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Abstract

Data demand has exponentially increased due to the rapid growth of wireless and

mobile devices traffic in recent years. With the advent of the fifth generation, 5G,

and beyond networks, users will be able to take advantage of additional services

beyond the capability of current wireless networks while maintaining a high-

quality experience. The exploitation of millimeter-wave (mm-wave) frequency in

5G promises to meet the demands of future networks with the motto of providing

high data rate coverage with low latency to its users, which will allow future

networks to function more efficiently. However, while planning a network using

mm-wave frequencies, it is important to consider their small coverage footprints

and weak penetration resistance. Heterogeneous network planning with the dense

deployment of the small cells is one way of overcoming these issues, yet, without

proper planning of the integrated network within the same or different frequencies

could lead to other problems such as coverage gaps and frequent handovers; due

to the natural physics of mm-wave frequencies.

Therefore this thesis focuses on bringing ultra-reliable low-latency communi-

cation for mm-wave indoor users by increasing the indoor coverage and reducing

the frequency of handovers. Towards achieving this thesis’s aim, a detailed litera-

ture review of mm-wave coverage is provided in Chapter 2. Moreover, a table that

highlights the penetration loss of materials at various frequencies is provided as

a result of thorough research in this field, which will be helpful to the researchers

investigating this subject. According to our knowledge, this is the first table

presenting the most studies that have been conducted in this field.
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Chapter 3 examines the interference effect of the outdoor base station (BS)

inside the building in the context of a heterogeneous network environment. A sin-

gle building model scenario is created, and the interference analysis is performed

to observe the effects of different building materials used as walls. The results

reveal the importance of choosing the material type when outdoor BS is close to

the building. Moreover, the interference effect of outdoor BS should be minimized

when the frequency re-use technique is deployed over very short distances.

Chapter 4 presents two-fold contributions, in addition to providing a com-

prehensive handover study of mm-wave technology. The first study starts with

addressing the problem of modelling users’ movement in the indoor environment.

Therefore, a user-based indoor mobility prediction via Markov chain with an ini-

tial transition matrix is proposed, acquired from Q-learning algorithms. Based

on the acquired knowledge of the user’s mobility in the indoor environment, the

second contribution of this chapter provides a pre-emptive handover algorithm

to provide seamless connection while the user moves within the heterogeneous

network. The implementation and evaluation of the proposed algorithm show

a reduction in the handover signalling costs by more than 50%, outperforming

conventional handover algorithms.

Lastly, Chapter 5 contributes to providing robust signal coverage for coverage

blind areas and implementing and evaluating the proposed handover algorithm

with the intelligent reflective surface. The results show a reduction in the han-

dover signalling costs by more than 33%, outperforming conventional handover

algorithms with the pre-emptive handover initiation.
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Chapter 1

Introduction

5G has already been deployed in major cities worldwide [1]. In 5G, mm-wave

frequencies are exploited to handle increased wireless data traffic associated with

smart connected devices. The mm-wave band’s high-frequency range promises to

achieve high data rate communications with minimal latency. However, they are

highly prone to penetration losses due to the physical nature of high-frequency

radio communications, which may cause some coverage problems. In order to

ensure robust coverage of mm-wave frequencies, small cells can be deployed where

mm-wave frequency-driven BSs are placed closer to each other [2]. The density

of small cell deployment is likely to result in frequent handovers without proper

management and regulation. Otherwise, these increased handovers may degrade

users’ quality of Service (QoS) and Quality of Experience (QoE) [3]. Unless these

handovers are reduced, the QoS and the QoE of a user may suffer.

Therefore this thesis contributes to provide low latency communication and

robust coverage to mm-wave users, especially for indoor residents, as there needs

to be more concentration in that area. Firstly, the effect of frequency-dependent

materials on the interference examined that users could experience in the indoor

environment under multiple frequency multi-tier networks. Next, based on previ-

ous investigations of the impact of interference on indoor users, a smart handover

algorithm is implemented to reduce the number of handovers with machine learn-

1
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ing techniques. As a final step, a solution is proposed to address coverage hole

areas within the frequency-dependent building and proposed another handover

algorithm to reduce handover delays.

The following provides an overview of handover and mobility management in

the cellular network.

1.1 Handover Management Overview

Handover or handoff is a procedure for maintaining a steady connection of a UE

to the network when it moves out from the serving cell’s coverage to another

cell’s coverage. The procedure is done by changing the current cell’s channel into

a new channel whenever the UE moves into a new cell [4].

Fig. 1.1 demonstrates a simple handover scenario where the UE attached to

BS1 has an ongoing call while moving toward the coverage area of BS2. The

UE continuously monitors the signal strength of the two base stations (BS1 and

BS2). If the measured signal strength of the BS2 goes higher than BS1 in the

overlapping area, and the BS2 can provide the required resources that the UE

needs; a handover process will be performed to connect the UE to the BS2,

avoiding disconnection of the ongoing call.

Figure 1.1: Handover illustration.

The call dropping probability (CDP) and the call blocking probability (CBP)
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are two essential parameters that give a clear indicator for the QoS of a network

in the context of mobility [5]. CD happens when the handover process is rejected,

and the connection is dropped due to the required resources of the connection not

being supported by the new BS. Alternatively, the probability of new connection

access being denied by the target BS due to current traffic congestion is called

CBP. The use of bandwidth (channel) or the efficient utilisation of frequency

bands within a network is another fundamental parameter of QoS. For more

information about CDP and CBP, readers should go to [5].

Generally, there are three phases in a handover procedure: measurement,

handover decision and handover execution. The outcome of the first stage, the

measurement report, is used as input along with the handover algorithms of the

second stage. In the last stage, handover is executed by assigning the UE to

the new BS; hence, the old connection is terminated. In the handover decision

phase, if measurements are done by the UE and the network conducts the han-

dover decision, it is called Mobile Assisted Handover (MAHO). Whereas if the

network makes the decision using the measurements collected from the UEs at

several BSs, it is called Network Controlled Handover (NCHO). Lastly, Mobile

Controlled Handover (MCHO) is where each UE thoroughly assists in the han-

dover process [4].

In addition, a HO can also be categorised as a soft or hard handover. In the

hard handover, mostly employed in Time Division Multiple Access (TDMA) and

Frequency Division Multiple Access (FDMA), the connection with the existing BS

is ended before a new connection is made with the target BS. The soft handover,

mostly utilised in Code Division Multiple Access (CDMA), preserved the existing

connection while making a new connection with a target BS.

Handover Requirements

Handovers in the wireless network might negatively affect both the QoS and the

network’s capacity if the aspects mentioned below are not taken into account [6].
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• Handover latency should be kept as low as possible.

• The total number of handovers should be kept minimum in case of knowing

the particular trajectory of a UE.

• Additional signals should be lowered during the handover process.

• Handover impact on QoS should be minimized, such as lowering CDPs and

CBPs and traffic between the neighbouring cells.

Some factors also need to be considered from the designers’ aspect to achieve the

desired features of handovers. Some of them are:

• Cellular structure has an important effect on handover occurrence, depend-

ing on the cell size. For instance, if the cell size decreases, handover becomes

more frequent for a given mobile user scenario. Macro-cell, micro-cell, pico-

cell, and femtocell are wireless network types, ordered by their cell size [7].

• Mobility , referring to the user’s direction and speed, also impacts handovers.

For example, the handover requirements might differ for a user who moves

fast, in a car, train etc., and a user with a normal speed. Therefore, the

handover algorithms should address the different requirements based on the

user’s needs.

• The decrease in QoS , such as bandwidth, BER or packet loss, might trigger

the handover in order to find another BS that can provide a better QoS.

Handover Schemes and Resource Management

Good management of wireless network tools such as; code channels, time slots,

transmission capacity, frequency channels, transceiver numbers, and battery power

grants the service providers enhancement in the service quality, saving costs and

increasing wireless network productivity and effectiveness. Good resource man-

agement also decreases the probability of handover drops and preserves the QoS
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during and after the handover. As shown in Fig.1.2, handover-related resource

management consists of admission control, bandwidth reservation and power con-

trol. In admission control, ongoing and new calls can be handled differently to

ensure the system is not overloaded. For instance, new calls may be queued while

handovers may be prioritized. The bandwidth in a wireless system is one of the

most important resources. A handover request can proceed when a channel is

available or bandwidth reservation is done. A basic solution for bandwidth needs

in a handover process is reserving fractional bandwidths in a cell and using these

preserved bandwidths for a handover request instead of a new call request. Power

control is also very important in mobile systems due to its significant role in bat-

tery life, resource and spectrum allocation. Detailed information on resource

management in a wireless network can be found in [8].

Handover

Admission 
Control

Bandwidth 
Reservation

Power 
Control

Figure 1.2: Handover resource management.

Handover Algorithms

Handover algorithms can be divided into two groups as [9], [10]:

1. Conventional handover algorithms are based on the received signal strength

(RSS), signal-to-interference ratio (SIR), power, distance, velocity and bud-

get.
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Base Stat�on 1 Base Stat�on  2

Figure 1.3: Received Signal Strength as UE moving towards the handover area.

2. Intelligent Handover algorithms based on AI technologies, such as neural

networks, fuzzy logic, pattern recognition and prediction.

Relative Signal Strength: The BSs’ RSSs are measured over time in this pro-

cess, and the BS with the highest signal strength is chosen to initiate the han-

dover. Fig.1.3 shows the RSS alteration of two BSs, while UE moves towards

the handover area. When UE enters the handover area, point A, the RSS of BS1

decreases while measured RSS by UE from BS2 increases. Therefore, UE needs to

handover from BS1 to BS2. Multiple fading can cause back-and-forth handovers,

called ping-pong handovers. For instance, if the UE senses an increase in the RSS

of BS1, then it might handover back to BS1. Occurrences of ping-pong handovers

reduce the QoS considerably. Therefore, the below methods are mostly applied

with the RSS to mitigate the ping-pong effect.

• RSS with threshold: In this method, handover proceeds when the serving

BS’ RSS value goes under the threshold value. As shown in Fig.1.3, han-

dover will proceed at point B, where RSS of BS1 is lower than threshold T1.

Having a threshold value helps to reduce the handover occurrences in the

system. However, there is an important point that needs to be taken into

account when determining this threshold value. An optimum value for the

threshold should be chosen carefully; otherwise, handover problems may
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arise. For example, a user might face call drops if the threshold is chosen

low; or the ping-pong effect might be seen if it gets closer to point A, in the

case shown in Fig.1.3.

• RSS with Hysteresis: Handover is only allowed in this method if the RSS of

BS2 is higher than BS1 with a hysteresis value of h. Hence in Fig.1.3, han-

dover will be executed at point C. The ping-pong effect will be reduced with

this method. However, similar problems in the abovementioned method are

also present if the appropriate value for h is not chosen. Such as, if h is

chosen too high, call drop may happen since RSS of BS1 will not be strong

enough to support the UE, or unnecessary handovers may occur if h value

is chosen very low.

• RSS with Threshold and Hysteresis: Both threshold and hysteresis values

are used together in this technique to minimize unnecessary handovers. The

handover occurs if the RSS of BS1 is lower than the threshold value and the

RSS of BS2 is higher than the BS1 with a hysteresis value of h. As shown

in Fig.1.3, handover will occur at point C if this method is used.

T2 value in Fig.1.3 is a threshold value for the receiver, ensuring the minimum

value for RSS that maintains the ongoing call. In case the RSS of the receiver

goes under the T2 value, an ongoing call will be dropped. The network will try

to accommodate the UE to the target BS, the time slot from point A to point D.

SIR Based Algorithms: Signal to Interference Ratio is one of the most im-

portant measures to evaluate the communication system’s QoS. Once the serving

BS’ SIR value is lower than the threshold and if the neighbouring BS provides

better SIR, handover will be executed to the neighbouring BS.

Velocity Based Algorithms: The time delay throughout the handover may

cause call drops for fast-moving users. In [11], a fast handover algorithm with

velocity adaptation is presented for a typical NLOS scenario of urban communi-

cation. Their velocity-adapted handover algorithm shows a decrease in handover
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delay. Using the first moment of the instantaneous frequency, IF, of the received

signal, a mobile station velocity estimator is presented in [12]. Their IF-based

velocity estimator algorithm showed more robustness to the shadowing effects

than other velocity estimators.

Direction Biased Algorithms: The study in [13] used direction biased algo-

rithm by grouping the BSs in two; users are approaching group 1, and users are

moving away from group 2. In order to encourage the handovers to the group

1 BSs, the adjustment is done by assigning the hysteresis values to each group;

lower hysteresis to group 1 and higher hysteresis to group 2. This algorithm helps

increase the handover efficiency by reducing the mean number of handovers and

simultaneously decreasing the delay in handover.

Minimum Power Algorithms: This algorithm is proposed in [14], where the

transmission power is used as a handover criteria, and a timer is utilized alongside

the algorithm to avoid the ping-pong effect.

Conventional handover algorithm methods, in which inputs can be SIR, power,

the signal strength, are mostly easy to deploy. The intelligent algorithms pre-

sented below can be utilized alongside conventional algorithms to increase the

performance of the handover algorithm.

Fuzzy Logic Based Algorithms: A fuzzy logic algorithm integrated with an

existing cross-layer handover protocol is proposed in [15] for providing a seam-

less handover for next-generation wireless systems. In comparing their proposed

method with the existing protocol, and based on their simulation results, the

proposed fuzzy logic-based handover algorithm performs better than the conven-

tional protocol. The fuzzy logic algorithm is utilized in [16] for saving the energy

of mobile devices while keeping QoE at satisfactory levels for energy-efficient

seamless vertical handover in the heterogeneous network environment.

Neural Based Algorithms: Handover algorithms based on neural networks are

presented in [17]- [18]. The study in [17] uses data rate, while the algorithm

used in [17] employs the data rate, monetary cost and RSSI information as input
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to create vertical handover decision systems. Significant decreases are observed

in the handover latency and the number of handovers using their algorithm. A

hybrid method; using artificial neural network-based prediction with fuzzy logic

is proposed in [18]. Their results show that the algorithm used in the study is

able to reduce the ping-pong effect associated with other handover techniques.

Pattern Recognition Based Algorithms: A pattern recognition handover al-

gorithm is proposed in [19], which uses the signal strength measurements at the

location where handovers may be needed. The signal strengths from BSs are used

as patterns; hence, handover will be executed when signal strength measurements

match these patterns. The algorithm outperforms the traditional handovers at

the same hysteresis and threshold by reducing handover decisions and unnecessary

handovers. Authors extended their pattern recognition algorithm for reducing the

corner effect by introducing two-stage decision; machine-regular and alert [20].

In the alert stage, the path of the users is defined by three short patterns. If the

pattern matches before the corner, the algorithm goes to the alert stage instead of

executing the handover, in which each short pattern is compared with the signal

strength. These short patterns contain the appropriate handover. This extended

algorithm also works better than conventional handovers.

Prediction Based Algorithms: Mobility prediction of the users aims to reduce

handover delay and unnecessary handovers and is one of the popular techniques

within intelligent handover algorithms. Knowing the user’s trajectory informa-

tion would be useful for BS skipping; for instance, unnecessary handovers will be

prevented in the densely deployed small cell environment. The study in [21] used

an improved mobility prediction handover framework to assist the user equip-

ment during the handover process to provide seamless connectivity to its users.

The results show improved throughput for both homogeneous and heterogeneous

networks. An adaptive handover technique for seamless mobility-based wireless

networks is proposed in [22] to predict the best access point (AP) candidate, uti-

lizing the selection metrics of RSS of candidate AP, mobile node relative direction
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towards the access points in the vicinity, and AP load. Despite being more com-

plicated than conventional handover systems, intelligent handover algorithms are

much more suitable for increasing the QoS of mm-wave communication [6]. They

are also capable of reducing handover delays and unnecessary handovers, as well

as call blocking and call dropping probabilities. In addition to using common

inputs such as signal power and SIR, intelligent algorithms use the information

of the network, such as traffic and the information of UE, for instance: direction,

speed, location, etc.
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1.2 Mobility Management Overview

Increased demand for seamless connections has brought more attention to mobil-

ity management since mobile users tend to switch their networks and/or serving

BSs, which results in service disruptions. Hence, seamless connectivity can only

be provided with a proper mobility management scheme. It is reported in [23]

that mobility management can be categorized as follows:

• HO management,

• resource management,

• location-based service pre-configuration and network planning (out of the

scope of this thesis).

HO occurs when an active or radio resource control (RRC) connected UE

-performing data transmission- alters its serving access terminal for various rea-

sons, including receiving better signal quality from neighbouring BSs or the re-

ceived signal quality from the serving BS under a certain threshold. Similar to the

X2 interface in LTE, the Xn interface is the interface between next generation-

radio access networks (NG-RANs) -or simply g nodeB (gNB)- is already defined

in 5G standards [24]. According to Xn-based HO, there are HO preparation and

execution phases in which certain steps are taken in order before the UE has

an RRC connection (or is active). These two phases, in turn, incur some delay,

resulting in service interruptions for UEs that undermine seamless connectivity.

Given the limited coverage areas of mm-wave frequencies designated for 5G NR,

the HO rates are expected to boost, making the seamless connectivity harder to

sustain.

In this regard, predictive mobility management, where future locations and

HOs of the users are predicted, and networks/BSs are triggered to be ready for

upcoming events, such as HO requests in advance, is considered to be a promising

candidate to provide the required solution for the seamless connectivity [23]. The
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authors in [25] proposed a machine learning (ML) based mobility management

scheme for LTE X2 HO process, where future HOs are predicted so that some of

the HO preparation steps are conducted beforehand in order to reduce the HO

delay.

