicate that the speaker on the y-axis leads
the x-axis, and vice versa for lines below the line of synchrony (LoS). The blank area
between timestamps 220 and 330 of the x-axis point to a portion of the call where the
speakers were more distant from each other.
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processes led by one of the interlocutors. If the diagonal stretches above the LoS, the
speaker plotted on the x-axis leads the accommodation and vice versa. The closer the
diagonal is from the LoS, the faster the process occurred, i.e., the led speaker aligned
his behavior to the leading speaker after a shorter time. This ability to not only detect
latent accommodation but also determine its initiator on a fine-grained time scale en-
ables the description and detection of more complex accommodation behavior, such as
delayed synchrony (see Figure 2.2).

4.3.3 Parameter tuning

CRQA has three parameters:

1. Delay – estimates the temporal shift required to make the two time series max-
imally correlated. It is measured by the same time unit as the time series (here,
two-second slices; see Section 4.2).

2. Embedding dimensions – are the number of dimensions into which the data-
points are embedded. These dimensions are delayed copies of the original time
series TSt created by adding a lag k to them. Typically, multiple n lags are
considered, which create the dimensions of embedding TSt+nk.

3. Radius – determines the margin within which two datapoints constitute a recur-
rent instance. Distances between the datapoints are measured in the embedded
space defined by embedding dimensions, using the same unit used for measuring
the values of the time series.

These parameters are a key aspect in CRQA, and how they are set is decisive for its
outcome. However, although some best-practice guidelines exist, like those suggested
by Coco and Dale (2014), there is nevertheless no standard way for optimizing these
parameters and their determination depend on the nature and characteristics of the
data. An optimization method similar to the one presented by Marwan et al. (2007) was
utilized here. The average mutual information (AMI) of the time series’ shifted instances
is defined as

AMI
(
TSi(t),TSj(t+τ)

)
=
∑
i,j

pij(τ) log
(

pij (τ)
pipj

)
, (4.3.2)
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Figure 4.2: The average mutual infor-
mation of the time series values as a
function of the lags considered. The
x-axis shows the considered lags and
the y-axis the mutual information index
(AMI) in bits.

5 10 15 20

0
20

40
60

80
10

0

False nearest neighbours

embedding dimension

%
 o

f f
al

se
 n

ea
re

st
 n

ei
gh

bo
ur

s

Figure 4.3: False nearest neighbors per-
centage as a function of the number of
embedded dimensions. The x-axis show
the considered numbers of embedded di-
mensions and the y-axis the percentage
of false nearest neighbors.

where i and j are values from the two time series, t is the original starting time of the
time series, τ is the amount of shift between the time series, and pij is the probability
that Ri,j = 1. Note that only the shift τ influences this value and not the absolute initial
time t. The delay parameter was subsequently determined by finding the lag value τ

that minimizes the average mutual information between the two time series, as follows:

The lag with the lowest average mutual information was selected, regardless of
whether and when the values started to level off. This provides a delay that is not
too short to miss the mutual differences, but also not too long to lose the dependency
between the time series. The number of embedding dimensions was obtained using false
nearest neighbors (Kennel et al., 1992). This algorithm determines the minimum em-
bedding dimension necessary to reconstruct the state space of a dynamical system with
time delay embedding, as explained by Abarbanel and Kennel (1993). A neighborhood
diameter equal to the standard deviation of the time series was used, and a limit of 20
embedding dimensions (which was never reached) was set. Figures 4.2 and 4.3 show ex-
amples of mutual information and false nearest neighbors optimizations using the data
used for the study presented here.

τ̂ = argmin
τ

(AMI (t,τ)) . (4.3.3)
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Algorithm 1: CRQA radius optimization
Inputs : desiredRR – the desired approximated recurrence rate (RR) value

optDelay – the optimized delay
optEmbedim – the optimized embedded dimensions
TS – all values from both time series

Output: radius producing recurrence rate (RR) value closest to the defined
desired recurrence rate (RR)

1 n← number of radius candidates
2 R←{ri, . . . , rn} : r1 = 0, rn = max(TS)
3 ∀r ∈R : |ri− ri−1|= |ri+1− ri| // evenly spread candidates
4 candR←∅
5 foreach r ∈R do
6 currRR = crqa(ts1, ts2,optDelay,optEmbedim,. . .12).RR // RR with

candidate
7 candR = candR∪ currRR
8 if currRR = 100 then
9 break // recurrence rate (RR) cannot be higher than 100

10 end
11 optRadius = argmin

r∈R
(|candRr−desiredRR|)

The higher n is (Line 1), the higher the chance of a recurrence rate (RR) close to the defined desired
RR. Also note that since recurrence rate (RR) represents percentage of values in the recurrence plot, 100
is its highest possible value. Therefore, and since the radii in R are traversed in increasing order, the
search stops if this value is achieved (Line 9). As explained in the text, in the presented studies n = 20
and desiredRR = 10 (see Coco and Dale, 2014).

Following that, the radius was calculated in two steps (Algorithm 1). First, the
goal recurrence rate (RR) and a list of potential radii were initialized. Here, the goal
RR was set to 10%, which is considerably higher than in similar studies, e.g., 2%
to 5% in Coco and Dale (2014). Setting the goal RR to a higher value results in a
stricter optimization that includes only (even) closer recurrences. The potential radii
were generated by evenly spreading 20 candidates from 0 to the maximum value in the
time series. Then, each radius, along with the already optimized delay and embedding
dimensions, was used to perform a CRQA. A stricter policy was introduced in this step

12As calculated by the CRQA package for R (Coco and Dale, 2014) with the additional argu-
ments (unlisted in the algorithm itself) rescale=0, normalize=0, minvertline=length(ts1) / 100, min-
diagline=length(ts1) / 100, and tw=0.
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as well, as only recurrence lines longer than 1% of the longer time series’ length were
counted, as opposed to the typical setup that considers lines of any length (e.g., as in
Borrie et al., 2019). With an average length of 37.5minutes, this means that only lines
longer than 11 time units (22 second) were considered. This ensured that only long-
term recurrences were taken into account, and shorter, possibly more random effects,
were filtered out. Finally, the candidate radius that resulted in the smallest absolute
distance from the goal RR was chosen to perform the CRQA. This process is summarized
in Algorithm 1. The optimization processes of all three parameters were done separately
for each conversation.

4.4 Analysis

Time series-based analysis methods like CRQA can be used in many ways. The measures
used in this study are explained in Section 4.4.1, followed by the results they yielded for
the sales calls collection in Section 4.4.2.

4.4.1 CRQA output values

Various measures can be computed based on a recurrence plot13. Some deal with the
LoS and other diagonals across the recurrence plot, while others consider vertical and
horizontal lines. Below are the definitions of the measures used in this study. For
simplicity, it is assumed that the time series lengths are equal, so that Ni = Nj = N .

Recurrence rate (RR) – The percentage of recurrent points in the plot, i.e., the per-
centage of similar values between the two time series out of all the values as cal-
culated using the parameters described in Section 4.3.3. It is defined as

RR = 1
N2

Ni∑
i=1

Nj∑
j=1

Ri,j . (4.4.1)

This number corresponds to the amount of colored points in the recurrence plot.
The lengths Ni and Nj of the time series are often – but not necessarily – equal

13See detailed overview in Marwan et al. (2007) and summary with additional measures and examples
in http://www.recurrence-plot.tk/rqa.php.
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Determinism (DET) – The percentage of recurrences forming diagonal lines in the
recurrence plot given a minimal length threshold lmin. It is calculated as

DET =
∑N

l=lmin lP (l)∑N
l=1 lP (l)

, (4.4.2)

where l is the length of a line and P (l) is the length histogram of all diagonal
lines. Note that l = 1 refers to lines of length 1, i.e., a single recurrence point.
Similarly, l = 2 are lines spanning over two timestamps (shortest lines possible).
Short lines lengths are very forgiving in the case of accommodation, for they can
be formed abundantly and therefore not necessarily indicate a meaningful accom-
modation process. For this reason, lmin was set to N

100 in this analysis, as detailed
in Section 4.3.3.

Another measure, Laminarity (LAM), can be calculated the same way, but for the
vertical lines in the plot. In that case, a vmin is defined and P (v) provides the
histogram of vertical line lengths.

Number of lines (NRLINE) – The total number of lines Nl formed in the recurrence
plot per the definition of the DET measure. In the context of accommodation, this
is the number of accommodation “instances” between the two speakers lasting at
least lmin time units. Also referred to as sustained recurrence by Borrie et al. (2019),
this measure not only shows the number of detected accommodation effects, but
also how long they last.

Average length (L) – the average length of the diagonal lines, i.e., the average total
accommodation time between the speakers. A higher value indicates longer average
individual accommodation timespans in the conversation. It is calculated as

L =
∑N

l=lmin lP (l)∑N
l=lmin P (l)

. (4.4.3)

The average length of vertical lines, trapping time (TT), is achieved in a similar
way when using the same formula for the vertical line length and the histogram of
vertical line lengths.

Maximal length (maxL) – The longest diagonal line in the plot (excluding the LoS
in RQA). This is the longest, uninterrupted timespan over which accommodation
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between the speakers has lasted. It is determined by

Lmax = max
l

({li; i = 1, . . . ,Nl}). (4.4.4)

Similarly, the longest vertical line can be determined by traversing the vertical
lines.

Entropy (ENTR) – The Shannon entropy of the probability distribution of the diag-
onal line lengths longer than the minimum length lmin. Describes the variability
of the amount of accommodation instances across the conversation. Higher value
indicates more varied lengths. Based on Shannon’s entropy formula, this value is
defined as

ENTR =−
N∑

l=lmin

p(l) lnp(l), (4.4.5)

where p(l) is the probability of length l from the lengths probability distribution.

Normalized entropy (rENTR) – The entropy value normalized by the number of
lines formed in the recurrent plot. This measure describes the length variation
across multiple conversations and is therefore not too biased by special character-
istics some conversations might have.

4.4.2 Results

Seven out of the output values described in Section 4.4.1 were measured for all 708 con-
versations and their distributions were checked for statistical significance. Since multiple
variables were compared, the Bonferroni correction (Bonferroni, 1936) was applied, so
that the overall error rate across all variables is α = 0.05. Therefore, for a single com-
parison to be significant, its p-value must be lower than 0.007. The non-parametric
two-sample Wilcoxon test (Wilcoxon, 1945) was used to determine the significance lev-
els. Table 4.1 summarizes the means and p-values of these distributions for failed and
successful calls. The RR mean value is about 10 in both groups, which matches the
goal value set for optimization (Section 4.3.3). Significant differences between failed and
successful calls were found for the values DET, NRLINE, and rENTR. The first two,
along with their higher means for the failed calls, indicate more synchronous accommo-
dation instances in the failed calls. The latter is harder to interpret, especially due to
the similar means for successful and failed calls. It seems that the behavior in both cases
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Table 4.1: P-values of the two-sample Wilcoxon test comparing the CRQA output values
based on call success/fail and leading speaker along with their respective mean values.
Significant values based on the adjusted p-value threshold are in bold.

RR DET NRLINE maxL L ENTR rENTR

p (deal) 0.9 ≪0.001 ≪0.001 0.7 0.07 0.1 0.0058
mean success 10.1 2.2 84.0 31.3 17.8 1.4 0.8
mean fail 10.0 5.9 174.0 32.9 15.3 1.5 0.8

p (lead) 0.7 0.1 0.05 0.18 0.9 0.07 0.55
mean AEs 10.0 6.1 186.7 35.2 15.2 1.5 0.8
mean prospects 10.1 5.4 154.4 31.2 15.7 1.4 0.8

is equally predictable across calls, but differently. One possible factor influencing these
behaviors is related to the interlocutor leading the accommodation effect, rather than
the fact that it occurs at all, as shown below. The significant difference in the NRLINE
measure stands in line with the findings of Borrie et al. (2019). The same tests were
performed based on the leading speaker in each conversation (bottom part of Table 4.1),
but no significant differences were found for this criterion.

To shed more light on the leading role, cross-correlation was used to determine which
interlocutor led the change in behavior. Cross-correlation finds the degree to which two
time series are synchronized with different lag values.. The correlation between the
time series was calculated for each lag, and the value that made the series maximally
correlated was selected. A positive value suggests that the first time series needs to
be shifted forward to achieve maximal correlation and vice versa. In the context of
accommodation, this cross-correlation indicates which speaker was leading the change.
The cross-correlation function was not limited to a specific range of shifts, so that all
possible lags were considered. The lag associated with the maximal correlation was
used to determine the leader. Since the calls in the collections used here are from the
same domain, it is also interesting to examine at which point of the conversation the
maximal correlation occurs. Figure 4.4 shows the time, in percent, in which the maximal
correlation occurred for AEs and prospects in successful and failed calls. The difference
between the lag position distribution of reps and prospects is significant (p = 0.0065; α =
0.05). However, no significant different was found between successful and failed calls for
the same leading speaker. It is also evident that when the reps were leading, they
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Figure 4.4: Comparison between the time of the call in which the maximal cross-
correlation occurs. The x-axis groups the calls based on the speaker role, and the fill
color further separates between successful and failed calls. The y-axis shows the conver-
sation timeline in percent (50% marks the middle of the conversation). The horizontal
lines in the boxes represent the median and he notches stand for the 95% confident level.
The significance level calculated with Wilcoxon test comparing the two groups and their
subgroups is given above the boxes.

consistently did so at an earlier stage of the conversation, all the more so in successful
calls, whereas prospects’ lead varied much more and generally happens at a much later
time. Another known conversational element in sales calls is the floor time each speaker
gets. As a general approach, AEs aim to let the prospect talk as much as possible.
This is known to give them a better feeling during the call, and also give the reps more
information and opportunities to understand what the customer wants to talk about.
Indeed, a recommended practice is to track the speech balance, i.e., the ratio between the
speaking time of the speakers. Besides speech balance, the frequency and timing of floor
switching also provide some insight on the dynamics of the speakers’ vocal behaviors.
While each speaker should get a sufficient amount of time to talk, it is also important to
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take and give the floor to the other interlocutor when necessary. Long monologues can
make the listener lose concentration or lack of expression, which damages the interaction.
Therefore, the interactivity of the speakers is important as well. While speech balance
informs about the overall amount of time each speaker talked, interactivity complements
this by informing how often a speaker gave the floor to the conversation partner. These
two speech-related properties fit into the overall notion of vocal behavior. Speech balance
was measured by

speech_balance = 1−

∣∣∣∣∣∣∣∣∣

∑
∀S∈SA

dur(S)−
∑

∀S∈SB

dur(S)∑
∀S∈SA∪SB

dur(S)

∣∣∣∣∣∣∣∣∣ , (4.4.6)

where SA and SB are the slices in which speakers A and B speak, respectively, and the
function dur returns the duration a slice. The yielded value between 0 and 1 indicates the
percentage of the balance in terms of speech times, with 1 standing for “perfect balance”,
i.e., equal talking times for both speakers. As mentioned above, the overall speech
balance only reveals part of the whole picture. Another part of it is the interactivity
in the conversation, which is here defined as the percentage of slices in which floor
change occurred after a sequence of longer than 1 slice was calculated. Sequences below
this threshold were treated as backchanneling, which does not indicate speaker change.
Interactivity and speech balance were measure for a superset of the dataset presented
in Section 4.2, which consisted of more than 1,000 calls. Figure 4.5 shows the speech
balance scores of successful and failed calls. On the one hand, it is clear that the lower
the balance the more likely it was that reps had more floor time. The recommendation to
avoid imbalance is reflected by the significant difference between balance distribution in
successful and failed calls. On the other hand, prospects are only likely to talk more when
the balance score is high, even more so in successful conversations. This is accentuated
by the highly significant differences in both sub-groups. No significant influences of
interactivity on call outcomes were found, and only a weak correlation between speech
balance and interactivity was found (ρ = 0.2).
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Figure 4.5: Comparison of speech balance distribution in successful and failed calls sub-
grouped by the speaker who had more floor time in individual calls. The width of the
shapes represent the probability density. The inner boxes show the central quartiles
of the data. The medians are marked by the thick horizontal lines in the boxes. The
additional horizontal lines mark the 25%, 50%, and 75% quartiles of the data. The
asterisks above the shapes denote the significance levels of the comparisons between the
main groups (successful vs. failed) and the subgroups (* p < 0.05, *** p < 0.001, ****
p < 0.0001).
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4.5 Conclusion

The study presented in this chapter investigated accommodation occurrences in real-
world sales conversations using cross-recurrence quantification analysis (CRQA). Two
main properties were examined, namely call success and role influence. The results
show that successful and failed calls significantly differed in three of the CRQA output
values. Although based on some HHI studies it might be hypothesized that recurrence
is more likely to occur in successful calls, the means of two of the three values suggest
the opposite. Yet, this stands in line with other studies from sales research that show
more “desperate” behavior from the rep side when a deal is hard to close. This includes
unconsciously showing assimilation towards the prospect and over-emphasizing details,
with the hope that it will convince the prospect to close a deal (Orlob, 2019). However,
these often achieve the opposite effect and are therefore discouraged in the sales industry.
Another possible explanation is that reps give up the lead when a call is on the verge
of failure and instead let the prospects lead to give them a better feeling. This, too, is
a known effect in the sales business. On the other hand, utilizing cross-correlation lags
proved to be useful for differentiating between the leader in the calls. When account
executives (AEs) lead, they tend to do so at an earlier stage than prospects, all the more
so in successful calls.

These findings suggest that AEs do not necessarily always lead the conversation,
but know how and when to exploit this technique, consciously or not, to improve their
stance in a call. It can be concluded that accommodation-related characteristics can be
found in spontaneous, goal-oriented conversations and be used as a mean of analyzing
their effectiveness. However, despite anecdotal recommendations and recommended best
practices, it cannot be claimed that exploitation of these effects directly influence calls’
success without further investigating, e.g., long-term performances of highly-rated reps.
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Chapter 5

Shadowing in Sung Music and
Human-Computer Interaction

After finding accommodation effects in human-human interactions, this chapter
examines such effects in a more controlled setting. The studies presented here

follow the shadowing paradigm and investigate accommodation in different facets of
singing and human-computer interaction. The results of these studies lay the foundations
for investigating accommodation in more conversational scenarios of human-computer
interaction.



5.1 Shadowing paradigm

5.1 Shadowing paradigm

In a shadowing task, participants are instructed to provide vocal productions as a reac-
tion to pre-determined stimuli. It is often used in empirical experiments (e.g., Goldinger,
1998) to examine how certain properties of these stimuli influence – or do not influence
– participants’ productions. A shadowing task is typically preceded by a baseline phase,
where the participants provide the same productions without listening to the stimuli.
The stimuli used in the shadowing phase can be determined based on the baseline pro-
duction, to intentionally introduce a contrast between the stimuli and the participants’
preference with respect to a certain feature, as done in Section 5.3.1.2. A compari-
son between the participants’ productions in these two phases asserts whether and to
what extent the stimuli affected the participants’ productions. Sometimes, a third, post-
shadowing phase is added to examine whether the effect – or the lack thereof – found
in the shadowing phase remains when the external inputs are absent. Figure 5.4 shows
a complete flow of a shadowing experiment. It is important to note that the baseline
for change is not 50% (randomly retaining preferred realization or adopting stimulus’
form). Since people are not likely to spontaneously change their speech style without a
reason, the assumption here is that the frequency of such changes represents the external
influence of the stimulus on the speaker. More generally, the degree of accommodation
can be seen as a speaker’s tendency (or, more formally, the probability) to converge to
an interlocutor.

The ability to present specific contrasts and measure production differences in a
supervised fashion makes shadowing tasks suitable for study accommodation and they
are often used in vocal accommodation experiments, in which participants are asked to
re-produce utterances uttered in stimuli or by a human interlocutor (e.g., Shockley et al.,
2004; Babel et al., 2014; Walker and Campbell-Kibler, 2015; Dias and Rosenblum, 2016;
Pardo et al., 2018). However, this method also has some disadvantages. One drawback
is that while it is suitable for a controlled experimental environment, it only loosely
represents a real-world conversation, due to the lack of utterance unpredictability, turn-
taking mechanism, subjective common goal, and more. Another potential hindrance
is that participants might tend, intentionally or not, to imitate the stimuli, which may
lead to a false effect of high convergence that does not represent the participants’ natural
behavior. This should be addressed in the experimental design and the instructions are
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given to the participants, by not using wordings like “repeat”, “mimic”, or “like you
heard” and by not making the target features too obvious to the participants.

A distinction can be made between two types of shadowing: In Close shadowing,
participants start their production while a stimulus is still being played, forcing them to
deal with both comprehension and generation at the same time. Consecutive shadowing,
contrarily, requires participants to listen to a stimulus in its entirety before uttering
anything themselves. This becomes harder the longer a stimulus is, merely due to the
increasing difficulty to remember long segments. Both of the experiments presented
in this chapter use consecutive shadowing. The simulated human-computer interaction
(HCI) experiment (Section 5.3) uses short sentences with which the participants are
already familiar from the baseline phase. In the sung music experiment (Section 5.2)
the musical pieces are relatively long, and the analyses accounted also for parts that the
participants did not produce (due to memorizing difficulties or otherwise).

5.2 Prosodic alignment in novel and familiar sung music

Although this work deals with vocal accommodation in spoken language, speech is not
the only human ability that uses vocal capabilities. Singing has common characteristics
with speech, like the production of different sounds (typically forming words), prosodic
properties like rhythm and intonation, and others. On the other hand, singing is usu-
ally not used for information exchange purposes. These similarities and dissimilarities
make singing an interesting subject to vocal accommodation study. Specifically, it can
be investigated whether humans show accommodation in certain vocal properties only
when used in speech or as a more general tendency related to their use of voice. Since
both speaking and singing are used in social contexts, external factors may potentially
affect them both. This enables, among other things, convergence effects between people
productions to take place. In the case of music, convergence can be expressed in differ-
ent aspects than in speech, like more accurately singing, shift in the musical key, tempo
changes, etc. Some rhetorical aspects of music and spoken language can be described in
musical terms. These two vocal capabilities share some properties in both production
and perception. Such common properties include articulation rate, intensity, timbre,
and more. Moreover, intonation, pitch, timbre, rhythm, and tempo are all common in
descriptions of music, as they are in speech (Molino, 2000; Jackendoff, 2009). Similarly,
Day-O’Connell (2013) also shows how some phenomena related to spoken language can
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also be described using musical means. Another important aspect is that both have a
temporal dimension and evolve over time. However, music consists of defined absolute
pitch and rhythmic targets, making it easy to compare peoples’ productions to some
ground truth, as oppose to speech, where specific prosodic values are more subjective
and dynamic. This is even more salient when dealing with familiar musical materials, as
both the singer’s and the listener’s expectations are already primed (Meyer, 2008). In
speech, on the other hand, the phonetic features of a specific utterance are not expected
to match specific absolute values. Since the focus here is on vocal changes, sung music
was examined in the study. To prevent influences due to the phonetic properties of
specific words, the singing was performed without lyrics (see Section 5.2.1.3).

The main research question of the study presented here is whether convergence oc-
curs in singing as well, and, if so, whether specific parts of the musical pieces are prone
to changes. Convergence can be realized on the absolute level, meaning that the partic-
ipants shift their overall pitch range (the key) and tempo to be closer to the recording,
or relative to their own singing by making the pitch and temporal intervals between the
target notes more precise after listening to the recording. A secondary research question
is how the familiarity with the musical material affects reproduction. The expectation
here is that the participants’ performances of the familiar lullaby will be accurate even
before listening to a chapters/shadowing/shadowing-experimentrecorded version of it in
terms of deviation from the target intervals, but even more so afterwards. When re-
producing an unfamiliar melody, it is not expected that the participants will remember
it in its entirety, but rather that they would stick to repeating segments or parts with
smaller intervals and simpler rhythms.

5.2.1 Experimental design

5.2.1.1 Target features

Phonetic convergence in speech has been studied with respect to various prosodic fea-
tures, such as speech rate (Pardo et al., 2012; Schweitzer and Lewandowski, 2013),
fundamental frequency (Collins, 1998; Babel and Bulatov, 2012), intonation (Simonet,
2011; D’Imperio et al., 2014), rhythm (Krivokapic, 2013), and more. Corresponding to
those, the study presented here deals with the musical prosodic features tonal deviation
(perceived fundamental frequency (f0) difference), rhythmic precision (with respect to
specific rhythmic patterns), and overall tempo and key choice. The latter two are global
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properties and were determined based on an entire performance. In Section 5.2.2 it is
explained how these features were measured in music, where the tonal and rhythmic
targets are defined based on a musical theoretical framework.

