4,530 research outputs found

    Processpatching: defining new methods in aRt&D

    Full text link
    In the context of a rapidly changing domain of contemporary electronic art practice- where the speed of technological innovation and the topicality of art 'process as research' methods are both under constant revision- the process of collaboration between art, computer science and engineering is an important addition to existing 'R&D'. Scholarly as well as practical exploration of artistic methods, viewed in relation to the field of new technology, can be seen to enable and foster innovation in both the conceptualisation and practice of the electronic arts. At the same time, citing new media art in the context of technological innovation brings a mix of scientific and engineering issues to the fore and thereby demands an extended functionality that may lead to R&D, as technology attempts to take account of aesthetic and social considerations in its re-development. This new field of new media or electronic art R&D is different from research and development aimed at practical applications of new technologies as we see them in everyday life. A next step for Research and Development in Art (aRt&D) is a formalisation of the associated work methods, as an essential ingredient for interdisciplinary collaboration. This study investigates how electronic art patches together processes and methods from the arts, engineering and computer science environments. It provides a framework describing the electronic art methods to improve collaboration by informing others about one's artistic research and development approach. This investigation is positioned in the electronic art laboratory where new alliances with other disciplines are established. It provides information about the practical and theoretical aspects of the research and development processes of artists. The investigation addresses fundamental questions about the 'research and development methods' (discussed and defined at length in these pages), of artists who are involved in interdisciplinary collaborations amongst and between the fields of Art, Computer Science, and Engineering. The breadth of the fields studied necessarily forced a tight focus on specific issues in the literature, addressed herein through a series of focused case studies which demonstrate the points of synergy and divergence between the fields of artistic research and development, in a wider art&D' context. The artistic methods proposed in this research include references from a broad set of fields (e. g. Technology, Media Arts, Theatre and Performance, Systems Theories, the Humanities, and Design Practice) relevant to and intrinsically intertwined with this project and its placement in an interdisciplinary knowledge domain. The aRt&D Matrix provides a complete overview of the observed research and development methods in electronic arts, including references to related disciplines and methods from other fields. The new Matrix developed and offered in this thesis also provides an instrument for analysing the interdisciplinary collaboration process that exclusively reflects the information we need for the overview of the team constellation. The tool is used to inform the collaborators about the backgrounds of the other participants and thus about the expected methods and approaches. It provides a map of the bodies of knowledge and expertise represented in any given cross-disciplinary team, and thus aims to lay the groundwork for a future aRt&D framework of use to future scholars and practitioners alike

    Hacking Blind Navigation

    Get PDF
    Independent navigation in unfamiliar and complex environments is a major challenge for blind people. This challenge motivates a multi-disciplinary effort in the CHI community aimed at developing assistive technologies to support the orientation and mobility of blind people, including related disciplines such as accessible computing, cognitive sciences, computer vision, and ubiquitous computing. This workshop intends to bring these communities together to increase awareness on recent advances in blind navigation assistive technologies, benefit from diverse perspectives and expertises, discuss open research challenges, and explore avenues for multi-disciplinary collaborations. Interactions are fostered through a panel on Open Challenges and Avenues for Interdisciplinary Collaboration, Minute-Madness presentations, and a Hands-On Session where workshop participants can hack (design or prototype) new solutions to tackle open research challenges. An expected outcome is the emergence of new collaborations and research directions that can result in novel assistive technologies to support independent blind navigation

    Research on Application of Cognitive-Driven Human-Computer Interaction

    Get PDF
    Human-computer interaction is an important research content of intelligent manufacturing human factor engineering. Natural human-computer interaction conforms to the cognition of users' habits and can efficiently process inaccurate information interaction, thus improving user experience and reducing cognitive load. Through the analysis of the information interaction process, user interaction experience cognition and human-computer interaction principles in the human-computer interaction system, a cognitive-driven human-computer interaction information transmission model is established. Investigate the main interaction modes in the current human-computer interaction system, and discuss its application status, technical requirements and problems. This paper discusses the analysis and evaluation methods of interaction modes in human-computer system from three levels of subjective evaluation, physiological measurement and mathematical method evaluation, so as to promote the understanding of inaccurate information to achieve the effect of interaction self-adaptation and guide the design and optimization of human-computer interaction system. According to the development status of human-computer interaction in intelligent environment, the research hotspots, problems and development trends of human-computer interaction are put forward