Each BS is assigned to some certain bandwidth to provide for the users un-

der their service, and resource management refers to using radio resources as

efficiently as possible. With the ever-increasing number of users in mobile com-

munications networks, including IoT devices [26], resource management becomes

even more critical, especially for UDNs. Mobility prediction also helps provide

efficient and intelligent radio resource management [23]. Upcoming HOs, for ex-

ample, can be predicted for a certain BS to provide it with prior information so

that it would have time to arrange the available resources accordingly. In ad-

dition to enhancing resource utilisation efficiency, HO-prediction-based resource

management can also play an integral role in seamless connectivity since call drop-

pings can be prevented by providing the target BSs with full knowledge about

the upcoming HOs [3].
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1.3 Research Gaps and Motivations

The rapid development of modern and smart urbanization led to more than 80%

of people spending daily life in the indoor environment [27, 28]. Moreover, when

emergency measures are considered, such as the Covid-19 pandemic situations,

i.e. restrictions, local/national lock-downs, homeschooling, and paradigm shift

to working from home, people spend more time indoors, which further increases

the data demand for indoor users. However, the study of HO models, and cover-

age extension of an outdoor transmitter to indoor receivers, receives much more

attention in the literature when compared to the indoor-related casework [29].

Thus, intelligent HO technology paves the way for new research directions in

the interface between indoor and outdoor networks. The following sums up the

research gaps and motivations that are addressed in this thesis, in particular.

• As the studies had pointed out that the HO failure rate in a heterogeneous

macro-pico network is up to 60%, which is twice higher compared to a

macro-only network [30], the research question that whether the different

types of building materials have played any role on the outdoor BS’s inter-

ference when the user is served by the mm-wave driven femto BS, led the

work presented in Chapter 3.

• Indoor user mobility is one of the critical factors of today’s system-level

simulations; indoor users generate a great amount of mobile traffic. As

mentioned, how to model the user’s indoor movement is still being deter-

mined. To enable the seamless connection transition while the user moves

from mm-wave-driven indoor small BS’ coverage to outdoor macro BS cov-

erage, prediction of mobility is notably important. Based on the social force

model in [31], a human’s decision-making process is divided as a product

of two factors, external and internal, in which the former is represented by

environment stimulus and group behaviour, whereas individual character-

istics indicate the latter. Therefore, the user’s mobility is stated to have



14

some pattern and is not entirely spontaneous. Motivated by the mentioned

study, we hypothesise that a user has more regularities in their movement

within an indoor environment, where degrees of freedom are lower than in

an outdoor scenario. Based on the aforementioned research motivations,

Chapter 4 focuses on reducing the frequency of handovers.

• Connection loss inside the coverage blind area is a significant problem if

it is not properly addressed and has not received decent attention. While

looking for a cost-effective solution for supplying satisfactory signal coverage

to the coverage blind area and seamless connection, intelligent reflective

surface, which is seen as an emerging technology and takes great attention

in the literature, took our attention. However, how to integrate it into the

conventional handover signalling procedure is unclear, which moved us to

the study proposed in Chapter 5.

1.4 Research Aim and Objectives

Based on the aforementioned research gaps and motivations, this thesis aims to

bring ultra-reliable low-latency (URLLC) communication for mm-wave indoor

users by increasing indoor coverage and reducing the frequency of handovers.

The objectives of the thesis can be outlined as follow:

• Provide a literature review on mm-wave coverage, HO and mobility man-

agement.

• Analyse how the building material types react to mm-wave interference in

order to provide robust indoor coverage.

• Analyse indoor mobility prediction with the utilization of Q-learning, and

devise a pre-emptive HO algorithm in order to achieve seamless connection

and URLLC for the UEs transitioning in the heterogeneous network.
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• Analyse the mm-wave coverage in the context of IRS applied to the coverage

blind areas, and devise a pre-emptive HO algorithm in order to achieve

URLLC with reduced HO costs.

• Provide conclusions and future research directions on the topic of seamless

connection in mm-wave.

1.5 Thesis Contributions and Organization

The remainder of this thesis with the contributions to the corresponding research

objectives mentioned in Section 1.4 to each chapter follows as:

• Chapter 2 introduces the overview of mm-wave communication. Then, the

benefits and drawbacks of using mm-wave for indoor coverage are explained

in more detail, and the literature is examined. Our extensive survey in this

area led us to produce a table that summarizes the penetration loss of

materials at various frequencies, which would be useful to the researchers

studying this area. According to our knowledge, this is the first table pre-

senting most of the studies conducted in this field. Following that, more

details are introduced on heterogeneous network planning. One of the main

objectives of this thesis is to provide solutions for coverage and handover

problems; the literature review in this chapter also includes some machine-

learning techniques that could effectively achieve seamless coverage. This

chapter has been published as part of a book chapter. Detailed information

about the publication can be found in the publications section below.

• Chapter 3 examines the outdoor BS interference effect inside the building

in the context of a heterogeneous network environment. A single building

model scenario is created, and the interference analysis is performed to ob-

serve the effects of different building materials used as walls. An assessment

of the results is followed by the selection of the best frequency-dependent
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building material in conclusion. This chapter has been published in a con-

ference paper. The publications section contains details of the publication.

• Chapter 4 presents two-fold contributions and provides a comprehensive

study of mm-wave technology. The first study addresses the problem of

modelling users’ movement in the indoor environment. Therefore, a user-

based indoor mobility prediction via Markov chain with an initial transi-

tion matrix is proposed, acquired from Q-learning algorithms. Based on

the acquired knowledge of the user’s mobility in the indoor environment,

the second contribution of this chapter provides a pre-emptive handover

algorithm to provide seamless connection while the user moves within the

heterogeneous network. The results of the first contribution of this chapter

are published at a conference, and the extended work with the second con-

tribution is published in a journal. Publication details are provided in the

publications section.

• Chapter 5 provides seamless coverage, especially for the users moving within

the coverage blind area, where they lose their network connection. Following

the detailed information on radio access mobility, the proposed solutions are

introduced, and results are showcased. The conclusion is drawn at the end.

Currently, this chapter is being prepared for submission to a conference.

• Finally, Chapter 6 concludes the thesis and provides the future direction of

the research.
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1.6 Publications

• Part of the Chapter 2 is published in the book chapter, details shared below.

Muhammad A. Imran, Aysenur Turkmen, Metin Ozturk, Joao Nadas,

Qammer H Abbasi. Seamless indoor/outdoor coverage in 5G. Wiley 5G

Ref: The Essential 5G Reference Online, 1-23 doi : 10.1002/9781119471509

URL:https : //onlinelibrary.wiley.com/doi/10.1002/9781119471509.w5GRef227

• The study in Chapter 3 is presented in the conference. The details are

given below: Aysenur Turkmen, Michael S. Mollel, Metin Ozturk, Sun

Yao, Lei Zhang, Rami Ghannam, Muhammad A. Imran. Coverage anal-

ysis for indoor-outdoor coexistence for millimetre-wave communication 2019

UK/China Emerging Technologies (UCET), 1-4 doi : 10.1109/UCET.2019.8881890.

URL: https : //ieeexplore.ieee.org/abstract/document/8881890

• The initial results in Chapter 4 is presented in a conference, and the com-

pleted work is published in a journal. The details are given below:

Aysenur Turkmen, Shuja Ansari, Paulo V. Klaine, Lei Zhang, Muham-

mad A. Imran. Indoor mobility prediction for mm-wave communications

using Markov Chain 2021 IEEE Wireless Communications and Networking

Conference (WCNC), 1-5 doi : 10.1109/WCNC49053.2021.9417348.

URL: https : //ieeexplore.ieee.org/abstract/document/9417348

Aysenur Turkmen, Shuja Ansari, Paulo V. Klaine, Lei Zhang, Muham-

mad A. Imran. IMPRESS: Indoor Mobility Prediction Framework for Pre-

Emptive Indoor-Outdoor Handover for mm-wave Networks. IEEE Open

Journal of the Communications Society 2, 2714-2724 doi: 10.1109/OJ-

COMS.2021.3133543. URL: https://ieeexplore.ieee.org/abstract/document/9642053

• The last contribution chapter of this thesis is in the pipeline for a journal pa-

per submission. Aysenur Turkmen, Yihong Liu, Lei Zhang, Muhammad
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A. Imran. IRS Assisted Handover for Next Generation Networks. IEEE

Open Journal of the Communications Society is to be submitted.



Chapter 2

Literature Survey

In the next generation of cellular communications, 5G, one of the biggest techno-

logical improvements in terms of radio access network (RAN) is the use of massive

MIMO (multiple-input multiple-output) and mm-wave to provide the increase in

capacity [32]. However, using mm-wave has a serious issue with penetration losses

due to the physical nature of high-frequency radio communications with shorter

wavelengths. To resolve this issue, 5G will rely heavily on small cells (SCs) to

provide indoor connectivity at mm-wave frequency bands [2], and this opens up

new research directions regarding the interface between indoor and outdoor net-

works, such as intelligent handover (HO) techniques. This chapter presents an

overview of mm-wave important parameters and characteristics, followed by a lit-

erature survey on recent studies that simultaneously consider outdoor and indoor

coverage.

2.1 Millimeter-Wave Cellular Communication

Microwave bands, whose spectrum ranges from 300 MHz to 3 GHz, become

limited due to explosive use of the sub 3 GHz band for wireless communica-

tions [33, 34]. To deal with the increased demand for traffic and capacity, 5G

will exploit mm-wave technology, with a wavelength spectrum ranging from 1 to

19
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100 mm [35]. This is particularly interesting as this portion of the spectrum has

very large bandwidths with several unused bands. Fig. 2.1 pictures the massive

spectrum availability in mm-wave, as presented in [2].

54 GHz 99 GHz 99 GHz

Microwave

Communications

3 GHz 57 GHz 64 GHz 164 GHz 200 GHz

Potential Bandwidth: 252 GHz

Oxygen

Absorption Band

Water Vapor

Absorption Band

Figure 2.1: Spectrum availability of mm-wave.

Several fundamental characteristics of mm-wave are briefly discussed in the

following section.

High Atmospheric Attenuation: The small wavelengths of the mm-wave

spectrum are prone to serious attenuation since oxygen and water vapour in the

atmosphere absorb their electromagnetic energy. Despite having two absorption

spectrum bands, as shown in Fig. 2.1, mm-wave still has a much broader spectrum

when compared with the microwave. From the average atmospheric attenuation of

the mm-wave graph obtained in [2], the highest attenuation of oxygen absorption

is around 15 dB/km for the 57–64 GHz band, and water vapour absorption has

its highest attenuation between 164 and 200 GHz. This makes those frequency

bands undesired for outdoor applications, resulting in a large spectrum portion,

at 60 GHz, being seldom used and license-free.

Higher Propagation Losses: It has long been known that the free-space

path loss line-of-sight (LOS) communication is proportional to the square of the

carrier frequency, as evidenced by [36]. Thus, it is clear that mm-wave frequencies
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have higher propagation losses when compared with microwave communications.

For instance, the propagation loss at 60 GHz is 28 dB higher than that for 2.4

GHz [37]. For the non-line-of-sight (NLOS) cases, attenuation is also more notable

when higher frequencies are deployed. For instance, the attenuation is around

17.7 dB at sub 3 GHz, whereas it reaches 175 dB at 40 GHz for concrete [38], [39].

In the presence of foliage, there is another high propagation loss, properly named

foliage loss, represented by the empirical formula [40]

Lf = 0.2f 0.3R0.6, (2.1)

where Lf is the foliage loss in dB, f is the carrier frequency in MHz, and R is the

foliage depth in meters, developed by Marcus and Pattan.

[2] calculated the foliage loss from Eq. (2.1) for foliage depths of less than

400 m and frequencies from 20 GHz to 95 GHz. For instance, when comparing 5 m

and 30 m foliage depths at 70 GHz, Lf is around 15 dB and 44 dB, respectively.

Therefore, it is clearly seen that foliage loss has a severe effect when the foliage

depth increases.
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2.2 Indoor Coverage in mm-wave

As previously mentioned, mm-wave suffers from high propagation loss as they

have higher frequencies. Moreover, different materials have various effects on

penetration loss. Therefore, penetration loss should also be considered depending

on the material type and thickness, particularly when the mm-wave is utilized.

Table 2.1 compares the penetration loss of some building materials at certain

frequencies.

As mm-wave is not fully capable of penetrating through these in-building ma-

terials, mm-wave nodes should be separately specified for indoor and outdoor

usage. Otherwise, propagation could suffer from huge penetration losses, nega-

tively affecting data rates and spectral and energy efficiencies when the outdoor

mm-wave base station (BS) is deployed to serve indoor and outdoor users. Since

covering indoors by deploying various small outdoor BSs would be ineffective,

utilizing SCs indoors is a more legitimate approach since the former costs more

for mobile network operators (MNOs) instead of deploying more cells to increase

the coverage and overcome the path loss issue. Some examples of SCs are pico

and femto, which will be presented in the following subsection.

2.2.1 Indoor Deployment of Small Cells

The efficient deployment of mm-wave SCs for indoor management is one of the

important uses of SCs, as most have a cell size with a several hundred-meter

radius. They are named according to their coverage areas, ranging from smallest

to largest, and some typical SCs are femtocells, picocells, and microcells.

Types of Small Cells for Indoor Coverage

Femtocells are connected to their own wired backhaul and are mostly user-

deployed, low-cost, and low-power BSs to improve the quality of coverage in

small sites such as a home, office or even a dead zone within a building. Some
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Table 2.1: Penetration loss of materials.
Material Thickness Penetration Loss (dB)

(cm) ≤ 3GHz† 5GHz‡ 8.5–9GHz†† 28GHz‡‡ 40GHz∗ 60Ghz∗∗ 73GHz∗∗∗

Brick - - 14.5 - - - - -

Brick 10 - - - 28.3 178 - -

Brick 185.4 - - - 28.3 - - -

Drywall 2.5 5.4 - - 6.8 - 6 -

Wood 0.9 5.4 - - - 3.5 - -

Tinted glass 3.8 - - - 40.1 - - -

Clear glass 0.3 6.4 - - 3.9 2.5 3.6 -

Clear glass 0.5 - - 0.3 - - - -

Clear glass 1 - - - - - - 7.1

Mesh glass 0.3 7.7 - - - - 10.2 -

Concrete 2.5 - - 1 - - - -

Concrete 10 17.7 - - 34.1 175 - -

Particleboard 1.25 - - 0.3 - - - -

Plywood ∼1.25 - - - 2 3 - 5

Whiteboard 1.9 0.5 - - - - 9.6 -

Whiteboard + wall 21.4 - - - - - - 73.8

Closet door 7 - - - - - - 32.3

Steel door 5.3 - - - - - - 52.2

† [35, 39,41]
‡ [42]
†† [43]
‡‡ [2, 39,44,45]
* [2, 45,46]
** [41]
*** [45, 47]



24

benefits of using femtocells are given below:

1. Femtocells could provide better capacity than macrocells because of their

proximity to the end users. Macrocells usually have coverage radii of several

kilometres. They thus may incur in worse signal-to-noise ratio (SNR), as

the SNR is inversely proportional to the distance between the transmitter

and the receiver.

2. Offloading indoor traffic to the femtocell instead of operating them from

outdoor macrocells would assure more RAN resources for mobile users since

those users would not have to be served by the same portion of the spectrum

as the ones connecting to the macrocells.

3. Operational expenditure and capital expenditure (OPEX/CAPEX) for MNOs

will be reduced by deploying femtocells since urban macrocells have addi-

tional costs for site lease, equipment, engineering works, and electricity and

backhaul cabling. Further details on OPEX and CAPEX costs for macro-

cells can be found in [48], where the authors compare the cost in terms

of installation, site lease, equipment, Operational and Management power,

and total costs.

4. Femtocells are easy to deploy, as they do not require expert knowledge and

can be “commissioned” by the end user in a plug-and-play manner.

5. Femtocells are much more environmentally friendly than macrocells since

they can be operated on demand, then they can be easily turned off to re-

duce energy consumption when there is no need to use them, such as out of

hours in offices or when the user is not at home. Moreover, intelligent algo-

rithms could be used for deciding when the femtocell should be operating,

as in [49].

As mentioned above, operating femtocells for indoor traffic instead of operat-

ing them from an outdoor BS is very efficient in lowering the expenses and ease of
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installation and giving mobile users more capacity and quality of service (QoS).

Picocells are the second smallest cell type with a typical cell radius ranging

from 100 to 300 m. Deployment of the picocells is done by the MNOs, who are

also in charge of the site rental payment and maintenance of the cell. They can

enhance poor coverage in a building, such as an office floor or retail space [50].

However, their slightly higher coverage radii can cause interference in a small

footprint area. Moreover, compared with femtocells, picocells would cost more

because of installation, maintenance and site lease. In contrast, femtocell gives

full plug-and-play features to its users, including self-configuration and no extra

payment for site leasing. Since maximizing the coverage area by increasing cell

radii results in a capacity reduction, femtocells would be a better choice for

indoor deployment when compared with picocells, which could suffer more from

shadowing effects as shown in Fig. 2.2.

Figure 2.2: Illustration of shadowing effect on picocell and femtocells.

Macrocells will be discussed in Section 2.3.
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Use-Cases of Indoor Coverage

Improving the quality of everyday life is the main driver behind today’s Internet

of Things (IoT) systems. Smart homes are one of the potential applications

of the IoT, where home sensors such as temperature controllers, smart meters,

light and security camera controllers, and high-stream multimedia services are

deployed within people’s dwellings. Some of these applications and services will

require very high data rates. The need for higher data capacity would be enabled

by deploying mm-wave SCs within buildings. In [51], the IOLITE smart kitchen

scenario was given as a beyond 5G example to evaluate the challenges of IoT

over smart home technologies, and some technological enablers were addressed to

overcome the challenges.

