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1. Introduction

In natural sciences, a common aim is to construct the causal model underlying the pro-
cess that generated a given set of data. This modelling becomes difficult when the data
is observational rather than obtained from randomised controlled trials (RCTs) [94].
Executing RCTs is often either impractical, unethical, or both. For example, studying
the effect of a harmful substance on the human body would require the exposure of
a group of test subjects to the studied substance which, for obvious reasons, is not
allowed by (most) scientific ethics boards. Therefore, causal modelling is often based
on observational data alone.

Difficulties in causal modelling stem from the number of possible causal structures
increasing superexponentially as a function of the number of variables in the model [77]
as well as absence of a direct link between correlation and causation [94]. A number of
algorithms have been developed to find causal structures without relying on external
interventions on the process [see e.g., 79]. Causal models refer, in this context, to
probabilistic graphical models that can be represented by directed acyclic graphs and
that are given a causal interpretation [68]. The focus of this thesis is to specifically
find only structures of the models whereas the evaluation of causal effect sizes is left
outside the scope.

For a given process, the problem lies in multiple causal models being almost
equally good in terms of fitting the observed data. This issue is due to the large number
of possible models and to the inability to produce additional data through interventions
on the system. Depending on the assumptions made regarding the process, such as
the functional family of the causal relations and distributions of noise in each variable,
different causal structures can be found algorithmically. The existing algorithms all
make some assumptions that may not fully hold for real-world data. We aim to show
how adding interactivity to causal structure discovery can help understand, refine, and
potentially improve the outputs of the causal discovery algorithms.

We consider settings where a domain expert’s prior knowledge, combined with
automated methods, could help identify a better causal model or models than by
applying the algorithms alone. Taking a Bayesian approach to formulating the problem,
the domain expert has some unknown and vaguely defined prior distribution for the
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2 Chapter 1. Introduction

causal structures that generated the observed data. At the same time, the likelihood of
the data under some specific causal model can be estimated with a computer. Although
the expert’s prior distribution for the models cannot be accessed directly, by means of
interactions with the model, a maximum a posteriori (MAP) estimation of the possible
causal models can be found. Interactions comprise local edits to the causal structure
by adding, deleting, or reversing a single edge at a time. To enable the expert to
make such decisions, they are shown how all valid interactions on a given model would
affect the likelihood of the data. Likelihood and other metrics for model selection are
further discussed in Chapter 4. Assuming the expert is a rational Bayesian agent,
the interactions that they choose to perform lead to a local optimum of the posterior
distribution over the possible causal models.

Based on the ideas above, we propose the following workflow for interactive causal
structure discovery. The expert first runs a selection of causal structure algorithms on
their data. The particular set of algorithms used does not matter for our approach,
as it can be extended to include any algorithm that outputs a probabilistic graphical
model for some data input, although the choice of inital point for the navigation can
affect the final results. In fact, the expert may introduce their prior knowledge into
the analysis already in selecting which algorithms to run if they have information on
which assumptions that are built in the algorithms are valid for the data. After viewing
the results from the algorithms, the expert selects the model that best fits their prior
knowledge and the current context based on the likelihood estimates displayed for
each model. Then, the model can be edited by local edits mentioned above and the
expert terminates the navigation after finding a model that cannot be improved by
local edits. At each step of the editing process, the changes caused by all possible edits
to the current model are shown to the expert, to facilitate navigational decisions. To
evaluate how well models fit the data, we apply cross-validation which, in addition to
allowing efficient use of the data, helps the expert detect problems such as overfitting
and concept drift.

We test our approach by simulating a user on sets of random graphs with the
level of background knowledge as a parameter. Level of knowledge here simply means
the probability the expert assigns to the true edges both present in and absent from
the underlying model that generated the data. The user model is simple and based on
an assumption of a fully rational Bayesian agent. By these simulations, we attempt
to answer the following questions. (1) Does incorporating expert knowledge into the
causal structure discovery process improve the results? (2) How does the expert’s level
of knowledge affect the results? (3) Does the sample size have an effect on the results
with and without expert knowledge? and (4) Is it useful to have multiple different
initial points for the navigation?
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In addition to the simulations, we present use cases executed with real-world
data. We use a carbon dioxide flux data set measured in Hyytiälä [59] which is freely
available online. Two domain experts use our approach to find causal structures for the
data set that fit their prior knowledge and the data. We also show with a separate use
case how the navigation proceeds when the user has no prior knowledge of the process
that generated the data. With these use cases, we examine whether incorporating
expert knowledge into the search process produces results that are different from those
output by the algorithms, whether the choice of initial model for navigation affects the
results, and how problems in the analysis may be detected with cross-validation.

