220 research outputs found

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Advanced Delivery System for 5G-enabled Photonic Networks

    Get PDF
    [ANGLÈS] The advent of mobile devices such as smartphones or tablets demanding high capacity services drives a solution for next generation wireless networks. Wireless and optical networks are converging to increase the bandwidth available for the end users. The deployment of Radio-over-Fiber technologies, which allow the distribution of millimeter-wave signals on the optical domain, is a very promising solution for the migration towards higher frequency bands. This would allow fulfilling capacity requirements of next-generation access networks. Passive distribution of Radio-over-Fiber channels is now well understood; however, it does not rip all the benefits optical networks can provide. Active distribution, where signals are routed on-the-fly by the network, is currently under heavy research. This bachelor thesis presents a possible solution to provide the next generation base stations with high-speed communications. This thesis has focused on the distribution of optical channels in a Radio-over-Fiber system. Dynamic and Hybrid Channel Allocation techniques are presented as a way to increase the capacity in optical-wireless systems. In this thesis, we have developed a novel algorithm for the distribution of optical channels based on the blocking probability reduction. We present it as a technique to increase the performance of the network. Furthermore, we report on an experimental characterization of an optical switch, which is the main building block to construct networks supporting Hybrid Channel Allocation methods.[CASTELLÀ] La apariciĂłn de dispositivos mĂłviles como smartphones o tablets, que requieren servicios de alta capacidad, motiva la bĂșsqueda de soluciones para la prĂłxima generaciĂłn de redes wireless. Las redes inalĂĄmbricas y las Ăłpticas estĂĄn convergiendo para incrementar el ancho de banda disponible para los usuarios finales. La implantaciĂłn de las tecnologĂ­as de Radio-over-Fiber, que permite la distribuciĂłn de señales millimiter-wave en el dominio Ăłptico, es una soluciĂłn muy prometedora para la migraciĂłn de las redes inalĂĄmbricas hacia bandas frecuenciales superiores. Esta soluciĂłn permitirĂ­a cumplir con los requisitos de capacidad de las futuras redes de acceso. La distribuciĂłn pasiva de los canales en Radio-over-Fiber se ha estudiado ampliamente; sin embargo, no exprime todas las ventajas que podrĂ­an llegar a ofrecer las redes Ăłpticas. La distribuciĂłn activa, donde la red redirige las señales en tiempo real, se estĂĄ estudiando actualmente. Este Trabajo Fin de Grado presenta una posible soluciĂłn para proporcionar altas velocidades a las estaciones base de la prĂłxima generaciĂłn mĂłvil. El proyecto se ha centrado en la distribuciĂłn de los canales Ăłpticos en sistemas Radio-over-Fiber. La asignaciĂłn de canales dinĂĄmica e hĂ­brida se presentan como una forma de incrementar la capacidad de sistemas Ăłpticos-wireless. En esta tesis se ha desarrollado un algoritmo novedoso para la distribuciĂłn de los canales Ăłpticos, basado en la reducciĂłn de la probabilidad de bloqueo. El algoritmo se presenta como una tĂ©cnica para incrementar las prestaciones de la red. AdemĂĄs, se presenta una caracterizaciĂłn experimental de un switch Ăłptico, parte fundamental para construir futuras redes que soporten la asignaciĂłn de canales hĂ­brida.[CATALÀ] L’apariciĂł de dispositius mĂČbils com els smartphones o les tablets, que requereixen serveis d’alta capacitat, motiva la recerca de solucions per la propera generaciĂł de xarxes wireless. Les xarxes inalĂ mbriques i les ĂČptiques estan convergint per tal d’incrementar l’ample de banda disponible pels usuaris finals. La implantaciĂł de tecnologies de Radio-over-Fiber, que permet la distribuciĂł de senyals millimiter-wave al domini ĂČptic, Ă©s una soluciĂł molt prometedora per la migraciĂł de les xarxes inalĂ mbriques cap a bandes frequencials mĂ©s elevades. Aquesta soluciĂł permetria satisfer els requeriments de capacitat de les xarxes d’accĂ©s futures. La distribuciĂł passiva dels canals en Radio-over-Fiber s’ha estudiat Ă mpliament; tot i aixĂ­, no exprimeix tots els avantatges que podrien arribar a oferir les xarxes ĂČptiques. La distribuciĂł activa, on la xarxa redirigeix les senyals en temps real, s’estĂ  estudiant actualment. Aquest Treball Fi de Grau presenta una possible soluciĂł per proporcionar altes velocitats a les estacions base de la propera generaciĂł mĂČbil. El projecte s’ha centrat en la distribuciĂł dels canals ĂČptics en sistemes Radio-over-Fiber. Les assignacions dinĂ mica i hĂ­brida de canals es presenten com una forma d’incrementar la capacitat dels sistemes ĂČptics-wireless. En aquesta tesi s’ha desenvolupat un algorisme novedĂłs per la distribuciĂł dels canals ĂČptics, basat en la reducciĂł de la probabilitat de bloqueig. L’algorisme es presenta com una tĂšcnica per incrementar les prestacions de la xarxa. A mĂ©s a mĂ©s, es presenta una caracteritzaciĂł experimental d’un switch ĂČptic, part fonamental per la construcciĂł de xarxes que suportin l’assignaciĂł hĂ­brida de canals