[52] proposed improving wireless communication coverage, increasing data

transfer rates, enhancing jamming and solving interference problems by the es-

tablishment of a cross-media mesh network with the help of several dual-media

transceivers for wireless sensor and actuator networks (WSANs) and energy man-

agement systems (EMSs) for smart home and also smart grid applications.

The challenges and the research issues of 60 GHz networking on a system

level were reviewed by [53] from the perspective of wireless local area networks

for future home networks. Their study comprised use-case scenarios with cell-

based and ad-hoc-based home network communication infrastructures.

To improve coverage and provide a seamless transition between home and

office rooms at 60 GHz, the radio-over-fiber technique (RoF) was proposed [54],

where all distributed antennas in different rooms are connected to the central

station with fiber cable. However, the popularity of this topic has decreased

over the years. In the IEEE database, between 2004 and 2016, there were 146

conferences, 53 journals and magazine papers. In contrast, between 2017 and

2019, there were 11 conferences and 7 journals and magazine papers about RoF

home networks, meaning that the number of papers per year has decreased to less
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than half for the past three years. The extended cell (EC) concept was introduced

in [55] to overcome the corner effect and seamless transition and evaluate the

deployment of the RoF technique.

Despite being a complementary technology to mm-wave, fiber-to-the-home has

a high cost because of the expensive RF components utilized. Replacing these

costly components with CMOS technology might minimize the cost. In [56], the

authors designed a 40 GHz power amplifier using a 130 nm RF CMOS process

for the remote antenna unit transceiver of an mm-wave RoF system to enable

the feasibility of RoF by low-cost CMOS amplifier. A similar transmitter was

developed for a 60 GHz by using a 90 nm CMOS process in [57].

To maintain indoor connectivity at 60 GHz, [58] employed relay nodes to im-

prove the quality and robustness of 60 GHz links. Their simulation results showed

a 33% reduction in the path loss when the relay node is deployed. Furthermore,

there is also another candidate to maintain network connectivity by deploying

physical reflectors, [59], who deployed mirrors as a virtual relay to forward sig-

nals for the indoor environment at 60 GHz links and, based on simulation results,

their proposed scheme showed improvements on the robustness of link connectiv-

ity at 60 GHz.

The studies on enhancing mm-wave coverage using passive reflectors are also

limited in the literature thus far. The robustness of 60 GHz for indoor coverage

was investigated in [60] by analyzing obstacle density, the reflective surface avail-

ability and the influence of access point positions. Their simulation results show

that a transmitter’s average transmission loss was between 15 dB and 20 dB,

including power loss on the reflective surface and the extra path loss caused by

longer transmission paths. The authors claimed that 60 GHz indoor network

coverage depends solely on the reflections in non-line-of-sight (NLOS) scenarios.

To enhance the mm-wave coverage for an NLOS indoor scenario, passive metallic

reflectors with different shapes and sizes were studied in [61]. They observed a

median gain of 20 dB power gain at 28 GHz, from a square metallic reflector
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compared with the no reflector scenario.

2.3 Outdoor Coverage in mm-wave

The outdoor coverage is mostly broken down into two terms, macrocells and

microcells. Typically, the former is used when the focus is coverage area, while the

latter is generally chosen for its capacity. Macrocells are designed for the immense

coverage area, up to a few kilometres cell radii with a typical transmit power

ranging from 20 W to 160 W [62]. Microcells are the second-largest BS type,

having a typical cell radius between 250 m and 1 km while providing standardized

interfaces over the backhaul and, simultaneously, having a transmit power lower

than the macrocell BSs.

The next-generation communication concept of enabling high-capacity con-

nection everywhere and every time to its users would not be possible with the

micro-wave BSs using lower frequencies. However, as discussed before, using

higher frequencies brings some problems prone to high penetration and path

losses. Therefore, to bring seamless coverage in the outdoor environment, 5G

cellular architecture will also continue to deploy heterogeneous networks since

macrocell’s immense coverage area would not enable the high capacities required

for many users.

2.3.1 Heterogeneous Network Planning

Current macro BSs designed to provide a broad coverage area need to meet the

expectations of higher data rates and outstanding quality of experience (QoE),

typical of 5G use cases. Therefore, an integrated heterogeneous network deploying

micro, pico and femto cells under the macro BS umbrella will continue to drive

the next-generation cellular networks. Fig. 2.3 gives a clear image of a typical

heterogeneous network deployment.

Since 5G will encourage the SCs to utilize mm-wave, wherein a vast amount
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Figure 2.3: A typical heterogeneous network deployment.

of spectrum is available, the number of SCs will increase to stabilize the mm-wave

coverage, which is very vulnerable to penetration losses. This may lead to some

challenges in heterogeneous networks, such as green backhauling, HO strategies,

on-off SC policy and several others. With 5G, 80% of the SCs are expected

to use wireless backhaul connection to reduce the cost of fiber-based backhaul

in a densely deployed heterogeneous network [63]. [64] addressed the wireless

backhaul problem in SCs in the mm-wave band by proposing a joint transmission

scheduling scheme for the radio access by proposing the D2DMAC scheme, which

enables device-to-device transmissions for performance improvement by using a

path selection criterion.

Another promising approach to meet the demands of 5G is ultra-dense net-

works (UDN), which present a viable strategy to tackle the more demanding ap-

plications, such as high-definition video streaming, augmented reality, and cloud

computing [65]. The idea of densely deploying SCs in hot spot areas, where more

capacity and bandwidth are needed, recently became a very popular topic, as seen

in the Mobile and wireless communications Enablers for Twenty-twenty (2020)

Information Society (METIS) reports [65,66].
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Figure 2.4: Homogeneous network evolution towards UDN.

Fig. 2.4 pictures the paradigm shift of the network towards UDNs. The radius

of the circles getting smaller represents the move from very large footprints to

small coverage areas. There are two common definitions of UDNs in the literature;

one defines UDNs as networks whose number of cells exceeds the number of active

users [67,68], while another definition provides a quantitative measurement where

the cell density is greater than 103 cells/km2 [69].

2.3.2 Handover in mm-wave Communication Systems

Handover management in mm-wave communication systems is an important sub-

ject, which needs to be addressed properly. As shown in Fig. 2.5, to cover the

same building, the mm-wave antenna needs to be installed in nearly all rooms,

since it has a smaller coverage footprint than conventional networks [6].

Users’ mobility in this small size of coverage area would trigger several han-

dovers [71], which may cause the total number of handovers to increase during

a call (ping pong effect). As seen from Fig. 2.5 a), in previous networks, such

as GSM, UMTS, 802.11 WLAN, and LTE, there is adequate time for the initi-

ation and completion of a handover successfully, as overlapping areas between

cells are quite large. However, with greater frequencies in mm-wave systems, the

coverage size decreases rapidly. Thus, the overlapping area gets smaller. Mainly

in an indoor environment, overlapping areas typically occur around open spaces
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(a) 2.4 GHz

(b) 60 GHz

Figure 2.5: Coverage of the same building with 2.4GHz and 60GHz [70].

such as doors and windows. For instance, once a UE leaves a room through a

door, the UE can make a sharp turn, turning left or right. In this case, a han-

dover may not be completed successfully if not detected early enough since the

overlapping area might be too small to allow the UE enough time to complete a

handover. This phenomenon is called the corner effect, and it needs to be taken
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into consideration, especially in higher frequencies.

Figure 2.6: Handover in 5G NR.

Fig. 2.6 demonstrates the basic handover procedure in New Radio (NR), the

latest radio access technology developed by 3GPP for the 5G mobile network [72].

There are two types of NG Radio Access Network nodes connected to the 5G core

network that are gNB and ng-eNB. A gNB supports NR control-plane and user-

plane protocols to the NR devices and, an ng-eNB uses the LTE control-plane

and user-plane protocols to serve the LTE devices [73]. The procedure begins by

checking if a UE needs a handover and follows:

1. By sending measurement reports to the source gNB.

2. The handover decision is made in the serving gNB, using RRM (Radio
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Resource Management) information and the measurement report.

3. The handover request message, including the required data for preparing

the HO at the target BS side, is sent from the connected gNB to the target

gNB.

4. Admission Control procedure will be performed in this step if the target

gNB can grant the resources.

5. The target gNB sends a handover request acknowledgement message to the

serving gNB, and the forwarding of data can be initiated once the serving

gNB receives it.

6. UE receives the handover command from the serving gNB.

7. The Sequence Number (SN) message is sent from the serving gNB to the

target gNB to keep track of the ordering of the packets.

8. The UE disconnects from the serving gNB and synchronizes to the target

gNB.

9. The target gNB informs AMF that UE has changed the cell via the Path

Switch Request message.

10. NR core shifts the DL data path towards the target side.

11. The path switch request acknowledgement is sent by the AMF to the target

gNB.

12. The serving gNB receives successful handover information from the target

gNB, and activates the release of resources via UE context release message.

The radio resources related to the UE are released eventually by the serving

gNB [74].
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2.3.3 Cell Range Extension

The RSRP plays an essential role in determining a handover (connected mode)

and conventional cell selection (idle mode) since the decisions are based on it [75].

The mobility modes will be discussed more in detail in the following Section 2.3.4.

In a heterogeneous network environment, macro cells have higher transmit power

up to 16 dB than SCs [76]; therefore users inherently choose macro cells over SCs,

when assessing the downlink reception. However, this situation would make SC

implementation redundant, and the resources of SCs would not be fully exploited,

which may cause overloading on the macro cells. In order to cope with the

problem, a cell range extension, CRE, is presented in [77], where a bias value

is added to the received signal of SC. Thus, SC coverage is increased virtually,

and more UEs can make a connection to the picocells, resulting in offloading on

macro BSs [78], as described by

(wp
pilot)dB + (∆bias)dB > (wm

pilot)dB, (2.2)

where (wpilot
p )dB, (w

pilot
m )dB, and (∆bias)dB, are the decibel value of the pilot signal

from pico and macro BSs, and bias value respectively, [79].

2.3.4 Radio Access Mobility in mm-wave

The UE is not engaged in an active data connection in Idle mode, but it must

still be reachable via signalling (paging) through an appropriate cell. Paging is a

method of broadcasting a brief message across the entire service area, typically in

a multicast fashion by multiple BSs at the same time [80]. The paging channel is

monitored by the UE for incoming service requests as well as the cell (re-) selection

process. To check and synchronize the network’s paging messages, the UEs ’wake

up’ periodically. When a paging message is received, the UE connects to the BS

operating the cell where the UE is camped. The UE changes to a Connected
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state after a successful connection using a random access technique [81]. Cell

(re-)selection occurs only when the UE is in Idle mode. It is a way of changing to

camp on a more appropriate cell than the currently selected cell to receive future

paging messages successfully. Idle mode and cell selection criteria help the UE

to determine the suitable cells whose measured attribute meets the SS/quality

selection criteria (coined as s-criteria) for the cell selection procedure. In case

there is not a suitable cell available, an acceptable cell will be identified. In this

case, the UE will camp on that acceptable cell and begin the cell reselection

procedure. Furthermore, a UE in Idle mode will try to reduce battery power

consumption. This is accomplished through a technique known as Discontinuous

Reception (DRX), in which the terminal disconnects its receiver and enters a

low-power state. To be able to receive the paging indications, the terminal will

’wake up’ periodically with wake-up intervals, also known as DRX cycles, such

as 0.32s, 0.64s, 1.28s and 2.56s in LTE [82]. The purpose is to minimise paging

reception interruptions during the cell reselection operation. Notably, unlike in

Connected mode, the UE can decide on cell reselection independently, and it is

not necessary to report measurements or events to the network. When camping

on a cell, the UE must regularly look for a better cell using the cell reselection

criteria.

The centralized entities keep the UE’s approximate location information (MME

in LTE, AMF in NR) in Idle mode. This location is identified for each collection

of cells designated as a tracking area (TA). A TA list (TAL) was introduced in

3GPP Release 8 to minimize the frequent registration during the ping-pong effect

and lower the signalling overheads of location management. In this design, each

UE may contain a list of TAs rather than a single TA. Until it goes to a cell that

the TAL does not cover, the UE keeps the TAL [83].

In addition to the aforementioned mobility states of a UE, a new mode

that falls between Idle and Connected modes is introduced by NR, called In-

active mode. Once the UE is turned on, it goes into Disconnected mode/Idle
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mode, and it can move to Connected mode with initial attach or connection es-

tablishment. Whenever there is no activity from the UE for a brief period, it

can suspend its session by switching to Inactive mode and resume its session by

switching to Connected mode. The goal of this state is to shorten the time it takes

to bring the UE into the Connected state while minimizing signalling overheads

and enhancing the UE battery life [84].

In contrast to cell (re-)selection, HO occurs when a user switches from one

BS to another while actively engaged in a data session or phone call. The user

switches its serving cell during an active connection. High signalling overheads

among BSs and small cells are the cost of seamless communication [85]. As a

result, mobility directly impacts data session performance since data transmission

may be interrupted owing to a change in serving BS and high signalling overheads,

reducing throughput, latency, and so on.

One of the most difficult challenges in NR is ensuring mobility robustness

while reducing service disruption. As the cell size gets smaller, there are three

key challenges raised in NR. Frequent handover is the first, which causes an

increase in the handover failure rate. The second one which lowers the mobile

user’s battery life is an increased number of intra/inter-frequency measurements.

The third is increased overheads caused by frequent HO at mm-wave/microwave

frequencies, which might limit frequency resources for static users.

The entities and interfaces involved in the NR network architecture shown in

Fig. 2.7 are the following: gNodeB (5G NodeB): To service NR UEs, the gNB

uses NR user-/control-plane protocols and is connected to the 5G Core Network

(5GC) via the NG interface and to other gNBs via the Xn interface. Some as-

pects of the user mobility in the connected mode are handled at the gNBs; such

as receiving the measurement report sent by the UE, deciding whether a HO is

needed, requesting the target gNB/eNB for admission control, and others. The

5GC has a service-based architecture, allows network slicing, and divides the user

and control planes. The User Plane Function (UPF) serves as a gateway between
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Figure 2.7: Overall Architecture of NR [84,86].

the RAN and external networks. It is in charge of packet routing, forwarding, and

inspection, as well as handling QoS and maintaining traffic measures. The follow-

ing are the Control Plane Functions (CPF). The Session Management Function

(SMF) manages and establishes sessions, assigns IP addresses to UEs, supports

roaming, and regulates the UPF. The Access and Mobility Management Function

(AMF) handles reachability, location services, mobility, connection and regis-

tration. The Xn interface interconnects gNBs and ng-eNBs and carries control

information messages. HO preparation and HO signalling messages between the

target and source gNBs/ng-eNBs are carried by this interface during Xn-based

HO. The connection between gNBs and ng-eNBs to the NR core network is done

by using NG interface. More particularly, the NG-U interface connects gNBs

and ng-eNBs to the User Plane Function (UPF), while the NG-C interface links

gNBs and ng-eNBs to the Access and Mobility Management Function (AMF).

The HO cases in NR mobility architecture with the correspondent interfaces

as specified in [87] are depicted in Fig. 2.8, which can be defined as:

• Intra-gNB HO: As shown in Fig. 2.8, this HO occurs when both the target

and source cells belong to the same g-NB.

• Inter-gNB HO: This HO occurs when the target and source cells are
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Figure 2.8: NR mobility architecture along with relevant interfaces and HO use
cases [84, 86].

different gNBs. In this HO, AMF is assumed to not change (i.e. intra-

AMF). Furthermore, the UPF might (intra-UPF) or it may not (inter-UPF)

be migrated, depending on the established physical deployment, as shown

in Fig. 2.8 (c) and Fig. 2.8 (b), respectively.

• Inter-gNB HO with AMF Change: In this HO occurs with the change

of AMF. In this event, only the NG interface (not Xn) will be used. Fur-

thermore, the UPF may (intra-UPF) or may not (inter-UPF) be migrated,

depending on the established physical deployment, as shown in Fig. 2.8 (e)

and Fig. 2.8 (d), respectively.
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2.4 Self Organized Seamless Coverage

Indoor and outdoor coverage characteristics of mm-wave communication were

discussed in Section 2.2 and Section 2.3, respectively. This section will introduce

how the concept of self-organized networks (SON) can help in providing indoor-

outdoor seamless coverage, where users do not experience any service disruptions

during the switch between different networks and/or BSs/access points.

2.4.1 Self-Organized Networks

SON is a concept that helps wireless communication networks be more agile, dy-

namic, and efficient. It offers network automation, where the networks become

capable of taking action to adapt themselves to an environment-of-interest [88].

Eliminating human intervention lies at the heart of the SON concept owing to the

fact that the more human intervention networks include, the more cumbersome,

costly, and time-consuming they become. As such, in SON, the networks can de-

cide and act according to the current conditions and/or past experiences, making

them intelligent and adaptive [89]. Given the stringent requirements of 5G net-

works, including peak data rates, end-to-end latency, and spectral efficiency [90],

it has been a self-evident truth that intelligence is no more a luxury for wireless

communication networks, but a necessity. Even though the peak data rate tar-

gets of 5G, for instance, are addressed by designating mm-wave frequencies in 5G

new radio (NR) [91], new challenges arise, such as mobility and power consump-

tions [92], that are quite difficult to be dealt with inefficient conventional methods

employed in the legacy networks. Therefore, self-organization seeks not only a

higher level of QoS but also sustainable businesses for mobile network operators

since their capital and operational costs can be significantly cut down with the

help of self-organization [88].

