466 research outputs found

    TOWARDS AN INTEGRATIVE THEORETICAL FRAMEWORK OF INTERACTIVE MACHINE LEARNING SYSTEMS

    Get PDF
    Interactive machine learning (IML) is a learning process in which a user interacts with a system to iteratively define and optimise a model. Although recent years have illustrated the proliferation of IML systems in the fields of Human-Computer Interaction (HCI), Information Systems (IS), and Computer Science (CS), current research results are scattered leading to a lack of integration of existing work on IML. Furthermore, due to diverging functionalities and purposes IML systems can refer to, an uncertainty exists regarding the underlying distinct capabilities that constitute this class of systems. By reviewing extensive IML literature, this paper suggests an integrative theoretical framework for IML systems to address these current impediments. Reviewing 2,879 studies in leading journals and conferences during the years 1966-2018, we found an extensive range of applications areas that have implemented IML systems and the necessity to standardise the evaluation of those systems. Our framework offers an essential step to provide a theoretical foundation to integrate concepts and findings across different fields of research. The main contribution of this paper is organising and structuring the body of knowledge in IML for the advancement of the field. Furthermore, we suggest three opportunities for future IML research. From a practical point of view, our integrative theoretical framework can serve as a reference guide to inform the design and implementation of IML systems

    Prior knowledge elicitation: The past, present, and future

    Get PDF
    Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.Fil: Mikkola, Petrus. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; FinlandiaFil: Chandramoul, Suyog. Aalto University; FinlandiaFil: Hartmann, Marcelo. University of Helsinki; FinlandiaFil: Abril Pla, Oriol. University of Helsinki; FinlandiaFil: Thomas, Owen. University of Oslo; NoruegaFil: Pesonen, Henri. University of Oslo; NoruegaFil: Corander, Jukka. University of Oslo; NoruegaFil: Vehtari, Aki. Aalto University; FinlandiaFil: Kaski, Samuel. Aalto University; FinlandiaFil: Bürkner, Paul Christian. University Of Stuttgart; AlemaniaFil: Klami, Arto. University of Helsinki; Finlandi

    Prior knowledge elicitation: The past, present, and future

    Get PDF
    Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.Fil: Mikkola, Petrus. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; FinlandiaFil: Chandramoul, Suyog. Aalto University; FinlandiaFil: Hartmann, Marcelo. University of Helsinki; FinlandiaFil: Abril Pla, Oriol. University of Helsinki; FinlandiaFil: Thomas, Owen. University of Oslo; NoruegaFil: Pesonen, Henri. University of Oslo; NoruegaFil: Corander, Jukka. University of Oslo; NoruegaFil: Vehtari, Aki. Aalto University; FinlandiaFil: Kaski, Samuel. Aalto University; FinlandiaFil: Bürkner, Paul Christian. University Of Stuttgart; AlemaniaFil: Klami, Arto. University of Helsinki; Finlandi

    Interactive Causal Structure Discovery

    Get PDF
    Multiple algorithms exist for the detection of causal relations from observational data but they are limited by their required assumptions regarding the data or by available computational resources. Only limited amount of information can be extracted from finite data but domain experts often have some knowledge of the underlying processes. We propose combining an expert’s prior knowledge with data likelihood to find models with high posterior probability. Our high-level procedure for interactive causal structure discovery contains three modules: discovery of initial models, navigation in the space of causal structures, and validation for model selection and evaluation. We present one manner of formulating the problem and implementing the approach assuming a rational, Bayesian expert which assumption we use to model the user in simulated experiments. The expert navigates greedily in the structure space using their prior information and the structures’ fit to data to find a local maximum a posteriori structure. Existing algorithms provide initial models for the navigation. Through simulated user experiments with synthetic data and use cases with real-world data, we find that the results of causal analysis can be improved by adding prior knowledge. Additionally, different initial models can lead to the expert finding different causal models and model validation helps detect overfitting and concept drift

    Collaborative-demographic hybrid for financial: product recommendation

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsDue to the increased availability of mature data mining and analysis technologies supporting CRM processes, several financial institutions are striving to leverage customer data and integrate insights regarding customer behaviour, needs, and preferences into their marketing approach. As decision support systems assisting marketing and commercial efforts, Recommender Systems applied to the financial domain have been gaining increased attention. This thesis studies a Collaborative- Demographic Hybrid Recommendation System, applied to the financial services sector, based on real data provided by a Portuguese private commercial bank. This work establishes a framework to support account managers’ advice on which financial product is most suitable for each of the bank’s corporate clients. The recommendation problem is further developed by conducting a performance comparison for both multi-output regression and multiclass classification prediction approaches. Experimental results indicate that multiclass architectures are better suited for the prediction task, outperforming alternative multi-output regression models on the evaluation metrics considered. Withal, multiclass Feed-Forward Neural Networks, combined with Recursive Feature Elimination, is identified as the topperforming algorithm, yielding a 10-fold cross-validated F1 Measure of 83.16%, and achieving corresponding values of Precision and Recall of 84.34%, and 85.29%, respectively. Overall, this study provides important contributions for positioning the bank’s commercial efforts around customers’ future requirements. By allowing for a better understanding of customers’ needs and preferences, the proposed Recommender allows for more personalized and targeted marketing contacts, leading to higher conversion rates, corporate profitability, and customer satisfaction and loyalty

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Probabilistic Formulation of the Take The Best Heuristic

    Full text link
    The framework of cognitively bounded rationality treats problem solving as fundamentally rational, but emphasises that it is constrained by cognitive architecture and the task environment. This paper investigates a simple decision making heuristic, Take The Best (TTB), within that framework. We formulate TTB as a likelihood-based probabilistic model, where the decision strategy arises by probabilistic inference based on the training data and the model constraints. The strengths of the probabilistic formulation, in addition to providing a bounded rational account of the learning of the heuristic, include natural extensibility with additional cognitively plausible constraints and prior information, and the possibility to embed the heuristic as a subpart of a larger probabilistic model. We extend the model to learn cue discrimination thresholds for continuous-valued cues and experiment with using the model to account for biased preference feedback from a boundedly rational agent in a simulated interactive machine learning task.Comment: Annual Meeting of the Cognitive Science Society, CogSci 2018 Proceeding

    Bayesian statistics and modelling

    Get PDF
    Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models to deriving inference, model checking and refinement. We discuss the importance of prior and posterior predictive checking, selecting a proper technique for sampling from a posterior distribution, variational inference and variable selection. Examples of successful applications of Bayesian analysis across various research fields are provided, including in social sciences, ecology, genetics, medicine and more. We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis on artificial intelligence, a major goal in the next decade
    • …
    corecore