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Seamless coverage for the next generation wireless communication networks

    Get PDF
    Data demand has exponentially increased due to the rapid growth of wireless and mobile devices traffic in recent years. With the advent of the fifth generation, 5G, and beyond networks, users will be able to take advantage of additional services beyond the capability of current wireless networks while maintaining a highquality experience. The exploitation of millimeter-wave (mm-wave) frequency in 5G promises to meet the demands of future networks with the motto of providing high data rate coverage with low latency to its users, which will allow future networks to function more efficiently. However, while planning a network using mm-wave frequencies, it is important to consider their small coverage footprints and weak penetration resistance. Heterogeneous network planning with the dense deployment of the small cells is one way of overcoming these issues, yet, without proper planning of the integrated network within the same or different frequencies could lead to other problems such as coverage gaps and frequent handovers; due to the natural physics of mm-wave frequencies. Therefore this thesis focuses on bringing ultra-reliable low-latency communication for mm-wave indoor users by increasing the indoor coverage and reducing the frequency of handovers. Towards achieving this thesis’s aim, a detailed literature review of mm-wave coverage is provided in Chapter 2. Moreover, a table that highlights the penetration loss of materials at various frequencies is provided as a result of thorough research in this field, which will be helpful to the researchers investigating this subject. According to our knowledge, this is the first table presenting the most studies that have been conducted in this field. Chapter 3 examines the interference effect of the outdoor base station (BS) inside the building in the context of a heterogeneous network environment. A single building model scenario is created, and the interference analysis is performed to observe the effects of different building materials used as walls. The results reveal the importance of choosing the material type when outdoor BS is close to the building. Moreover, the interference effect of outdoor BS should be minimized when the frequency re-use technique is deployed over very short distances. Chapter 4 presents two-fold contributions, in addition to providing a comprehensive handover study of mm-wave technology. The first study starts with addressing the problem of modelling users’ movement in the indoor environment. Therefore, a user-based indoor mobility prediction via Markov chain with an initial transition matrix is proposed, acquired from Q-learning algorithms. Based on the acquired knowledge of the user’s mobility in the indoor environment, the second contribution of this chapter provides a pre-emptive handover algorithm to provide seamless connection while the user moves within the heterogeneous network. The implementation and evaluation of the proposed algorithm show a reduction in the handover signalling costs by more than 50%, outperforming conventional handover algorithms. Lastly, Chapter 5 contributes to providing robust signal coverage for coverage blind areas and implementing and evaluating the proposed handover algorithm with the intelligent reflective surface. The results show a reduction in the handover signalling costs by more than 33%, outperforming conventional handover algorithms with the pre-emptive handover initiation
    • 

    corecore