It is reported in [88] that three integral characteristics constitute the SON

concept: 1) scalability, where the prospective SON-based solution should result
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in minimal complexity; 2) stability, where the proposed solution converges/adapts

to the final/intended state in a reasonable period; 3) agility, where the solution

is reactive to the environmental alterations. Furthermore, based on the objec-

tives of the developed solutions, SON can be investigated in three main sub-

categories, namely self-configuration, self-optimization, and self-healing [88, 89].

In self-configuration, system parameters, such as frequency allocations and neigh-

bour lists, are configured for new BS deployments and/or changing conditions,

including network upgrades and failures. Once the self-configuration phase gets

the system working, the self-optimization phase ensures that the network is con-

tinuously optimized regarding mobility, resources, energy consumption, coverage,

etc. Although self-configuration is essential in having a network operational, self-

optimization is vital in making the entire process efficient and sustainable. Lastly,

the self-healing phase takes the stage when the system has a fault. In this regard,

the system is continuously monitored to automatically detect outages/failures.

In addition to detecting, self-healing should also diagnose and take care of the

problem to revert the system to its operational condition [89].

2.4.2 Seamless Indoor and Outdoor Coverage

In the previous sections, indoor and outdoor coverage were discussed separately.

From this section onwards, outdoor-to-indoor (O2I) and indoor-to-outdoor (I2O)

papers will be surveyed to address the seamless transaction between two environ-

ments. Several works in the literature rely on ML techniques to provide better

performance in the context of O2I or I2O systems. Thus, for the reader’s benefit,

a brief summary of some important ML techniques is included before the O2I and

I2O literature discussion.
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Machine Learning in Mobility Prediction

Several ML techniques used in mobility prediction are introduced in the following

subsections. These techniques are used to improve prediction accuracy as well as

enhance network performance.

The techniques below are almost always used for outdoor mobility manage-

ment; however, they could be tweaked and adapted to particular indoor/outdoor

seamless HO constraints and solve problems from that particular use case.

Markov Models Markov models are a stochastic process mainly used in ran-

domly changed systems. The Markov property refers to the memoryless property

of a stochastic process, which means the probability of future states depends

on the current state rather than the previous state [23]. In cellular networks,

Markov chains and Hidden Markov Models (HMM) are the most common ones

used among the various different Markov models. The former one is mainly cho-

sen when the observability of the system states is fully visible; the latter one is

preferred when system states are not fully visible [89]. From the mobility pre-

diction perspective, HMM enables better predictions since the number of lost

information is lesser than the Markov chain. Moreover, deploying HMM in a mo-

bile node would enable the system to learn the environment and then update the

information. However, computation complexity caused by hidden states should

also be considered in the case of deploying HMM [23].

Artificial Neural Networks Artificial Neural Network (ANN) models are in-

spired by the human brain, which could resemble a complex machine, constantly

performing non-linear and parallel computations. The model can handle the

functions that have a large number of inputs [93]. ANN is popular for its flexible

and self-organization characteristics. In [94], the user’s next location predicted a

simple road model built to predict the user’s next BS connection by employing

RSS distribution, where the results gave an accuracy of over 98%.
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Bayesian Networks Bayesian networks are a family of probabilistic graphical

models that a set of random variables, and their conditional dependencies are

represented by a directed acyclic graph [95]. Its great ability to resolve uncer-

tainty and make correlations between different variables in a complex environment

makes Bayesian networks applicable in many fields, such as from user movement

historical data; the probability of a user’s presence at a specific place can be

computed using Bayesian networks. This model can be incorporated with other

models to boost its prediction performance. In [96], Bayesian networks combined

with the neural networks for predicting locations on cellular networks, in which

results show that the hybrid Bayesian neural network model outperformed com-

pared to other standard neural networks. In a complicated cell environment such

as UDN, constructing Bayesian networks would cause difficulties since the system

models conditional dependence by edges in a directed graph [23].

Outdoor to Indoor

O2I coverage and measurements are important for developing a suitable propaga-

tion model, measuring possible indoor coverage achieved by outdoor nodes and

addressing its interference effect on indoor nodes. O2I coverage relies on pene-

tration and reflection of mm-wave signals through different materials situated in

the office/residential buildings, for instance, wood, glass, and concrete [97]. An

extensive study of the O2I interface, including the effects of the different mate-

rials, was given in [98]. To evaluate the feasibility of O2I coverage in mm-wave,

measurements were performed in [97] for 29 and 61 GHz bands, where authors

stated that penetration loss and reflection response are functions of frequency,

material property, polarization and incident angle in the O2I coverage scenario.

Moreover, in [99], an experimental study was performed at 28 GHz for O2I

propagation. To attain narrow-band measurements, a transmitter (TX) was

placed within an office on the top of a neighbouring building 70 m above the

receiver (RX). The study examined path loss through both coated glass and stan-
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dard window glass. Results indicated that coated glass has significant penetration

loss, and from obtained measurements O2I coverage loss varies between 3 dB and

60 dB, depending on the location of RX as well as the material type constructed

in the building. In [100], narrow-band building penetration measurements at

28 GHz were conducted in New Jersey suburban residential area deploying fixed

wireless access technology. To differ building penetration loss from outdoor path

loss, a common-slope cross-comparison approach was proposed, and measured

building penetration loss was found to vary from 9 dB to 17 dB, depending on

the building type. Similarly, [101] studied a fixed wireless access scenario at

28 GHz to examine the effects of O2I penetration on the wireless propagation

channel characteristics in an urban area. The measurements were executed us-

ing a real-time channel sounder and reported a mean average loss of 22.7 dB for

the multi-story brick building and 10.6 for the wood-frame single-family home.

Penetration loss measurements for internal and external walls at various carrier

frequencies ranging from 0.8 GHz to 28 GHz with narrow-band signals were per-

formed, and an empirical multi-frequency O2I path loss model was presented

in [102]. The authors in [103] proposed that the effects of O2I propagation on the

direction of arrival and delay spread statistics are progressively influenced by the

floor plan and the relative area of the building with respect to the structures in

lieu of its building materials.

Although the trend in most of the present literature on O2I coverage focuses

on measurements at 28 GHz, other studies also explore various mm-wave fre-

quencies for O2I propagation. The O2I transmissions at 10, 30, and 60 GHz were

analyzed in [104] for two types of building scenarios, namely old and new which

were presumed as consisting of 70% concrete walls and 30% glass windows in the

former scenario, and for latter one assumed to made up 30% concrete wall and

70% infrared-reflective glass, which is a common insulation material in modern

dwellings. Delay and angular statistics in the O2I propagation scenario at 20 GHz

were provided in [105] for one office building on different floors using a channel
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sounder. [106] modeled O2I path loss characteristics based on measurements con-

ducted for 0.8-3.7 GHz in an urban microcell scenario. [107] studied 3, 10, 17,

and 60 GHz frequencies for an O2I scenario and measurements for channel de-

lay spread and path loss have been taken for different RX positions in various

rooms. The results show that signal attenuation varies between 5 dB and 40 dB

based on the room window material compound, where penetration loss is smaller,

and thus the strongest signal component can get through. A measurement-based

analysis of O2I propagation at 3.5 GHz and its comparison were given in [108].

Similarly, [109] studied characteristics of mm-wave at 38 GHz-also in an O2I

measurement-based setup-, where line-of-sight propagation, transmission, reflec-

tion, diffraction, scattering, as well as polarization effects are in place. By its

turn, [110] observed a significant increase in propagation path loss in the O2I sce-

nario while the frequency increased from 2 GHz to 60 GHz. An O2I propagation

measurement at 4.9 GHz was conducted in [111] using the unmanned aerial ve-

hicle to observe building entry loss measurements in a high building. 5G channel

models for bands up to 100 GHz and O2I penetration loss comparison depending

on materials constructed in the building were presented in [112]. More detailed

information on mm-wave propagation models can be found in [113]. Important

elements regarding 5G deployments of O2I scenarios were reported in [114].

Indoor to Outdoor

The rapid development of modern and smart urbanisation led to more than 80%

of people spending daily life in the indoor environment [27]. However, the study of

O2I propagation models, aiming at coverage extension of an outdoor transmitter

to indoor receivers, receives much more attention in the literature when com-

pared to the I2O casework [29]. The work in [115] analysed I2O wave propagation

characteristics for a WLAN access point installed in an office, where computa-

tional simulation results showed that the path loss at 5.2 GHz was smaller than

at 2.4 GHz. Measurement-based studies in [116, 117] stated that path loss and
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transmission power mainly rely on the number of concrete walls the signal pen-

etrates before the transmitted signal reaches the receiver. Additionally, indoor

obstacles have shown notable effects on path loss based on the measurements

conducted in [118] and [116]. [116] focused on the 3.5 GHz band and performed

field measurements for I2O propagation characteristics in residential areas where

traditional houses are arranged in a line and I2O propagation considering houses

built out of wood. An empirical I2O propagation model for residential areas was

proposed in [119]. In-site measurements of reflection coefficients and penetration

losses were conducted at 28 GHz in [120] for common building materials such as

tinted glass, clear glass, brick, concrete, and drywall with the goal of designing

the future mm-wave communication networks. Results revealed that I2O pen-

etration would be quite difficult at 28 GHz, because of the higher penetration

losses of the strong reflectivity of external building materials. Furthermore, it

was stated that interference could be reduced for frequency reuse by combining

the lower penetration loss of indoor materials with reflective outdoor materials

and highly lossy external glass and walls.

Knowing user localisations is extremely useful to provide a seamless transition

from the I2O environment. Global positioning system (GPS) is mostly used in

outdoor localisation systems; however, performing indoor localisation by GPS

is not a proper option since the satellite signals need LOS propagation and are

blocked easily in the presence of obstacles. Therefore, localisation for an indoor

environment is becoming a hot topic. [121] presented a comparison between the

power consumption and accuracy of WiFi, Bluetooth low energy (BLE), Zigbee,

and LoRaWAN for use in an indoor localisation system through trilateration and

the Received Signal Strength Indicator (RSSI) values from each modality were

used. An intelligent mobile terminal indoor positioning system based on Building

Information Model (BIM) was proposed in [27]. [122] used the magnetic sensor,

the light sensor, and the satellite signal integrated to navigate indoor/outdoor

status. Their experimental results showed an improvement in indoor/outdoor
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seamless position accuracy. Besides, detailed information on indoor tracking can

be found in [123], in which indoor wireless tracking and mapping problems and

solutions were surveyed.

The I2O path loss model is crucial for the heterogeneous network simulations

which cover indoor and outdoor environments. Path loss and shadow fading

models in residential I2O scenarios were proposed by [119]. The measurements

were conducted for frequencies between 0.9 and 3.5 GHz from the two rooms of

the house. The number of walls between the transmitter and receiver was also

considered in the proposed frequency-dependent model. Despite the proposed

work’s uniqueness, the practicality of this study is limited since the case where

the transmitter is further from the outer walls was not modelled. [124] used the

same data set proposed in [119]; however, they extended the work by employing

a different methodology called singular value decomposition (SVD) to determine

empirical path loss models for the femtocell I2O scenario. Two different I2O path

loss models were proposed in [125] using ray tracing alongside an analytic para-

metric model. The indirect propagation path loss was assessed in [126] to provide

NLOS coverage at 60 GHz. Their path loss measurements showed that non-direct

paths have a notable effect and could be deployed to extend the mm-wave cov-

erage in the neighbouring room around the access point. In [127], the authors

proposed a statistical model for the I2O path loss. The work was conducted by

simulating a large number of floor plans with a random first, then that plan was

used to analyse the interference around the house, which was caused by the signal

from femto BS inside the floor plan. Their approach consisted of choosing the

optimal placement of the femto BS inside the created floor plan, showing that

proper placement of the femto BS could reduce the mean interference by about

23 dB around the house.

Interference is one of the critical issues that should be addressed when the

SCs are deployed under macrocells or microcells to increase the coverage and

capacity. In [128], we studied the coverage probability of an indoor mm-wave
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femtocell in the presence of interference from an outdoor mm-wave BS. The effects

of different building materials, such as brick, concrete, glass, and wood, were

also taken into consideration in a detailed system-level simulation. Moreover,

we have also considered in our modelling the distance between the BS and the

building and the BS transmit power. Given the emerging applications of mm-wave

technology in wireless communication, especially in providing indoor coverage,

such a study will provide useful insights into its expected performance trends. [62]

proposed an empirical I2O path loss model to assess the femtocell BS interference

impact on macrocell users. Exhaustive measurements were performed in [118]

to investigate I2O signal propagation and analyse the interference in future 5G

networks with femtocell overlaying microcells. [29] presented a generalised I2O

propagation model in order to achieve a unified model for the interference in 5G

networks with femtocells underlying macrocells.

Studies in the direction of self-organised HO from I2O environments are very

scarce despite the growing trend of indoor communications. Moreover, in UDN,

the number of indoor femtocells is expected to grow, increasing the need for

seamless HO techniques. In this context, ML approaches, wherein the HO and

resource allocation is determined using intelligent solutions, are prominent solu-

tions to offer the desired QoE.

In the context of I2O seamless transition, several works have explored using

ML techniques, as mentioned before. For instance, [129] presented an ML for

reducing redundant HO occurrences specifically for indoor-outdoor HO manage-

ment in 4G femtocells. The authors used kernel methods, and their self-optimising

algorithm results indicated that unnecessary HOs could be reduced by 65% in

the case of detecting where unnecessary HOs were likely to happen. ML al-

gorithms with convolutional neural networks were used in [130] for predicting

massive MIMO indoor channel characteristics. Authors in [131] had applied the

self-organising map (SOM) technique to develop their work in [129] in the inter-

est of making the system fully plug-and-play, as required by the SON paradigm.
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Table 2.2: Classification of Surveys on O2I and I2O.

Ref. Frequencies Research Topic

[79] 29 & 61 GHz O2I
[81-84] 28 GHz O2I
[86] 10 & 30 & 60 GHz O2I
[87] 20 GHz O2I
[89] 3 & 10 & 17 & 60 GHz O2I
[90] 3.5 GHz O2I
[91] 38 GHz O2I
[92] 2 - 60 GHz O2I
[93] 4.9 GHz O2I
[97] 2.4 & 5.2 GHz I2O
[98] 3.5 GHz I2O
[102] 28 GHz I2O
[101] 0.9 - 3.5 GHz I2O
[108] 60 GHz I2O

Their modified version of SOM allows a femtocell to learn indoor locations where

unnecessary HOs may occur. Based on previous experience, it can decide whether

to execute these HOs or not. Their results reveal that the updated algorithm can

reduce unnecessary HOs by up to 70% in an LTE system. [132] presented an

indoor path loss calculation model to predict the wireless signal attenuation by

indoor obstacles using a combination of the Okumura-Hata model and an ANN,

called a hybrid-empirical model. As we mentioned the importance of indoor nav-

igation above, detailed information on data mining techniques used in indoor

navigation systems can be found in survey study [133].

Table 2.2 presents the frequency classification on O2I and I2O studies intro-

duced in this chapter so far.



49

2.5 Conclusions

A survey-style study on indoor and outdoor mm-wave propagation was presented

in this chapter. We began the survey with an overview of mm-wave, then con-

tinued with its deployment in mm-wave for indoor and outdoor coverage, where

related papers and methods on the area were reviewed. Subsequently, this survey

emphasised self-organized seamless coverage that would help reduce the number

of call drops when a user moves in a different direction between network envi-

ronments, such as moving from indoor femtocell to outdoor macrocell. To enable

the seamless transaction, useful ML techniques were provided to make the system

smart enough when performing preemptive HO predictions. Moreover, papers fo-

cusing on seamless coverage between indoor and outdoor; O2I; and I2O were

surveyed. Moreover, our extensive survey in this area led us to produce a table

that summarizes the penetration loss of materials at various frequencies, which

would be useful to the researchers studying this area. According to our knowl-

edge, this is the first table presenting the most studies that have been conducted

in this field.
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Chapter 3

Coverage Analysis for

Indoor-Outdoor Coexistence for

Millimetre-Wave Communication

3.1 Introduction

The fifth generation of mobile communication networks (5G) has been standard-

ized to exploit mm-wave frequencies to provide high data rate connection, seam-

less connection, and robust coverage to indoor and outdoor users. However, using

mm-wave comes with new and peculiar challenges, such as limited coverage, since

the penetration loss is proportional to the carrier frequency of the electromagnetic

signal [2], [134].

As such, providing high data rates to indoor users could be challenging by

solely deploying outdoor BSs since the mm-wave signals attenuate greatly de-

pending on the material type and the thickness of the wall [127]. To overcome

this issue, deploying local base stations, such as femto BSs inside the building,

could effectively deliver high-quality broadband service to indoor users.

Femtocells can share the spectrum with the existing network or work in as-

signed channels based on the availability of spectrum [135]. In the former case,
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operating femtocells under the coverage of outdoor BS may degrade the perfor-

mance of femto users because of the outdoor BS interference inside the building.

To satisfy indoor users’ demands for a higher quality of service (QoS), received

signal-to-interference-plus-noise-ratio (SINR) should be sufficient anywhere inside

the building. Meanwhile, signal leakage from the femto BS deployed building to

the outdoors should also be considered and kept minimum; otherwise, the QoS

of outdoor users near the building might be affected negatively because of indoor

interference on outside. Adjusting the transmitter power of BSs is one way of

mitigating the impact of mutual interference. However, this method would de-

crease the QoS of users when the transmit power is lessened. Therefore, signal

attenuation caused by the propagation through walls and other building mate-

rials would be the critical parameter to achieve mutual interference reduction.

In other words, building walls could play a role as shielding mutual interference

between the indoor femto BS and outdoor BS. Since thickness and the type of

material used in the building changes wall attenuation in order of 5 dB to 20 dB or

more, the signal attenuation through doors or windows is around 3 dB [127]. The

approach of using buildings as shielding would help to reuse the same frequencies

in the area where small cells are deployed close to each other.