5.2.1.2 Material and participants

Sung lullabies were chosen for this study, as they are more memorable than other musical
genres and instrumental pieces, especially among mothers to babies (Trehub and Unyk,
1991; Weiss et al., 2012). When communicating with infants, adults tend to use exag-
gerated prosody with elevated melodic pitch and distinct rhythmic patterns (Fernald,
1991). This increased use of singing as well as its function as a means of communication
with their babies (see Papoušek et al., 1991; Street et al., 2003) made mothers of small
babies suitable for this study. Six participants took part in the study, all of which are
mothers to recently born babies and with no hearing impairments. For three of them,
this was the first child. Their age ranged from 29 to 37 years (mean 35.5 ±3.25) and the
age of their babies ranged from one to seven months (mean 4.5 ±3.5). To further ho-
mogenize the participants’ characteristics, their musical education and experience were
controlled as well. None of them had any professional-level musical background and four
disclosed they have been singing or playing an instrument recreationally. Since singing is
a skill that can be methodically improved, it was required to find participants who don’t
sing professionally, but still sing in a social context without the direct goal of improving
their singing quality. To that end, only mothers who reported that they regularly sing to
their new-born babies were selected, because in the pre-verbal phase, parents often sing
to their babies. Furthermore, the particiipants’ familiarity with the presented known
musical piece, a children lullaby (see below), was verified. All the participants reported
that they know the lullaby well enough to spontaneously sing it from memory.

Two lullabies were used, one for each experiment (see Section 5.2.1.3): The first
is “Tune for the Yakinton”14 (hereafter “Yakinton”, see Snippet 1), which is a famous
Israeli children lullaby. The second is a culturally universal lullaby composed for exper-
imental purposes (Twig, 2016, pp. 22-47, see Snippet 2), which contains cross-cultural
characteristics, like repetitiveness, simple melody, and a limited inventory of tonal and

14Pizmon LaYakinton, written by Leah Goldberg in 1940; Yakinton is the Hebrew name of the Hyacinth
plant.
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Snippet 1: The Yakinton lullaby transposed to B major. The square labels “A”, “B”,
and “C” mark the theme, bridge (or development), and recapitulation sections of the
lullaby, respectively. The breath marks are placed where the participants are expected
to make a brief break and/or lengthen the ending of a phrase. The first sixteenth note
in bar six is in brackets since it is not present in the original melody and was therefore
also excluded in the recorded version played to the participants. However, it is common
to add it, and indeed all participants included it in both performances.

rhythmic patterns (Unyk et al., 1992; Trehub et al., 1993). Therefore, while the first
one was expected to be known to the participants, they could not be familiar with the
second one. Both lullabies are short (13 bars at ˇ “ = 61 (≈26.5 s) and 16 bars at ˇ “

‰ = 33
(≈58 s), respectively) and in major keys. The lullabies were recorded a cappella by a
trained female singer in the same age group as the participants in a professional record-
ing studio at 44.1 kHz sampling rate and 16-bit resolution. To avoid changes in voice
production, decrease vibrato, and reduce the singing effort, they were both transposed
and recorded in B major, which is relatively low for female voices. This also prevents in-
fluences originating from the use of a different key for each lullaby. The syllable [na] was
used throughout the lullabies in both recorded versions instead of all lyrics to eliminate
biases stemming from the meaning of the words or the realizations of specific sounds.
This way, the possibility that participants would hesitate in their performances because
they know the melody but not the lyrics was avoided as well.
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Snippet 2: The universal lullaby transposed to B major. The square labels “A” and “B”
mark the structural parts. The grace notes in bars 2, 6, and 12 were included in the
recording but due to their secondary melodic role did not penalize performances that
lacked them.

5.2.1.3 Procedure

This study consisted of two shadowing experiments (see Section 5.1 and Raveh et al.,
2020). The first experiment examined convergence effects between two performances
of the participants: The participants were first asked to sing the familiar Yakinton’s
melody with the syllable [na] instead of its lyrics (regardless of whether the participant
could, de facto, recall the lyrics). Besides that, no specific instructions were given, e.g.,
regarding the tempo, the key, or any other musical preference. Subsequently, the partic-
ipants listened to the pre-recorded version of the lullaby via wired over-ear headphones.
Following that, they sang the lullaby once more and answered some questions regarding
the recorded version of the lullaby, to determine how much it differs from the one in their
mental memory. Importantly, no reference to either their previous production or the
recorded version was made by using wordings like “repeat”, “mimic”, “like before”, etc.
The second experiment comprised only a shadowing performance, as the participants
were intentionally unfamiliar with the universal lullaby and therefore couldn’t produce
it without hearing it first. This experiment tested which prosodic features would be
replicated more accurately. After listening to the pre-recorded version of the lullaby,
they were instructed to sing it themselves to the best of their ability. This required not
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only their singing capabilities, but also their musical memory. Admittedly, it was not
likely that the participants would remember all parts and facets of the musical material
of this experiment. As explained in Section 5.2.1.2, this lullaby was composed using
universal characteristics of the genre and should therefore contain similar melodic and
harmonic contents to the lullaby in the first experiment. The two experiments were
carried out consecutively. In addition to the short questions in the first experiment,
the participants also answered a personal questionnaire before starting the second ex-
periment and a closing questionnaire at the end. The entire procedure lasted 15min to
20min per participant.

5.2.2 Analyses and results

Since the participants aimed to produce specific musical notes (as opposed to non-specific
absolute frequencies in speech production), tones were used for measuring pitch instead
of raw Hertz values. For that, quarter tones (QTs) were used instead of semitones to
increase the tonal resolution. Using QTs rather than traditional half-tones enables a more
fine-grained analysis that can capture more subtle tonal deviations to better analyze
the participants’ performances. The segmentation of the performances into individual
tones was done manually by a trained musician. Silences, non-singing, breaths between
phrases, etc. were segmented as well. The tones were determined by the median of the
measured frequencies during the tones’ duration, excluding the first and last 10% of
the tone segments. This excludes transitions between tones and smooths out vibrato
and ad lib ornaments. These values were extracted using Praat (Boersma, 2018) with
manual corrections where necessary. Subsequently, the note assigned to each singing
segment was determined by selecting the closest QT to the measured frequency in the
corresponding segment. This stands in line with the assumption that people sing with
a specific tone in mind rather than a frequency. The mapping between tone frequencies
and QTs was done relative to the middle A tone, using the formula (adapted from De
Klerk, 1979)

frequency(QTn) = 440 · 24√2n
, (5.2.1)

where n is the number of QTs away from the middle A tone and 440Hz is the fre-
quency of middle A based on the equal temperament. QTs are denoted here with the
symbols " � and �� for one QT and three QTs above a note, respectively. Ultimately,
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Figure 5.1: A comparison between each participant’s distribution of deviations in both
phases. The width of the violin shape indicates the counts of the QTs deviations. The
upper and lower hinges of the white boxes within the violin shapes show the first and
third quartiles, with the thick black line marking the median value. The vertical line
crossing the white box show the value range, excluding outliers.

tonal deviations were measured per interval, rather than per tone, as the latter would
depend on the key the participants chose, while the former measures tonal accuracy
independently of a key. Tempo was measured for an entire performance, taking into ac-
count only singing segments. This ensures that pauses between phrases do not influence
the perceived singing tempo and that occasional, non-written lengthenings like short
ritardandi or fermate at the end of phrases do not mark a specific note as being out
of rhythm. Tempo was measured in beats per minute (BPM), which is directly derived
from the standard musical notation ˇ “ =, using the formula

BPM = N + δ

overall duration
·60, (5.2.2)

where N is the number of beats in the lullaby (26 in Yakinton; 32 in the universal
lullaby) and δ is the number of beats added by a participant. Such additions occurred
in the participants’ performances exclusively, if at all, at the end of phrases (bars 3, 6,
10, and 13 in Snippet 1), but are not present in the pre-recorded version.

As expected, the participants could, for the most part, accurately produce the Yak-
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Figure 5.2: Comparison between the distribution of deviations from the correct intervals
in baseline (red) and shadowing (blue) performances. The numbers on the x-axis are
the number of QTs above or below the correct interval.

inton lullaby in the baseline phase based solely on their memory. However, as Figure 5.1
shows, these performances included several large deviations of two tones or more, which
are not likely to be caused by coincidental imprecise singing. In the shadowing phase,
in comparison, there was only one such large deviation in all the performances. This
adjustment of obviously wrong tones was presumably driven by the exposure to a cor-
rectly sung version. Other than these corrections, the deviation distributions shown in
Figure 5.1 are roughly symmetric and similar in both phases. Surprisingly, the baseline
performances had more correct tones as a whole. It seems, therefore, that the reference
version helped the participants to sing within a more accurate range of tones, but some-
what eroded their precision in some notes. To confirm that the changes were subtle and
were ascribed mostly to larger deviations, a distributional comparison between the base-
line and shadowing productions for each participant. These comparisons are shown in
Figure 5.2. The very high statistical distribution similarity results tests confirm that all
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Figure 5.3: Comparison between the deviation distribution of each interval in baseline
(top) and shadowing (bottom) conditions. The numbers on the x-axis are the interval
indices representing the 53 intervals in the Yakinton lullaby. The distances between
the intervals sang by the participants and the correct intervals are shown on the y-axis
(outliers are omitted). The labels “A” to “C” mark the different parts of the lullaby
(and correspond to the same labels in Snippet 1).

participants didn’t substantially change their singing, but, in most cases, the deviation
distribution in the shadowing phase was less scattered. The tone-by-tone comparison
presented in Figure 5.3 sheds more light on these differences. It is evident that except
for the very first interval, the participants showed greater consecutive variation in the
second part of the bridge (label “B” in Snippet 1, notes 34 to 42), while in the shadowing
condition the first phrase (first seven intervals) showed a similar tendency. Although the
bridge moves to a new tonal center, it is not clear why only its second part would cause
the singers to be less precise. As for the higher variation at the beginning of the shad-
owing performances, this might point to the process of re-finding the right tones in the
participants’ key of preference. This explanation is supported by the key comparisons
in Table 5.1, which show that there was virtually no key change between the baseline
and shadowing performances for any of the participants. Despite that, the unstable be-
ginning of the shadowing performances indicates that listening to the recorded version
influenced the participants’ tonal accuracy. This stands in line with the claim that the
speech at the beginning of a conversation is most prone to inter-speaker influences (e.g.
Orlob, 2018). Participants needed about one whole phrase to overcome this influence
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Snippet 3: Examples of tonal (top staves) and rhythmic (bottom staves) deviations in
bar 10 (left score) and bars 15-16 (right score) of the universal lullaby. Smaller, stemless
notes mark the correct notes where deviation occurred. Crossed-head notes mark those
that deviate from the correct rhythmic pattern.

and enter their preferred tonal center anew. Interestingly, the only participant who
sang in the same key as the recording did change key in the second performance. The
accuracy of tonal replication was measured in two ways, viz. directionality and quantity.
First, the correctness of the contour direction in each interval was evaluated (higher
tone, lower tone, or same tone). Second, the size of each interval was compared with the
correct interval. The participants correctly produced the contour direction in 70% of the
intervals they replicated. The intervals themselves, however, were correct only in 44%
of the time. This shows that the overall contours of the lullaby are more easily recalled
than the specific intervals, as would be expected. Snippet 3 shows concrete examples of
tonal and rhythmic deviations and Snippet 4 shows the average deviations of all produc-
tions. The tempo of the recorded version is 61BPM. In their baseline performances,
three participants sang faster than that and three more slowly. All participants changed
their tempo so that it was closer to the recorded version (see Table 5.1). Moreover, the
absolute distance from the recording’s tempo decreased in all cases but one, which indi-
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Snippet 4: Average deviations in the participants’ performances in the universal lullaby.
Smaller, stemless notes mark the correct notes where deviation occurred. Crossed-head
notes mark those that deviate from the correct rhythmic pattern.
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Table 5.1: Comparison between the singing tempo and key in baseline and shadowing
performances of each participant. The values on the left and right under the key and
BPM columns are for baseline and shadowing performances, respectively. BPM∆ shows
the BPM difference between baseline and shadowing, with the value in parentheses
standing for the change in the difference from the recording’s tempo. A negative value
means that the participant decreased the distance to the recording.

Participant Key BPM BPM∆

RITRAF85 F | F♯ 76 | 70 6 (−6)
TALHAR82 B | B♭ 57 | 63 6 (−2)
RANVI88 A | A 59 | 63 4 ( 0)
ONKASH82 F♯ | F♯ 76 | 69 7 (−7)
LIIT82 F♯ | F♯ 59 | 66 7 (+3)
DIHAR83 F♯ | F♯ 62 | 61 1 (−1)
recording (B) | B (61) | 61

cates a clear alignment effect. In contrast to the first lullaby, it was not expected that
participants would be able to completely replicate all rhythmic patterns in the second
lullaby. Two participants replicated part A, part B was replicated by three participants,
and one participant managed to replicated both parts. The replication rate of each
rhythmic pattern was measured separately. Table 5.2 summarizes the occurrences of the
rhythmic patterns (R1–R4, corresponding to the rhythmic patterns in bars 5, 9, 15, and
16 in Snippet 2, respectively) in the original and replicated versions. The proportion
of each pattern within a part was generally preserved in the participants’ performances,
with the expected occasional confusions between R2 and R3 in part A due to their dif-
ference only in the last third beat that may be interpreted as a stylistic choice. It is
also evident that R1 and R4 were replicated more accurately. An explanation for that
is their simplicity compared to R2 and R3, the smaller number of intervals compared to
R2 and R3, and that they appear at the beginning and end of every phrase, potentially
making them easier to remember.
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Table 5.2: Comparison between the percentage of occurrences of each rhythmic pattern
in the original and replicated versions in all bar-level patterns. Parts A and B refer to
the labels with the same letters in Snippet 2. Each replication row refers to the average
over all participants who replicated that part.

R1 R2 R3 R4

original part A 50 12.5 12.5 25
replications A 54 18 7 21

original part B 25 37.5 12.5 25
replications B 25 42 8 25

5.3 Segmental convergence to natural and synthetic stim-
uli

After finding accommodation effects in human-human interaction (HHI) in Chapter 4)
and other non-speech vocal productions in Section 5.2, the next step on the way to ac-
commodation in human-computer interaction (HCI) is an experiment that tests whether
similar effects can be found when humans interact with synthetic voices. The motiva-
tion for such an experiment originates from the Computers Are Social Actors (CASA)
paradigm (Nass et al., 1994; Nass and Moon, 2000, and cf. Section 2.3.1). If computer-
based interlocutors are perceived as social entities in communicative interactions, the
question arises whether social-oriented effects, such as accommodation, would occur in
HCI as well. An altered version of the experiment presented here is replicated in Sec-
tion 10.4 as a demonstration of an accommodative spoken dialogue system (SDS).

5.3.1 Experimental design

5.3.1.1 Target features

Three phonetic features of the German language were examined in the study, as listed
below. Their variations have been defined as a two-way categorical distinction, corre-
sponding to their perception by humans, even if two of them varies on a gradual scale.
Although these features may pass as light dialectical markers (Mitterer and Müsseler,
2013), they do not carry any difference in meaning, and are generally ascribed to personal
preference and speaking style.
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[ç] vs. [k] at a word-final ⟨-ig⟩ syllable

These variations of the phoneme [ç] are both common native speakers of German. Using
one variation or the other does not change the meaning of the word. Although [ç] is
generally more commonly used in the south of Germany and [k] in the north, they do not
mark a specific dialect or socio-economic status. This “neutrality” makes this feature a
good candidate, since the experiment does not aim for changes in pronunciation liked to
one dialect or the other or an attempt to match a certain social status. It is noteworthy
that although the [ç] variation is considered to be the standard, both variations are
accepted and people typically do not notice which variation they and their interlocutors
use. This feature is treated here as bi-categorical in nature. The very few instances of
other fricatives, such as [S] and [J], were counted as [ç] as well, making the distinction
practically between fricative and plosive realizations. Here are two examples of sentences
with this feature that were used as material for the experiment’s stimuli (see Appendix A
for the full list of stimuli):

1a)
Der könig hält eine Rede.
The king held a speech.

2b)
Ich bin süchtig nach Schokolade.
I am addicted to chocolate.

[e:] vs. [E:] realization of the mid-word grapheme ⟨ä⟩

These two phonemes represent the two perceived realizations of this feature’s. Vowel
quality, as opposed to the [ç] vs. [k] feature, it is not categorical, but gradual. That means
that the actual realization can be anywhere between these two realizations. However,
despite the gradual nature of vowel quality, native speakers still perceive this feature
as categorical (either [e:] or [E:], cf. Kuhl, 1991, 2004). This feature is treated here as
categorical in production (see Section 5.3.1.2), but as gradual for the analysis purposes
(see Section 5.3.2). This allows the detection of bot within-category and cross-categorical
changes between productions, which are important for characterizing the convergence
process. The [E:] variation is in general more typical for the southern federal states of
Germany, while [e:] is more common in the north. As in the case of the [ç] vs. [k]

feature, the use of one realization or the other (or any in-between them) does not make
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any difference in meaning. Here are two examples of sentences with this feature that
were used as material for the experiment’s stimuli:

1a)
War das Gerät sehr teuer?
was the device very expensive?

2b)
Ich mag die Qualität deiner Tasche.
I like the quality of your bag.

[@n] vs. [n
"
] at a word-final ⟨-en⟩ syllable

Unlike the two previous features, this feature does not typically show variation, especially
in spontaneous speech. The [n

"
] variation is by a large margin the dominant one. The

[@n] variation may occur when a speaker wants to emphasize a word/syllable or speak
especially clearly, e.g., in a noisy environment. It is rare to hear consistent productions
of a [@n] in an ending-syllable ⟨-en⟩. This is true across-dialects and regions, and it is
ascribed to the phonological rule schwa elision that occurs in the German language, as
follows (adapted from Benware, 1986, pp. 142–143):

@n−→∅n
"
�+consonantal __ #. (5.3.1)

Here are two examples of sentences with this feature that were used as material for
the experiment’s stimuli:

1a)
Wir besuchen euch bald wieder.
We will visit you soon again.

2b)
Sind die Küchen immer so groß?
Are the kitchens always so big?

It is important to note, that although speakers may have their preferred variants
in the contexts given in this study, [E:], [e:], [ç], [Ik], [n

"
], and [@n] are all part of the

phonetic inventory of native speakers of German and are used by all speakers in other
contexts.
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5.3.1.2 Procedure

The experiment consisted of three production phases (see Figure 5.4): baseline produc-
tion, shadowing task, and post production. In the baseline phase, the participants were
asked to read out the stimuli from a monitor. Each stimulus was presented separately
with nothing else on the screen. The participant’s most frequent variant of each target
feature (Section 5.3.1.1) was recorded. No instructions whatsoever were given regarding
the pronunciation of the sentences. Then, in the shadowing task, the participants pro-
duced the stimuli sequentially, each after listening to another voice (either natural or
synthetic, both male and female, see Section 5.3.1.3) that used the opposite category of
the relevant target feature. For example, if a participant mostly produced [ç], the stim-
uli’s realization of the [ç] vs. [k] contrast was [k]. Based on the production in this phase,
the participant’s tendency, pace, and degree of convergence were analyzed. These anal-
yses are the basis for the model presented in Chapter 7. Finally, in the post phase, the
participant once again read out the stimuli from a screen. The purpose of this phase was
to examine whether a convergence effect was maintained when the external input was
absent. Between the baseline and shadowing productions, the participants had a break
of about seven minutes. Its purpose was to let the mental representation of the produc-
tion fade, so that the base production will not influence as much on the productions in
the following parts. To boost this process, the participants played a game with strong
visual aspects and non-verbal sounds only. Conversing with the participant was avoided
as much possible as possible in order to prevent other verbal input from influencing their
mental representations. The participants’ performance in the game was not recorded
and did not influence the next parts in any way. A program developed specifically for
the purpose of this experiment was used for its execution. It included functionalities
tailored for this experiment and a graphical user interface (GUI) the experimenter could
use during the and between the phases to quickly record participants’ performance and
prepare the next phase. These include setting up the participants’ audio streams (e.g.,
playback and recording volumes), extracting the appropriate stimuli from the database,
semi-randomizing the stimuli into balanced groups, logging the timing and participants’
productions, and more. The experiment was carried out in a sound-proof booth located
inside a recording studio. Seeing that the experiment dealt with the way people change
their way of speaking based on the speech of others, conversation with participants was
kept to a minimum before the experiment began and was avoided till its end.
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Figure 5.4: Flow of the experiment (from left to right). Stimuli are read from a monitor
in baseline and post phases, while heard over headphones in the shadowing task. The
participant’s preferred variation recorded in the baseline productions are used to select
those with the opposite realizations from the stimuli database for the shadowing task.
Each participant listened to both male and female voices of one of the stimulus types
natural, diphone, or HMM.

5.3.1.3 Stimuli and participants

As mentioned above, shadowing experiments are commonly used in accommodation
studies. However, this is typically done with single words as targets or with a repeating
carrier sentence. Contrarily, in the experiment presented here, participants shadowed
full sentences instead of single, typically mono- or bisyllabic (non-)words. Each of the
three target features was represented in three declarative and two interrogative gram-
matical German sentences, five to seven words long. Additionally, 25 filler sentences, in
which none of the target features occur, were introduced as a control mechanism and
to not make the target features too obvious. At the beginning of the baseline phase,
five additional filler sentences were shown to let the participant get used to the task
and the setting. Three sets of stimuli were created (one natural and two synthetic),
leading to a total of 270 stimuli ((3 features × 5 sentences + 25 fillers + 5 warm-ups)
× 3 sets × 2 genders). See Appendix A for the full list of stimuli. One set of stimuli
was created with the (natural) speech of a 25 years old female and a 25 years old male
native German speakers. As for the synthetic stimuli, there are various synthesis meth-
ods to choose from: Formant synthesis (e.g., Burkhardt and Sendlmeier, 2000), unit
selection (Hunt and Black, 1996; Black, 2003), diphone synthesis (e.g., Dutoit et al.,
1996), and probabilistic (e.g., using hidden Markov models (HMMs) as described in Zen
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and Toda, 2005; Zen et al., 2009), to name some. Diphone synthesis using Multi-Band
Resynthesis Overlap-Add (MBROLA; Dutoit et al., 1996) and probabilistic HMM syn-
thesis were selected for creating this experiment’s stimuli, due to their combination of
control over pronunciation and overall quality. One stimulus set including both male
and female voices was created with each of these methods. These three sets were stored
in a database that was used in the shadowing phase of the experiment (see Figure 5.4).
A more advanced technique, like the neural sequence-to-sequence (seq2seq) used in Sec-
tion 9.2.2, was not selected due to its lack of direct control over specific segments and to
avoid voices resembling natural too much natural voices. To better focus on segmental
differences, suprasegmental properties in the synthetic stimuli were fixed to match those
of the natural utterances. This was done separately for male and female voices with the
respective human speakers. The fundamental frequency (f0) contour (and by extension
also stresses) and segment lengths (and by extension also speech rate) of each sentence of
the natural stimuli were imposed on the synthetic stimuli in both synthesis methods (and
see Raveh et al., 2017a). With MBROLA this process is straightforward, as the duration
and pitch values can be directly passed as input parameters. For the HMM synthesis,
the process was more complex. To predict voiceness, the mel-generalized cepstra and
band aperiodicity coefficients were first extracted from the spectrum of the output signal
of the regular HTS process. Subsequently, A neural network with a hidden layer of 128
neurons was used to predict the voicing property from the cepstra coefficients. Then, a
voicing mask was applied to the imposed f0 contour to obtain the final f0 coefficients.
Finally, All the coefficients were used to generate the output signal in a standard syn-
thesis chain with a mel log spectrum approximation filter and the STRAIGHT vocoder
(Kawahara, 2006). The segment lengths were directly taken from the annotations, and
the f0 contours were acquired by first interpolating the contour of the natural stimuli
and then record the f0 value at the beginning and the middle of each segment. It goes
without saying, however, that due to the limitations of the synthesis techniques, the
generated contours were not always completely identical to those of the corresponding
natural stimuli, as shown in Figure 5.5. Nevertheless, no substantial differences in overall
sentence intonation or stress were introduced.