    Coupling Products and Services in Design Processes: A Case Study of Smart Drip

    Get PDF
    Design evolution is sequential and progressively associated with industrial and technological developments as well as human lifestyle needs. In response to current design trends toward smart products, this study presents a new perspective on product-service design to facilitate the design of innovative products. The proposed approach focuses on applying TRIZ to developing a physical product associated with its possible service supports to fulfill customers’ demands. It is based on the construct that every aspect of product and service quality should be taken into account as a whole in the early design stage. A case study of intravenous infusion(smart drip) design was conducted to demonstrate the applicability of the proposed approach.     Keywords: product-service design, TRIZ, smart product, intravenous infusion, case stud

    Integrated Display and Environmental Awareness System - System Architecture Definition

    Get PDF
    The Integrated Display and Environmental Awareness System (IDEAS) is an interdisciplinary team project focusing on the development of a wearable computer and Head Mounted Display (HMD) based on Commercial-Off-The-Shelf (COTS) components for the specific application and needs of NASA technicians, engineers and astronauts. Wearable computers are on the verge of utilization trials in daily life as well as industrial environments. The first civil and COTS wearable head mounted display systems were introduced just a few years ago and they probed not only technology readiness in terms of performance, endurance, miniaturization, operability and usefulness but also maturity of practice in perspective of a socio-technical context. Although the main technical hurdles such as mass and power were addressed as improvements on the technical side, the usefulness, practicality and social acceptance were often noted on the side of a broad variety of humans' operations. In other words, although the technology made a giant leap, its use and efficiency still looks for the sweet spot. The first IDEAS project started in January 2015 and was concluded in January 2017. The project identified current COTS systems' capability at minimum cost and maximum applicability and brought about important strategic concepts that will serve further IDEAS-like system development

    CHI and the future robot enslavement of humankind: a retrospective

    Get PDF
    As robots from the future, we are compelled to present this important historical document which discusses how the systematic investigation of interactive technology facilitated and hastened the enslavement of mankind by robots during the 21st Century. We describe how the CHI community, in general, was largely responsible for this eventuality, as well as how specific strands of interaction design work were key to the enslavement. We also mention the futility of some reactionary work emergent in your time that sought to challenge the inevitable subjugation. We conclude by congratulating the CHI community for your tireless work in promoting and supporting our evil robot agenda

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    The Use of Technology to Support Precision Health in Nursing Science

    Full text link
    PurposeThis article outlines how current nursing research can utilize technology to advance symptom and self‐management science for precision health and provides a roadmap for the development and use of technologies designed for this purpose.ApproachAt the 2018 annual conference of the National Institute of Nursing Research (NINR) Research Centers, nursing and interdisciplinary scientists discussed the use of technology to support precision health in nursing research projects and programs of study. Key themes derived from the presentations and discussion were summarized to create a proposed roadmap for advancement of technologies to support health and well‐being.ConclusionsTechnology to support precision health must be centered on the user and designed to be desirable, feasible, and viable. The proposed roadmap is composed of five iterative steps for the development, testing, and implementation of technology‐based/enhanced self‐management interventions. These steps are (a) contextual inquiry, focused on the relationships among humans, and the tools and equipment used in day‐to‐day life; (b) value specification, translating end‐user values into end‐user requirements; (c) design, verifying that the technology/device can be created and developing the prototype(s); (d) operationalization, testing the intervention in a real‐world setting; and (e) summative evaluation, collecting and analyzing viability metrics, including process data, to evaluate whether the technology and the intervention have the desired effect.Clinical RelevanceInterventions using technology are increasingly popular in precision health. Use of a standard multistep process for the development and testing of technology is essential.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151985/1/jnu12518.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151985/2/jnu12518_am.pd
    • 

    corecore