In the literature, many studies concentrated on outdoor-to-indoor propaga-

tion to increase outdoor coverage to serve indoor users, whereas a few research

focused on the indoor-to-outdoor case. In [127], a sample floor plan model was

built to investigate the interference effect between macro and indoor femto BS.

The authors in [136] examined the mutual interference between macro and femto

BS, i.e., impacts of the interference caused by femtocell on the users served by

macro cell and the interference caused by macro cell on the users served by fem-

tocell. Their results show that the interference between macro and femtocell

affects the system’s throughput; therefore, it should be considered while config-

uring the system. The study conducted in [104] analyzed in the indoor coverage

by deploying a single building scenario with an outdoor deployed BS utilizing



53

high frequencies, e.g., 10, 30, and 60 GHz. Their results also highlighted that

the building type and materials are important parameters, especially at high fre-

quencies. However, since the nature of high frequencies, such as mm-waves, are

highly susceptible to penetration losses, covering indoor users with outdoor BS,

operating at high-frequencies would not be feasible in terms of users’ QoE. The

majority of the present literature at 28 GHz focuses on measurements from indoor

to indoor (I2I) or outdoor to outdoor (O2O).There are also studies on propaga-

tion loss at 28 GHz; however, the majority of them focus on measurements from

indoor to indoor (I2I) or outdoor to outdoor (O2O), such as [137–140]. One

exception to this trend was in [141] on O2I measurements at 28 GHz using a ro-

tating horn antenna channel sounder, which measures the absolute delay and the

angle of arrival. Compared to similar outdoor locations, the paper found more

clusters, larger excess delays, and larger angular spreads indoors. However, there

were just a few indoor receivers (RX) locations, and only one kind of building

was examined. According to [142], O2I penetration losses varied from 3 dB to

60 dB depending on RX location and construction material types in an office

building. The observations, however, were made for highly directed receivers and

did not take into account how indoor settings with significant scattering affect

the angular spectrum. The authors of [143] report penetration loss and reflection

coefficient measurements for several building materials. For instance, clear glass

has a penetration loss of 3.9 dB, whereas tinted glass has a penetration loss of 40

dB. However, the O2I measurements indicate a device-to-device use case rather

than a cellular deployment. Chapter 2 compiled the works in the literature on the

penetration loss of some building materials at certain frequencies and presented

them in Table 2.1.

This chapter investigates the effects of the interference caused by the outdoor

mm-wave BS inside the femtocell deployed building. Of all the factors affecting

the interference experienced by indoor users, three integral ones are identified:

1. The transmit power of the outdoor BS.
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2. The distance between the outdoor BS and the building of interest.

3. The material type used for constructing the walls of the building.

The rest of the chapter is organized as follows. Section 4.2 presents the simulation

environment. Section 3.3 analyzes the simulation results. Finally, the chapter is

concluded in Section 4.4.

3.1.1 Electrical properties of materials

Radiowaves that hit a building will enter the building by a variety of methods.

Each mechanism is affected by building materials’ electrical characteristics dif-

ferently. Line of Sight (LOS) and Non-LOS (NLOS) propagation are engaged in

outdoor to indoor propagation in a small cell environment and comprise path loss

computation, determination of reflection and diffraction loss, penetration loss,

and other indoor losses. The majority of common building materials are non-

ionized and non-magnetic. Thus, all that needs to be considered while choosing

building materials is their dielectric qualities. Most construction materials ex-

hibit lossy dielectric behaviour. Even metals can be described in this fashion,

despite metal having very large RF losses [144]. A radio wave travelling through

the atmosphere will be refracted when it collides with a dielectric medium, like

a wall or window. A portion will be reflected, and another will be transmitted

into the structure through the material. The well-known Fresnel reflection and

transmission coefficients determine the magnitude and phase of the reflected and

transmitted components. These, in turn, are influenced by a material’s dielectric

qualities and the angle at which a radio wave incident on it. The wave reflected

by the exterior wall appears to a receiver inside the structure as a loss. However,

because the building material is lossy, there is an extra (usually more significant)

loss. As a result of absorption, the transmitted wave is attenuated as it moves

through the substance. The attenuation in decibels is merely proportional to

the thickness of the substance the signal travels through. As a result, while the
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rate of attenuation (in dB per metre, for example) is an inherent property of the

material and is independent of the incidence angle, the total attenuation will rely

on the angle of incidence of the radio wave to the building (through a secant

dependence of material depth on incidence angle) [144]. Since building materials

are typically not simply homogeneous substances, calculating and measuring re-

flection and absorption losses becomes more challenging. The underlying physics

of material permittivity is briefly discussed in the following section.

3.1.2 Electromagnetic Wave Propagation

Communications over wireless networks are based on electromagnetic waves, and

the rapid development of wireless communication technology has continued since

the discovery of electromagnetic waves in the 19th century. Any indoor or out-

door propagation model must be evaluated and designed using knowledge of wave

propagation. A suitable source generates electromagnetic waves by varying elec-

tric and magnetic fields. It is possible to transmit information from one antenna

to another using guided media, such as transmission lines, coaxial cables, or free

space. The Maxwell’s equations describe how electromagnetic (EM) waves inter-

act with other materials. The Maxwell equations are obtained from the following

four quantities: electric flux density D, magnetic field strength H, electric field

strength vector E, and magnetic flux density B. The Maxwell’s equations are

given as follows in differential form:

▽.D = ρ (3.1)

▽.B = 0 (3.2)

▽× E = −∂B
∂t

(3.3)

▽×H = J +
∂B

∂t
(3.4)
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Equations 3.1, 3.3, and 3.4, respectively, reflect the Gauss law, the Faraday law,

and the Ampere law with Maxwell’s addition. According to the electric and

magnetic characteristics of various media, the relationship between field strengths

and flux densities is as follows:

D = εE (3.5)

B = µH (3.6)

where ε is the permittivity and µis the permeability of the medium. 10 11 14 The

power density attenuates by 1
r2

as electromagnetic waves move through free space

from the transmit antenna to the receive antenna. The atmospheric conditions

and system abnormalities are not taken into consideration by this reducing factor.

The Friis free-space equation, thus, provides the received power at the receiver in

free space:

Pr = PtGtGr(
λ

4πr
)2 (3.7)

where Pr stands for received power, Pt for transmitted power, Gt for transmitter

gain, Gr for receiver gain, λ for wavelength, and r for distance between trans-

mitter and receiver. Power transmitted will never exceed power supplied to the

transmit antenna, and power received will never exceed transmitted power. Simi-

larly, the antenna’s received power will always be lower than the antenna’s supply

power. Various factors can contribute to this, including impedance mismatches,

polarization mismatches, antenna orientation (if the antennas are pointed incor-

rectly), multipath fading, scattering, and reflections [145].

Due to widespread wireless technology use, radio wave propagation has been

extensively studied in various environments. There are several propagation ef-

fects when designing wireless communication systems in heavily populated urban

areas. Several obstacles can hinder the propagation of waves, including build-

ings and building walls made from various materials. Various mechanisms can

explain propagation, including reflection, refraction, and transmission. Further-
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more, different materials have different electrical and magnetic properties, so the

EM fields change when interacting. Permittivity and permeability define the

materials’ electric and magnetic properties, respectively. Material’s permittivity

determines how much energy is stored, and its permeability determines how much

magnetic field it can generate. By definition, absolute permeability is µ = µrµo

where the permeability of vacuum is µo = 4πx107 H/m. This study only consid-

ers non-magnetic materials with close to unity relative permeability. Thus, we

will focus only on permittivity here. EM waves interact differently with different

materials due to their EM properties. Wireless communication systems use di-

electric materials to interact with the radiated waves. In contact with a dielectric

medium, electromagnetic waves undergo changes in wavelength, attenuation, and

wave impedance. It is mostly due to differences in permittivity and permeability

(for magnetic materials) between the two media. The complex permittivity can

be calculated as follows:

ε∗ = εoεr (3.8)

where the permittivity of free-space εo is 8.845×1012 F/m and the complex relative

permittivity of the material is εr, defined as:

εr = έr − jε
′′

(3.9)

where the dielectric constant, έr, indicates how much electric energy is stored

in the material as the real part of complex relative permittivity. The imaginary

part of complex permittivity ε
′′
, also known as the loss factor, represents the

energy dissipated by the medium [146]. In the case of a lossless medium, the loss

factor is zero, and the relative permittivity is real. A loss factor is usually much

lower than a dielectric constant, and most materials have a dielectric constant

greater than 1. A material’s dielectric constant is not constant; it depends on the

frequency and nature of the material, as well as temperature and humidity.
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3.2 Methodology

3.2.1 Ray Tracing Simulation Set-Up

In order to estimate the interference caused by the outdoor BS and to perform

an indoor coverage analysis inside a building served by femtocell, a simulation

environment is created in Wireless Insite™ software by placing 1600 points of

the receiver set inside the building, which is neighbour to an mm-wave small cell

outdoor BS, as depicted in Fig. 3.1. To observe the effects of different material

Figure 3.1: Simulation environment including a multi-storey building with, indoor
and outdoor transmitters, and receiver points inside the building.

types on the experienced indoor interference, building scenarios with four different

materials used in the walls of the building are developed. In the first scenario,

walls are built up using one-layer brick. Based on the ITU recommendations, the
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Table 3.1: Dielectric parameters and thickness of the material used in simulated
building.

Material type used in
the simulated building

Permittivity, ϵr
Conductivity, σ
(S/m)

Thickness, d
(m)

Brick (one layer) 4.440 0.0010 0.125
ITU Concrete 28 GHz 5.310 0.4838 0.125
ITU Wood 28 GHz 1.990 0.1672 0.125
ITU Glass 28 GHz
(full glass building )

6.270 0.2287 0.125

following scenarios change walls to frequency-sensitive materials whose dielectric

parameters are specified in Wireless Insite™ database. In the second scenario,

ITU 28 GHz concrete is used for the building’s walls, while in the third scenario,

walls are changed to ITU 28 GHz wood. The windows in the first, second, and

third scenarios are built up by deploying ITU 28 GHz glass with a thickness of

0.003 m. In the last scenario, the full building is created by using ITU 28 GHz

glass with a thickness of 0.125 m. Table 3.1 shows the dielectric parameters

of the materials used in the building. Simulations are conducted for different

power values of outdoor small cell BS, such as 0 dBm is selected by considering

outdoor BS is in sleep mode, whereas 30 dBm for regular transmitted power for

mm-wave BS [147] and 50 dBm in case of outdoor BS which act as backhaul

[148] BS introduce interference to inside the building. Furthermore, to account

for the distance effect on interference due to ultra-dense deployment of mm-

wave BSs, the distances of 25 m, 50 m, and 100 m are selected to illustrate

the general trends of how coverage probability alters across the distance range.

Table 4.2 shows the deployment and simulation parameters used in this study.

Our system model uses the through-wall ray propagation model in [149]. It

combines the two different propagation models for the case of outdoor mm-wave

frequency propagation through the wall and the Friis equation for free space
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Table 3.2: Simulations and deployment parameters.

Simulations Parameters Parameter Value

Carrier frequency (GHz) 28
Number of buildings 1
Building size (m) 20x20x27
Number of floors 9
Number of outdoor base stations 1
Number of indoor base stations (femtocells) 1
Distance between outdoor BS and the building (m) {25, 50, 100}
Bandwidth (MHz) 100
Outdoor BS height (m) 15
Indoor BS height (m) 15
Indoor receiver height (m) 13.5
Number of indoor receiver points 1600
Indoor transmit power (dBm) 30
Outdoor transmit powers (dBm) {0, 30, 50}
Antenna type (indoor/outdoor) Half-wave dipole

wireless propagation. The combination of these models expressed as [149]

Pr(dBm) =Pt(dBm) +
∑

i∈antenna

Gi(dB) + 20 log10 T

− 20 log10 f(MHz)− 20 log10 d(m) + 27.6,

(3.10)

where Pr and Pt are the received and transmit power, respectively; Gi represents

all the gains associated with antenna and channel link; d is the distance between

receiver node and transmitting antenna; f is the frequency of communication;

T is the gain affiliated with Fresnel reflection and transmission coefficient [149]

during propagation of mm-wave. Reflection coefficients which depend on material

permittivity and polarization, play an important role in our system model, which

is based on ray tracing simulations. Reflection coefficients for perpendicular (|Γ⊥|)

and parallel (
∣∣Γ∥

∣∣) polarizations are given as

|Γ⊥| =
sin(β)−

√
εr − cos2(β)

sin(β) +
√
εr − cos2(β)

, (3.11a)

∣∣Γ∥
∣∣ = −εr sin(β) +√

εr − cos2(β)

εr sin(β) +
√
εr − cos2(β)

(3.11b)
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where εr is the material permittivity of the reflecting surface and β is the angle

between the incident ray and the reflected surface [150].

3.3 Simulation Results

The results are based on simulations performed in Wireless Insite™ X3D model,

suitable for indoor or outdoor scenes by providing high fidelity, GPU acceler-

ated, 3D ray tracing, and accounting atmospheric attenuation, the effect of the

reflection and transmission on mm-wave frequency.

The effects of materials are analyzed by incorporating the coverage probability

of the signal in the area of interest. The coverage probability is the probability

that the SINR received by the arbitrary user exceeds a certain SINR threshold γ̄.

Mathematically the coverage probability is given by

Pc = P

{
Pr(in)∑

iϵ\BSin
Pr(out) + σ2

= γ̄ > γth

}
, (3.12)

where any other indoor BS, denoted as BSin, is removed from the interfering

serving indoor BS because of a small contribution to the interference, we assume

frequency reuse for indoor BS. Pc is the coverage probability; Pr(in) and Pr(out)

are received power from indoor and outdoor BSs respectively; σ2 is the noise; γ̄ is

the experience SINR for any arbitrary receiver, and γth is the set threshold SINR.

We first study the effect of the varying power on the same distance for differ-

ent materials. Fig. 3.2 and Fig. 3.3 show coverage probability for four different

materials, brick & ITU 28 GHz concrete and ITU 28 GHz glass & ITU 28 GHz

wood with variable outdoor transmitting powers at 25 m distance away from the

building, respectively.

When the transmitter power is 50 dBm, it can be seen that brick has a high

transmission gain for mm-wave frequencies compared with other materials. The

trend shows that even at lower transmit power; brick demonstrates the same

behaviour of higher negative slope as seen in ITU 28 GHz glass. When the
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Figure 3.2: Coverage probability vs. SINR threshold for brick and concrete for
different TX Power at 25 meters.
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Figure 3.3: Coverage probability vs. SINR threshold for glass and wood for
different TX Power at 25 meter.
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distance is changed to 50 m as shown in Fig. 3.4 and Fig. 3.5, the coverage

probability for brick increases noticeably, nearly 30% at γ̄=0 for 50 dBm, while

the coverage probability of other materials increases slightly compared to when

the distance is 25 m, such as increase in glass is around 14% at γ̄= 10 for 50 dBm.
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Figure 3.4: Coverage probability vs. SINR threshold for brick and concrete for
different TX Power at 50 meters.

Figs. 3.6 and 3.7 illustrate simulation results when distance is 100m, where

brick has a higher coverage probability even with the higher outdoor transmit

power; however, its coverage probability remains lower with respect to other

materials.

Overall, the coverage probability of concrete is higher than the brick at dif-

ferent distances while outdoor transmit power is changed. For an environment

highly populated with outdoor mm-wave BSs, utilizing frequency dependant con-

crete would benefit indoor users by blocking the outdoor signal. Compared to

ITU 28 GHz glass and ITU 28 GHz wood, the coverage probability for both ma-

terials looks quite similar for higher SINR thresholds; however, the difference in
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Figure 3.5: Coverage probability vs. SINR threshold for glass and wood for
different TX Power at 50 meters.
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Figure 3.6: Coverage probability vs. SINR threshold for brick and concrete for
different TX Power at 100 meters.
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Figure 3.7: Coverage probability vs. SINR threshold for glass and wood for
different TX Power at 100 meters.

coverage probability becomes particularly noticeable for lower SINR threshold in

all power and all distances. The non-linearity behavior shown between the mate-

rials is attributed to the fact that the building is a non-homogeneous structure,

and throughout the simulation, the building is comprised of glass windows.
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3.4 Conclusion

This chapter analyses the outdoor BS interference effect inside the building when

different types of materials are used in the walls of a building. We developed a

single-building model and analyzed the coverage probability and effects of varying

outdoor BS transmit power with the fixed indoor BS transmit power. The results

reveal the importance of choosing the material type when outdoor BS is close to

the building. Moreover, the outdoor BS interference effect should be minimized

when the frequency re-use technique is deployed in very short insite distances.

Therefore in the following chapters, the experience gained in this chapter is used

as a base when the single-building model scenario is applied.



Chapter 4

IMPRESS: Indoor Mobility

Prediction Framework for

Pre-emptive Indoor-Outdoor

Handover for mm-wave Networks

4.1 Introduction

The Fifth Generation (5G) of the mobile network is a game-changer technology

since it promises to meet the significant data demand of the 21st century. The first

phase of 5G’s practical implementations has already begun at a global scale, and

its second phase (mm-wave 5G) plans are moving forward [151]. Countries around

the world, such as the U.K. and China for instance, have already deployed 5G in

their major cities, promising low latency in high data rate communications [1].

The high-frequency spectrum range of the mm-wave band is the main factor

of the 5G’s achievement for enabling high data rates with minimum latency.

Moreover, the mm-wave bandwidth provides almost ten times the capacity of

its predecessor cellular networks [152, 153]. Although mm-wave bandwidth is an

excellent feature for the next generation of wireless communications, they come

67
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with a severe loss of penetration problem. The coverage footprint of mm-waves is

relatively smaller than the previous generations, as the wavelength gets smaller

while frequency increases because of the physical nature of radio communications.