56 native German speakers from ten different states in Germany took part in the
experiment. Three non-overlapping subgroups listened to the three stimulus sets. In a
post-experiment questionnaire, 80% of the participants indicated that change the way
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(a) f0 contour of the natural production
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(b) synthetic stimulus with imposed f0 from the natural production

Figure 5.5: MOMEL-INTSINT contours of the natural stimulus (top) and its corre-
sponding MBROLA synthetic stimulus (bottom) for the sentence “Wir reden ohne Un-
terbrechung” with corresponding SAMPA transcriptions. The numeric and alphanumeric
values to the right are the absolute pitch frequencies and their corresponding musical
tone. The scale to the left displays one octave around the median pitch of the signal.

they speak depending on their interlocutor, 50% believed they would converge to an
interlocutor of the same dialectal background, and 15% claimed they would converge to
an interlocutor from a different dialectal background. Each participant was presented
with only one of the three stimulus types. Table 5.3 shows a detailed overview of the
participants. Importantly, the ages of the human speakers that recorded the natural
stimuli match the mean age of all participants. As explained in Section 5.3.1.2, the
participants’ preference for each of the target features was obtained in the baseline
phase (as summarized in Table 5.4). At the end of the experiment, the participants were
asked which realization of each feature they believe to produce themselves and what
they think of the other version of it. About 75% reported a positive attitude towards
the version they do not believe to produce themselves. Only a minority of participants
showed a negative attitude towards the other variation. Based on the results presented
in Section 5.3.2, it seems plausible that a positive attitude towards the features entails
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Table 5.3: Summary of participant characteristics listening to each stimulus set.

condition participants age range mean age

Natural 17 female 19 to 33 26
4 male 23 to 34 30

Diphone 14 female 19 to 50 26
4 male 23 to 34 27

HMM 13 female 18 to 51 28
4 male 22 to 37 25

Table 5.4: Summary of participants’ preferred realization of each target feature based
on productions in the baseline phase.

condition [E:] vs. [e:] [Iç] vs. [Ik] [n
"
] vs. [@n]

Natural 11 10 12 9 21 0
Diphone 14 4 9 9 17 1
HMM 10 7 6 11 16 1

a higher probability of converging to them.

5.3.2 Analyses and results

The occurrences of each feature were analyzed separately. The feature [E:] vs. [e:] was
measured as a continuum in the F1-F2 formant space. The first and second formants of
each target segment were measured at the temporal midpoint in all productions as well
as in the stimuli using Praat (Boersma, 2018). These values were used for calculating
the Euclidean distance between the participants’ and stimuli vowel realizations in each
sentence, using the formula

Edist =
√

(F1participant−F1model)2 +(F2participant−F2model)2. (5.3.2)

Smaller distances in the shadowing or post phases compared to the baseline phase in-
dicate a convergence effect. Figure 5.6 illustrates the convergence effects as realized by
one of the participants. The distances were measured relative to the mean values of all
stimuli in the set to which the participant listened. These distances were used to fit lin-
ear mixed-effects models with phase as a fixed effect, subject and target word as random
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Table 5.5: Mixed effects results for the feature [E:] vs. [e:] with three stimuli sets. Each
column compares the difference between two phases.

Natural base-shadow base-post shadow-post

intercept 69.94*** 32.88 −33.67**
(14.89) (17.53) (11.44)

preference 33.79*
(14.89)

observations 210 210 209

Diphone
intercept −1.68 −1.49 0.44

(8.72) (9.93) (7.24)

HMM

intercept 32.64* −2.12 −31.23
(13.61) (12.38) (15.86)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

effects (intercepts and slopes), and distance as the dependent variable. Models were fit
for both preference groups compared by an ANOVA. The differences between baseline
and shadow phases were found to be significant in the natural and HMM groups, and
between the baseline and post phases only in the natural group. Table 5.5 summarizes
the results for this feature. Figure 5.6 provides additional insights regarding the per-
ception of the vowel quality contrasts in the synthetic stimuli due to their realization in
these sets.

The feature [Iç] vs. [Ik] was evaluated based on the percentage of same-category
realizations of the participants with respect to the stimulus set they listened to. If the
percentage increased, e.g., between baseline and shadow productions, the participant
converged to the stimuli. Figure 5.8 summarizes the per-phase differences for each set.
With all three data sets combined, the number of same-variant productions increased
by about 30% from the baseline phase to the shadowing phase, and decreases again in
the post phase, but to a lesser degree. That means that all in all, participants not only
converged to the stimuli in the shadowing phase, but the effect lasted to some extent
in the post phase as well. The statistical significance between the phases within each
stimulus type was tested using a Gaussian linear mixed-effects model. For both the
natural and diphone sets, the increases between the baseline and the shadowing phases
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Figure 5.6: An example of a participant’s
vowel quality convergence towards the
stimuli. The participant’s preference is
[e:] while the variation [E:] is used in the
stimuli (and cf. Figure 5.7). The colors of
the circles represent the base, shadow,
and post phases, and the model’s for-
mant values with ±1 standard deviation
from the bivariate mean. The arrow
shows the distance between one of the
participant’s production and the model
mean.
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Figure 5.7: Values areas of the first two
formants of the three stimulus sets’ [e:]

and [E:] instances. Each color represents
both male and female ranges of on stimu-
lus type (natural, diphone, or HMM). The
smaller a circle is, the more well-defined
the mean target of this stimulus group is.
Moreover, the further apart circles of the
same color are, the more distinct the dif-
ference is within this set.

were significant, 10% to 39% and 16% to 48%, respectively. Moreover, in these sets,
the decreases in the post phase did not go all the way to the baseline level: 39% to 23%
for the natural set and 48% to 36% for the diphone set. For the HMM set, the increase
between baseline and shadowing was 8% to 40% and did not reach the significance
threshold. However, the decrease in the post phase reached the baseline level again and
was significant, from 40% to 12%.

The feature [n
"
] vs. [@n] was measured based on the lengths of the potential schwa

segments in the sentences. To decide whether schwa was present or absent in the partic-
ipants’ target word productions, the lengths of relevant segments between the preceding
consonant – [d], [t], [ç], [x], or [f] – and the final nasal were measured. A duration of
30ms was established as the threshold of a perceived schwa segment. This decision is
also supported by the fact that all schwas occurrences in the stimuli sets were at least
30ms long. The segment length range of the natural stimuli, along with the lengths’
variance of the participants’ productions, is shown in Figure 5.9. Note that only two
participants showed a preference toward the [@n] variant in their baseline productions
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Figure 5.8: Percentage of same-variant (lower numbers, darker background) and
different-variant (top numbers, brighter background) realizations of participants with
respect to the stimuli they listened to. An increase between the base and the shadow
phases indicates convergence towards the stimuli. Similarly, the decrease between the
shadow and the post phases back towards the baseline level shows the degree to which
the convergence effect remained when the stimuli were not present. The participants
listened to stimuli with their dispreferred variation. The same-variant realizations in the
baseline phases come from the minority of their realizations, as explained above.

(cf. Table 5.4). This indicates that schwa does not commonly appear in the examined
context, which might make it harder to trigger convergence among the participant. See-
ing that a statistical analysis for a group of two participants is likely to be misleading,
these participants were excluded from the analysis of this feature. Table 5.6 summarizes
the percentage of schwa occurrences in the three phases. There was an increase of schwa
occurrences between the baseline and shadowing phases for all stimulus types, with the
difference being significant for the natural and HMM sets with changes of 9% and 5%,
respectively. In the post production, the number of schwa occurrences decreased to
approximately the baseline level for all conditions. Interestingly, while for the natural
stimuli this decrease was still above the baseline percentage, for both the synthetic sets
the percentage in the post phase was even lower than in the baseline phase.

5.4 Conclusion

The results found in the music experiment show that alignment occurs in singing, more
so with respect to temporal features than to tonal ones. This stands in contrast to
findings in interactive speech (e.g., Raveh et al., 2019a). Even so, the results emphasize
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Figure 5.9: Lengths of @ segments in the
three phases. The height of each bar rep-
resents the average length in this phase,
and the corresponding whiskers indicate
the overall value range. The gray area
shows the value range of the stimuli, with
the mean length at the orange dashed line.

Table 5.6: Percentage of schwa occurrences
in each phase and stimulus set. N stands
for the number of sentences with the target
feature [n

"
] vs. [@n], which is derived from

the number of participant with [n
"
] prefer-

ence (the shadowing phase always has dou-
ble the number of sentences, because both
male and female voices were used).

base shadow post

Natural 1.9% 10.9% 3.8%
N = 105 N = 210 N = 105

Diphone 2.4% 4.1% 1.2%
N = 85 N = 170 N = 85

HMM 2.5% 7.5% 1.25%
N = 80 N = 160 N = 80

the similarity between the two social oral capabilities. They are therefore also prone
to influence each other and can potentially be related and enhance one another. For
example, Nardo and Reiterer (2009, p. 216) explain that tonal and rhythmic abilities
are measures of musicality and also related to phonetic talent. This idea is also sup-
ported by Tsang et al. (2018), who found a correlation between musical experience and
sensitivity to convergence. Similarly, pitch has been found to correlate with the level
of agreement between interlocutors in dyadic conversation (Okada et al., 2012). The
manner in which distances in vocal behavior decrease or increase may depend on further
aspects of the social environment and auditory context, as suggested by Noy (1999). To
sum up, convergence to musical stimuli was observed, but not in the same way for pitch
and tempo. While tempo became globally closer to the recorded version in absolute
terms, the tones were produced more precisely but with no change in tonal range (the
key). Additionally, fewer large deviations occurring in the shadowing performances, but
the tones in the baseline production were slightly more accurate as a whole. Finally,
the simpler, more frequent rhythmic patterns were more correctly replicated by partic-
ipants. Furthermore, with one exception, participants were not able to replicate the
entire lullaby. Interestingly, they remembered either part A or B, but did not mix bars
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from both.

As for the HCI experiment, different degrees of convergence were found for each
of the three target features. The feature [E:] vs. [e:] showed significant convergence
effects for the shadowing phase in the natural and HMM stimulus sets. The areas
covered by each vowel in Figure 5.7 sheds light on possible reasons for the overall worse
performance of the synthetic stimuli. First, the vowels of the same category from the
male and female diphone voices occupy a much larger area than those from the male and
female natural voices, which results in a less distinct convergence target. And second,
all instances that are supposed to be [E:] in the female HMM voice are located in the
area of [e:]. Hence, in the HMM condition, all participants with preference [e:] actually
heard their preferred version of the vowel in half of the trials during the shadowing
phase. These lead to the conclusion that the lack of a stronger effect could be due to the
acoustic properties of the target vowels in the synthetic stimuli and not necessarily to the
synthetic nature of the stimuli itself. The feature [Iç] vs. [Ik] was found to be a consistent
trigger of phonetic convergence. For all three stimulus types, the participants produced
the opposite variant than their preference in roughly a third of the trials. These cases of
convergence do not only stem from participants that already showed both target forms
in the baseline production, but also from participants that produced only one of the two
forms in the baseline phase. This is a strong effect compared to the other two target
features. It might be explained by the fact that this feature is categorical by nature,
as opposed to the other features which have two defined categories but are realized on
a continuum (formant values and segment length). The feature [n

"
] vs. [@n] showed a

rather small convergence effect. This was expected, as schwa is not usually produced
in the word-final sequence -en. Nevertheless, in all three conditions more instances of
schwa were produced during the shadowing phase than in the baseline and post phase.
These productions are mostly attributable to one or two participants per condition were
sensitive to this segmental feature nevertheless. It was also observed that apart from the
identified group differences, the overall degree of convergence varied considerably among
the participants, with some being “resistant” to external influence and others sensitive to
them. In conclusion, it can be summarized that humans do indeed converge phonetically
when interacting with synthesized speech, even if to a smaller extent. However, the
degree of convergence depends on the nature of the target feature. The perceptibility
of the target feature in the stimuli is proposed as a possible explanation for the fact
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that one of the examined features did not show the same extent of convergence for the
synthetic stimuli as for the natural ones.

The two shadowing studies presented here show that vocal accommodation can be
found in a controlled experimental environment as part of a quasi-conversational sce-
nario. As a continuation to the findings in Chapter 4, these results demonstrate that
vocal accommodation occurs also in non-speech and human-computer settings. These –
and especially the latter – prove that accommodation effects are not exclusive to HHIs
and thus lay the foundations for further investigation of vocal accommodation in HCI.
In chapter Chapter 6, accommodation toward a computer-based interlocutor is exam-
ined in conversational, goal-oriented tasks. The great individual differences found in
these experiments inspired part of the parameters and approaches used in Chapters 7
to 8. Their importance lies in the ability to define different “characters” (or profiles, see
Section 3.3.3) based on different human behaviors, rather than letting a system behave
the same in every interaction. Furthermore, showing that convergence can occur in
segmental features as well emphasizes the importance of control over such properties in
synthetic speech for triggering vocal accommodation, which is attributed mostly to HHI.
The segmental manipulations demonstrated in Section 9.2.2 show how such differences
can be achieved.
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Chapter 6

Accommodation in Multiparty
Interactions with an Agent

More dynamic vocal behaviors can be established in interactions with multiple
interlocutors. This is not only due to the additional possible connections between

them, but also because of other factors, like order of speech or the role of each speaker. A
human-human-computer interaction study is presented in this chapter, where the effects
of different aspects and conditions on vocal accommodation are investigated.



6.1 Speech variations in human-human-computer interaction

6.1 Speech variations in human-human-computer interac-
tion

Nowadays, we are witnessing an ever-growing presence of devices with spoken interac-
tion capabilities in our everyday lives. As argued in Section 3.2.1, the use of personal
assistants (PAs) is rapidly increasing, as more mundane tasks can be achieved using
them. The question arises, therefore, whether different speech patterns and character-
istics emerge in such human-computer interaction (HCI) compared to human-human
interaction (HHI); and if yes, which. The vast majority of experimental work done in
the field of vocal accommodation deals with the smallest social interactions, namely
dyadic conversations. Those can be dyads of two human speakers in HHI, or a human
and a computer-based agent in HCI. Vocal accommodation in these types of interac-
tions is explored in Chapters 4 and 5. However, social interactions may also consist
of three or more participants. This is true for both HHI and HCI, but also for inter-
actions with mixed human and computer-based interlocutors and specifically multiple
humans talking with a single device. The latter can occur in various situations, like
a person consulting a voice assistant (VA) regarding availability in a weekly schedule
while setting an appointment with a colleague or two friends ordering tickets from a
voice-activated machine. Mixed multiparty interactions already take place in various
real-world situations lives. Their popularity – and sometimes necessity – increase along-
side the rise in use of conversational AI (C-AI) devices, such as VAs, voice-activated
cars, hands-free medical assistants, intelligent tutoring systems (ITSs), social robots,
and others. It is important, therefore, to understand whether convergence, divergence,
and other effects (like those described in Section 2.1.1) may occur not only in HCIs,
but in human-human-computer interactions (HHCIs) as well. Various HCI experiments
have shown that participants speak differently to computers and change their speech
behavior during the interaction (e.g., Branigan et al., 2010). Some works also compared
the reaction of participants to different configurations of the computer-based interlocu-
tor (e.g., Levitan et al., 2016). Yet, none of the above has performed a comparison
between human-directed and computer-directed speech within a single multiparty inter-
action. Moreover, only the influence of the system’s speech output on the user speech
is typically examined in accommodation experiments, but not the influence of another
human interlocutor.
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Empirical work on multiparty HCI includes experiment where participants interact
with different types of agents, like social robots (Foster et al., 2012; Ibrahim et al., 2019)
and human avatars in immersive virtual worlds (Traum and Rickel, 2002). Even in dyadic
form, spoken interactions are a hard task for computers. All the more so, when more than
one other interlocutors are involved. Measuring accommodation becomes more complex
with multiple interlocutors involved, as discussed in Rahimi et al. (2019). There are
many technical challenges on the way to realistic, real-time interactions with computers,
including – but not limited to – center-of-attention detection, active speaker detection,
turn taking, understanding private and shared knowledge, and of course correct speech
production and understanding. Interactions with machines are challenging for humans,
too, since the former do not behave and react the same way (and often speed) as humans.
An example of such a social activity that is reasonably easy for humans to learn but still
far from being feasible by computers are social games with a large number of participants.
These games typically require the players to be deceptive, track and exploit the behaviors
of others, and react quickly to ever-changing dynamics between the players. Jonell et al.
(2018) describe the challenges of such scenarios and discusses way to cope with them.
The type and severity of those problems depend also on the type of the computer-based
agent (see Section 3.2). For instance, embodied agents at least have some basic way to
convey non-verbal information, whereas voice-only systems like VAs do not. On the one
hand, this gives a wider range of expressions to embodied systems, but requires more
communication channels to implement and coordinate on the other hand.

This chapter presents a study that examines interaction-level vocal accommodation
in HHCI. In this paradigm, two human speakers work collaboratively with an agent to
complete tasks while only one of them can talk directly to the agent. More details about
the dataset and the tasks are given in Section 6.2. Investigating such a scenario con-
tributes to the understanding of both the role of an agent in interactions with multiple
humans and the influence of another human in a HHCI. These two aspects are examined
in the two components of the study: The addressee component focuses on the differ-
ences between the participant’s addressed interlocutor within a conversation (see Raveh
et al., 2019c), and the crowd component spotlights the influence of an additional human
interlocutor on the participant’s speech toward the agent (see Raveh et al., 2019a). The
question tackled by the second component is whether and to what extent speaking to a
second human interlocutor in the same interaction as the agent influences the accommo-
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Participant Alexa

(a) Solo condition

Participant

Confederate

Alexa

(b) Confederate condition

Figure 6.1: Illustration of solo and confederate conditions. A black arrow represents
direction of speech from speaker to addressee. Note that the confederate (in green)
never talks or addressed by Alexa, but only the participant (blue).

dation toward it, i.e., whether users speak differently towards a VA when another human
participates in the interaction. to that end, the distributional and temporal analyses
performed in Section 6.3 are based on the participants’ speech directions, i.e., human-
directed speech (HDS) and device-directed speech (DDS), as illustrated in Figures 6.2
and 6.3.

6.2 Dataset

The accommodations study presented here uses the Voice Assistant Conversation Corpus
(VACC)15, introduced by Siegert et al. (2018). This corpus is suitable for this study,
because it comprises both HCIs and HHCIs with a 2nd generation Amazon Echo Dot
device using the default skill set and German female voice of the voice assistant (VA)
Alexa. These configurations are referred to here as solo and confederate conditions,
respectively. Figure 6.1 illustrates the interlocutor relations in each condition. Similar
corpora were used to study automatic addressee detection (e.g., Turnhout et al., 2005;

15http://www.iikt.ovgu.de/iesk/en/Research+Groups/MDS/Research/VACC-p-4624.html
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Shriberg et al., 2013). Although the study here does not set addressee detection or
classification as a goal, it aims to provide insights and accommodation-related measures
that may be useful for such tasks. In the VACC, the male confederate was present in
the room only during tasks in the confederate condition and always sat at the same
location. To simulate the spatial situation of a multi-party interaction with a VA, the
participant and the confederate sat in similar distance from the device that was situated
on a table, roughly forming an equilateral triangle (see Figure 2 in Siegert et al., 2018).
The participant had led the interactions with both the confederate and Alexa, and the
confederate never talked to Alexa directly. Therefore, in the confederate condition,
the participant needed to alternately speak with the confederate and Alexa alternately
as part of the same interaction, without explicitly signaling to whom each utterance
is addressed. Two tasks were performed in each condition: In the calendar task, the
participant’s goal was to find available time slots for several hypothetical appointments
with the confederate. The participant’s pre-defined calendar was stored on the device
and was accessible only via inquiries to Alexa. In the solo condition, the participants
got written information about the confederate’s availability, whereas in the confederate
condition, the confederate could be asked about it. The goal of the quiz task is to answer
trivia questions, like “When was Albert Einstein born?”. Since Alexa was not always
able to immediately provide a full answer to all the questions, the required information
could be gathered incrementally over multiple turns. Here, the participant solved the
quiz alone in the solo condition or teamed up with the confederate so that the two could
discuss the question-asking strategy in the confederate conditions. The calendar task was
designed so that the way to its solution is relatively straightforward: Query the device
for possible times till a match is found. This requires interacting mostly – if not only –
with the computer-based interlocutor. Indeed, this task typically elicited interactions, in
which the participant interacted with the confederate or the device in discretely separate
turn blocks in the confederate conditions. DDS blocks were, unsurprisingly, longer, as
the confederate was only addressed when additional information about the task was
required. The quiz task’s flow was more flexible, since the strategy as to which questions
to ask Alexa can be determined by the participant, including the amount and frequency
of the confederate’s intervention in the confederate conditions. Indeed, more dynamic
alternations between HDS and DDS were observed in this task. As a whole, the quiz
task is less formal than the calendar task.
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The dataset contains recordings of 27 (14 female) German native speakers in the
age range of 20 to 32 years (mean 24 ±3.3). Each participant performed the quiz and
calendar tasks in both solo and confederate conditions, for a total of 108 interactions
(2 tasks × 2 conditions × 27 participants). These interactions consist of approximately
13,500 utterances, which were manually transcribed and annotated (speaker, speech
times, addressee, etc.) and stretch over total recording time of 17 h 7min (31min average
interaction length). The permutations of the tasks, conditions, and their order were
balanced.

Annotations

Each utterance in an interaction was annotated with its speaker, context, and textual
transcription. The speaker of each utterance could be the participant, Alexa, or the con-
federate. Cross-talk was rare, as the participants typically waited till the confederate or
Alexa finished talking (except for when they tried to interrupt Alexa mid-utterance if the
response was unquestionably wrong or irrelevant due to a recognition error). The context
marks the utterance’s interaction type, like HDS, DDS, cross-talk, off-talk, laughter, and
more. To deal with clearer data, only HDS and DDS contexts were used for analysis,
which, together, constituted over 90% of the interactions’ recording time. Transcrip-
tions were obtained using the Google Cloud Speech API automatic speech recognition
service and were subsequently manually verified and corrected. Utterances’ start and
end times were derived directly from the transcriptions’ timestamps.

6.3 Analysis

A subset of the VACC was used for the analysis in each component, which is suitable
for the speech directions in question. Figures 6.2 and 6.3 illustrate the examined speech
directions in each component. Only the 54 interactions from the confederate conditions
were used for the addressee component, as the alternations between HDS and DDS
within an interaction were examined. For the crowd component, all 108 interactions
were taken, because the comparison required executions of the tasks performed in both
solo and confederate conditions. Interactions of all 27 participants were included in both
subsets. Despite the different sizes of the subsets, the number of comparisons was the
same for both components, since the addressee component used both speech directions of
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(a) HDS in confederate condition (b) DDS in confederate condition

Figure 6.2: Illustration of the compared speech directions in the addressee component.
The orange arrows mark the compared speech directions (participant to confederate and
participant to Alexa).

the participants in each interaction (54 × 2 = 108) and the crowd component used only
DDS but from both conditions (54 × 1 + 54 × 1 = 108). These subsets were analyzed
based on the audio signals and the annotations described in Section 6.2. The speaker
annotations were used to determine to which of the three speakers the measured values
should be ascribed. The text transcriptions were only used for verifying the correct
audio segments were analyzed. Comparisons were made between the utterances of the
same interaction, i.e., within a single task.

To increase temporal resolution, the audio signals were cut into two-seconds slices.
A single slice always contained audio from a turn of a single speaker. Any remainder
shorter than 2 seconds got a separate slice. For example, a turn of length 5.2 s was
sliced into three slices of 2 s, 2 s, and 1.2 s. This way, values measured in a slice could
belong only to one speaker. Splitting the turns also creates equal, consecutive, and more
comparable time units for an interaction without introducing artificial boundaries by
dividing it into a pre-defined number of parts (as in Silber-Varod et al., 2018). This is
especially important for the temporal analysis (Section 6.4.2). Slice lengths of 0.5, 1, 5,
and 10 seconds were experimented with as well. However, those were proved too short
to capture changes in articulation rate (AR) (see below), which is dependent on the size
of this window, or two long for a comparable and uniform temporal resolution. Two
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(a) DDS in solo condition (b) DDS in confederate condition

Figure 6.3: Illustration of the compared speech directions in the crowd component. The
orange arrows mark the compared speech directions (participant to Alexa with and
without the presence of the confederate).

seconds was found to be a good compromise based on these criteria.
The following phonetic features were targeted:

Fundamental frequency (f0) – mean pitch measured within a slice with hop size of
100ms and a pre-defined range of 60Hz to 350Hz. Gregory et al. (1993) found
that this feature is used to produce social similitude and cohesiveness in dyadic in-
terviews. Moreover, this feature showed convergence effects in an auditory naming
task (Babel and Bulatov, 2012) and a HCI shadowing task (Bulatov, 2009).