Ultra-dense small network (UDN) is one the practical solution to this issue,

in which mm-wave frequency driven small cells (SCs) are densely deployed over

an area, to increase the network coverage [2]. However, careful management and

regulations are needed in UDN; otherwise, the number of handovers would in-

crease wherein SCs are densely deployed. In the presence of frequent handover

occurrences, two essential parameters of a network: Quality of Experience (QoE)

and the Quality of Service (QoS) of users are affected negatively. Furthermore,

studies conducted by the 3GPP show that the HO failure rate in a heterogeneous

macro-pico network is up to 60%, which is twice higher compared to a macro-

only network [30]. Additionally, frequency sharing, energy efficiency, resource

management, user association, interference management, and the economics of

this ultra-dense network are some of the challenging areas that have yet to be

addressed [2]. The high number of plug-and-play SCs placements especially in the

residential areas may notably degenerate the QoS because of the severe inter-cell

interference (ICI) [154]. Network slicing in the mm-wave could be one of the fea-

sible solutions to the aforementioned challenges by establishing the framework of

air-interface heterogeneous signal orchestration and efficient resource allocation.

To ensure the best mm-wave coverage for indoor users, mm-wave driven femto

base station, FBS, need to be deployed inside the building. Therefore indoor users

would reach the high data rate communications provided by mm-wave frequen-

cies. However, mm-wave’s great exposure to the penetration loss creates coverage

holes between indoor and outdoor environments served by mm-wave SCs. Hence,

the user will receive an abrupt drop in RSS when moving out from indoor FBS

coverage to outdoor SC coverage.

As a promising approach to ensure seamless connectivity, predictive mobility

management can predict future locations of user equipment (UE) as well as the
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HO requests of UE, hence the next network BSs could be prepared for incoming

HO requests. It is essential to consider the environment and network for predic-

tive mobility management, as it needs some input that can be useful for machine

learning algorithms, for example. The importance of mobility prediction in wire-

less communications has prompted numerous studies to investigate the subject.

In [155], the authors used Markov chains to predict user movement and highlight

the impact of the transition probability matrix, which was built based on their

assumptions. As part of their work in [156], the authors used the users’ mobil-

ity history to input a transition probability matrix, which was used to uncover

the most frequently visited base stations. To reduce the HO delay in 4G X2

HO, [157] proposes a machine learning model for managing the mobility of the

part of the HO process to improve the prediction of future HOs. In order to solve

the path dependency problems arising from classical Markov chains, which occur

when users access the same cell repeatedly, the authors introduced a 3D transition

matrix. A mobility prediction model using Markov Chains has been developed

in [158] for 4G data plane networks. They introduced a trajectory dependency

parameter, therefore, their proposed model’s reaction to less frequent and random

movements could be controlled by a trajectories dependency parameter.

Despite the fact that indoor users generate nearly 80% of the mobile traf-

fic [28], however, the majority of the studies mainly focused on mobility predic-

tion in outdoor environments. Moreover, when the Covid-19 pandemic situations

are considered, i.e. restrictions such as local/national lock-downs, homeschool-

ing and paradigm shift to working from home, led to people spending more time

indoors, which further increases the data demand for indoor users. For instance,

Vodafone reported that internet usage by their contractors is already seen up to

50% in some European countries as the impact of Covid-19, and the demand is

expected to be even higher depending on rules that governments implement, such

as working from home [159].

The handover management of users from indoors to outdoors has not received
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Table 4.1: Literature comparison.

Ref.
Technology Environment Management

LTE 5G Indoor Outdoor Handover Mobility

[155] ✓ ✓
[156] ✓ ✓
[157] ✓ ✓ ✓
[158] ✓ ✓ ✓ ✓
[160] ✓ ✓ ✓
[161] ✓ ✓ ✓
[162] ✓ ✓ ✓
This work ✓ ✓ ✓ ✓ ✓

the necessary attention, even though most of the traffic demand is created from

indoor users [128]. The authors of [160] used Kernel methods to reduce the ping-

pong handover occurrences when an indoor UE moves close to areas where the

outdoor macro BS’s signal strength increases, such as the corner of a window or

a door. Yet, the study only focuses on when the user is indoors. In [161], han-

dover delay optimization for femtocell users are done by predicting the next cell.

In [162], a dual handover triggering scheme is proposed for indoor users, where

some additional event parameters are introduced. Even though the mentioned

studies approach a common problem of reducing the ping-pong handovers and

the handovers when the UE moves from indoor to outdoor (I2O) [161, 162]; the

studies are conducted in a 4G-LTE environment whose coverage size of macro

BSs can be of several kilometres. Table 4.1 gives a brief insight of the difference

between our work and the surveyed studies above.

According to real-world measurements of 28 GHz and 73 GHz in [152], the

coverage size of mm-waves will have a small footprint of around 100–200 meters,

which brings us to the necessity of an intelligent and seamless I2O handover man-

agement scheme. Considering the fact that SCs will be deployed both indoors

and outdoors, with a much higher density, it is crucial that they are deployed

efficiently, and are supported by mobility predictions. Even more so, high pen-

etration losses would create mm-wave-driven indoor environments isolated from
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the outdoors [128]. As such, due to this isolation and sharp change of RSS, when

a UE passes through a door; call drops would be inevitable.

The aforementioned studies and the work we have presented so far in the

previous chapters are the basis of our motivation to present the following twofold

contributions in this chapter:

• First, an Indoor Mobility Prediction model for mm-wave CommunicationS

using Markov ChainS (IMPRESS) is introduced, in which Markov chains are

utilized in favor of preemptive handovers for a user-centric indoor mobility

prediction.

• Based on the results from the previous Chapter 3 on the interference effect

of outdoor BS, a pre-emptive I2O handover algorithm is presented as the

second contribution in order to reduce the latency within the indoor and

outdoor multi-tier network, while a user transitions among them.

The remainder of this chapter is organized as follows. Section 4.2.1, intro-

duces the IMPRESS algorithm, while Section 4.2.4 presents the preemptive I2O

handover algorithm. The results are presented in Section 4.3. Finally, Section 4.4

concludes this chapter and its contributions.
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4.2 Methodology

As this study provides a twofold contribution, the methodology used for In-

door Mobility PREdiction for mm-wave CommunicationS using Markov ChainS

-IMPRESS- is presented first, along with the proposed solution for the defined

problem in Section 4.2.1. Secondly, the proposed pre-emptive Indoor-to-Outdoor

(I2O) mm-wave handover algorithm is presented and its results are evaluated.

4.2.1 Indoor Mobility Prediction and Proposed Solution

for IMPRESS Framework

Indoor user mobility is one of the critical factors of today’s system-level simula-

tions; as stated in [28], indoor users generate almost 80% of mobile traffic. Based

on the studies in [163–166], the user’s mobility is stated to have some pattern and

is not entirely spontaneous. On the contrary, it is target-oriented [165], as humans

do not walk around erratically but rather aim for a particular goal, for instance,

leaving home to go to a train station or heading to the kitchen from the living

room. Using human decision-making process in [31], [166] modelled user mobility

in a non-random manner. The authors in [31] evaluated this decision-making

process as a product of two factors; external and internal, in which the former

is represented by environment stimulus and group behaviour, whereas individual

characteristics indicate the latter. Motivated by the above-mentioned studies, our

hypothesis is that a user has more regularities in their movement within an in-

door environment, where degrees of freedom are lower as compared to an outdoor

scenario. Considering these regularities, we designate a special area in our in-

door model, called the cloakroom, where users usually visit to take his/her coat,

shoes, keys, umbrellas etc., before going outdoor, or vice-versa. Therefore, we

model an indoor environment segmenting indoor regions (IR) into Markov Chain

states as shown in Fig. 4.1, and prediction algorithms are implemented to track

the probabilities of a user following the given scenario trajectory [167]. Moreover,
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Figure 4.1: System Model showing Indoor Regions as Markov Chain states.

we consider this environment with a single small BS and a macro BS located in

the outdoor environment, positioned at a distance of d from the left wall of the

user’s building. Regarding the indoor environment, a building with an area of A

is considered, with a single small cell providing coverage for the entire region.

4.2.2 Markov Chain for Mobility Prediction

Markov chain is a stochastic process and is referred to as memory-less since

the next state relies on the current state rather than the previous state [156].

A Markov chain consists of a set of states, which in our scenario are S={IR1,

IR2,..IRn}, where being the states’ indices I = {1, 2, ..., n} and transitions, ti,j,

represent the movement probabilities from one state to another, as illustrated in

Fig. 4.2. Markov chains are mainly used for predictions in a randomly changing

system, and mathematically model the probabilities of transitions to the next

states, as:

P(Sn+1 = sn+1|Sn = sn, ..., S1 = s1) = P(Sn+1 = sn+1|Sn = sn). (4.1)
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Contrary to the studies mentioned in Section 4.1 where the states are defined

as base stations; our proposed scheme defines the Markov chain states as in-

door regions (IR) within an indoor environment. Received signal strength (RSS)

approach which is one of the simplest and broadly used techniques for indoor

localization [168] is utilized to determine in which state UE is.

Figure 4.2: Discrete-time Markov Chain with 6 finite state spaces (i.e., IRs).

The probability distribution is derived from:

pk = p0T
k, (4.2)

T =



t1,1 t1,2 · · · t1,n

t2,1 t2,2 · · · t2,n

...
...

...
...

tn,1 tn,2 · · · tn,n


, (4.3)

where pk is the kth transition probability vector, p0 is the initial distribution

vector and T is the transition probability matrix.
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4.2.3 Proposed Solution

Given that user movements are goal-oriented, in this section, we propose a novel

concept for initialising the transition matrix of a Markov chain and evaluate its

impact on indoor mobility prediction. However, before presenting the proposed

solution, it is important to give an overview of how Markov chains can be used

for mobility prediction.

Online Learning Transition Matrix

There are some steps needed to be set before initializing the transition matrix such

as; 1) A transition from any state to itself is prohibited, making the transition

matrix hollow, such that ti,i = 0,∀i ∈ I; and 2) The transition matrix should be

a right stochastic matrix, satisfying the condition
∑n

j=1 ti,j = 1,∀i ∈ I.

Since the UE initiates the HO transition, we assume that the transition matrix

T is updated according to the user’s tracked movement. The idea is to assign

higher probabilities to the most common routes followed by the user as compared

to the other routes. A trajectory dependency parameter Rd is used to control

the model’s learning rate and reaction to random or less frequent movements as

proposed by [158], where 0 ≤ Rd ≤ 1. Consequently, small values of Rd update

the transition matrix more slowly, giving more weight to the overall path of a user

(minimizing the randomness). In the case of Rd = 0, T is not updated making

the prediction independent of the past movement, whereas, in the case of Rd = 1,

the prediction is biased towards the most recent trajectory.

To further explain the update procedure of T, let us consider an example

where a user follows the path: IR1 −→ IR2 −→ IR3. For each movement

between a region, e.g., from IR1 to IR2 the UE will update the probabilities

of outbound movements from IR1 to all neighbouring IRs in a game scheme of

several stages. In the first stage, the outbound movement probability of UE from

IR1 to IR2 is increased by an amount controlled by Rd, while the probabilities



76

of direct movement of UE from IR1 towards all playing IRs are decreased. This

is expressed as:

t1,2 = t1,2 +
∑
j

t1,jRd, j ∈ NIR1 , (4.4)

t1,j = t1,j −
∑

j t1,jRd

|NIR1| − 1
, j ∈ NIR1 , (4.5)

where |NIR1| is the cardinality of the set of neighbouring IRs for IR1 which

are taking part in the game. To satisfy the condition of inclusivity (0 ≤ ti,j ≤ 1),

a lower bound of 0 and an upper bound of 1 is set for each entry in T. This brings

in the challenge of satisfying the condition of the right stochastic matrix. This is

solved by adding additional stages that approach equilibrium without violating

the conditions of transition matrix [158].

Q-Learning Initialization of the Transition Matrix

Based on the model proposed by [158] and the fact that user mobility is not

totally random, but rather goal-oriented, in this chapter we propose to initialize

the transition matrix T according to a Q-learning algorithm. Q-learning is a

reinforcement learning technique that learns an action-value function that gives

the expected utility of taking a given action in a given state and following a fixed

policy thereafter [169]. Since reinforcement learning algorithms are goal-oriented

by nature, it is deemed a suitable fit for this problem.

Considering our Markov chain model with finite state spaces represented by

S, a finite set of possible actions U(i) where i ∈ S and transition probabilities

represented by ti,j such that
∑

i,j ti,j = 1 for all j ∈ S. It is assumed that before

using the Markov chain for mobility prediction, the user would gather some data

based on its movement. As such, in this context, we have trained a Q-learning

model according to the scenario from Fig. 4.1, where a user could start in any

state and its goal was to reach the outside region (state 6). Based on that,
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Q-learning is able to update its function according to

Q(st, at)← Q(st, at) + α[rt+1 + ϕmax
a
Q(st+1, a)−Q(st, at)] (4.6)

where Q(st, at) is the current action-value function, α, is the learning rate, rt+1

is the expected reward at the next time step, ϕ is the discount factor and

maxaQ(st+1, a) is an estimate of the optimal future action-value function at the

next state over all possible actions.

Based on this model, given any starting state, Q-learning learns the next

action of a user in order for it to reach the outside (the goal). Thus, by training

this model and counting how many times each state-action pair were visited, a

transition matrix can be built, given by ti,j = Ni/
∑

j Nj.

4.2.4 Preemptive I2O Handover Framework

The rapid drop in SINR due to the penetration loss, especially when a UE moves

from the door of a building, is verified by the field measurements conducted

in [162]. However, the mentioned study above is conducted by utilizing LTE fre-

quencies. Since mm-wave driven networks are far greater prone to penetration

losses than LTE, we present a preemptive I2O handover scheme for a UE tran-

sitioning from indoor to outdoor under a heterogeneous network environment.

The proposed scheme aims to perform the HO process beforehand the out-of-

synchronization (out-of-sync) happens; to avoid a rapid decline in communication

quality.

Proposed Scheme to I2O Handover

Mobility is the most important parameter for handover management. When its

proper configurations are done, it can lower the number of handovers. Thus the

handover signalling cost, which can be expressed in terms of the delay required

to transmit and process the HO messages, could be reduced. Therefore in the
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IMPRESS algorithm, the information about the user’s indoor trajectory on the

most visited rooms (states) before the user goes out are considered (MV SBGO).

In the second contribution of this study, I2O handover, we build a realistic sim-

ulation scenario of a multi-tier heterogeneous network, where mm-wave driven

femto and picocell BSs are deployed in the presence of a macro BS. The UE’s

trajectory information before going out is obtained in Section 4.2.1, which is in

this scenario, the user mostly visits the state-IV (also can be called cloakroom

in here), then follows the state-V and state-VI to go out. After acquiring this

information, we designated a particular area in the state-V called HO spot area,

which is 0.5 meters away from the exit door of the building. When the user

comes to the HO spot area while being in the active state, our pre-emptive I2O

handover algorithm checks the trajectory history of the user to obtain the infor-

mation of whether this history contains the coordinates of the state-IV or not. If

the user’s mobility trajectory history contains the coordinate of the state-IV, the

I2O handover algorithm initiates the handover signalling, similar to the A3 event

in the LTE. But with the only difference is that in the LTE A3 event, handover

is triggered, and the measurement report is sent from the UE when the received

RSRP of the serving cell goes below the RSRP of the neighbouring cell over a

pre-defined period named time-to-trigger (TTT), which is defined as in [162]:

RSRPn −RSRPs > A3offsets − CIOn,s
, (4.7)

where RSRPn and RSRPs the RSRP of the neighbouring and the serving base

stations, respectively. A3offsets is the offset of the serving cell, and CIOn,s is

the cell individual offset between the neighbouring and serving cells. However,

in our case, the RSRP of the serving cell -femtocell here- only goes below the

threshold or the RSRP of neighbouring cells when the UE goes out of the exit

door and leaves the building. Instead of starting the handover signalling after

the UE leaves the building, we propose initiating the handover signalling before
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Figure 4.3: The timing diagram of proposed I2O handover.

the UE leaves the building. More precisely, the HO process will be initiated at

the HO spot area, as it is illustrated in Fig. 4.3 to maintain the continuity of

the user’s ongoing active session. Otherwise, because of the high penetration

losses for mm-waves, the user would face an abrupt drop in the received power

when they move out from the serving BS’s coverage. A call drop would happen

eventually, resulting in a reduction of the QoE.

The RSRP plays an essential role in a conventional cell selection (idle mode)

and handover (connected mode) as the decisions depend on it [75]. Therefore, to

enable the proposed scheme, an additional offset value (CREO) is added to the

RSRP of the closest outdoor small BS to extend its cell range. Thus, the han-

dover process should be initiated preemptively to prevent out-of-synchronization

(out-of-sync) when the UE leaves the building. The detailed pseudo code of the

proposed handover algorithm for the I2O is explained in Fig. 4.4.
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Figure 4.4: Pre-emptive I2O Handover Algorithm

Propagation Model for I2O Handover

The surrounding environment and the maximum radius of the cell, which have a

substantial impact on the received signal, are two of the most critical characteris-

tics that affect wireless coverage. The received signal parameters are principally

affected by three factors: multipath (small-scale) fading, shadow (large-scale)

fading, and, path loss propagation. A zero-mean Gaussian random variable with

a logarithmic variance is used to simulate the features of fading. Thus, a radio

propagation model based on the well-known log-distance path loss model in [170]

has been adapted and implemented as:

PLin = P0in + 10γin log10(d/d0in) + δ + ρdrywall + ϱ, (4.8)

PLout = P0out + 10γout log10(d/d0out) + δ + ρconcrete + ϱ, (4.9)
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Table 4.2: Simulations and deployment parameters.