Intensity – mean intensity measured within a slice with hop size of 100ms. This feature
showed significant entrainment effects in game scenarios (Levitan and Hirschberg,
2011) and as a indicator for social desirability (Natale, 1975).

Articulation rate (AR) – the ratio of number of syllables to phonation time within
a slice, as described in De Jong and Wempe (2009). Schweitzer and Lewandowski
(2013) examined this feature in the context of phonetic convergence, but no effect
was found on turn-level and interaction-level analyses.

All features were measured individually in each slice automatically using Praat (Boersma,
2018) scripts. The preprocessing and analysis were performed using the system intro-
duced in Raveh et al. (2018, and see Chapter 10).
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Table 6.1: Percentages of interactions in which the distributional difference of each
feature was significant

f0 intensity AR
signif. diff. 74% 89% 13%
HDS mean (standard deviation) 10.5 Hz 2.95 dB 0.627
DDS mean (standard deviation) 10 Hz 2.61 dB 0.634

6.4 Results

Two analyses were carried out: distributional and temporal. The first looks at global
differences on the interaction level of the participants’ productions. The second examines
time-based, continuous changes in the similarity between the participants and the other
interlocutors.

6.4.1 Distributional analysis

The means, medians, and standard deviations of the target features in the participants’
speech in each of the interactions were calculated for both HDS and DDS. These measures
shed light on the overall range of values used when the participant was talking to each
of the other two interlocutors. They were listed for each target feature chronologically
throughout the interaction. These lists were divided into four speech directions based on
speaker and context: the participant talking to the confederate, the participant talking
to Alexa, the confederate talking to the participant, and Alexa talking to the participant
(see four arrows in Figure 6.1(b)). The contrast between HDS and DDS is observable
within the participant’s speech only, which was active in both contexts. To detect
these differences, the distribution of their respective values in the solo and confederate
conditions in each interaction pair were compared. This was done by using the two-
sample Wilcoxon test (Wilcoxon, 1945), with α = 0.05 with the null hypothesis that
similar distributions of the target feature were used in both conditions. A significant
result of the test means that the participant produced the respective feature differently
when interacting with Alexa alone compared to when the confederate participated as
well. Table 6.1 shows the percentage of interaction pairs in which the null hypothesis
was rejected, i.e., that the feature was utilized differently by the participant in each
condition.
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Figure 6.4: Examples of f0 distributions in HDS and DDS with a significant difference
(top; quiz task of participant 20171127A; p ≪ 0.0001, α = 0.05) and an insignificant
difference (bottom; calendar task of participant 20171127C; p = 0.71, α = 0.05). The
colors represent distributions of the participant (blue), Alexa (red), and the confederate
(green). The line style differentiates between HDS (dashed line) and DDS (solid line).
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Figure 6.5: Examples of intensity distributions in HDS and DDS with a significant dif-
ference (top; quiz task of participant 20171127A; p≪ 0.0001, α = 0.05) and insignificant
difference (bottom; calendar task of participant 20171127C; p = 0.55, α = 0.05). The
colors represent distributions of the participant (blue), Alexa (red), and the confederate
(green). The widths of a boxes represent the value frequencies and the ‘+’ sign marks
their respective means.

113



6.4 Results

Table 6.2: Percentage of interaction pairs with significant differences with respect to
each target feature with all the interactions together and separated by order tasks.

feature any order solo first confederate first

f0 67 72 60
intensity 67 76 56
AR 30 31 28

Figure 6.4 show examples of the distributions of a participant’s f0 in HDS and DDS
contexts in the addressee component. Since a female voice was always used for Alexa
and the confederate was always male, there is a natural gap between their f0 values. This
gap leaves room for convergence to occur, i.e., change in the participants’ production in
the direction one of the other interlocutors. As Table 6.1 shows, in 74% of the cases out
of the 54 analyzed interactions the difference of the participant’s f0 between HDS and
DDS was significant. Out of those, in 85% of the cases the distribution mass of DDS
contained higher values than HDS’s, which indicates accommodation towards Alexa.
Unlike f0, absolute intensity values may not be as meaningful due to the device’s and
the confederate’s location relative to the participant’s microphone. This means that the
absolute values of the participant’s intensity in HDS and DDS can be compared directly,
but only relatively against Alexa’s and the confederate’s. Therefore, the differences of
this feature as shown in Figure 6.5 should only be compared between the participant’s
both speech direction within an interaction. These differences between the participants’
HDS and DDS were significant in 89% of the cases. In general, participants tended to
speak to Alexa with a louder voice than to the confederate, although their distance from
either was the same. The differences between AR distributions in HDS and DDS were
significant in 13% of the cases. This shows that the participants largely spoke with the
confederate at the same speed as with Alexa. Interestingly, the AR was temporarily
considerably lower when the participants tried to improve intelligibility, especially if the
system’s output indicated that it did not correctly understand the participant’s utterance
due to a recognition error. In the confederate component, the performed each task both
alone and with the confederate. Since chronologically, by design, one of the conditions
needed to precede the other, the percentages were also calculated separately for the
cases where tasks were performed first in the solo condition and then in the confederate
condition, and vice versa. This separation shows whether interacting first with Alexa
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alone, without any human input, influenced the vocal behavior of the participants. As
there were no breaks between the components, the only factors for change were the
order of the conditions and the involvement of another human speaker. As shown in
Table 6.2, the percentages of significant differences when interacting first only with
Alexa were indeed higher by 12%, 20%, and 3% for f0, intensity, and AR, respectively.
Figure 6.6 further breaks down the differences between interaction pairs and introduces
the factor of the performed task. In line with the tendency shown in Table 6.1, the
features f0 and intensity have the highest percentages of significant cases, regardless of
the performed task, and the tasks performed first show higher percentages of different
distributions. In the lower percentages, it is the task, rather than the target feature,
that shows differences between the cases. And last, for AR, with the lowest percentages,
there is a clear difference between the quiz and the calendar tasks. All in all, the task
factor was a good indicator only for the feature with the lowest difference percentage and
the order factor was more informative for the features with higher percentages. To sum
up, these results show significant differences in the majority of the cases for two of the
three features for both the addressee and crowd components. These outcomes provide a
look into further aspects of HDS and DDS and speech-related features in HHCI, which
may help studies in topics like addressee detection or vocal accommodation in multiparty
interactions.

6.4.2 Temporal analysis

Looking at the distributional differences of the target features in HDS and DDS sheds
light on the general speech behaviors of the participants. However, this analysis leaves
out an important aspect of spoken interactions, namely the time dimension. While the
interaction-level distribution measures show accommodation effects based on te overall
range and frequency of a feature’s values, the temporal analysis adds the information
as to how they changed over time. Adding the time dimension gives an overview of an
interaction’s structure and reveals additional insights regarding its dynamics, such as
turn lengths, turn switching, pauses, and accommodation effects. For that, trend lines
for the temporal changes needs to be calculated. This was achieved by smoothing the
measured value using locally estimated scatterplot smoothing (LOESS) (Cleveland and
Devlin, 1988), a non-parametric regression method that deterministically fits a function
to a localized subset of the data. The fitting was done for each speaker separately over all
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Figure 6.6: Percentages of cases with a significant difference between a feature’s distribu-
tions in the solo and confederate conditions. A case is a combination of the factors task,
feature, and order. For example, the case Q.intensity.2 contains the comparisons
of intensity in interactions of the quiz task where solo condition was performed second.

slices of HDS and DDS with measured values of the features. The first plot in Figure 6.7
shows a case where the absolute f0 values are roughly the same in HDS and DDS, but
the participant’s change patterns are different. In the DDS context, the participant
generally keeps a stable distance from Alexa’s voice, whereas in the HDS context the
f0 values gradually get closer to the confederate’s. In both contexts, the participant’s
f0 starts around 150Hz, but in HDS the minimum f0 is only slightly below this initial
value, whereas in DDS it drops as far as 25Hz lower. A similar example is shown in the
second plot in Figure 6.7 for the intensity feature. Unlike the previous example, here
the absolute values between HDS and DDS steadily differ by about 5 dB (matching the
tendency to talk louder toward Alexa, as described above), but the overall change is
similar. That is, in both cases the intensity rises from the beginning to around a quarter
of the interaction’s duration, and then decreases again until the end, in HDS more
quickly than in DDS, down to approximately the same value as at the beginning. Since

116



Chapter 6 – Accommodation in Multiparty Interactions with an Agent

Figure 6.7 shows two examples of the quiz task performed by two different participants,
it is possible to compare the structure of these interactions as well. As described in
Section 6.2, the quiz task in the confederate condition is designed so that the two human
speakers need to find an efficient way to solve the questions using Alexa. After improving
their strategy, the lead should ultimately be taken by the participant, who interacts with
Alexa to solve the questions as quickly and correctly as possible. In both examples, the
first half of the interaction contains relatively short turns and rapid addressee changes.
This might be ascribed to the fact that the participants are still trying to figure out
the best way to interact with Alexa and the confederate. Then, sometime after the
middle of the interaction, there is a larger block of DDS, followed by some more turns
of HDS where the participants discuss with the confederate about ways to solve the
remaining questions. Finally, the interactions end with a shorter block of DDS, in which
the participants finish these last questions of the quiz. This structure quiz task was
found in most participants’ performances.

The accommodation in each conversation were further examined by measuring the
contribution of the participant to the overall mutual change. Figure 6.8 illustrated a
comparison of a participant’s changes in the solo and confederate conditions. The lower
part of each plot shows the accommodation changes of the participant during the in-
teraction (blue for convergence and red for divergence), and the upper part shows the
floor changes. Note that the confederate condition has fewer floor changes, because the
analysis concentrates on the participant and Alexa, and the confederate turns are not
shown. The relationship between a feature’s values in each slice needs to be determined
to describe their temporal changes. To investigate the accommodation effects, a measure
for the relative change between slices was used, which calculates the participant’s con-
tribution to the overall change in proximity between the participant and Alexa. Alexa’s
contribution is considered to be a static effect, as it is not deliberately changing its
output based on the participant’s speech.The degree of change between two slices is
calculated by

changet =−∆t,t−1 | Spart−SAlexa |, (6.4.1)

where the index t refers to the current slice and Spart and SAlexa are the smoothed values
of the participant and Alexa, respectively. The minus sign at the front flips the value
so that convergence is represented by positive values and divergence by negative values.
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Figure 6.7: The changes of f0 (top; quiz task of participant 20171129A) and intensity
(bottom; quiz task of participant 20171129B) over time in DDS and HDS (upper and
lower parts of each plot, respectively). Alexa’s voice is marked in red, the confederate
in green, and the participant in blue. The timespans on the x-axis are represented by
turn slices, as explained in Section 6.3, and the y-axis shows the values of the feature.
A slice’s background color indicates the speaker in this slice and the dots with the same
color show the measured value of the feature in that slice. The trend lines are smoothed
values calculated by LOESS (Cleveland and Devlin, 1988).
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Figure 6.8: A comparison between f0 changes in solo (left) and confederate (right) con-
ditions. The horizontal lines show the smoothed trends of the participant (blue) and
Alexa (red). Confederate turns and omitted segments (as per Section 6.2), are not col-
ored (gray). The vertical bars in the upper halves represent the turns of the participant
(blue) and Alexa (red). The color-scaled vertical bars at the bottom halves show the
convergence (blue) or divergence (red) level of the participant as calculated by Equa-
tion 6.4.2. The darker the color, the greater the effect, with white indicating no change
(or synchrony, in segments with both trends moving the same way).

Subsequently, the participant’s contribution toward the accommodation is calculated by

accomm(participant)t = changet−∆t,t−1SAlexa. (6.4.2)

The sum of the changes of each target feature produced by all participants in every
interaction (i.e., a sex-task-condition-order combination) was calculated, resulting in a
single value that represents the overall change per feature. A value greater than zero
means that more convergence was observed, while a negative value points to more diver-
gence. There were only two instances where this value was exactly zero, both for the AR
feature. These instances were treated as cases of divergence, for their divergence spans
were longer. Using this approach, only a few interactions had no feature convergence
in them, and several had all three features showing convergence. However, a stricter
threshold was applied, where a feature was considered as converging only if its overall
accommodation value was higher than one standard deviation from its mean. Based on
this criterion, all interactions were categorized by the number of features that showed
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more convergence in them. Figure 6.9 summarizes this categorization for each factor.
Each line represents a single interaction, and the strata it goes through form the factor
combination of this interaction. The number of features that showed more convergence
than divergence overall is marked by the color of the line. Some tendencies emerge from
this categorization: first, in 35% of the interactions, there was at least one feature that
showed convergence, but in none of them did so all three features (though there were
such cases with the more tolerant criterion). In seven interactions, two features showed
convergence, two of which by male participants and five by females. In total, males
converged in 5% of all measurements and females in 7%. Furthermore, of all converged
features, 58% occurred in the solo condition, compared to 42% in the confederate condi-
tion. However, no substantial difference between the calendar and quiz tasks was found,
with 49% and 51% of the cases, respectively. The same holds for the comparison be-
tween the two orders in which the tasks could be performed. These results support the
addition of the confederate to the interaction as the factor for less convergence occurring
in interactions.

6.5 Conclusion

The study in this chapter investigated vocal accommodation in human-human-computer
interaction (HHCI). Addressee and crowd components of the study examined different
aspects of simulated real-world use cases, in which a human user talks alternately with a
computer-based interlocutor and another human interlocutor. The addressee component
looked at differences between human-directed speech (HDS) and device-directed speech
(DDS) within an interaction, while the crowd component focused on differences in DDS
with and without the presence of the other human speaker. Distributional and temporal
accommodation analyses were performed in both components to provide interaction-level
and time-related insights.

Three features were analyzed in the study: fundamental frequency (f0), intensity, and
articulation rate (AR). The first two features show a greater degree of difference in both
components than the third. Furthermore the changes were even greater in the crowd
component, in which a human interlocutor was involved. This indicates that not only
f0 and intensity are more prone to variation than AR in general, but also that human
interlocutors trigger these variations more. There several possible reasons for this dif-
ference. First, computer-based agents, such as Amazon Alexa used here, do not change
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Figure 6.9: Overview of the relation between the factors sex, condition, task, and
order and the number of features that showed more convergence in total across all
interactions. Each line represents one interaction. The line colors stand for the number
of target features that showed overall convergence in this interaction, from none (zero
features, in gray), through one (red), and up to two (blue). For example, a blue line
going through the strata sequence female→ solo→ quiz→ first represents an interaction
with a female participant performing the quiz task in solo condition first, in which the
participant converged in two out of the three target features.

their speech output in any way, regardless of variations in the user’s speech input. As a
social, mutual process, accommodation is more likely to be stronger if both interlocutors
contribute to the overall effect. In this study, the process can only be mutual in HDS,
where another human is involved. Nevertheless, accommodation indeed occurred in DDS
as well, both with and without the presence of the confederate. Secondly, due to this
spontaneous nature of accommodation in HHI, the participants might have automati-
cally spoken more dynamically toward the confederate, due to the inherently expected
dynamic variations is in human interlocutor. Finally, VAs (and voice-activated devices
as a whole) are, for the most part, still not performing well enough for people to speak
to them as fluently and naturally as with humans. This results in a different manner of
talking to machines. For example, users are more likely to articulate whole sentences,
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typically without reformulating, when requested to repeat their utterance by the device,
whereas human interlocutors are capable of requesting and conveying corrections with
shorter segments using intonation and other means. Furthermore, although generally
more seldom vary, users tend to reduce their AR when repeating their utterances to the
device, or when trying to be more clear. This resembles the way people talk to children
when they want to be more clear. However, due to the way automatic speech recognition
(ASR) systems are trained, more often than not this achieves the opposite result. While
participant did not change their AR much toward Alexa, they did show accommodation
in f0. This can be explained by the natural difference in male and female f0 ranges, which
leaves room for accommodation for participants of both sexes (Alexa used a female voice
while the confederate was always male). In that case, the results shown here point to the
fact that the participants generally treated Alexa as a human interlocutor with regards to
f0 behavior, as opposed to talking to Alexa using a more monotonous f0. This happened
despite Alexa not varying her f0 beyond the sentence-level intonation. A similar effect
was found for intensity. Since the device and the confederate were squally distanced
from the participants, there was no apparent reason for the participants to speak more
loudly with either interlocutor. Therefore, an explanation of the tendency to speak more
loudly to the device may come from the intuition that a computer-based system has a
harder time understanding human speech and therefore needs a clearer signal (also using
lower AR, as explained above). This stands in line with the interpretation that humans
sometimes treat voice-activated devices as humans who need a hyper-articulated speech
signal to understand, like toddlers or language learners16. Another explanation may be
the illusion that Alexa feels more distant than the human interlocutor because she is
not an embodied agent (cf. Staum Casasanto et al., 2010; Gijssels et al., 2016, and see
Section 3.2 for further details). Keeping in mind that humans strive to communicate
as efficiently as possible, it seems like changing these features helped the participants
– or at least felt like they did – to interact better with Alexa. Regardless of whether
this roots from the unconscious attempt to treat the device as a social actor in the

16In a sense, this analogy is correct, as the devices – and specifically their ASR components – indeed
learn to process speech signals. Despite that, this process is different than the way babies acquire
spoken language, and therefore such projection on the speech style does not help the device improving
its understanding of the user. Moreover, slower or disfluent speech may actually hinder the systems’
understanding, as they are typically not trained on this kind of speech.
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conversation (Nass et al., 1994; Nass and Moon, 2000) or the fact that accommodation
occurs, even if to a lesser extent, even when it’s not mutual, the effect still took place.
This is, however, not the case with AR, which shows a lower percentage of significant
differences. This indicates that AR does not tend to vary as much as f0 and intensity,
which stands in line with other studies, like Schweitzer and Lewandowski (2013). Slower,
more carefully articulated speech, occurs less often in regular speech than louder speech
or higher pitch. Such enhanced articulation not only takes longer to produce, but also
requires more effort, making it a less preferred way to communicate, unless necessary. In
this somewhat formal experimental setting, participants are likely to speak more slowly
than usual, and the motivation to complete the task in a short time encourages them not
to speak even more slowly. This supports the hypothesis that extra slow speech would
only be used when necessary, e.g., when a repetition is required due to a recognition
error on the system’s side. Once the misunderstanding was resolved, participants’ went
back to their original AR. These local changes may suggest that changes in AR are done
more consciously than in other phonetic features.

The results presented in Tables 6.1 and 6.2 show for all three features (a) that the
distributions differed more when the participants first interacted with the device alone,
and (b) that more convergence was aggregated in the task that was performed first.
This demonstrates the influences of the order factor. Furthermore, the factors sex and
task indicate that female participants showed a slightly higher amount of convergence
in total than male participants, and that the performed task did not play role the
increase or decrease of convergence. The first speech input a participant encounters
may cause a priming effect that, together with the natural tendency to converge to an
interlocutor, results in a greater change in interactions that occur first. However, the
interchangeability of input (here, both HHI and HCI) seems to hinder the ability of the
participants to converge to Alexa. One explanation for this may be that it is more natural
for humans to accommodate to other humans, so once another human is involved, the
accommodation towards the computer-based interlocutor is annulled. Another possible
explanation is that due to the multiple interlocutors, the participants do not have a
steady target to accommodate toward, which leads to a weakened convergence effect.
This is confirmed by the higher number of convergence instances in the solo condition
compared to the confederate condition in both the temporal and distributional analyses.
This could be explained as a reaction to a more stable vocal target (especially since
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Alexa generally doesn’t change her voice much) than when alternating between two
interlocutors. Since HCI still lacks the mutuality of accommodation effects, the question
arises whether these tendencies would be stronger in interactions with a single human
versus interactions with two human speakers simultaneously. The higher number of
convergence instances by female participants may be ascribed to the VA using a voice
of the same sex and could be further investigated by using a VA with a male voice.

124



III

Modeling





Chapter 7

Computational Model

For a computer to express accommodative speech, a machine-understandable descrip-
tion of the process is required. This chapter introduces a model of the accommoda-

tion process in humans, based on the finding in the human-human and human-computer
studies presented in previous chapters. It’s motivated by empirical data observed in these
studies and aims to resemble the process that occurs in humans. The human-centric in-
siprations and the parameters representing them are discussed and demonstrated.



7.1 From HHI to HCI

7.1 From HHI to HCI

The experiments presented in Part II show humans’ accommodation behaviors in differ-
ent human-human interaction (HHI) and human-computer interaction (HCI) settings.
Complementary to those, Section 3.3.3 discusses ways to represent the various levels
of accommodative behaviors in computers. Since behavioral changes, as explained by
communication accommodation theory (CAT) (see Section 2.1), happen naturally and
often unconsciously in HHI, it is not trivial to transfer them to computers, as they need
defined rules and numeric representation to process. Numeric values can be achieved
by applying some measuring technique appropriate for each feature, like formant val-
ues for vowel quality or frequency for fundamental frequency (f0). Rules for different
behaviors, however, cannot be directly constructed, due to the intuitive nature of this
inherent phenomenon, but can instead be inferred from observed HHI data. For exam-
ple, the results of the study described in Chapter 5 reveal a high degree of variation
across participants (Section 5.3.2). While this is expected, further examination of these
variations uncovers some general properties that can be taken as a basis for character-
izing the different changes. The link between the measured raw values and systematic
rules should be a machine-applicable equivalence of the accommodation process in hu-
mans. Such parallelisms would need to model, for instance, the way humans percept
accommodation-prone sounds, how they interact with previous instances and the cur-
rent internal state of the sound in question, and the cognitive process of the phonetic
changes. Therefore, such a model should include the perception of the phonetic fea-
tures, representation of the state change of each feature in memory, and the realization
of the changes during a conversation. Since these steps are dependent on each other, the
computational model presented here is depicted as a pipeline, in which each of its steps
stands for one of the sub-processes mentioned above.

7.2 Pipeline representation

As accommodation happens automatically and seamlessly in human interlocutors’ cog-
nition, it is hard to say what are the exact steps this process comprises. Some key
properties stand out when examining many occurrences in different interactions. The
pipeline presented here aims to capture these properties and offer a defined process of
describing the changes. The advantages of representing this process as a pipeline (as op-
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posed to, e.g., a one-step, end-to-end conversion) is that each facet of the process can be
interpreted and controlled separately (as demonstrated in Section 9.1.1 and Figure 7.1).
This enables combining and experimenting with different methods and implementations
for each step while maintaining their independence of each other. The ability to substi-
tute a single step’s logic without influencing ther others grants the freedom to experiment
with different methods without losing the core principles of the accommodation process.
For example, the calculation method in the update step can be changed or even re-
placed by a statistical model (like the one introduced in Chapter 8). Note that although
only speech-related features are discussed here, this pipeline could be used for describ-
ing changes in other types of features and modalities, such as lexical choices, linguistic
complexity, eye gaze, emotional state, etc.

The proposed pipeline representation consists of the following five main steps, which
are explained in detail in Sections 7.2.1 to 7.2.5:
detect hear and identify a feature that can be changed, corresponding to a human

ear’s ability to notice such variations;

filter decide whether the encountered feature’s instance appears in a way that can
trigger change, capturing the inherent detection of phonological context and
rules in the language;

store add the instance to the exemplar pool of this feature, representing the inventory
that builds the internal representation of the feature;

update update the feature’s state, standing for the “recalculation” of the way this
feature is perceived by the speaker; and

assign apply and potentially limit the updated state, expressing the change in a
speaker’s production of this feature with the individual preference as to how
far to go with a change.

The output of each step is the direct input for the next, except for cases where the
execution is discontinued due to an unmet condition (see Figure 7.1).

7.2.1 Detect

This step stands for the human ability to identify phonemes in speech and analyze the
way they are realized. The input to this first step in the pipeline is the raw speech
signal of the speaker and its output is a sequence of realizations that may contain pho-
netic changes. The automatic speech recognition (ASR) component of the system is
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Figure 7.1: Overview of the vocal accommodation pipeline. Rectangle nodes represent
steps where an action is performed, round rectangles are inputs (either external or from
the system), and diamond-shaped nodes stand for decision points. Nodes without a “no”
edge indicate termination of the process at that point if their condition is not met (and
therefore no accommodation takes place). The pipeline is successfully completed only
once the “Set feature’s new value” node is reached.

responsible for detecting these realizations and their timestamps in the signal. With
this information, various methods can be used to define and measure target features to
take into consideration and pass forward. Section 9.1.1.1 shows an example of such a
definition and how it is used in a spoken dialogue system (SDS).

An interlocutor cannot accommodate to features that are not present in a speaker’s
speech. For changes on any level to happen, some pre-defined feature that is prone to
change needs to be present and detected in the input speech stream. Moreover, for the
changes to register as a variation of a feature, the realization produced by the speaker
must be prominent and distinctive enough to be perceived by the listener. In the case
of computers, that means a way to measure the difference between realizations and
classify their distance from one another. This difference can be categorical or continual,
depending on the feature. In addition, not only the features which introduce meaningful
difference are language- and culture-dependent, but they might also differ based on
the specific situation in which the interaction takes place. For example, a segmental
feature of a language where a phoneme can be realized in two alternative ways (as the
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allophonic alteration explained in Section 5.3.1.1) will probably be ignored by a speaker
of a language where only one of these vowels exist in its repository. In this case, the two
vowels will simply be mentally merged into one, without causing any difficulties with
comprehension. Suprasegmental features, like f0 contour and articulation rate (AR),
occur globally across the speech signal and are more often cross-lingual. Still, for a
computer to be able to detect and track changes in those features, a way to measure and
compare them is required.

7.2.2 Filter

This step corresponds the human internal, often unconscious, linguistic knowledge, and
how it is used to decide which detected realizations are valid new instances that will
be stored in memory. Its input is instances of a defined target feature detected in the
previous step and it outputs those instances that should be stored as exemplars of their
respective features. Section 9.1.1.2 demonstrates how a filter is applied based on a
phonological rule and a feature definition with a target phoneme.

A target phoneme serves as an anchor for a rule that aims to capture a phonetic
feature or a more evolved phonological rule. For example, the German phonological
rule of [@] elision at word-final -en (as described by Equation 5.3.1) can be captured
by the phoneme sequence /C@n/, where C represents a consonant (although in practice
only a subset of the German consonants inventory can be placed at this position). The
anchor phoneme is [@], since this is the segment that is subject to the change, namely
the length – or complete absence – of it. therefore, for this phenomenon, the target
phoneme would be [@] and the measured feature would be segment length. Another
target feature described in Section 5.3.1.1 is [e:] vs. [E:] realization of the mid-word
grapheme ä, which is captured by the target anchor phoneme [E] in a non-final position
of a word. Any defined feature goes through two filters. First, the phonological context
of the detected sequence is matched against the one defined for the target feature; and
secondly, the defined accepted value range that would make it an acceptable instance
of that phenomenon, like [@] length between 0ms and 60ms or appropriate F1 and F2

values for the [e:] and [E:] vowels in the aforementioned features. After applying these
two filters, only those instances that truthfully capture the desired phonetic phenomenon
are kept. Another purpose of this step is to provide a way to integrate phonetic expertise
to be used in the process. This helps not only to be more accurate regarding language-
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Figure 7.2: Illustration of an exemplar pool. Each exemplar is represented by a column
of squares (each representing a numeric value). A new exemplar is added to the feature’s
pool when encountered. Old exemplars are removed when the pool is full. Exemplars
currently in the pool are taken into account when the realization of the feature is deter-
mined.

specific knowledge, but also to prevent ASR errors to propagate further in the pipeline.

7.2.3 Store

This step represents the mental phonetic memory of a speaker, here referred to as a pool
for a computer-based interlocutor. The input to it is a feature’s exemplars that passed
the filtering step and its output is used for updating the feature’s representation. An
illustration of an exemplar pool is shown in Figure 7.2 and an implementation of it is
described in Section 9.1.1.3.

After an instance of a feature is detected and validated, it needs to be registered as
an exemplar of the feature it is associated with. This stands in parallel to the way such
exemplars (and in other contexts also words, meanings, etc.) are mentally stored in
the human’s short- and long-term memories. These accumulated exemplars of a feature
determine how a speaker perceives it and shape its production when used in speech. One
of the complexities of modeling such internal representation is the interleaving influences
of both long-term and short-term memory. In spoken interaction, the long-term mem-
ory may define the typical productions of a user, while the short-term memory is used
and changed within a single conversation. Since this model aims to describe accommo-
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dation occurring within the scope of a single, isolated interaction (even if a long one),
only the storage of exemplars encountered in this interaction is explicitly addressed in
it. However, long-term effects may be implicitly achieved by retaining values between
interactions. This step also defines how new exemplars are added, stored, and removed
(cf. Figure 7.2). Each feature has its own exemplar pool to which newly encountered
exemplars are “memorized”, and each exemplar is a vector of the values measured for
the target feature, e.g., formant values). The pool functions in a first-in-first-out fashion,
fitting the temporally linear progression of spoken interaction. An exemplar is repre-
sented by a vector with cardinality n, where n is the number of dimensions required
for describing this feature. Whenever an exemplar of the feature is encountered, a new
exemplar is added to the pool. The size of the pool determines the memory capacity,
i.e., for how long exemplars are remembered during the interaction. If the pool is al-
ready at full capacity, the oldest exemplar is “forgotten” when a new exemplar is added.
Ultimately, a pool of a feature can be used to determine which exemplars are still af-
fecting the speaker’s mental state of a feature. As the order of the added exemplars is
kept, it can be taken into account as well when determining each exemplar’s weight, just
like recent turns are more likely to influence the current utterance than turns from the
beginning of the conversation.

7.2.4 Update

This step incorporates the process of changing the mental state of a feature based on its
accumulated exemplars. The input to it is the current state of a feature and it outputs
a new value for it.

The core of the accommodation process is the change in a feature’s state. Many
factors may influence this change, both internal and external. The two main considera-
tions in this step are one of each, namely the desired accommodation behavior and the
exemplars collected from the user’s speech input. The latter is covered by the “store”
step, and the former is defined using adjustable parameters that correspond to accom-
modation properties in humans (see Table 7.1). For example, how prone is the speaker
to be influenced by others’ speech and how easily should the change be triggered. The
sensitivity can be constant or vary based, e.g., on how close are the speakers’ produc-
tions to begin with. A trigger might be exemplar-based, i.e., after a certain number of
new exemplars were added, or time-based, i.e., every time a certain amount of turns
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had passed. Another means to shape the behavior is the way the new state is com-
puted based on the exemplars. For example, newer exemplars or exemplars with greater
distance from the current state may influence the change more. Moreover, the general
tendency to accommodate is defined in this step, e.g., converging or diverging from
the user’s speech, which is determined, among others, by the application and desired
behavior. A computer-assisted pronunciation training (CAPT) system would probably
not aim to align its speech to the user’s, but rather diverge from it as a way to pro-
vide auditory feedback. This computation can use simple mathematical operations (as
demonstrated in Section 9.1.1.4) or more involved data-driven statistical methods (as
the one in Chapter 8).

7.2.5 Assign

This step mediates between the new state of a feature and its use in the system’s speech
output. The input to it is the newly calculated state of a feature and it outputs a poten-
tially altered version of this state to be used by the text-to-speech (TTS) component.

This final step of the pipeline is responsible for assigning the features’ representations
to the speech production of the system as an additional input to the system’s TTS
component. For a TTS module that can directly control the speech output (as part of the
model itself or on the outputted waveform, as discussed in Section 9.2.2), this additional
information can be used to manipulate the target features in a way that expresses the
accommodative behavior of the system. This closes the circle from a target feature
produced by the user and up to the change it triggered in the system when it speaks
back. Since that means the user will now hear certain vocal characteristics that are based
on their own speech, it is important to avoid a situation where the user feels imitated – or
even mocked – by the systems. This is an important issue that has not been considered
in previous work. To that end, this step introduces a limitation mechanism that limits
the values given to the TTS component. The values are re-evaluated if some threshold
is bypassed (see Equation 9.1.8), to avoid such imitation from the system’s side. This
mechanism also helps to prevent the system from diverging too sharply from the user.
For example, a CAPT system might demotivate or frustrate the user if its speech is
consistently considerably different from the user’s. From a human’s perspective, this
step corresponds to the natural degree to which a speakers would change their speech
while talking to others. As shown in Chapters 5 and 6, this varies from feature to feature,
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Figure 7.3: Illustration of a manipulated output audio waveform. Each colored pin
marks a phonetic features captured and processed by the pipeline.

and hence this parameter is set for each feature individually (see Table 7.1). For this to
work, it is important that the features are sufficiently distinguishable and clearly defined
by the pipeline, so that the specified modification in the system’s speech output can be
properly applied in – and only in – the correct places, as illustrated in Figure 7.3.

7.3 Parameters

Several parameters are introduced into the pipeline described in Section 7.2 to grant
degrees of freedom in shaping the accommodation behavior. These parameters link
between the theoretical, schematic model and its integration into a SDS, as demonstrated
in Chapter 9. They are also the key to experimentation with different settings and
scenarios for different applications. The model’s parameters are summarized in Table 7.1
(and cf. Raveh et al., 2017b).

As shown in Section 5.3, not all participants showed the same sensitivity toward
changes in the stimuli. Here, sensitivity refers to the degree of overall change toward
external speech input. Additionally, when one does converge, the sensitivity to changes
(i.e., the “amount of differentiation”) toward every single stimulus might differ as well.
These two aspects are jointly controlled by the convergence rate, which represents the
balance between the current and heard speech when calculating the accommodation out-
come. Generally, low convergence rate leads to a slow (and potentially unnoticeable)
change, while a high rate would lead to sharper changes and that may overshoot the
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Table 7.1: Computational model’s parameters in their order of use. The colors mark parameters associates with the detect,
filter, store, update, and assign steps.

Parameter Description Value
target phoneme* the phoneme that triggers the feature’s pipeline a phoneme symbol
phonetic context* the environment in which the feature instance is

accepted
regex containing the of phoneme
symbols containing target phoneme

allowed range* the value range(s) in which new instances are
accepted

two numeric values (min and max) per
feature dimension

exemplar pool size maximum number of exemplars in memory at a
time, oldest exemplar removed when full

positive integer

update frequency how frequently a feature’s value is recalculated,
controlling the accommodation pace

non-negative integer; 0 for manual
update

calculation method* the manner in which the pool value is calculated
based on the values and order of the exemplars in
pool

any Rn×m −→ Rm function; either
implemented directly in code or sent to
an external statistical model

convergence rate weight of the exemplar pool when updating the
feature’s state, controlling the impact of external
input on the speaker’s features states

real value; typically n ∈ (0,1)⊂ R; 0 for
ignoring the pool; > 1 for
over-weighting the pool value

convergence limit* the maximum degree of convergence allowed for the
feature with respect to the input instances

real value; n ∈ (0,1]⊂ R; 1 (100%) for
no limitation

* denotes parameters that are defined individually for each feature136
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target, as demonstrated in Table 10.2 and Figure 10.5. To simulate the case where a
speaker is not influenced by external speech input (the exemplars in the pool) at all,
this rate can be set to zero. In that case, the model will ignore the other interlocutor’s
speech and stick to the current speech style. Another difference found among the par-
ticipants was the total overall convergence degree toward the stimuli, i.e., where does
the convergence process stop. This is monitored by the convergence limit, which defines
the maximally allowed degree of similarity between the interlocutors. When set to 1
(100%), the model is allowed to change up to 100% toward the other interlocutor (com-
plete convergence); when set to 0.8, up to 80%, and so on. The parameter ensures that
the model does not simply imitate the user’s input, which is the approach often found
in such system nowadays. By limiting the change, the accommodation process is more
gradual and restrained, avoiding peaks and abrupt changes.

Parameters defining the adaptation itself are not enough. To properly model an
accommodative behavior, some aspects that are not directly related to the speech out-
put are required as well. The accommodation process relies on the recent instances
(exemplars) of a speech sound. How many exemplars are taken into account when the
feature’s state is updated depends on the interlocutor’s mental memory of that sound.
This internal memory is a complex mechanism (Baddeley, 2003), which is simplified here
into a single parameter, namely the exemplar pool size, which determines the number of
exemplars the interlocutor currently remembers. This exemplar history is managed on
a first-in-first-out basis, so that the order in which the exemplars were acquired is kept
as well and can be used for weighting their influence. This pool size can be tweaked
to match the scenario and the expected interaction length. The tendency to converge
toward other interlocutors also differs from speaker to speaker. This likelihood is con-
trolled by a parameter the parameter convergence rate. After an exemplar is added to
a feature’s pool, an update of the feature’s value may be triggered. Whether and how
often this happens is determined by the update frequency. When set to 1, an update
will occur every time an exemplar is added; if set to 2, every other exemplar, and so
on. When set to 0, however, updates will only take place when explicitly requested, e.g.,
after a pre-determined number of turns or a fixed amount of time. This can be useful
when all features are to be updated at the same time, regardless of how many exemplars
have been accumulated for each of them. Increasing the update interval means that each
update will be affected by a higher number of new exemplars, which might result in a
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smoother converging process, depending on the calculation method used (see below).
Additionally, a longer update interval also means that accommodation will generally
take longer, since the model’s features are not being updated as frequently. This is
fitting for systems with which the user is expected to have long interactions.

Not only the frequency of updates plays a roll in the process, but also the manner in
which the update is performed. This manner is determined by the calculation method.
Since the features in the model are represented by vectors, any function that takes a
matrix as input and outputs a vector as output can be used, as demonstrated in Sec-
tion 9.1.1.4. The method can be either statistical or deterministic, e.g., simply averaging
the exemplars, but methods that can take order into account, like decaying average,
might yield more realistic accommodative behaviors. A different calculation method can
be assigned to each feature, which can help to account for acoustic or psycholinguistic
constraints. This can also be influenced by the setting the system is purposed for, like
experimental, exploratory, data collection, etc.

For each feature, a target phoneme is defined, which serves two purposes: First, it
tells the ASR component which phoneme is associated with this feature, to later forward
it for further analysis. Secondly, it is used in the phonetic context to filter instances
of the phoneme that should not be associated with the feature. The context is the
environment in which the target phoneme should be found in the ASR output sequence
for the instance to be considered17. For suprasegmental features – or any other feature
that is not bound to a specific phoneme or context – the target phoneme can remain
empty, so that the phonetic context would match any sequence. The second parameter
used to put constrains on the detected phones is the allowed range, which defines the
minimum and maximum acceptable values for the feature. This parameter is important
to obtain clean and sensible exemplars, as it introduces restrictions based on phonetic
knowledge (e.g., reasonable f0 values for a human speaker), which at the same time also
help to prevent ASR errors from meddling with the exemplars sent to the pool. Since
these values are feature-dependent, this parameter is set for each feature individually.

17This requires an ASR engine that returns such a sequence in addition to textual output. It is
therefore crucial that the phoneme symbol set used in the model and by the ASR is the same and
unambiguous, specifically when used in a regular expression. This is the only part of the pipeline that
is language-dependent (or rather symbol-dependent) Using non-ASCII symbol sets, like IPA, may solve
many of these issues, but is not recommended since ASR engines rarely use those� and also due to other
technical reasons.
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Chapter 8

Probabilistic Variational Model

Granting a system an accommodative behavior beyond a direct response to the
user’s input is a major and understudied challenge in HCI. In live HHIs, the

behavior of a speaker varies both within and across conversations. This chapter presents
a statistical approach that generates variational behaviors, which can be integrated into
a spoken dialogue system to offer non-deterministic accommodative outputs.



8.1 Time series representation with Gaussian processes

The statistical approach presented in this chapter offers a different way to model and
simulate accommodative behaviors. It determines the system’s next output value based
on probabilities calculated from a dataset, unlike the method introduced in Chapter 7
where the output value is determined based on pre-defined parameters. While the latter
achieves responsiveness in a spoken dialogue system (SDS) per the definition in Sec-
tion 3.3.3, the former grants profiles and variability. This is done using two ways to
describe accommodation in a conversation. The first is a continuous representation,
where the speakers’ productions are treated as time series and interpolated. The chosen
interpolation lines estimates the speakers’ productions for the whole conversation, as
explained in Section 8.1. The second representation uses accommodation categories to
describe the nature of the mutual changes observed in the speakers’ productions (e.g.,
convergence or divergence). As shown in Section 8.2, these categories allow to represent
accommodation more abstractly and give meaning to the productions’ raw values. Using
this unified representations, n-gram probabilities of these categories can be calculated to
predict the next accommodation event in a conversation. Section 8.3 shows how these
two representations are combined into one statistical model. The overall type of change
is generated by the n-gram probabilities and the specific variational value is determined
by selecting an interpolation line based on the already observed productions. This pro-
cess is demonstrated by clustering speaker behaviors from a dataset to generate different
system outputs for a given user input.

8.1 Time series representation with Gaussian processes

The approach presented in this chapter capitalizes on the temporal nature of spoken
interaction, with emphasis on the evolution of mutual accommodation over the course
of an interaction, which expands upon the temporal analyses performed in Chapters 4
and 6. As in those chapters, features’ values are chronologically sampled across equal
time intervals, and are therefore treated as time series. By extension, accommodation
can be viewed as time series ass well. This is motivated by the arguments explained in
Section 6.4.2, vis. that representing mutual changes by merely a few points throughout
an interaction or directly comparing its beginning state to its end state is not very
informative and draws a rather simplistic picture (see Section 2.2.2 and Figure 2.2 for
details and examples).

This variability in this approach is achieved by fitting a GP to each speaker. GPes
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(a) RBF kernel prior (lengthscale = 1) (b) RBF kernel posterior (lengthscale = 0.279)

Figure 8.1:18 Prior and posterior distributions of an RBF kernel with mean zero, resulted
in a Gaussian process GP (0(x⃗),Σ(x⃗)). Each color line stands for a drawing (prediction)
from the prior and posterior distributions, and the thicker black line shows the overall
mean of the distributions. The red circles are the known datapoints on which the kernel
was optimized to fit, and the gray areas mark the 95% confidence intervals above and
below the overall mean. The length scale parameter (in parentheses) determines the
length of the “wiggles” of the functions

are stochastic processes with a multivariate normal distribution for each random vari-
able. A GP provides the joint distribution for infinitely many random variables, i.e., a
distribution over functions that match the given evidence. Specifically, GPes are used
here for kriging (Section 8.1.2), an interpolation technique used for time series interpola-
tion and prediction. The utilization of GPes provides not only continuous likelihood line
for the observed features, but also an infinite number of non-deterministic alternatives –
the variations – to generate vocal behaviors by randomly sampling from a GP. The gen-
eration process presented here can be combined with the aforementioned computational
model to harness the benefits of both, as discussed in Section 9.1.2.

8.1.1 Kernel building and tuning

Kernels (or covariance functions) are a key component in GPes, as they define the
similarity between the GP’s random variables. They define the the covariance k(x,x′)
between each pair of observed values x and x′, so that k(·, ·) determines how similar the
outputs y∗ and y′

∗ will be. Formally, a covariance function can be described as K(u,v) =
ϕ(u) · ϕ(v), where ϕ(·) is a function that maps the input vectors into a transformed

18Adapted from https://scikit-learn.org/stable/_images/sphx_glr_plot_gpr_prior_posterior_001.
png
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feature space. Which function to use is a key consideration when using GPes, as it
determines the behavior of the sampled functions and the nature of the predictions it
will be making. A kernel’s parameters are optimized to achieve functions that better fit
the data. Since accommodation analyses deals with the difference between production
values (as opposed to the values themselves), stationary kernels are more suitable for
fitting GP for them, as they are shaped by the distances between each pair of datapoints
rather than their absolute values. A kernel may also be composed of multiple other
kernels, to capture a combination of characteristics. This is done either by multiplication
or addition of these kernels. Multiplication-based kernels are maximized when all of its
kernel factors yield high values, whereas addition-based kernels are maximized when any
of their addend kernels yield a high value. An additive kernel with constant, radial basis
function (RBF), and noise terms is used here (see Equations 8.1.1 to 8.1.3 below). The
RBF term determines the general shape of the curve (see example in Figure 8.1), the
constant term enables shifting of the curve if necessary, and the noise term adds degrees
of freedom in case the curve cannot completely fit the input signal.

The definitions of the individual kernels are as follows:

Constant kernel – is a simple kernel that assigns the same value for all input pairs.
Since by itself it does not offer a lot of characteristic to the covariance function, it
is usually used in combination with other kernels, where it scales the magnitude of
the other factors, or as part of a sum kernel, in which it modifies the mean of the
Gaussian process. It has a single parameter, the constant value, and it is defined
as

kconstant({C},x1,x2) = C∀x1,x2, (8.1.1)

where C is the constant value parameter.

Noise kernel – is a kernel used for capturing unexplained variation in the data. It is
typically based on the constant kernel as part of a sum kernel, in which it explains
the noise component of a signal. In this context, the constant parameter is tuned to
estimate the noise level in the interlocutor’s mutual change (including distortions
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caused recognition errors). This is determined by

knoise({noise_level},x1,x2) =

Cnoise_level, if x1 = x2

0, otherwise,
(8.1.2)

where noise_level equals to the variance of the noise found in the input signal.

Radial-basis function (RBF) kernel – also known as squared exponential kernel,
this kernel is a stationary kernel with one parameter, lengthscale ℓ > 0. This
kernel typically results in generally smoothed functions, with the lengthscale being
associated with the long-term smoothness and degree of variability on the time
dimension. The RBF kernel is defined as

kRBF ({ℓ},x,x′) = σ2exp

(
∥x1−x2∥2d

2ℓ2

)
, (8.1.3)

where ∥x1−x2∥ is the Euclidean distance between two d-dimensional input points
and σ2 is the data variance. Figure 8.1 shows prior and posterior examples of the
RBF kernel.

8.1.2 Data interpolation

As also motivated in Sections 2.2.2 and 6.4.2, artificially splitting interactions into a fixed,
pre-determined number of parts to measure accommodation results in a limited view on
the accommodation events due to sparsity of observation. To overcome that, the mutual
changes should be evaluated continuously throughout the interaction instead of by point-
to-point comparisons, where the temporal gaps between datapoints might be greatly
unbalanced. This requires some interpolation method to achieve more general trends
based on the observed productions. One way of achieving that is using some smoothing
algorithms, like locally estimated scatterplot smoothing (LOESS) in Figure 6.7, which is
adequate for gaining a smooth estimation of a speaker’s overall performance. A similar
approach is used in Galvez et al. (2020), in which the average values obtained by time-
aligned moving average (TAMA; Kousidis et al., 2008; Kousidis and Dorran, 2009) define
the behaviors. However, TAMA values may conceal turns with substantial changes
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introduced by one of the speakers. A more evolved approach is presented here to describe
a speaker’s vocal behavior in a conversation as a distribution over functions that match
the accumulated evidence from that speaker’s productions.

Kriging (or Gaussian process regression) is an interpolation method that gives an
optimally fitted and unbiased prediction of intermediate values. Since this method fits
a function distribution over the data, it not only yields mathematically more likely
values, but also provides a curve that describes the characteristics of the interpolated
curved, as opposed to more naive methods like linear interpolation or smoothing spline.
Another advantage of this method is that it offers a distribution over functions rather
than specific values. Therefore, an infinite number of suitable functions can be sampled
from one fitted kernel and their likelihood can be evaluated. Such samples are illustrated
in Figure 8.1(b), where each line represents a mean regression prediction drawn from the
posterior distribution based on the given datapoints. This method was applied to each
interlocutor in the human-computer interaction (HCI) portion of the dataset presented
in Section 6.2. It is described by

f∗(x⃗) = GP(µx⃗,Σ∗), (8.1.4)

where µx⃗ is the mean feature value of a single speaker and Σ∗ is the fitted additive
covariance function described in Section 8.1.1. It is important to note that the mean is
not zeroed (as often done in GP regressions), to maintain the original input’s mean for
the subsequent steps. The kernel was initialized with the priors C = 1, ℓ = 1, and no
assumptions regarding the noise level ξ. The search boundaries for the RBF and noise
components were 1 < ℓ < 100 and 1×10−4 < ξ < 10, respectively, with a maximum of six
optimization iterations. The datapoints of the original series were grouped by the turn
they belong to. Then, the average values of turns immediately before and after a floor
change were taken as input datapoints for the GP. This results in evidence concentrated
around input from the other interlocutor, with the objective to capture turning points
that are more prone to accommodation. With the fitted kernel, a continuous prediction
can be made for each speaker over the entire conversation timespan. Figure 8.2 shows
an example of GP predictions for one of the conversations.
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Figure 8.2: Gaussian process regression for an interaction of a participant with Alexa.
The thick blue and red lines show the predictions’ mean. The additional lines around
the means are randomly drawn functions from the fitted kernel representing potential
variational output. The colored areas around the means lines show the 95% confident
interval for the distributions of the same color. The straight horizontal lines indicate
the overall mean of each speaker’s productions. The posterior parameters and the log
marginal likelihoods of the fitted distributions are stated at the top.