Simulations Parameters Parameter Value

Carrier frequency for FBS and SBS (GHz) [171] 28
Carrier frequency for MBS (GHz) [172] 3
Bandwidth of FBS and SBS (MHz) [173] 100
Bandwidth of MBS (MHz) [174] 20
Transmit power of FBS (dBm) [175] 30
Transmit power of SBS (dBm) [176] 35
Transmit power of MBS (dBm) [175] 46
Concrete ρ at 28 GHz [128] 34.1
Concrete ρ at 3 GHz [128] 17.7
Drywall ρ at 28 GHz [128] 6.8
γin [177] 1.6
γout [177] 3
Number of outdoor base stations 2
Number of indoor base stations (femtocells) 1
Antenna type (indoor/outdoor) [128] Half-wave dipole

where PL is the total path loss in decibel (dB) at a distance d in meters, and

P0 is the free-space path loss at the reference distance d0. γ is the path loss

exponent, δ is the Gaussian random variable with zero mean, ρdrywall and ρconcrete

are the penetration loss exponents for each specific material. Lastly, ϱ is the

shadow fading of the channel.

As it can be seen in (4.8) and (4.9), the path loss is calculated separately

for both mm-wave indoor and outdoor small BSs and macro BS. These calcula-

tions are done by denoting the parameters into the specified frequency values for

indoor and outdoor for the equations mentioned above. The specifications for

the simulation parameters are stated in Table 4.2. The SINR of the system is

calculated as:

SINR =
Pr

σ2 + I
, (4.10)

where Pr is the received power in Watt, derived by subtracting the path loss

from the transmit power of relevant BS. σ2 is the noise power density and I is

the interference of the neighboring cells.
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4.3 Simulation Results

4.3.1 IMPRESS Simulation Results

The simulation environment contains six Markov states, the states from one to

five belong to the indoor environment and state six represents the outdoor envi-

ronment, as illustrated in Fig. 4.1. The transition between the states is evaluated

to examine the accuracy of the initial values of the transition matrix. The system

checks the probabilities for a sequence of 100 days with 6 transitions each day.

Four different mobility scenarios are applied for each day for a single user: 0% of

random data, where users follow predefined routes every day; 10%, 20% and 50%

random data, in which random routes are followed with the given percentages and

evenly distributed across the 100 days. The proposed solution with Q-learning

initialization is compared to the solution in [158] in terms of prediction accuracy,

identified as the ratio between the number of correct and total number of predic-

tions. For the Q-learning, a learning rate of α = 1, a discount factor of ϕ = 0.8

and an ϵ-greedy policy with ϵ decaying from 1 to 0.3 are assumed. A total of 500

episodes are simulated, with varying numbers of iterations (the algorithm would

stop when the outside region is reached). In terms of the reward, a reward of 0

is assumed for every step the user would take, as the user’s movement within the

states is not the main argument here; except in states 5 (HO spot area) and 6

(outside) where a reward of 25 and 100 is given as going outside is the main goal

for the user when the user is in the HO spot area.

Fig.4.5 illustrates the average prediction accuracy values w.r.t different Rd

values for the solution from [158] and our proposed Q-learning method. In the

first scenario, shown in the solid lines, since the transition matrix is initialized

with equiprobable values over all possible states, it can be seen that for low

values of Rd, the prediction accuracy is very low, with accuracy ranging from

25% to 40% for the different mobility models when Rd = 0. This occurs because

the Markov chain model does not assume any prior knowledge of user mobility,
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Figure 4.5: Accuracy for different values ofRd for Online Learning and Q Learning
Initialization of the TM.

which results in an initial learning time, in which the algorithm makes wrong

predictions more often than correct ones. However, as Rd increases, we can see

that the prediction accuracy reaches values of 98 - 99% when no randomness is

considered and declines for higher values of Rd for the other mobility models.

This occurs because when Rd is higher the transition matrix updates faster, thus

when randomness is introduced, it is less reliable [158].

For the proposed scenario, shown in the dashed line, it can be seen that

the prediction accuracy without any randomness, has the maximum accuracy

of 100% as the system already had the initial transition matrix value, which is

derived from the Q-Learning method. In addition, this method gives more robust

estimate of the accuracy with respect to lower Rd values. However, the increment

in the random data, reduces the accuracy comparatively with the higher values

in Rd, for the same reasons as mentioned above.
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Table 4.3: Accuracy gain in percentage.

Rd Values 0 0.2 0.4 0.6 0.8 1

0% Random Data 3 1.78 1.01 0.75 0.75 0.75
10% Random Data 2.44 1.89 1.06 0.72 0.73 0.78
20% Random Data 1.88 2.13 1.18 0.40 0.61 0.68
50% Random Data 0.74 2.74 0.83 0.50 0.51 0.51

Table 4.3 shows the gain in terms of accuracy between the proposed solution

and the solution in [158], for different values of Rd. It can be seen that, initializing

the Markov transition matrix with values from Q-learning yields higher gains

when Rd is smaller, with gains over 1% for values of Rd ≤ 0.4 whereas when

Rd is larger, the two solutions converge to each other. This occurs when Rd is

larger as the values in the transition matrix are updated more quickly, therefore

only the most recent paths are considered more important than the previous

one. Therefore, the initialization is not as effective as when smaller values of

Rd are considered. Lastly, Fig. 4.6a demonstrates a heatmap of the path that

the user follows according to the Q-learning mobility pattern, which is then used

to initialize the transition matrix in the Markov chain algorithm. On the other

hand, Fig. 4.6b shows a heatmap of what the proposed solution has learned, for

a value of Rd = 0.2 and a 50% randomness in user mobility.

4.3.2 Preemptive I2O Handover Results

The measured SINR values for the simulation environment with three scenarios

are presented in Fig. 4.7. At first, we began our simulations by deploying only

small cells at 28 GHz to imitate the UDN environment; however, in real life, these

environments are mostly underlaid by the macro BSs. Therefore we improved our

simulations by adding macro BS serving at 3GHz, and the interference between

these frequencies is shown in Fig. 4.7. The first scenario in Fig. 4.7a shows the

SINR measurements, in which the handover algorithm is not applied. As it is

seen, the FBS has the highest SINR value of 20 dBm compared with the other two
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Figure 4.6: Markov Chain Transition Matrix.

outdoor BSs having SINR of -20 dBm and -55 dBm. However, when the UE moves

to outdoor, there is an abrupt drop in the SINR of the FBS dropping to below
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(a) Measured SINR result without any algorithm is applied,
Scenario 1.

(b) Negative offset value is added to the FBS received power,
Scenario 2.

(c) Presented algorithm is applied to the received power of
FBS and SC BS, Scenario 3.

Figure 4.7: Measured SINR values for the simulation environment.
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-60 dBm, while the SINR of outdoor BSs increases swiftly. This result proves our

hypothesis about the need for a proper handover algorithm for indoor users while

transitioning to the outdoors. Otherwise, because of these abrupt changes seen

in Fig. 4.7a, it is inevitable to avoid connection losses, which will reduce the QoS

of the communication network. Fig. 4.7b shows where the negative offset value is

added to the FBS’ received power when UE is at the handover spot area. In this

case, the UE will preemptively connect to the macro BS, as it has the highest

SINR value at that point. However, there will be another handover in a very

short time when UE moves outside, as SC BS has a higher SINR than the macro

BS. The extra loading on the macro BS and the unnecessary handover occurrence

in this scenario show that this scenario is not feasible. Hence, we propose adding

a positive offset value to the closest small BS’ SINR value, as shown in Fig. 4.7c;

this way, the UE can connect pre-emptively to the SC BS before moving outdoors.

Therefore, the positive offset is added to the closest small BS’s SINR value as

we proposed in Algorithm 1 Step 8 (2 × SINRoutdoorBS). Thanks to this rapid

increase from the offset value shown in Fig. 4.7c the user can accommodate the

closest small BS preemptively, avoiding the ping pong between macro and small

outdoor BSs. Thus, transitioning between these two BSs becomes seamless while

maintaining the QoS, as we aim to reduce the latency 1 by initiating advance

preparation of the HO procedure.

4.3.3 I2O Handover Signalling Cost

To evaluate the performance of the proposed I2O handover algorithm, HO sig-

nalling cost is employed. The required time for delivering and processing the sig-

nalling messages is stated as the transmission cost, and processing cost in [178].

The one-way transfer delay between a pair of nodes is the transmission cost; the

delay in processing one message in one node is the processing cost. Despite the

lengths of handover messages are varied, we use the assumption made in [158] for

1in mm-wave driven UDN whose coverage is isolated because of the high penetration losses
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simplicity, i.e., transmission cost for different messages among the same pair of

nodes is the same regardless of the message size. A similar assumption goes with

the processing time, i.e., the processing time is the same for the different mes-

sages at the same node. Moreover, we follow [158] by assuming that the mobility

management entity (MME) and the serving gateway (S-GW) are located in the

same location. Therefore the transmission delay among these nodes is constant

and can be neglected. The HO signalling cost, CHO provided in Fig. 4.8 for the

Figure 4.8: HO signalling cost for the proposed scenarios.

three different scenarios discussed in previous sections, is calculated by [179]:

CHO =
∑

ψi,j +
∑

γi, (4.11)

where ψi,j is denoted as the one way transmission cost among nodes i and j,

and γi is the processing cost in node i. Scenario 1 is the regular case where

a traditional handover algorithm is implemented. In scenario 2, the SINR of
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the FBS is decreased by an offset value to enable the comparison observations

between scenario 3. Finally, scenario 3 is where the proposed I2O algorithm is

implemented by adding a positive offset value to the nearest small BS in the

outdoor. As it is clearly seen that the proposed algorithm applied in scenario 3

outperforms the other two scenarios by more than 50%, bringing the signalling

costs from 115 in scenario 1 to only 50 in scenario 3.
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4.4 Conclusions

This chapter has a two-fold contribution with a comprehensive study on mm-wave

handovers. First, a user-based indoor mobility prediction via Markov chain with

an initial transition matrix is proposed, acquired from Q-learning algorithms.

Results show that the model using an initial transition matrix has slightly higher

accuracy, with a price of more complexity, as the system needs prior training

based on historical data. Therefore, we propose an online learning method for

the transition matrix when no user mobility data is available. Based on this ac-

quired knowledge of the user’s mobility in the indoor environment, among other

functionalities, preemptive handovers for mm-wave communications can be ap-

plied to reduce handover latency in densely deployed SC networks. In the second

step, depending on the user’s indoor mobility history acquired from the first step,

we propose a pre-emptive indoor-to-outdoor handover algorithm to maintain the

high QoS for indoor users transitioning between indoor and outdoor regions in a

heterogeneous network environment. The implementation and evaluation of our

proposed algorithm show a reduction in the handover signalling costs by more

than 50%, outperforming conventional handover algorithms. Since mm-wave net-

works are now being commercially deployed in indoor environments, as future

work, the proposed IMPRESS framework and the proposed handover algorithm

will be applied to scale up dense femto-cell deployments in order to analyse the

performance in a more comprehensive and real-life scenario.



Chapter 5

IRS Assisted Handover for Next

Generation Networks

5.1 Introduction

The 5G and beyond mobile network is anticipated to bring a boost in low latency

communication, spectral efficiency and user connection density [180]. Ultra-

reliable low latency communications (URLLC), massive machine-type commu-

nications (MMTC) and enhanced mobile broadband (eMBB) are the main use

cases that are encompassed by the 5G vision [181]. Wireless communications are

currently conducted in sub-6 GHz channels [182]. The millimetre wave spectrum,

between 10 GHz to 70 GHz, has been certified by the International Telecommu-

nication Union (ITU) to maximise the possibilities for 5G and beyond [182,183].

By raising the frequencies for transmission to the millimetre wave (mm-wave)

spectrum, a 100-fold improvement in bandwidth can be achieved [182, 184, 185].

Due to its unfavourable propagation characteristics, including path loss, atmo-

spheric and rain absorption, low diffraction and object penetration, significant

phase noise, and expensive cost, mm-wave was previously considered unsuitable

for mobile communications [128,186]. One strategy for combating the radio envi-

ronment’s poor propagation effects, notably in the mm-wave band, is the utilisa-
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tion of massive antenna arrays with narrow beams to coherently steer the beam

energy [182, 183]. The massive multiple input and multiple output (mMIMO)

beamforming approaches have been utilised to address the significant free space

path loss in the mm-wave frequency [187]. The outdoor-to-indoor coverage in

mm-wave bands is severely constrained, even with beamforming. Thanks to re-

cent developments in the technology of metamaterials, a newer technology known

as intelligent reflecting surface (IRS) is quickly becoming a household name in

academia and within the industry, as it has the ability to overcome the poor

propagation effects of the wireless channel [188]. IRS is a cutting-edge hardware

innovation that has the potential to improve signal coverage and save energy con-

sumption at a cheaper deployment cost [188]. As a result of advancements in ar-

tificial electromagnetic materials, it is now possible to use digital, programmable,

and reconfigurable techniques to manage the communication environment us-

ing the IRS [189]. More detailed information on IRS fundamentals is presented

in 5.1.2. To meet the rising data traffic demands, ultra-cell densification is a crit-

ical strategy backed by mm-wave communications. Reduced base station (BS)

coverage could lead to fewer customers being served by each BS, increasing fre-

quency reuse and spectral efficiency of the mm-wave network. Nevertheless, an

increased handover (HO) rate is an obvious result of densification planning, i.e.

the successive change of handling BS for a moving user. The increase in capacity

is attained with this method, albeit at the expense of increased HO rates and

higher signalling overheads imposed by the HO technique. Signalling overheads

disrupt data flow and degrade user throughput [84,190]. Future cellular networks

must be able to accommodate data-intensive applications with higher data rates,

possibly through cell densification (small cells). In addition to offering high data

rates, it is crucial to offer secure HO mechanisms since these directly impact the

end-perceived user’s quality of experience (QoE).

Fewer works are devoted to HO management regarding small cell investiga-

tions, with the bulk focusing entirely on capacity and throughput analysis. How-



93

ever, a real obstacle still exists in the form of dependable HO systems that offer

high data rates for users with moderate to high speeds in metropolitan settings.

Cellular network mobility mechanisms allow users to move anywhere within the

coverage area while still being serviced. In general, we can divide radio access mo-

bility into two distinct procedures: cell (re-)selection and HO. Cell (re-)selection

occurs when the UE is in Idle mode, i.e. there is no active transmission/reception

and the need to choose a suitable cell to camp on to be reachable when incoming

data is available (then transitioning to active or Connected mode). Cell reselec-

tion will be initiated whenever a new camping cell is assessed to be superior to the

present one. Unlike cell (re-)selection, HO occurs when the UE is in Connected

mode, and a better-serving cell is considered preferable to the current cell.

Coverage blind areas, wherein there is no direct line-of-sight connection be-

tween a user and a BS, are one of the problems that reduce the user’s QoE because

of the aforementioned coverage footprint drawbacks in mm-wave communication

systems. This chapter introduces the IRS-assisted HO algorithm for the users in

coverage blind areas, providing seamless coverage to the users in these coverage

blind areas.

The remainder of this chapter is organized as follows. As this chapter proposes

utilizing IRS to reduce the latency of HO, the following sections are split into

giving introductions to IRS and the reference signals that are used as a key role

in the HO management of this chapter. Section 5.1.1 summarizes reference signals

in NR. Section 5.1.2 gives the introduction to IRS fundamentals. Section 5.2.1

introduces the methodology used in IRS, and Section 5.2.2 presents the HO model

with IRS. The results are presented in Section 5.3. Finally, Section 5.4 concludes

this chapter and its contributions.
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5.1.1 Reference Signals in NR

Only if necessary, reference signals are transmitted in NR. Following is a list of

them:

• Positioning Reference Signal (PRS): This new reference signal supports DL-

based positioning. The UE records the arrival timings of PRSs provided

by several base stations, allowing the location server to identify the UE

position.

• Sounding Reference Signal (SRS) helps the gNB estimate the CSI by trans-

mitting SRS from the UE. As part of massive MIMO and UL beam man-

agement, SRS is also used for reciprocity.

• Demodulation Reference Signal (DMRS) measures the radio channel specific

to each UE, as part of MIMO multi-layer transmission and low latency

applications.

• Channel-State Information Reference Signal (CSI-RS): As part of its chan-

nel evaluation, the UE receives the CSI-RS, which is then transferred to the

gNB along with the channel quality information.

• Phase-Tracking Reference Signal (PTRS): In an OFDM signal, PTRS mit-

igates phase noise caused by subcarrier rotation caused by mm-wave fre-

quencies. Oscillator phase noise is compensated by PTRS.

• Primary synchronization signal (PSS): helps the UE to identify the cell

identity and determine the radio frame boundary, and is a physical layer-

specific signal.

• Secondary synchronization signal (SSS): Additionally to the PSS, SSS helps

the UE identify the cell ID group at the physical layer.

Fig. 5.1 illustrates the UE’s positioning with PRS. It is possible to see each

beam as a resource, and the measurements can be collected across one or more
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Figure 5.1: llustration of the UE positining with PSR [191].

resources. A variety of positioning methods may require different measurements,

and measurements may be collected over a variety of resources or resource sets.

Among the new methods supported by 5G is round trip time (RTT) and angle-

based positioning. For several applications of 5G, this includes the addition of

new positioning methods and the enhancement of existing positioning methods.