8.1.3 Marking degrees of change

Once a regression line is drawn for each speaker from their respective distributions, the
differences between the speakers’ productions can be measured. Due to the high temporal
resolution used here, more fine-grained degrees of change over time can be calculated.
These differences are calculated by the subtracting the trapped areas between the two
regression lines (see Figure 8.2)

fdiff ≡∆x⃗∗ =
∫ x⃗j

x⃗i

µf∗participant−
∫ x⃗j

x⃗i

µf∗alexa (8.1.5)

and the directional derivatives of the resulted delta line to measure the degree of change

∇∆x⃗′
∗ = d

dx
fdiff (8.1.6)
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Figure 8.3: Continuous integral differences (red line) and their corresponding derivatives
(blue line) of speakers’ productions in a conversation. The dashed green line shows the
zero-gradient, i.e., no-change threshold.

(a) Continuous scale (b) Discrete scale

Figure 8.4: Continuous and discrete color-coded scales for labeling degrees of change in
a conversation.

along the delta line. Figure 8.3 illustrates these two measures on the same conversation
from Figure 8.2 using the mean prediction of each speaker. For creating a generation
process as described in Sections 8.2 and 8.3, the changes must be marked with pre-
defined labels. To that end, the derivative values were translated into a continuum of
change ranging from divergence to convergence. Based on this continuum, a discrete
scale can be defined. The more categories this discrete scale offers, the more specific the
behavior descriptions can be. Figure 8.4 shows this process for a discrete scale of three
categories: divergence, no (major) change, and convergence.
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8.2 N-gram representation for accommodation sequences

In order to generate accommodation sequences, a model that can iteratively emit la-
bels based on the label history is needed (in contrast to, e.g., models with the Markov
property, as in Bellman, 1957). An n-gram model is proposed here, which incorporates
a portion of a sequence’s history (context). The estimation of the element e at posi-
tion i is calculated by the probability term P (ei | ei−n, . . . ,ei−1). N-gram models are
traditionally used for describing sequences of linguistic units, like words in a language
model (e.g., Niesler and Woodland, 1996), and are used in applications with sequential
nature, like machine translation (Marino et al., 2006) and proteins identification (Xu
et al., 2015). The n-grams model here describes sequences of accommodation levels in
a conversation. These levels are represented by discretized values that are based on the
degrees of change acquired in Section 8.1.3. After computing the n-grams probabilities
of the level, this model can be used for generating new sequences. The resolution and
variability of the model can be controlled by changing the n-grams’ n and the number
of levels used to distinguish between the different accommodation levels.

8.2.1 Dimensionality reduction and symbolic representation

The time series gradient extraction process described in Section 8.1.3 is greatly high
dimensional, even for short interactions. While this representation is useful for gaining
a fine-grained overview of the data, it is not practical for various analysis techniques
that do not benefit from (or are not designed to handle) such high-dimensional data.
For instance, clustering algorithms, which need to iteratively compare between all points
in a collection, scale better with lower dimensionality. The dimensionality of the data
in question here is reduced using piecewise aggregate approximation (piecewise aggre-
gate approximation; Keogh et al., 2001), which is a common dimensionality reduction
technique for time series. Figure 8.5(a) shows the output of PAA on the gradients of an
interactions. Each element x⃗i of the reduced vector is calculated by

x⃗i = N

n

i( n
N

)∑
j= n

N
(i−1)+1

Sj , (8.2.1)

where n is the dimensionality of the original times series, 1≤N ≤ n is the dimensionality
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(a) PAA of the original time seires. The blue con-
tinuous line shows the z-normalied original time
series of mutual change gradients in a conversa-
tion, which was extracted as described in Sec-
tion 8.1.3. The organe circles show the PAA points
created based on the continuous lines. The dashed
orange line is the linear interpolation between the
PAA points. Note that this lines is for illustration
only and is not taken into account in the analysis.

(b) SAX of the piecewise aggregate approxima-
tion (PAA) values. The blue circles are the PAA
points from Figure 8.5(a). The blue line visual-
izes the linearly interpolated trend of these points.
The horizontal green dashed lines show the mar-
gins of the five bins that split the points discrete
bins derived from a normal distribution. The or-
gane labels (‘d+’, ‘d’, ‘n’, ‘c’, and ‘c+’) mark the
classification of each point based on the bin it falls
into.

Figure 8.5: Piecewise aggregate approximation (PAA) and symbolic aggregate approxi-
mation (SAX) of the time series representation of mutual change in a conversation.

of the output vector, and Sj is the jth element of the original time series. PAA is
suitable here, as the goal is to obtain vectors with fewer dimensions that still faithfully
represent the data, and not, e.g., decompositions of the original data (cf. method survey
in Keogh et al., 2001, pp. 271-275). Since the goal here is to compare trends in change
within and across conversations rather than their absolute values, all gradient time series
where z-normalized before applying the PAA. In the context of conversation analysis,
the PAA’s dimensional cardinality determines the “zoom” level, i.e., how fine-grained
the representation is (the more points the more in detail the time series is described).
Ultimately, PAA provides continuous numeric values that represent the overall shape
of the original time series.

PAA is suitable for analyses of continuous numeric values. However, discrete values
are required for symbolic n-gram sequences. For converting the continuous PAA values,
the symbolic aggregate approximation (SAX; Lin et al., 2007) method was used. SAX
assigns a string label based on a pre-defined number of bins, as shown in Figure 8.5(b).
Such labels provide a more meaningful and compact representation. As explained by
Apostolico et al. (2003), it is preferable to use a discretization technique that uses a
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symbol set with equiprobability. To that end, the SAX discretization was done using
bins based on the normal distribution of the z-normalized values. Five bins, representing
accommodation levels, are used here for categorizing degrees of change, labeled ‘d+’ for
strong divergence, ‘d’ for divergence, ‘n’ for no (major) change, ‘c’ for convergence, and
‘c+’ for strong convergence. This number of bins was found to adequately describe types
of accommodation; three labels resulted in underspecified sequences where all degrees of
convergence or divergence are labeled similarly, and seven or more labels did not provide
substantial additional insights and often yielded sparse sequences. The motivation for
choosing an odd number of labels is to have a neutral (“no-change”) label and even
number of labels for convergence and divergence, due to the assumption that they are
equally likely to occur. However, an even number can be used as well, forcing each
value to stand for either convergence or divergence while ignoring zero values. It is also
possible to allocate more labels to convergence or divergence, if one of them is assumed
to occur more in the data and a more fine-grained description of it is desired. Note
that the term synchrony is avoided here for describing a steady distance between the
speakers, as per its definition in Section 2.1.1 it entails additional properties regarding
the individual change of each speaker. Ultimately, SAX provides discrete textual
labels, which provide a discretized version of the original time series.

8.2.2 Sequence extraction and probability calculation

After applying SAX, a sequence of accommodation labels is obtained for each corre-
sponding interaction. The count distribution of the labels was computed to examine
their frequency. As expected, the symbol n had the highest frequency, about 2.5 times
higher than the convergence and divergence labels c and d, whose frequency, in turn,
was roughly four times higher than the frequency of the strong convergence and strong
divergence labels c+ and d+. The same calculations were repeated for sub-sequences of
the labels as they appear in the SAX sequences. The frequencies can be divided into
three groups: matching the trend of the single-label distribution, repeated n labels were
about three times more frequent than the second group, which consisted of most other
sub-sequences that included n. Lastly, this group was followed by a long tail of less fre-
quent sequences, starting from counts three to four times lower, which included the rest
of the symbol combinations within a sub-sequence. Sub-sequences with many repeated
c+ or d+ labels (i.e., sustained convergence/divergence) mostly appeared toward the
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8.2 N-gram representation for accommodation sequences

Table 8.1: Three examples of probabilistically generated accommodation level sequences.
Each sequence consists of eight labels that were generated based on the initial context
of the padding symbol p. The first line of each example shows the generated symbols as
explained in Section 8.2.1 and their average variability (value between 0 and 1, higher
number means more variability.). The second line lists the probability of each generated
label given the context seen up to that point and the overall probability of generating
this entire sequence. In the third line are the perplexity scores of the trigrams ending
with the corresponding generated label given the context at the time of the generation.
Note that the first two padding labels do not have any scores, since they are given as
the initial context. Similarly, the first generated label does not have a perplexity score,
as it can only be calculated once the sequence is longer than the one trigram.

p p n n n c n d d c variability: 0.187
— — 0.44 0.46 0.55 0.18 0.32 0.29 0.25 0.35 probability: 1.63×10−4

— — — 2.22 1.99 3.16 4.16 3.27 3.67 3.35 perplexity: 3.11

p p n d d c c+ d+ d+ c+ variability: 0.687
— — 0.44 0.17 0.25 0.35 0.13 0.25 0.34 0.19 probability: 1.37×10−5

— — — 3.67 4.88 3.35 4.69 5.62 3.46 3.96 perplexity: 4.23

p p c c+ n n d+ c n n variability: 0.375
— — 0.30 0.25 0.25 0.16 00.04 00.20 0.22 0.41 probability: 2.16×10−6

— — — 3.67 4.03 5.02 12.72 11.51 4.77 3.30 perplexity: 6.43

end of the tail. Increasingly smoother instances of the same overall distribution shape
were found for all sub-sequence lengths from two and up to half the SAX sequence length
(after which such frequencies become not as meaningful).

To calculate label probabilities, these sub-sequences were treated as n-grams with
n = 3, i.e., trigrams. Similar to an n-gram language model, the size of the n-gram deter-
mines the amount of previously acquired evidence taken as context when calculating the
probability of the a subsequent label. This fulfills a similar role as the pool size param-
eter of the computational model (see Section 7.3). In both cases, the goal is to consider
the temporal evolution of the conversation for predicting its continuation. To account
for conversation-initial sequences, the beginning of each symbol sequence was padded.
The end of the sequence is not padded, since, unlike a traditional language model, the
generation process here assumes that the user decides when to end the interaction and
therefore does not attempt to predict it. This summed up to a collection of 2,700 trigrams
from all interactions, which comprised 143 (92%) out of the 53 + 1 × 5 two-padding
+ 5 × 5 one-padding = 155 possible label combinations. This shows a great variety
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of conversation dynamics. Based on these n-grams, sequences of symbols, representing
accommodation levels in a conversation, can be probabilistically generated. The pre-
dicted accommodation label l after two observed convergence labels c is taken from the
probability distribution p(l | c, c). Table 8.1 shows examples of such probabilistically
generated sequences for the first eight accommodation labels of a conversation. The
variability measure is defined as

P (sequence) = 1
N

N∑
i=1

∣∣∣∣num(labeli)
2

∣∣∣∣ , (8.2.2)

where N is the number of labels in the sequence and num(label) maps a label to a
numeric value between -2 (d+) and 2 (c+). The overall probability of the sequence is
calculated by

sequence probability =
N∏

i=3
p(labeli | labeli−2, labeli−1). (8.2.3)

The perplexity measure is the average of all perplexity scores of the individual labels in
the sequence. It is worth noticing that the third sequence in the table has lower variability
than the second, although its overall probability is lower and its mean perplexity is
higher. That means that, based on this model, higher variability is sometimes the
more likely evolution of in interaction. On the other hand, since in most contexts, the
probability of label n is relatively high, sequences with more no-change predictions are
more likely to be generated, on average.

8.3 Clustering and incremental variational generation

To achieve the goal of the generating behaviors based on extracted core behaviors, the
behavior description method from Section 8.1.3 and the n-gram approach from Sec-
tion 8.2 need to be combined. On top of this, turn-level variations can be introduced
using the GPes, as explained in Section 8.1. This will result in a variational probabilistic
generation based on core behaviors detected in the dataset.

First, clusters of participant behaviors are sought to detect general similarities in
behavioral patterns. Two clustering methods were utilized, namely k-means and hier-

151



8.3 Clustering and incremental variational generation
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Figure 8.6: k-means clustering of the first three PCA components of the interactions’
PAA sequences. Each circle represents one sequence in the three-dimensional space. A
circle’s color indicates the cluster to which the datapoint belongs.

archical linkage, each offering different insights on the data. The former method is a
top-down approach with a pre-defined number of clusters, which offer a more general
view on the patterns, and the latter is a bottom-up approach with no prior assumptions,
where more individual differences can be observed. While it cannot be expected to
find a completely distinct pattern for each speaker, some separable clusters and general
tendencies are expected to emerge, both when inspecting individual speakers and the
dataset as a whole. To determine the number of clusters k and the number of projection
dimension d, the the clustering process was performed with two, three, and five clusters
using the two and three first principal component analysis (PCA) components. The
process was repeated 10 times to account for the algorithm’s non-deterministic nature,
with the combination of three clusters and three components best separating the data,
on average. The resulted clusters are shown in Figure 8.6.

While top-down clustering uncovers general grouping of the interactions in the dataset,
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Figure 8.7: Dendrogram of the time series PAA representations of the interactions based on complete-linkage distances.
Each cluster is represented by a different color of lines. Each leaf represent the interaction indicated by its label. Each
participant’s interactions pair is marked by labels of the same color. The leaf and cluster colors are not related. The leaves
are order horizontally by their distance from left to right, so that the leaves of interactions that are more similar to each
other (both inter- and within-cluster) are positioned closer. For example, the two interactions of participant 20171201A
(12th and 13th leaves from the right) are the closet to each, as they are positioned together and within the same smaller
sub-cluster. Contrarily, the labels of participant 20171128B are positioned the furthest from each other (6th and 41st leaves
from the left).
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bottom-up hierarchical clustering can reveal structural relations between them and mea-
sures their degrees of similarity. The distances between the 54 interactions can be
measured and compared using their PAA values, as calculated in Section 8.2.1. The
calculation was done using the complete linkage agglomeration technique (a.k.a. farthest
point algorithm). This use of this linkage is motivated by the assumption that there are
more general behavioral patterns to find beyond the speakers’ individual behaviors, as
it searches for the most dissimilar (and hence principally all) interactions in neighboring
clusters and not only the closest one (single linkage). This method also allows using
the entire PAA vectors without any pre-processing. Figure 8.7 shows the bottom-up
distance clustering based on this linkage. Although, unsurprisingly, no definite order
emerges, some general trends can be seen regarding the similarity between interactions
of the same human speaker. Seeing that leaves are ordered horizontally based on their
overall similarity, the distances between their positions can be utilized to determine each
participant’s behavior consistency. The average distance of the population is 16.5, far
from the maximal possible average of 27, which points to a general tendency of speakers
to behave similarly in their conversations. To reinforce this claim, dividing the space into
three equal bins of “short”, “medium”, and “long” distances shows that 16, 10, and 1 in-
teraction(s) fall into these bins, respectively. Moreover, this distribution has a median of
16 and its second tertiles located at 19, far from the “long distance” bin. Such skewness
in the distribution indicates that speakers’ behaviors are more often than not similar
across interactions, regardless of any other factor (interaction length, task, order, and
other factors discussed in Chapter 6). Notably, the two interactions of one participant,
20171201A, even have the minimal possible distance of 1 between them (12th and 13th

leaves from the right in Figure 8.7) and they are in the same lowest-level sub-cluster.

These clustering techniques show that different accommodative behaviors among
speakers can be found and compared. Together with the probabilistic approach presented
in Section 8.2.2, these can be used for generating sequences based on a specific behavior
– or rather a group of latent behaviors. Ultimately, this would result in the system
having a core behavior with variations, per the description in Section 2.1.1. To this
end, an incremental generation process is needed. As opposed to the generation process
demonstrated in Table 8.1, where the data for the entire interaction was known, an
incremental generation is introduced here. An incremental generation better represents
a live interaction, in which only the evidence accumulated up to a certain turn can be
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Figure 8.8: Schema of the incremental generation process. Blue boxes are related to the
user phase and orange boxes to the system phase. Together, they complete a cycle of
one round. The dashed orange frame marks an optional step. Note that the new value
generated for the system is used both as output (e.g., for text-to-speech (TTS) synthesis)
and as additional evidence for the next cycle. The user’s values can be obtained either
from online input or from some database.

used for analysis and prediction of the next turn. This can be utilized both for integration
into a system and for simulating possible system behaviors for research. The process
is summarized in Figure 8.8. It consists of the user and the system phases, which are
roughly symmetric and with opposite goals: While the former assigns a label to an input
value, the latter yields a value based on a label (which, in turn, is generated based on
the label assigned to the user’s input). A round is completed each time both phases were
executed once. Hence, each round adds two values and their two corresponding labels,
one for the user and one for the system. In the user phase, the latest system output and
the new user input – obtained either from live input or a database – are added to the
rest of the so-far accumulated evidence of their respective GPes, as done in Section 8.1.2.
Then, deltas and gradients of these values are calculated (Figure 8.3) to subsequently
create PAA and SAX sequences (Figure 8.5). The system phase starts with the SAX
sequence contains one label per turn, including the user’s new turn. The next system
label is generated using the n-gram model with the probabilities acquired from the subset
with the desired accommodative behavior (here, a cluster from Figure 8.6). This label
represents a relative z-normalized change degree. Therefore, the value range covered by
this label can be computed from all accumulated gradients, as indicated by the arrow
between the second user step to the second system step in Figure 8.8. The system’s GP
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Figure 8.9: Responses of the three models, generated for the same user input (in blue).
The dashed lines show the linear overall trend of the solid line of the same color. Note
that these lines should be taken a reference for the general trend and not as a repre-
sentation or estimation of the values.

from the first step is used to draw a single gradient value from that range. These two
steps grant the variational property to the generation process; a label for the overall
accommodation direction and a value for the specific amount of change. The drawn
gradient value and the last system’s gradient are used to determine the new gradient,
from which the next system value can be calculated. The yielded value is then added to
the accumulated evidence, so that it can be taken into account in the user phase’s first
step of the next round. In parallel, it can also be used as additional input for a text-
to-speech (TTS) module of a spoken dialogue system, as demonstrated in Section 3.1
and Figure 9.1. External limitations or policies can intervene in this step to shape the
system’s output (see Section 7.2.5 for more motivation and examples). This combination
of the statistical and computational models is further explored in Section 9.1.2.

This process was used to simulate accommodation changes during a conversation
using the three clusters from Figure 8.6. Although the dataset used here is relatively
small and is not designed to trigger different behaviors, the natural tendencies of the
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participants should be, at least to some extent, reflected in this latent representation
and be expressed in these simulations. For each cluster, an n-gram model was created as
described in Section 8.2.2, based only on the interactions from this cluster. These models
were then used to generate turn-level accommodation response sequences similarly to
those in Table 8.1, but longer and with concrete values in addition to their labels.
However, this time the generation was only for the system’s side, given a pre-defined
input of a human use, simulating a live interaction. In the example showed here, raw
production values from interaction 20171201B_Calendar_02 were used. The first 30
rounds (60 turns) of three hypothetical conversations for this input were generated, one
per model. N-grams of length ten were used, to take advantage of the larger context
available in this longer interaction. All the models started with the mean value of the
system productions in the dataset. This would be known also in a real-world scenario
from the development of the system’s TTS component and hence doesn’t break the
principle that only data available in a real-time conversation can be used. Figure 8.9
shows the simulated interactions. The trend lines show that, by and large, each model
behaves differently: The green line tends towards divergence from the user, the red one
inclines to convergence, and the yellow stays roughly the same regardless of the user’s
productions. These tendencies intensify once the user starts to show stronger variation
around turns 35-40, and subsequently to a lesser extent till the end. Following these
turns, the green line goes more sharply up, the red more sharply down, and the somewhat
more neutral yellow starts to wiggle more. It can be claimed, therefore, that certain
core behaviors were captured by the models, and they are sensitive to external input.
This emphasizes the need to look at accommodation as a mutual process occurring in
context over time and not as a discretized one-sided phenomenon, even if each speaker
has an inert typical behavior. Noticeably, around turn 50 the red line goes down to
fundamental frequency (f0) values that might sound untypical for a female speaker (or
just overly converging in general). This is due to the fact that the models here learn some
theoretical probabilistic accommodative behavior, but do not have any knowledge about
realistic human speech. Such issues can be easily addressed by applying policies based
either on data and expert knowledge, as explained and demonstrated in Section 9.1.2.
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Chapter 9

Accommodation Module for
Spoken Dialogue Systems

Producing accommodative speech output in spoken dialogue systems requires addi-
tional functionality for extracting speech properties from the user’s input to con-

sider when generating the system’s output. This chapter introduces a module for SDS
that adds such functionality to support vocal accommodation. The implementation and
integration details as well as a demonstration of manipulating the system’s output using
this module are presented and discussed.



9.1 Modularization

Table 9.1: Example of a feature definition used in the pipeline. The definition de-
scribed the feature @-length, i.e., length of a segment containing the phoneme [@] (cf.
Section 5.3.1.1).

Property Value Description
phoneme AX the phoneme that triggers this feature
context .+ AX N the context the phoneme must be in
initial 30 the starting value of this feature in the system
minimum 0 the smallest acceptable input value
maximum 80 the largest acceptable input value
measure duration the type of measure used for evaluation
pool size 5 the maximal number of exemplars in memory
update fre-
quency

2 how often the feature’s value is updated

calculation
method

decaying average the manner a new value is calculated

sensitivity 0.5 how quickly the feature changes
limit 0.8 how much the feature may change

9.1 Modularization

An implementation of the pipeline introduced in Section 7.2 is presented here as an
independent module for spoken dialogue systems (SDSs). It is shown how the statistical
components from Chapter 8 can be added to it to take advantage of the capabilities of
both approaches. While supra-segmental features can be handled as well, only segmen-
tal features are discussed here, as they are less represented in accommodation modeling
works and they require additional considerations, like segment context and local ma-
nipulation, as demonstrated in this chapter (as explained in Raveh and Steiner, 2017b).
Thanks to the independence of this module, it can be added into any existing system
that can provide the user’s speech signal as input and a text-to-speech (TTS) module
that can receive its output. The SDS presented in Chapter 10 has this module integrated
into it to generate accommodative behaviors.

9.1.1 Accommodation pipeline

The implementations of the pipeline’s steps will be explained using the feature definition
with the properties described in Table 9.1. The entire implementation is described in
Algorithm 2.
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Algorithm 2: Phonetic responsiveness
Inputs : ASRInput – phonemes from recognized user speech

targetPhonemes – convergence features

Output: feature vectors with accommodated values

1 foreach (phoneme ∈ ASRInput) ∈ targetPhonemes do
2 feature← phoneme.associatedFeature
3 context← feature.phoneticContext
4
5 if not matches(phoneme, context) then // filter based on context
6 break
7
8 if inRange(phoneme, feature.allowedRange) then // filter based on range
9 if poolSize=maxPoolSize then

10 deleteOldestExemplar()
11 feature.addExemplar(phoneme)
12 else
13 break
14
15 if toUpdate = 0 then
16 method← feature.calculationMethod
17 poolV alue←method.calculate(pool)
18 newV alue← rate ·poolV alue+(1− rate) ·feature.currentValue
19 threshold← convergenceLimit ·poolV alue
20
21 if newV alue > threshold then // limit accommodation
22 newV alue← threshold
23 feature.value ← newV alue
24 toUpdate ← updatefrequency
25 else
26 toUpdate ← toUpdate - 1
27 end
The ASRInput (Line 1) must not only contain the n-best hypotheses, but also their corresponding
phoneme sequences. For improving performance, using a single hypothesis is recommended for a small
language model or when very short sentences are expected. Since only the target phonemes are considered
by the pipeline (and suprasegmental features where the specific phonemes do not play a role), some ASR
accuracy may be traded for better performance, depending on the application. For example, a CAPT
system might rely solely on the realization of specific phonemes, regardless of what the user said or
should have said, but the system’s response must be quick.
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9.1.1.1 Detecting exemplars

The first step in the pipeline is detecting segments in the user’s utterance that can
be ascribed to target features defined for the system. For that, an automatic speech
recognition (ASR) engine that emits phoneme times is required. Here, CMU Sphinx19

was used, with functionality to support the emission of phoneme-level information that
was added for this purpose. The pipeline starts once a phoneme associated with a feature
is detected. For example, the feature @-length is triggered whenever the phoneme label
AX is detected in the ASR stream, which stands for [@] German CMU phonemeset. It
is then evaluated using its defined measure; here, its duration. Other measures includes
“formants” for vowel quality, “category” for categorical differences, and more. This step
is performed for each feature separately against each recognized phoneme, as shown in
Algorithm 2. Phonemes not associated with any feature are ignored.