5.1.2 IRS Fundamentals

Intelligent reflective surfaces (IRS), also known as software-controlled metasur-

faces, are man-made electromagnetic surfaces, consisting of a wide array of pas-

sive scattering devices with the ability to regulate how the waves that reach them

are reflected. The IRS provides an alternative to relaying and backscattering

communications. The IRS consists of many small, reconfigurable, low-cost pas-

sive reflecting elements, which, by controlling the phase shift of the impinging

electromagnetic wave, can optimize signal strength and mitigate interference by

modifying the propagation characteristics between the transmitter and receiver.

With the IRS elements, electromagnetic waves are reflected independently, with
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a phase shift that can be adjusted. Moreover, as the IRS is passive, there is no

dedicated energy source for RF processing, encoding, or decoding the incident

signal. Due to its only reflection of incident signals without any transmission

modulation, IRSs are an energy-saving alternative to amplify-and-forward (AF)

relays [182,192]. Therefore, IRS enables controlling the propagation environment

by simply placing them in between the transmitter and receiver [193, 194]. The

following is a list of some advantages of wireless communications supported by

the IRS.

Simple installation and sustainable operation: An IRS composed of low-cost

passive elements that allow many reflecting elements to be embedded on a

single metasurface, allowing it to be easily deployed on buildings, walls,

ceilings, and underground tunnels with a clear line of sight (LoS) to the

base station (BS). Furthermore, the absence of RF chains induces an IRS

to consume very little power.

Flexible reconfiguration through beamforming: Passive beamforming can be

accomplished by optimising the phase shift of each scattering element si-

multaneously. The incident signal could be easily and effectively directed

towards the user and cancelled in other directions by deploying the signif-

icant number of reflecting elements, hence the overall performance gain of

the wireless network is enhanced.

Reduction in cell edge outage: Users receive lower signal power and higher

interference at the cell edge. In this case, an IRS can improve overall signal

quality for cell-edge users by suppressing interference.

Applications: An IRS will be required to meet the very high data rate spec-

ifications of emerging technologies such as virtual reality (VR), holographic

communication, and other IoT applications. The IRS is used to intelligently

control signal propagation in areas such as non-line-of-sight (NLoS) trans-
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mission and blockages, smart wireless power transfer, enhanced security,

interference cancellation, and so on [182].

AP/BS

Control circuit board

IRS

Copper backplane Tunable elements

IRS controller

Figure 5.2: Architecture of an IRS [182].

In Fig. 5.2 a typical architecture of IRS that consists of three layers and a

smart controller is depicted. To directly modify incident signals, a large number of

tunable/reconfigurable metallic patches are printed on a dielectric substrate in the

first/outside layer. A copper plate is typically used in the second or intermediate

layer to reduce signal energy leakage during IRS reflection. The third/inner layer

is made up of a control circuit board with real-time steering capabilities for the

reflection’s phase and amplitude. Additionally, a smart controller which can be

constructed using a field-programmable gate array (FPGA), is attached to each

IRS to trigger and regulate the reflection adaptations [195]. Moreover, the IRS

controller serves as a communication gateway for other network elements (such

as BSs/APs and user terminals) via wired or wireless backhaul/control lines.
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5.2 Methodology

Connection loss inside coverage blind areas is a significant problem if the cover-

age inside this area is not properly addressed, as we mentioned previously. In

this section, we provide a smart solution for maintaining the user’s connection

inside the coverage blind area by deploying IRS, as well as present a pre-emptive

handover algorithm for the user moving from one BS’s coverage to another BS’s

coverage. Fig. 5.3 illustrates the simulation scenario, in which a user has to pass

through the coverage blind area while moving from source BS’s coverage to target

BS’s coverage. Since there is no direct link between the user and the source BS

due to the blockage between them, an IRS is mounted on the wall where a direct

line of sight is available, to maintain the communication between the source BS

and the UE.

Source gNB

Target gNB

IRS

UE

Figure 5.3: Simulation scenario with the IRS in coverage blind area.

The simulations in this chapter are conducted by using MATLAB™ software.

The following sections introduce the IRS system model that is used to provide

coverage in the coverage blind area, then present the HO system model with the

proposed HO algorithm.
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5.2.1 IRS System Model

The system model of IRS here consists of M elements shaping a uniform linear

array (ULA). Since there is no direct link communication between the UE and

FBS because of the blockage in-between as shown in Fig. 5.4, We consider the

communication is provided by narrowband line-of-sight (LOS) transmission in

the far field between the UE and the source BSs. The received signal at the UE

FBS UE

X
hdt

Figure 5.4: IRS communication channel representation.

end can be stated as

y = (hdt + hH
IrWhIt)s+ n, (5.1)

where hdt ϵ C
1∗1, hIt ϵ CM∗1, hIr ϵ CM∗1 correspond the direct channel between

the source BS, FBS, and the UE, FBS to IRS, and IRS to UE, respectively. The

weight matrix W ϵ CM∗M is a diagonal matrix that contains the RIS weights of

each surface element for each entity on the diagonal [196]. The s is the source

signal from the FBS, and n is the noise of the channel. As there is no direct

line-of-sight between the source FBS and the UE by virtue of the blockage, the

reflection channel, Ȟ=hH
IrWhIt becomes the major source of the communica-

tion. Therefore, we concentrate on Ȟ which may be represented as follows using
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steering vectors and weight vector [197]

Ȟ = wH · [b(Ωi)⊙ b(Ωo)], (5.2)

where w is a column vector whose elements are W’s primary diagonal elements.

It is important to note that w is the single weight vector used on the surface to

concurrently accomplish the required signal response and mutual interference re-

duction for the transceiver pair. Additionally, the steering vectors of the channels

between the source FBS and IRS, and IRS and UE are

b(Ωi) = [b(Ωi,1), ..., b(Ωi,m), ..., b(Ωi,M)]T , (5.3)

b(Ωo) = [b(Ωo,1), ..., b(Ωo,m), ..., b(Ωo,M)]T , (5.4)

where Ωi and Ωo are the terms describing, correspondingly, the spatial information

incident from the source FBS at IRS m-th element and the spatial information

reflected from m-th element to UE.

Note: Notations that are used in this section represent respectively; scalar

values are denoted by lightfaced letters, whereas matrix or column vectors are

denoted by boldfaced letters. The transpose, conjugate, and conjugate transpose

operations are denoted by the superscripts (·)T, (·)∗, and (·)H, accordingly. The

⊙ represents point-wise multiplication.

5.2.2 HO System Model

The basic NR handover signalling procedure in [86] is updated in this work

with the employment of IRS technology. The aim is to eliminate the coverage

holes/gaps within the indoor environments by simply deploying the IRS, where

there is no direct link between the UE and the base stations.

There are two types of NG Radio Access Network nodes connected to the 5G

core network that are gNB and ng-eNB. A gNB supports NR control-plane and
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user-plane protocols to the NR devices and, an ng-eNB uses the LTE control-

plane and user-plane protocols to serve the LTE devices [73]. The proposed HO

signalling procedure with IRS, shown in Fig. 5.5, and the detailed flowchart shown

in Fig. 5.6 begins by checking if a UE needs a handover:

1. By sending measurement reports to the source gNB, next-generation Node

B in 5G.

2. The source gNB receives the measurement report indicating that a HO is

required, and process this report by checking PRS.

3. After the UE’s position is confirmed by the PRS report, the HO request is

cancelled, as the position of the UE could be served by IRS.

4. IRS is turned on by source gNB and a beam is created to connect the link

between the UE and the IRS.

5. Measurement report sent and a handover decision is made in the serving

gNB, using RRM (Radio Resource Management) information and the mea-

surement report.

6. The handover request message, including the required data for preparing

the HO at the target BS side, is sent from the connected gNB to the target

gNB.

7. Admission Control procedure will be performed in this step if the target

gNB can grant the resources.

8. The target gNB sends a handover request acknowledgement message to the

serving gNB, and the forwarding of data can be initiated once the serving

gNB receives it.

9. UE receives the handover command from the serving gNB.
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10. The Sequence Number (SN) message is sent from the serving gNB to the

target gNB to keep track of the ordering of the packets.

11. The UE disconnects from the serving gNB and synchronizes to the target

gNB.

12. IRS is turned on by the target gNB and a beam is created to connect the

link between the UE and the IRS at the coverage blind area.

13. The target gNB informs AMF that UE has changed the cell via the Path

Switch Request message.

14. NR core shifts the DL data path towards the target side.

15. The path switch request acknowledgement is sent by the AMF to the target

gNB.

16. The serving gNB receives successful handover information from the target

gNB, and activates the release of resources via UE context release message.

The radio resources related to the UE are released eventually by the serving

gNB [74].
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Figure 5.6: Flowchart of the proposed algorithm.
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5.3 Simulation Results

5.3.1 IRS Beam Coverage

In this section, we provide the continuation of the communication within the

coverage blind area by placing IRS to the wall, as it is shown in Fig 5.3. The

path-loss PIRS,uv is presented by [193]

PIRS,uv =
GtGr

(4π)2
(

S

dtxdrx
)2 cos2(Ωin,u) (5.5)

where the transmitting and receiving antenna gains are Gt and Gr, respectively.

The distances from transmitter to IRS, and from IRS to receiver, correspondingly,

are dtx, and drx, and S is the effective area of a single IRS element.

The beampattern presented in Fig. 5.7 shows the max gain on the amplitude

to cover the coverage blind area. The transmitter and receiver pair is located at

Ωi = (45◦, 110◦), to maintain users’ connection to the source BS in the coverage

blind area. The beam perfectly covers the coverage blind area, with a maximum

peak at the received power of 36.12 dB. Thus, the result provides that the coverage

in the blind area can be supported by utilizing IRS.
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Figure 5.7: IRS beam pattern in coverage blind area.
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5.3.2 HO Signalling Cost

In this section, the HO signalling cost is used to assess the performance of the

suggested pre-emptive handover method. The cost of HO signalling can be defined

in terms of the time delay that is necessary to send and process HO messages [178].
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Figure 5.8: HO cost comparison.

Despite the lengths of handover messages are varied, we use the assumption

made in [178] for simplicity, i.e., transmission cost for different messages among

the same pair of nodes are the same regardless of the message size. A similar as-

sumption goes with the processing time, i.e., the processing time is the same for

the different messages at the same node. Moreover, we follow [158] by assuming

that the mobility management entity (MME) and the serving gateway (S-GW)

are located in the same location. Therefore the transmission delay among these

nodes is constant and can be neglected. The HO signalling cost, CHO provided

in Fig. 5.8 for the three different scenarios discussed in previous sections, is cal-
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culated by [179]:

CHO =
∑

ψi,j +
∑

γi, (5.6)

where ψi,j is denoted as the one way transmission cost among nodes i and j, and

γi is the processing cost in node i.

To evaluate the HO costs, three different scenarios are created. In Scenario 1,

we calculated the HO cost when IRS is not deployed in the coverage blind area.

In Scenario 2, the HO cost is calculated when IRS is deployed in the coverage

blind area. In Scenario 3, the HO cost is calculated when the pre-emptive HO

algorithm is used with the help of the IRS in the coverage blind area.
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5.4 Conclusions

In this chapter, we provided a solution for seamless coverage and handover to the

users who are moving from one BS’s coverage to the next BS however, has to pass

through a coverage blind area, where there is no direct LOS between the user and

the source BS because of the blockage between them. To provide robust coverage

for the users in Connected mode within these coverage blind areas, we propose

implementing IRS, which is a more cost-effective solution than the deployment of

APs. The results show that the users can maintain their connection to the serving

BS, thanks to the IRS which is implemented in the coverage blind area. Secondly,

this chapter provides a pre-emptive handover algorithm in which the handover

is initiated at the IRS. The results show that when the proposed pre-emptive

handover algorithm at the IRS is applied; the handover cost is reduced by nearly

around 33% compared to the case when IRS is not utilized in the coverage blind

area. Therefore, the proposed pre-emptive handover algorithm supports seamless

transitioning and reduces handover cost, in return the QoE system is increased.



Chapter 6

Conclusion and Future Work

This chapter draws conclusions and discusses possible extensions of the previous

chapters.

6.1 Conclusions

Densely deployment of the small cells in 5G networks will bring high-quality ser-

vice to the end users as well as will solve the small footprint coverage problem of

mm-waves. The increase in the number of small cells will require self-organized

systems to enable the seamless transaction between heterogeneous network en-

vironments. Therefore, a survey-style study on self-organized seamless coverage

in 5G, covering mm-wave features and its indoor and outdoor coverage along

with some machine learning techniques, handover and mobility management in

mm-wave are presented in Chapter 2.

In an mm-wave-driven small cell environment, outdoor base stations will get

closer to the buildings, in which users are covered and served by indoor small cells

that in turn degrade the user’s QoE owing to the increased interference caused by

the outdoor BSs. In Chapter 3, indoor coverage analysis is conducted by consid-

ering a scenario, which includes a multi-storey building and two identical indoor

femtocell and outdoor BS operating at 28 GHz. Throughout the simulations, the

109
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impacts of frequency-sensitive materials used in the building wall are investigated

for indoor coverage in the context of the outdoor BS’s transmit power and the

distance from the building. The results show the importance of choosing a proper

material type when outdoor BS is close to the building.

Providing a seamless connection to mm-wave users, transitioning between

indoor and outdoor in a heterogeneous network environment particularly, is a

significant issue that needs to be addressed. Therefore, a two-fold contribution

with a comprehensive study on mm-wave handovers is proposed in Chapter 4. A

user-based indoor mobility prediction via a Markov chain with an initial transi-

tion matrix is proposed in the first step. Based on this acquired knowledge of

the user’s movement pattern in the indoor environment, a pre-emptive handover

algorithm is presented in the second step. This algorithm aims to keep the QoS

high for indoor users when transitioning between indoor and outdoor in a hetero-

geneous network environment. The proposed algorithm shows a reduction in the

handover signalling cost by more than 50%, outperforming conventional handover

algorithms.

Chapter 5, proposes a solution for seamless coverage and handover to the

users who are moving from one BS’s coverage to the next BS, however, has

to pass through a coverage blind area, where there is no direct LOS between

the user and the source BS because of the blockage between them. To provide

robust coverage for the users in Connected mode within these coverage blind

areas, this chapter proposes implementing IRSs, a more cost-effective solution

than deploying APs. Moreover, a pre-emptive handover algorithm is proposed

to support seamless transitioning and reduces handover cost by nearly %33; in

return, the QoE system is increased.
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6.2 Future Work

The potential extensions to each chapter in this thesis follow as:

• The work proposed in Chapter 3 is planned to be extended by studying the

interference effect under the multiple base stations. Also, one of the plans

is to create the interference heatmap of our office inside the James Watt

South Building by using TSMA6 as the office is currently operating under

a heterogeneous network environment. Thus, a data set would be available

for the future research area.

• Since mm-wave networks are now being commercially deployed in indoor

environments, as future work of Chapter 4, the proposed IMPRESS frame-

work and the proposed handover algorithm will be applied to scale up dense

femtocell deployments in order to analyse the performance in a more com-

prehensive scenario.

Moreover, different AI models could be explored as indoor localization of

the UE and predicting the UE’s next movement in the indoor environment.

• The work presented in Chapter 5 portrays a real-life problem in a simulation

environment, however for future work, this algorithm could be implemented

where the IRSs is deployed in a real system, and the simulation system

results could be evaluated within this system, in which more constraints of

the system needs to be taken into account.

Additionally, the IRS model could be extended to more sophisticated beam-

forming algorithms to enable multi-user case system scenarios.
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methods, and technologies,” IEEE Transactions on Vehicular Technology,

vol. 64, no. 4, pp. 1263–1278, April 2015.

[124] B. Allen, S. Mahato, Y. Gao, and S. Salous, “Indoor-to-outdoor empirical

path loss modelling for femtocell networks at 0.9, 2, 2.5 and 3.5 GHz using

singular value decomposition,” IET Microwaves, Antennas Propagation,

vol. 11, no. 9, pp. 1203–1211, 2017.

[125] Y. Corre, J. Stephan, and Y. Lostanlen, “Indoor-to-outdoor path-loss mod-

els for femtocell predictions,” in 2011 IEEE 22nd International Symposium

on Personal, Indoor and Mobile Radio Communications, Sep. 2011, pp.

824–828.

[126] M. Kacou, V. Guillet, G. El Zein, and G. Zaharia, “Coverage and through-

put analysis at 60 GHz for indoor wlan with indirect paths,” in 2018 IEEE

29th Annual International Symposium on Personal, Indoor and Mobile Ra-

dio Communications (PIMRC), Sep. 2018, pp. 1–5.

[127] M. Mirahmadi, A. Shami, and A. Al-Dweik, “A building architecture model

for predicting femtocell interference in next-generation networks,” in 2012

IEEE International Conference on Communications (ICC), June 2012, pp.

5059–5063.

[128] M. A. Imran, A. Turkmen, M. Ozturk, J. Nadas, and Q. H. Abbasi, “Seam-

less indoor/outdoor coverage in 5G,” pp. 1–23, may 2020.

[129] N. Sinclair, D. Harle, I. A. Glover, and R. C. Atkinson, “A kernel meth-

ods approach to reducing handover occurrences within lte,” in European



130

Wireless 2012; 18th European Wireless Conference 2012, April 2012, pp.

1–8.

[130] L. Bai, C.-X. Wang, J. Huang, Q. Xu, Y. Yang, G. Goussetis, J. Sun, and

W. Zhang, “Predicting wireless mmwave massive mimo channel character-

istics using machine learning algorithms,” Wireless Communications and

Mobile Computing, vol. 2018, 2018.

[131] N. Sinclair, D. Harle, I. A. Glover, J. Irvine, and R. C. Atkinson, “An ad-

vanced som algorithm applied to handover management within lte,” IEEE

Transactions on Vehicular Technology, vol. 62, no. 5, pp. 1883–1894, Jun

2013.
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