9.1.1.2 Filtering exemplars

Seeing that segmental features are detected merely based on a phoneme in which they
may occur, additional filtering is required to retain only those instances where the phe-
nomenon they aim to capture indeed occurs. This filtering step comes to add any lin-
guistic conditions relevant for the phonetic feature in question beside the phoneme itself.
For example, the feature @-length aims to capture the German phonological process of
elision or epenthesis of @ in word-final <-en>. Therefore, only detected phonemes that
occur in the relevant phonetic context (here, before a word-final n) should be considered.
The regular expression defined in the context property (representing the schwa elision
rule described in Equation 5.3.1) is matched against the surrounding of the detected
phoneme. In addition a range of acceptable input values is defined by the properties
minimum and maximum. This prevents unrealistic values from being considered as an in-
stance of the feature, which might occur due to signal processing errors and inaccuracies
of the ASR module or the measuring process of the feature’s value. In the example of
the @-length feature, only values between 0ms to 80ms are allowed, as a segment cannot
be shorter than 0ms and schwa segments in this context are highly unlikely to be longer
than 80ms. This filtering verifies that all exemplars taken into account when calculating

19https://cmusphinx.github.io/
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a new value for the feature (Section 9.1.1.4) are sensible and would be valid for a human
listener, which prevents unstable behavior of the model.

9.1.1.3 Storing exemplars

The exemplars that remain after the filtering step are kept in the “memory” of the
system to be used when a new value needs to be calculated (see Section 9.1.1.4). This
memory is represented by a matrix, which contains vectors with the exemplars’ values.
Whenever a new exemplar is stored, its value vector is added to the memory matrix.
The pool size property determines the size of the memory. When the memory reaches
its maximal size, the oldest exemplar is “forgotten” to make space for the newest one.
The memory functions like a queue of vectors in the form of

Fdimension−view =


v11 v21 . . . vn1

v12 v22 . . . vn2
...

... . . . ...
v1m v2m . . . vnm

 , (9.1.2)

where each row refers to a single value of the feature, i.e., vnm is the n-th value of the
m-th exemplar.

9.1.1.4 Calculating a new value

The property initial determines the starting value of the feature in the system. This
value may be outside the range allowed for new exemplars. The value of the property
update frequency indicates the number of accumulated new exemplars between each
update of the feature. In the example here, this value is 2, which means that an update is
triggered after every 2 instances of the feature detected in the detecting exemplars step.
A higher value means that updates will be less frequent and hence each exemplar will
be taken into account in fewer updates. The new value of a feature is calculated using
the exemplars stored in the storing exemplars step. This calculation is based on the
calculation method set for the feature. Different calculation methods can represent
different types of approaches to the way accommodation occurs in humans. For example,
in the example of the @-length feature, the decaying average simulates the assumption
that people accommodate more to recent utterances by giving higher weights to newer
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exemplars. Decaying average is defined here as

µn = 1
N

N∑
i=2

(ηvi +(1−η)µi−1), (9.1.3)

where N is the number of exemplars in memory, η is the decay rate, µi−1 is the accu-
mulated decaying average from the previous exemplar, and vi is the value of the i-th
exemplar. Any function g that maps a vector to a scalar (i.e., one feature value) and a
function G which maps a matrix to a vector (the entire feature history) by applying g

to all the rows in F can be used, as in Equation 9.1.4.

G : Qn×m −→Qm, g : Qm −→Q. (9.1.4)

This enables experimentation with different accommodation strategies. The property
sensitivity is used to simulate different levels of human tendencies to accommodate.
It determines the balance between the current value and the newly calculated value from
the exemplar memory when calculating a new value for the feature. In the example here,
the value 0.5 sets an equal weight for the existing value and the user’s input. Lower
values result in a slower accommodation process, while higher values lead to a faster
(and potentially more abrupt) process. This balance is defined by

Υ≡ Cu = ρυ +(1−ρ)Cu−1, (9.1.5)

where Cu is the new feature value, υ is the newly calculated feature value after applying
G, Cu−1 is the current value of the feature, and ρ is the convergence rate. A ρ value
of 0 means that the exemplars are ignored, i.e., no convergence occurs and the current
value is retained; a value of 1 will result in complete convergence, i.e., the current value
is ignored. While a typical sensitivity value would be between 0 and 1, smaller and
greater values could be meaningful in some applications to achieve over-divergence or
over-convergence, respectively. As shown in Part II, peoples’ accommodation may vary
considerably in human-human interactions (HHIs) and human-computer interactions
(HCIs) and different settings. This parameter can help to tune the system’s behavior
to achieve the desired behavior in the interaction. For instance, in a tutoring system
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for pronunciation training, the desired behavior might be for the system to diverge from
users’ input when it detects that their pronunciation is wrong. By reflecting the users’
utterance with overly diverged pronunciation (instead of explicitly pointing out their
mistake), the user receives auditory feedback in a more implicit and “conversational”
learning process.

9.1.1.5 Setting the new value

The process ends with transferring the new feature value to the system’s TTS component,
so that it can be used the next time this feature appears in the system’s output. After
this step, this new value will be used whenever this feature is used by a system using
this model (as shown in Section 9.2.1). This step is responsible for an important issue,
namely preventing or allowing user imitation. After some turns, it might happen that
the model would calculate a value very close to the user’s input and then continues to
follow the user’s production values, resulting in imitation of the user. Depending on the
feature, this might sound weird to the user or even be perceived as mocking. To avoid
that, the new value is limited in how close it is allowed to get to the exemplars. This
is regulated by the property limit, which defines the maximally allowed proximity (in
percentage) to the user: Setting this property to 0.8, as in the example feature used
here, means that the value from the previous step is limited to 80% of the difference
between the current value and the accumulated exemplars. A value of 1 allows the new
value to be as similar as 100% to the exemplars in memory, i.e., no limitation. This
limit is defined as

Λ = δυ (1−λ) , (9.1.6)

where Λ is the maximum convergence value allowed, δ is set to 1 if the system’s values
are increasing comparing to the user or -1 in case they are decreasing, and λ is the value
of the limit property. Note that the value of this limit depends on the direction in
which the accommodation occurs (convergence or divergence), which is determined by

δ =

 1 if υ ≥ Ct

−1 otherwise
. (9.1.7)

That is, if the values need to increase in order to become more similar to the user, the
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limit’s value will be smaller than the memory value, as vice versa. Ultimately, the final
updated value for the feature is determined as follows:

Υ =

υ−Λ (limited) if υ−Υ≤ δΛ

Υ (unchanged) otherwise
. (9.1.8)

It is important to mention that this limitation is not artificially added here, but is was
also observed in the data of the empirical experiments in Chapters 4 to 6, where humans
typically accommodated only up to a certain limit.

9.1.2 Combining the computational and the statistical models

The pipeline implementation in Section 9.1.1 offers basis for accommodation capabilities
based on the computational model presented in Chapter 7. The advantage of this real-
ization is the ability to directly control the manner in which the accommodation occurs.
This not only allows to craft and experiment with well-defined behaviors, but also to
utilize expert knowledge or findings from empirical data. For example, external knowl-
edge regarding the typical values of features and the places they occur can be applied in
the filter step to exclude instances that do not match these criteria. Moreover, the cal-
culations of the update and limit steps can be designed to approximate specific patterns
observed in experimental data. This way, a system’s behavior can be precise and well-
defined, with the trade-off of being repetitive and predictive. While this alone already
grants a responsive behavior, it lacks the profiled and variational behaviors described
in Section 3.3.3. These drawbacks are addressed by the statistical model presented in
Chapter 8, which offers more dynamic output based on a core behavior extracted from
given data. The advantages of this data-driven approach is the simulation of human
behaviors directly from data, which is more authentic and saves the time of fine-tuning
their manual crafting. The risk is the usage of unfiltered raw data, which may result in
problematic clustering and by extension unstable or noisy output.

To benefit from the merits of both models, they can be used together. The input of
the statistical model is an input value from the user and its output is a value to use as
output for the system. This corresponds to the roles of the store and update steps of
the pipeline (although the store step could still be utilized nonetheless). Therefore, The
statistical model can replace these steps and will be triggered only when an instance as
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passed the filtering step, which would reduce the influence of noise in the data. Although
the output of the statistical model should already account for the overall degree of
accommodation, the limit step can be optionally kept to monitor that no unreasonable
values are generated. This way, the pipeline structure is kept with all its advantages,
but its final output is not limited to a specific deterministic behavior. Combining the
computational and statistical models grants the system the benefits of both and gives
experimenters more degrees of freedom for creating different scenarios and applications.

9.2 Integration

9.2.1 Extended spoken dialogue system architecture

The accommodation pipeline described in Section 9.1 can be integrated into a SDS with
a standard architecture as an additional module, as shown in Figure 9.1. This module
relies on input from the ASR module and its output is consumed by the TTS module,
as defined in the pipeline. Therefore, it is inserted as a new, direct link between these
two components, in addition to their connections to the natural language understanding
(NLU) and from the natural language generation (NLG) modules, respectively. This
additional speech processing (ASP) module can be used for any purpose that requires
the speech signal and not only its transcription. Here, this information is leveraged for
accommodation by the TTS module, but other speech analyses could be useful also for
the dialogue manager (DM) or NLG modules, e.g., when matching the system’s response
to the user’s mood based on voice characteristics (see Rothkrantz et al., 2004; Braun
et al., 2016).

9.2.2 Speech manipulation

Although the ASP module is not responsible for the synthesis of the system’s speech
output, it is important to show that it provides relevant information for speech synthe-
sis. This is especially important since the synthesis, along with the required changes for
expressing accommodation, need to be applied in real-time and cannot be learned offline
prior to an interaction. The examples given here focus on segmental features, because
real-time manipulation techniques for them are less common than for supra-segmental
features like fundamental frequency (f0) and articulation rate (AR). For segmental fea-
tures, modifications are applied to specific sounds occurring within short timespans, as
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Figure 9.1: Suggested architecture for an accommodative spoken dialogue system (cf.
base architecture in Figure 3.1). The added ASP module and its links from the ASR
and to the TTS modules are colored in red.

oppose to supra-segmental features where longer segments and even an entire utterance
are influenced. The challenge is, therefore, to apply these modifications with smooth
transition from and to the surrounding segments and without creating artifacts.

The manipulation itself can be done either post-hoc on the audio signal itself or
as part of the synthesis. The first approach relies on signal processing techniques that
can be applied on the TTS output to achieve the desired modification. For this, the
timespans of the target feature must be acquired from the TTS engine to detect the
part in the signal that needs to be modified. Then, the appropriate process needs to
be applied. For example, changing the format frequencies to manipulate vowel quality,
shortening a segment to achieve [@] elision, etc. Many of the manipulations can be done
based on the source-filter theory (Fant, 1970), but any type manipulation would need
to be written manually and run after the TTS finished generating the speech signal.
The second approach relies on the TTS model to be able to capture the variations of
the target feature. This might be difficult, especially for non-categorical features with
relatively subtle changes. The model would need to be trained on a dataset that contains
the feature’s variations. As with any learning task, it is not guaranteed that the model
will correctly learn them or be able to apply them correctly every time. On the other
hand, if works property, this approach is more robust and should create fewer artifacts,
because direct manipulation of the signal is avoided. However, direct manipulation might
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be more accurate and offer direct control over the change in the signal which might not
be achieved using a pre-trained model. These trade-off are an important consideration
when choosing an approach, which might depend on the requirements of the application
in question.

Both approaches were tested to realize accommodation changes. The first with the
feature [E:] vs. [e:] which requires a manipulation in the vowel space continuum, and
the second with the categorical feature [ç] vs. [k]. The source-filter manipulation was
done as follows: First, the formant contours were extracted from the audio signal. this
was done by computing the LPC coefficients with the algorithm by Burg, as given
by Press et al. (1992). One value was extracted per formant every 6ms with linear
interpolation for missing values. Then, the first and second formants of the vowel target
were changed separately using overlap-add (Hamon et al., 1989). The changes were
based on the respective means of the formants in the duration of the target vowel,
while taking the overall contour into account. Finally, The original signal was used as
the source and was filtered by the manipulated formant contours, resulting in a new
speech signal that differs from the original only by the target vowel’s segment. The
second approach was done with neural synthesis using Tacotron20 (Shen et al., 2018),
which is trained to generate spectral information directly from textual input, and the
neural vocoder WaveGlow (Prenger et al., 2019). To capture the categorical allophonic
variance, the system was trained on phonemic input (as opposed to usual grapheme-
based representations), similarly to the training process in Fong et al. (2019) For this,
the neutral voice subset of the PAVOQUE dataset21 (Steiner et al., 2013) was used,
which comprises ∼5.8 h of speech. The phonetic transcriptions were done automatically
based on the transcriptions provided with the dataset and were manually verified and
corrected. After training, the model was able to generate synthesized speech based on
an input of an arbitrary phoneme sequence. This opens many possibilities, one of them
is alternating between [ç] and [k] to express the variation of this feature. It is important
to note that the other-category variant of a word was not included in any dictionary and
was not seen by the model during training. Figure 9.2 shows an example of an original
sentence (pronounced with [ç] sounds) and its manipulated form (with [k] sounds).

20Tacotron2 architecture based on the implementation on https://github.com/NVIDIA/tacotron2
21https://github.com/marytts/pavoque-data
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Figure 9.2: Oscillograms and spectrograms of the words “König” (king) and “wichtig” (important) pronounced originally
with [ç] (top), which were changed into [k] (bottom). The modified segments are marked with a star above the phoneme
symbol in the transcriptions, and it can be seen that no artifacts were introduced in any other segment. The vertical lines
show the phonemic segmentation (note that the segments are not perfectly aligned in the two productions). The x-axis shows
the chronological phonetic transcription over time (2.34 s in total) and the spectrograms’ y-axes show the frequencies up to
5,000Hz.172



Chapter 10

Web-Based Responsive Spoken
Dialogue System

With the ability to simulate accommodation, a complete accommodative spoken
dialogue system is introduced in this chapter. Its architecture and various cus-

tomization possibilities are motivated and explained. The vocal changes are illustrated
using dynamic visualizations in the system’s graphical user interface. A replication of
the human-computer interaction experiment is showcased to exhibit the system’s capa-
bilities and demonstrate its advantages.



10.1 Overview

10.1 Overview and key aspects

Simulating and triggering accommodation effects occurring in human-human interaction
(HHI) in spoken dialogue systems (SDSs) takes them one step further toward human-
like communication. The system presented in this chapter encapsulates the knowledge
acquired from the experiments in Part II, the behavior designs developed in Part III,
and the module introduced in Chapter 9. It contains mechanisms to track the states and
changes of segment and suprasegmental phonetic features during a dialogue. All analyses
are automated and run in real-time, which not only saves a lot of time and manual work
typically needed in accommodation studies, but also makes the system more suitable for
use in other applications. A user of the system may be a participant in an experiment,
an experimenter designing an experiment or monitoring an ongoing experiment, or a
researcher that uses it to analyze existing data. The system was designed with the
following key principles in mind:

Focus on adaptation – the main goal of the system is to offer a tool for investigat-
ing vocal accommodation in human-computer interaction (HCI) for both online
experiments and offline analyses. Putting vocal accommodation under the spot-
light is the core novel contribution of the system, since very few systems offer such
capabilities at all, and with control over the accommodative behavior in particular.

Customizability – the system includes several components that can be modified, either
for changing the accommodation behavior itself (features, parameters, etc.) or for
changing the settings (e.g., for different experiments). This allows experimentation
with customized scenarios and configurations that can be easily compared in a
controlled, reproducible environment.

Online scalability – the system can run in a web browser without any installations
or additional files22. Since the system itself runs on a server, it is also possible to
operate multiple instances, each with its own configurations and parameters. This
makes it easy to distribute its use, e.g., for remotely conducting an experiment
where a specific configurations can be given to each participant.

22Some features need to be enabled in the browser, like JavaScript and microphone access. However,
any modern browser should not have any problem supporting all the necessary requirements. To increase
performance, all speech analyses and processing are done on the server side.
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This customizable system is a tool that could help to deepen the experimental pos-
sibilities and to automate the processes typically involved in accommodation-related
experiments. The system’s architecture, graphical user interface (GUI), and functional-
ity are described in Sections 10.2 and 10.3. The experiment presented in Chapter 5 is
replicated in Section 10.4 to demonstrate the system’s utilization.

10.2 Architecture

As the system aims to offer a customizable playground for studying phonetic adaptation
in HCI, a key property of its architecture is the separation between client-side, server-
side, and external resources (see Figure 10.1). This separation makes it possible to run
multiple clients on different machines at the same time with a single server collecting the
data from all of them at the same time. The server, ideally running on a dedicated ma-
chine, is operated by a person responsible for designing and configuring the interactions,
e.g., an experimenter. It collects information and audio recordings from all interactions
with the system (which can be deleted afterwards for privacy purposes). This separation
of the server grants the experimenter a lot of freedom and flexibility, since resources like
feature configurations and dialogue domain can be modified independently, even while
users are using the system. Additionally, multiple configurations can be prepared in ad-
vance (e.g., for different participant groups), regardless of the device the experiment will
be performed on and without summoning the participants to the lab. Configurations can
even be changed over the course of the experiment if additional variations are required.
These configurations are transparent to the users, and no action is required from them
aside from starting a new interaction with he system. This flexibility makes it easier and
quicker to create new scenarios of interaction and to experiment with different features
and parameters.

In addition to the technical advantages, letting users to interact with the system
on a separate machine broadens the usage possibilities. For example, an experiment
can be carried out remotely, without the need to invite participants to the recording
studio one by one. Furthermore, as the connection to the server is done via a web
browser, participants can connect use the system with their own computers wherever and
whenever it suits them, without any additional installation or technical configurations.
All of these make it possible to collect data from many users rapidly and easily. The main
components of the system are the SDS with the accommodation module (Section 10.2.1),
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Figure 10.1: The architecture of the system. The background colors distinguish between
client components, server components, and customizable external resources. The dashed
line coming out of the convergence model’s box indicates that the feature predictions
may or may not be passed from the model to the system depending on the feature
definition and update parameter (see Section 7.3).

the GUI (Section 10.2.2), and the external resources and configuration (Section 10.2.3).

10.2.1 Dialogue system

The core of the system is the dialogue system component (green block in Figure 10.1),
which controls the flow of the interaction, processes users’ inputs, and generates the
system’s responses. It uses the extended architecture presented in Section 9.2.1, which
consists of traditional SDS components such as natural language understanding (NLU)
and a dialogue manager (DM), but also contains the additional speech processing (ASP)
module that adds accommodation support (Raveh and Steiner, 2017b). The imple-
mentation of this module in the system is as described in Figure 9.1. While the NLU
component uses merely the transcription provided by the automatic speech recognition
(ASR), the ASP module analyzes the speech signal itself. Concretely, it tracks occur-
rences of the defined features and passes their measured values to the convergence model,
as explained in Section 10.2.3.1, which, in turn, forwards the tracked feature parameters
to the text-to-speech (TTS) synthesis component. The TTS engine then takes the text
generated by the natural language generation (NLG) component, and, if phonetic-level
manipulation is supported by the TTS module, synthesizes the utterance using the val-
ues specified by the convergence model. The connection between the dialogue system’s
modules is managed by the OpenDial framework (Lison and Kennington, 2015, 2016).
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The NLU and NLG modules are built using an OpenDial’s domain file, as described in
Section 10.2.3.2. Importantly, each of these components can be replaced with another
implementation, all time it takes the same input and provides the same type of output.

10.2.2 Visualization and graphical user interface

The interaction with the system is done via an in-browser GUI (see screenshot example
in Figure 10.2). At the top of the screen is a control bar, which offers the user an
overview of the interaction and easy access to some general functionalities. On the left-
hand side of the bar, the user can view the list of the interaction’s turn history and
jump to a specific one. It is also possible to see the list of tracked features and their
current state. Both lists can be reset using the Reset button (in red), which starts a
new interaction using the current configurations (which may have been changed during
the ongoing interaction). On the other side of the bar, there are buttons for viewing
on-screen how-to-use information window and changing various settings of the system,
like convergence parameters, view options, resource location, etc. The rest of the GUI
is divided into four areas: A chat area displaying the dialogue turns, an interaction area
in which the user provides input to the systems, a plot area with interactive dynamic
visualization of the tracked features, and a notification area where out-of-conversation
messages for the user can be prompted. The functionality of these areas is described in
Sections 10.2.2.1 to 10.2.2.4

10.2.2.1 Chat area

The interaction between the user and the system is shown in a chat-like format at the
upper left part of the screen. Each turn’s utterance appears inside a bubble with the
user’s and system’s turns represented by different colors. A bubble always contains a
single utterance, regardless of whether a floor change has taken place. A turn can be
replayed at any time using the Play button next to the turn number, corresponding to
the turn order on the list accessible from the control bar. Besides utterance bubbles, the
system can also display general-purpose messages related to the interaction, which do
not progress the dialogue flow and do count as system utterances. These messages can
be used, for example, to give a participant additional information or further instructions
during an experiment.
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Figure 10.2: A screenshot of the system’s graphical user interface, with the chat area on the top left, the interaction area on
the bottom left, the plot area on the top right, and the notification area on the bottom right. In both the chat area and the
plot area, the user and system are represented by the colors blue and orange, respectively.
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Figure 10.3: The plot area showing the states of the feature [E:] vs. [e:] during an
interaction. The system’s (orange, bottom right) gradually adapts to the user’s (blue,
upper left) detected realizations. A prediction of the feature’s current realization is given
for both interlocutors. The text box shows the mouse-over annotation of the turn in
which the system’s realization changed its vowel category.

10.2.2.2 Interaction area

The user can interact with the system with both written and spoken input using the
controls at the bottom left of the screen. Spoken input can be provided either by speak-
ing “live” into the microphone or via audio files with pre-recorded speech. These are
typically useful for online and offline usage, respectively (as explained in Section 10.3),
but pre-recorded utterances can also be useful for reproducing previous experiments or
comparing different accommodation configurations with the exact same user input, as
done in Appendix B. Text-based interactions progress through the dialogue (if applica-
ble) and trigger any subsequent module, but will not affect the tracked features, as no
vocal input is provided. This can be useful for quickly going through specific parts of an
experiment (like instructions or setup) or for continuing the dialogue without changing
the system’s representation of the tracked features.

10.2.2.3 Plot area

Visualizations of the tracked features’ changes over the course of the interaction are
displayed in the upper right part of the screen. Each feature is visualized separately,
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and new datapoints are dynamically added whenever applicable. Figure 10.3 shows an
example of such a plot with several accumulated datapoints. The type of a feature’s
plot can be defined based on its characteristics, e.g., bars for one-dimensional features
and lined scatter plots for two-dimensional features. These plots are generated using
Plotly23, which provides some interactive functionalities. Hovering over a datapoint in
the plot reveals additional information, such as the turn in which it was added, or the
realized variant of the feature produced in that turn, as predicted by its classifier (see
Section 10.4.2).

10.2.2.4 Notification area

Whenever a message outside the content of the interaction needs to reach the user, it can
be shown at the bottom right part of the screen. Such messages may include indications
of the system’s activity, e.g., successful initialization of the interaction, warnings and
errors while uploading files, etc. The notifications can be colored blue, green, orange, or
red to indicate the type of the message.

10.2.3 Customizations

The system aims to offer a platform for SDSs with convergence support that can be
modified and customized according to the user’s needs. All of the aforementioned system
components can be customized, at least to some extent. This includes, among others,
the phonetic convergence model, the features tracked by the system, and the dialogue
domain.

10.2.3.1 Tracked features

The accommodation process is initiated by the phonetic features defined in the textual
configuration file. The process is triggered whenever a phoneme associated with a seg-
mental phonetic feature is detected in a segment by the ASR or for a suprasegmental
feature that potentially occurs for in segment. The feature definitions may capture, for
example, general tendencies or specific phonological rules, like schwa elision in German
(see Equation 5.3.1). As explained in Section 9.1.1, each feature is detected and fil-

23https://plot.ly
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tered based on its definition. This definition can be easily changed to experiment with
different accommodation effects. An example for a feature definition is presented in
Section 10.4.1.

10.2.3.2 Dialogue domain

The dialogue’s flow is specified using OpenDial’s XML-based format24. This format offers
a structure for building models, rules, and conditions, which define the DM logic. The
rules connect between intents provided by the NLU component to the output generated
by the NLG component. Additional parameters are used to trigger processing for other
modules of the SDS, like the ASP module in the system discussed here. More details
about building a domain file can be found in Lison and Kennington (2016). The format
of the domain file makes it easy to define new scenarios for the system, like different
experimental settings. Rules are written mostly using regular expressions, which makes
it relatively easy also for non-technical users to modify the system’s logic. Since the DM
keeps track of parameters from all modules, the system’s output can even be influenced
by the state of the accommodation state in the ASP module.

10.2.3.3 Speech processing

Multiple components of the system deal with different aspects of speech processing. As
each module in the system can be replaced independently, different engines and models
can be used. For example, the ASR engine can be replaced for improving performance
or adding support for additional languages. The TTS component can be replaced as
well, e.g., for changing the voice of the system or offering better control over phonetic
manipulations. The tool used for the phonetic analysis can be changed as well to improve
accuracy or performance. The models and tools described here are those that were used
for the showcase presented in Section 10.4. The ASR component uses CMUSphinx25

(Lamere et al., 2003), with an extension to the phoneme emission functionality to provide
the ASP module the phonetic input information it needs (see Section 9.1.1). The acoustic

24http://www.opendial-toolkit.net/user-manual/dialogue-domains
25Sphinx4 version 5prealpha, https://cmusphinx.github.io/
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Figure 10.4: Online (orange) and offline (blue) modes of the system.

model and pronunciation dictionary were taken from CMUSphinx models26. A new
language model was created especially for this purposes using SRILM (Stolcke, 2002). All
the segmental and suprasegmental analyses required for the measuring accommodation
were done using Praat (Boersma, 2018). MaryTTS (Schröder and Trouvain, 2003; Le
Maguer and Steiner, 2017) was used as the TTS engine of the system, with bits1-hsmm
and bits3-hsmm for its female and male voices, respectively.

10.3 Online and offline modes

The system can operate in two modes, as shown in Figure 10.4: Online – turn-based
real-time interaction via the GUI (Section 10.2.2); and offline – on-demand analysis of
existing interaction data, either from a recorded online session or a pre-recorded dataset.
The accommodation-related parts of the system (roughly corresponding to the server
and resources blocks in Figure 10.1) are common to the two modes, which makes it easy

26https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
German/
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to switch between the two. The differences are in how the data is fed to the system
and how the output is processed and visualized. The main difference is that in the
online mode the process is recurrent and both the user’s input and the system’s current
state are acquired on the fly. Depending on the scenario defined in the domain file,
in online mode there could always be another turn, either of the user or the system,
that will continue the interaction. In the offline mode, the data scope is, by definition,
finite. Technically, the dataset is represented and processed the same way as online
interactions, but there is no need to output the system’s state to a user. The common
representation also makes it easy to compare pre-recorded interactions with live ones.
However, the output of the accommodation model after each turn is handled differently
in both modes. In online interactions, the output is sent on a turn-by-turn basis to
both the web-based GUI for visualization (as in Figure 10.3) and back to the user as
auditory response from the system. The offline mode doesn’t need to interact with a
user, so the entire analysis is saved together, along with some additional analyses that
can only be preformed with complete interactions. This output can then be used for
further statistical analysis and be visualized separately using other tools (like those in
Figures 2.1 and 6.7). For using the online mode, the system needs to run as a server
and be accessed via a web browser. The offline mode can be used either directly from
the command line or programmatically from another application. A mid-way usage is to
manually load pre-recorded files via the GUI to simulate a live interaction, as explained
in Section 10.2.2.2. While this requires more time and manual effort, it lets the user
observe the visualized gradual phonetic changes.

10.4 Showcase: replicating a shadowing experiment

As a showcase of the system capabilities, it was utilized to replicate the shadowing
experiment described in Section 5.3. The experiment is designed to trigger phonetic
convergence by confronting the participants with stimuli in which certain phonetic fea-
tures are realized in a way different from their natural production. This was done
using the offline mode of the system, to simulate a real experiment and automate cer-
tain parts of it that would otherwise be performed manually. The replication used the
original stimuli and utterances of the participants. However, analyses originally done
post facto and to different extents manually, like detecting the realized variant, mea-
suring the features’ values, etc., are now done automatically. This demonstrates an
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automated, reproducible execution, and also offers additional insights via classification
of feature realizations and dynamic real-time visualizations. Finally, using the system
the experiment becomes more of a fluent dialogue rather than a experimental simulated
interaction, which enhances its HCI nature.

10.4.1 Setup

For the experiment replication, two of the three segmental features investigated in the
original experiment were used. In addition to the @-length feature shown in Section 9.1.1
the feature [E:] vs. [e:] was included. Both features are described in detail in Sec-
tion 5.3.1.1, and Table 10.1 shows example stimulus sentences containing them. As in
the original experiment, the word containing the target features were embedded into 15
short carrier sentences and 25 filler sentences, in which none of the features occur (see
Appendix A for the full stimulus list). Although both features’ underlying values are
gradual, they are perceived as two-way categorical variations. To map these underlying
values to a specific variant, a classifier was associated with each feature, as explained in
Section 10.4.2. The definition of the [E:] vs. [e:] features was as follows:

- `e_E_vowel':
phoneme: EHH
context: '.* EHH .*'
initial: 450 2100
minimum: 300 1500
maximum: 750 2900
measure: formants
calculation: decaying average
sensitivity: 0.3

The values of the keys minimum, maximum, and initial stand for the first two formant fre-
quencies. The calculation method for this feature is decaying average (Equation 9.1.3),
which is similar to the regular average but with each value contributing exponentially
less to the final value, so that the last (newest) exemplar contributes the most. Adding
such property to the measure gives more weight to new exemplars that were received
chronologically closer to the current turn and thus makes the change more strongly influ-
enced by the productions closer to the accommodation change. Using this measure comes
to support the analogy of the exemplar pool to short-term memory, which remembers
recent events better than older ones.

Even though further aspects of the experiment could be automated, the experimental
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War das Gerät sehr teuer?
Was the device very expensive?

Wir besuchen euch bald wieder.
We will visit you soon again.

Table 10.1: Examples of stimuli containing the target features. Each sentence contains
only one feature. A list with all target and filler stimuli can be found in Appendix A.

procedure stayed as faithful as possible to the procedure of the original experiment.
The domain file created for the showcase was designed to substitute the role of the
experimenter in the shadowing phase (cf. Figure 5.4), i.e., mainly presenting and playing
the stimuli to the participant. The stimulus order from the original experiment’s baseline
phase was preserved and semi-randomized in the shadowing phase using the same logic
as in the original. It was also configured to perform the transitions between the phases.
Although it should be assumed that the user indeed repeats the presented utterance, the
system nonetheless verifies that the user’s utterance matches the current stimulus using
the customized language model described in Section 10.2.3.3 before presenting the next
stimulus.

10.4.2 Classifiers training

As mentioned above, a classifier can be defined for each tracked feature to let the system
determine to which realization category each encountered exemplar belongs. This auto-
mates the annotation otherwise done manually by the experimenter during or after the
experiment. In the original shadowing experiment, this includes both the determination
of the participants’ preferred variation in the baseline phase and the annotation of the
participants’ realizations in the shadowing phase. To that end, the associated classifier
provides real-time classifications for both the user’s and the system’s realizations of that
feature. This not only saves time, but also helps to prevent inconsistencies that on-the-
fly manual annotation might yield. With this information available, more meaningful
insights can be gained into the variation dynamics over the course of the interaction.
In other applications, like computer-assisted pronunciation training (CAPT), this in-
formation may be taken into account when deciding on the system’s next turn. The
classifiers for the replicated experiment were trained on datasets corresponding to the
target features’ ranges. The @-length classifier trained to classify segments shorter and
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sensitivity (0 to 1) 0.2 0.3 0.4 0.5
adoption (%) 79 86 75 69

Table 10.2: The system’s convergence degree with different degrees of sensitivity.

longer than 30ms, and the [e:]/[E:] classifier was trained on F1 and F2 values of these
vowels produced by female speakers (since for the replication a female participant was
chosen as well as a female voice for the system). While training prior to the interactions
is generally sufficient, online fine-tuning is also possible to update a feature’s classifier
whenever requested by the user, e.g., every time the accommodation model is updated.

Here, a sequential minimization optimization (SMO) (Platt, 1998; Platt, 1999) im-
plementation of the support vector machine (SVM) classifier (Vapnik, 1998; Joachims,
2005) was used, as the two-way categories of these features are expected to be linearly
separable. Each turn’s predictions dynamically added as interactive annotations to the
visualization of the relevant features, as illustrated in Figure 10.3. The training data
used for each classifier contains only the productions of the corresponding target feature
from a single stimulus set, since these are the productions to which the participants
were exposed during the experiment. This provides relatively few – but at the same
time very precise – datapoints for each classifier, which were obtained using the same
signal processing technique as the data collected in the experiment. As explained in
Section 5.3.1.3, multiple stimulus sets were used in the experiment. The classification
of the system’s production was performed based on the stimulus type the participant
listened to. For instance, a classifier trained on the natural stimuli was used when the
participant was listening to this stimulus set.

10.4.3 Validation

For the baseline phase, the degree to which the underlying convergence model accu-
mulated enough data to adopt the user’s variant of the feature was examined. Higher
adoption rate indicates a more stable preferred variant of the participant. The partici-
pant’s preferred variants was determined based on the majority vote at the end of this
phase, as in the original experiment. For example, if the user realized one variant twice
and another three times, the latter was considered the preferred one. Table 10.2 shows
the adoption rates of the user’s preferred variant as percentages of the mean preferred
variant using different values of the convergence rate parameter (see Section 7.3). Inter-
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Figure 10.5: Illustration of the effect of different convergence rates on the updates of the
system’s realization of a two-dimensional feature (left) and a one-dimensional feature
(right).

estingly, higher values do not necessarily result in higher percentages, due to systematic
over-shooting the participant’s production in each utterance. The value 0.3 provided
the highest results and was therefore used through the rest of the replication. See Fig-
ure 10.5 for visualized examples of the convergence rate’s influence. After obtaining the
preference of each participant, the degree of convergence was examined per utterance
in the shadowing phase. The participants were grouped based on their convergence
behavior in the original experiment: One group of participants showed low to no ten-
dency to converge (converged in ≤10% of their utterances), the second had varying
degrees of convergence (10% to 90%), and the third group of participants who were
very sensitive to the stimuli (≥90%). This grouping enables analyses based on collective
vocal behaviors instead of individual differences. The groups were labeled Low (23% of
participants), Mid (50%), and High (27%), respectively. For validation purposes, the
shadowing phase was treated as an annotation task of the realized variation in the par-
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Table 10.3: Percentage of convergence cases and κ scores of the three-way convergence
comparison for the three participant groups. Positive κ scores mean agreement between
the annotations (here, the feature’s realization category) and negative scores indicate
disagreement. Scores close to zero point to an agreement occurring by chance.

Convergence cases (%) Cohen’s Kappa (κ)
Sys-Stim Ref -Stim Ref -Sys Sys-Stim Ref -Stim Ref -Sys

Low <1 7 16 −0.57 *** −0.08 0.17
Mid 22 23 32 −0.15 * −0.15 * 0.27 ***
High 26 18 18 0.81 *** −0.04 0.03
All 48 48 66 −0.11 * −0.13 ** 0.21 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

ticipants’ utterances, where a correct annotation (system produces same variation as the
participant) indicates convergence. The three “annotators” are the stimuli themselves
(Stim), the online classification of the system’s representation of the feature (Sys), and
labels from the training dataset used as references (Ref ). The Cohen’s kappa (κ) values27

are shown in Table 10.3. Table 10.3 shows that Ref-Sys has κ = 0.27 (fair agreement)
for the Mid group, but lower scores for the two other groups. This indicates that the
reference values, which supposedly represent some universal average of the feature, in-
deed match the production of the participants that didn’t deviate too greatly from their
base production values, which reinforces the fact that the stimuli’s influence on them
was limited to either direction. The κ values for Sys-Stim describe how the system’s
representations matched the stimuli presented to the participants. Since the system
accommodates to the participants’ performance, these values exhibit how similarly the
system’s productions were to the productions of each participant group. The High group
has κ = 0.81 (strong agreement), indicating a high similarity between these participants
and the system, as expected. Contrarily, the κ value for the Low group is -0.57 (moder-
ate negative agreement), showing that no convergence – and potentially even divergence
– occurred with these participants. These results show that the online predictions made
by the system presented here are capable of providing additional insights regarding the
accommodation degrees occurring in an interaction.

27Calculated by the kappa2 command of the irr R package, https://cran.r-project.org/package=irr
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General Discussion

The gap between the measurable, objective methods to describe accommodation in ex-
perimental settings on the one hand and the free-form, subjective way it is used and
perceived in everyday life on the other hand creates a great challenge in its research.
Additionally, the large role individual differences play in both the production and re-
ception of accommodation effects makes it hard to evaluate it, as there are no “correct”
and “incorrect” labels that can be assigned to speakers’ production. Moreover, the same
production may lead to one effect with a certain interlocutor and a different effect with
another – and both will be natural and acceptable. This has to do with many social and
cognitive factors, including the speakers’ personality and sensibility behavioral changes.
Some people don’t notice accommodation occurring in a conversation, including in their
own speech, whereas some are sensitive even to subtle changes in their conversational
partner’s behavior. Their reactions may also be “holistic” or due to certain character-
istics that do not necessarily correlate to properties observed directly in the acoustic
signal (Babel and Bulatov, 2012). This makes even humans unreliable for evaluating
accommodation, as opposed to many language processing tasks where human perfor-
mance is set as a gold standard (or at least a goal to aim for). As a result, each study
needs to introduce (or re-introduce) the used methods, which makes it hard to compare
different studies and approaches. This lack of common measuring units and evaluation
metrics is a major shortcoming of this research field. The overarching term “accommo-
dation” holds various effects with different natures in it. Section 2.1.1 offers definitions
for various terms based on their use in the literature. Having common terminology to
describe them can be a step toward comparable common research methods and prevent
confusions that stem from the use of different terms to describe the same effect or the
same term to describe different effects.

An investigation of accommodation effects in pre-defined successful and failed conver-
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sation was done in Chapter 4. Different effects were indeed found, especially with respect
to the speaker who was leading the change. Finding that sales reps demonstrated more
controlled and consistent triggering of convergence in the prospects’ speech matches the
assumption many in that business hold. However, the results of this experiment cannot
be interpreted as causation and imply that they were more successful because of those
convergence effects. Further experiments and comparisons with more reps are required
for reaching this conclusion.

It is important to note that it was possible to reach these findings because of the
emphasis on looking at accommodation as a dynamic phenomenon that unfolds over
time. Without this temporal aspect, only more shallow broad conclusion can be drawn.
Measuring accommodation as the difference between values at a few points (e.g., the
beginning and end of an interaction) is an over-simplification of the process. First, the
length of the interaction is not considered, which would lead to a similar conclusion
for short and long interactions. Secondly, nuances in the mutual changes might be
smoothed-out due to averages over long spans, as demonstrated in Figure 2.2 on page
26. A high temporal resolution grants a more fine-grained glance into patterns emerging
in the data instead of in manually-picked datapoints. This approach is used, among
others, in Section 6.4.2, in addition to distribution-based analyses, to obtain different
points of view on the effects. The statistical model presented in Chapter 8 harnesses
this idea by refraining from accurately defining behaviors and generating accommodative
behaviors purely based on data, so that the temporal facets are implicitly included in
it. Combining this data-driven mechanism with the cognitive-oriented approach from
Chapter 7 adds human-centric motivation to the generated behavior. This fusion of
computer-powered and human-motivated techniques has not been adequately explored
so far, although it could offer a more comprehensive and explainable process.

To that end, one of the main goals of this thesis is to depict vocal accommodation
as one comprehensive process that includes multiple related parts (see Figure 3.3), from
examining effects in human-human interaction (HHI), via approaches to model them for
computers, and of course the technical aspects of integrating and simulating them in
spoken dialogue systems (SDSs). To get a better understanding of accommodation in
human-computer interaction (HCI), it is important to see the connection between these
parts and not investigate them in isolation from one another. More often than not,
the technical side of spoken HCI (e.g., automatic speech recognition (ASR) accuracy
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or text-to-speech (TTS) quality) are designed and developed separately from the user
perspective. While this is understandable when aiming purely at performance improve-
ments, it is problematic when addressing dialogue-related problems. However, since
accommodation in HCI involves both computers and humans, both sides should be con-
sidered in the research and development of such systems. Ultimately, they need to work
together to achieve better communication, just like human interlocutors in HHI. In the
case of accommodation, investigating effects in humans that are not relevant or cannot
be implemented in computers doesn’t contribute to the advancement toward accom-
modative systems. Similarly, accomplishing technical goals that are not perceivable by
humans or are not modeled in a human-centric fashion doesn’t provide any added values
as well. For instance, measuring convergence by the distance of mel-frequency cepstral
coefficient (MFCC) vectors (as done by Han et al., 2018) might provide an interesting
technical view on the matter, but since humans don’t converge simply by sounding more
alike, this is, doubtfully an efficient user-friendly way to implement accommodation in
SDSs. Viewing accommodation as an involved interdisciplinary research topic encour-
ages collaboration of researchers studying linguistics, humanities subjects like sociology
and psychology, conversation and user-experience designers, engineers, and anything
between them.

Systems with accommodative capabilities have been developed but showed varying
degrees of fidelity. Although they are all described as accommodative systems (like the
one introduced by Levitan et al., 2016), not all accommodation capabilities are born
equal. This thesis distinguishes between several “levels of accommodation” in comput-
ers, as discussed in Section 3.3.3. Ranging from the mere ability to modify the system’s
speech ability to independently generating varying realizations of change, but also allows
for customizable conversational design complexity depending on the target application.
This concept is motivated by the parallelism to the assorted layers of accommodative
behaviors in humans. For example, in normal, everyday conversation, people speak
spontaneously, and therefore their speech will change freely based on their personality,
personal preference, etc. This means that no specific behavior is consciously targeted
here and the changes will be arbitrarily varied around this general behavior. In comput-
ers, this is paralleled to the variational generation around a “base” behavior of the system
shown in Chapter 8, which, in turn, is extracted from different human productions. How-
ever, in other, more controlled situations, different accommodation strategies might be
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more effective. Teachers use entrainment as a means for giving auditory feedback to
language learners, by triggering an artificially strong effect to “draw” the student into a
more correct articulation form, e.g., of a specific sound or intonation pattern. Although
it is providing mostly implicit, this kind of feedback encourages learning from fluent,
conversational responses. Still, this requires a different, more guided approach. Such an
approach is realized in this work via the pipeline presented in Chapter 7, which offers
deterministic control over the system’s responsiveness using several cognition-oriented
parameters. Such differentiation between accommodative mindsets has not been ad-
dressed before and it suggests more ways to model and implement accommodation in
SDSs while keeping the specific goal and application in mind, e.g., chatbots with a free-
form accommodation process in contrast to computer-assisted pronunciation training
(CAPT) systems with a more well-defined goal. The system introduced in Chapter 10
offer a way to experiment with different configurations to achieve the desired behavior
on the computer’s side. This system can be extended, e.g., by developing more sophisti-
cated accommodation models or supporting additional phonetic features These could be
used, for instance, to replicate and automate more experiments (as done in Section 10.4)
to accelerate and improve the data collection used for accommodation studies and offer
better accommodation capabilities in computers.

Since computers are yet to possess full, human-level accommodation capabilities, it
remains to be seen whether and how they will influence end-users once they do. First, like
in the case of other human-inspired features like high-quality text generation and speech
output, not all users might fancy such a capability that makes computers behave and
perform more similarly to humans. One main reason for that the realistic yet imperfect
attempt to adopt human behaviors often leads to the uncanny valley effect (Mori, 1970)
and at some point makes users eerily uncomfortable (cf. Figure 1 in MacDorman, 2006).
Secondly, as in HHI, some speakers are naturally less sensitive to phonetic changes and
might not notice such variations in computers. While accommodation effects might still
occur in that case, this raises the question of whether this would improve user experience
nonetheless and whether developers would want to invest in features that users might
not even acknowledge and appreciate. Finally, even when computers will have reached
advanced accommodation capabilities (vocal and otherwise), they might not be accepted
by users. Depending on the application and the agent type, people might not want their
computers to demonstrate such human-like behaviors, especially if they don’t necessarily
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explicitly follow the user’s preference. However, they might be useful and desirable in
situations where the agent is designed to socially accompany a person for a long time.
For instance, assistant social robots or therapeutic virtual humans that can realistic
simulate HHI may achieve better rapport with their users, as the target is a closer long-
term social relationship rather than the completion of isolated mundane tasks. Such tests
will help reinforce HCI paradigms like Computers Are Social Actors (CASA). Somewhat
ironically, this could only be thoroughly tested once such systems exist sometime in the
future.
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Appendix A

Shadowing Experiment Stimuli

Recording Fillers

1. Der Schrank wird heute geliefert. (The cabinet will be delivered today.)

2. Wo finde ich ein neues Glas. (Where do I find a new glass?)

3. Der Markt findet donnerstags statt. (The market takes place on Thursday.)

4. Sie wirkt recht gut informiert. (She seems to be very well informed.)

5. Ist das der Weg zu dir nach Hause? (Is this the way to your home?)

Baseline Fillers

6. Der Eimer ist aus Plastik. (The bucket is made of plastik.)

7. Im Kühlschrank liegt ein Pfirsich. (There is a peach in the fridge.)

8. Diese Technik wird noch entwickelt. (This technique will be further developed.)

9. Das war sehr höflich von dir. (That was very nice of you.)

10. Lena geht heute früher ins Bett. (Lena goes today early to bed.)

Experiment Fillers

11. Die Katze weckt mich immer auf. (The cat always wakes me up.)



12. Der Kaffee war ja schon kalt. (The coffee was already cold.)

13. Wer fliegt heute in den Urlaub? (Who flies today on vacation?)

14. Warum regt er sich denn so auf? (Why is he so upset?)

15. Das wird ein schönes Geschenk. (This will be a pretty present.)

16. Ich hätte gern zwei kleine Brüder. (I would gladly have two brothers.)

17. Das Heft war gestern noch da. (Yesterday the notebook was still here.)

18. Die Glühbirne ist leider kaputt. (Unfortunately the light bulb is broken.)

19. Sucht sich Karin eine neue Arbeit? (Is Karin looking for a new job?)

20. Wird die Wohnung noch renoviert? (Will the apartment be renovated?)

21. Sara hat eine andere Meinung. (Sara has another opinion.)

22. Habt ihr das rote Auto erkannt. (Have you recognized the red car?)

23. Ich täusche mich so gut wie nie. (I never delude myself.)

24. Keiner glaubt diese Geschichte. (No one believes this story.)

25. Kommt Fabian auch zu dem Fest. (Does Fabian come to the festival as well?)

[ç] vs. [k]

26. Kommt Essig in den Salat? (Does vinegar come into the salad?)

27. Der König hält eine Rede. (The king speaks.)

28. Kommt Ludwig heute Abend mit? (Does Ludwig join today evening?)

29. Es ist ganz schön staubig im Keller. (It is pretty dusty in the basement.)

30. Ich bin süchtig nach Schokolade. (I am addicted to chocolate.)
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[e] vs. [E]

31. Die Bestätigung ist für Tanja. (The confirmation is for Tanja.)

32. War das Gerät sehr teuer? (Was the device very expensive?)

33. Ich mag die Qualität deiner Tasche. (I like the quality of your bag.)

34. Der Schädling sieht aber komisch aus. (The pest looks funny.)

35. Wie viel Verspätung hat der Zug? (How much delay does the train have?)

[@n] vs. [n
"
]

36. Sie begleiten dich zur Taufe. (They are accompanying you to the baptism.)

37. Wir besuchen euch bald wieder. (We will visit you soon again.)

38. Sind die Küchen immer so groß? (Are the kitchens always so big?)

39. Wir reden ohne Unterbrechung. (We are talking without interruption.)

40. Sind die Affen denn zutraulich? (Are the monkeys trustful?)

227



228



Appendix B

System Visualization Examples

The examples presented here are screenshots of the graphical user interface of the respon-
sive system presented in Chapter 10. These examples compare the state of the system’s
representation of the [e] vs. [E] feature after processing the same user input but using
different parameter values (see Section 7.3 and Table 7.1). It can be seen, for example,
how higher sensitivity (top right) leads to faster – but somewhat unstable – convergence
process that generally imitates the user’s productions. In contrast, the convergence at
the top left is too slow to be representative of the user’s production. The two bottom
examples demonstrate how taking a larger number of previous exemplars into account
leads to a more smoothed convergence process toward some global mean (bottom right)
as opposed to more rapidly changing productions that follow only the last encountered
exemplar (bottom left).
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