This thesis is structured as follows. We introduce causal Bayesian networks in
Section 2 including a brief discussion on the definition of causality. In Section 3, we
present methods for automatic causal structure discovery. Model selection including
metrics for comparing a number of models for goodness-of-fit and model validation
are discussed in Section 4. We provide an overview of interactive causal structure
discovery methods and causal inference in Earth system sciences in Section 5. With
the exception of deriving our generalised metric for model evaluation in Subsection 4.2,
our contributions in Sections 2 through 5 consist of reviewing related literature. In
Section 6, we present our approach and an example of implementing it. We lay out
the experimental setup and results in Section 7. In Section 8, we discuss implications
and open research questions. Finally, we conclude in Section 9.





2. Causal Bayesian Networks

Stochastic systems can be described by the joint distribution of the associated variables.
As the dimensionality of the model grows, the joint distribution becomes harder to
specify. However, statistical independence allows us to write the joint probability of two
random variables as the product of their marginal probabilities. Through dependence
relations among model variables their joint probability can thus be factorised into a
product of the conditional probabilities of each variable.

Depending on the context, p refers to either the probability density function of
a continuous random variable or the probability mass function of a discrete random
variable. Variables and nodes are denoted by capital letters A,B,X, Y, . . . and sets
of variables, as well as data matrices, by bold capital letters, such as Z. Conditional
independence of two variables given a set of conditioning variables is denoted by X ⊥
⊥ Y | Z and conditioning on an empty set can be written either as X ⊥⊥ Y | ∅ or
X ⊥⊥ Y .

Probabilistic graphical models offer a compact means to encode independence
relations between model variables along with the conditional distributions needed to
compute the factorised joint probability [e.g., 3, 50]. To describe their use in the causal
context, the terminology and definitions for graphs are introduced in Subsection 2.1
and Bayesian networks are presented in Subsection 2.2. Finally, the concept of causality
especially in the context of Bayesian networks is discussed in Subsection 2.3.

2.1 Graph Terminology

Graphs provide an intuitive means of representing relationships between a model’s
variables by visualising statistical independence and dependence relations explicitly
which, in turn, provides a factorisation for the joint distribution of the variables [50].
A graph G is defined by pair (V,E) where V denotes the set of vertices or nodes and E
the set of arcs or edges between them [e.g., 3, 50, 68]. An edge between two variables
X, Y ∈ V can be directed, X → Y or X ← Y , undirected, X−Y , or bidirected, X ↔ Y .
We focus only on graphs with directed and undirected edges. Non-adjacency of two
nodes, nodes without any type of edge between them, is denoted by X 6− Y .

5



6 Chapter 2. Causal Bayesian Networks
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Figure 2.1: An example of a directed acyclic graph, DAG.

Directed edges are oriented from a parent to a child and two nodes with an
undirected edge between them are called neighbours. If the graph is given a causal
interpretation, parent nodes equate to causes and children to effects. The notation
Pa(X) for parent set refers to the set of all of the parent nodes of X and PaG(X) is
used to highlight the parent set of X in graph G. For example, the parent set of node B
in the graph in Figure 2.1 is the set Pa(B) = {X, Y }. A directed edge is incoming with
respect to node X if it is oriented towards X, otherwise it is called outgoing. Adjacent
nodes have either an directed or undirected edge between them. For a node X, other
parents of its children that are not adjacent to X are its spouses. In the example graph
in Figure 2.1, X and Y are spouses as they have a common child in B but are not
adjacent. In directed graphs, all of the edges are directed and, conversely, all of the
edges are undirected in undirected graphs. Partially directed graphs may contain both
directed and undirected edges. Removing all of the edge orientations of a directed
graph but none of the edges or nodes results in the skeleton of the original directed
graph.

A path U between nodes X and Y consists of a sequence of nodes with edges
between them, either undirected or directed towards Y [50]. If all of the edges on a
path are directed from the first node towards the end node, the path is called a directed
path. Trails may additionally contain edges that are oriented towards the first node of
the sequence. Thus, all paths are trails but the same does not apply in reverse. The
sequence X → A → Y is a path from X to Y and the sequence X → B ← Y is a
trail from X to Y in the example graph in Figure 2.1. Connected nodes have at least
one trail between them and disconnected nodes have none. In connected graphs such
as the one used as an example, every pair of nodes X and Y is connected by a trail.
Complete graphs contain edges of any type between all of the nodes: all pairs of nodes
X and Y are adjacent. Conversely, there are no edges in an empty graph. A cycle in a
directed graph is defined as a directed path from any node to itself. Directed acyclic
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graph (DAG) is a directed graph without any cycles. The nodes of any DAG can be
sorted in a topological ordering which is an ordering of X1, . . . , Xn ∈ V such that if
Xi → Xj then Xi precedes Xj. In other words, no edges exist to a node X from any
node Y which succeeds X in the topological ordering. The order is not necessarily
unique: both X,A, Y,B,C,D and X,A, Y,B,D,C are valid topological orders for the
example graph. Because no directed paths exist from C to D or from D to C, their
mutual ordering does not matter.

A trail U with directed edges may contain three types of three-node structures in
terms of the orientation of the incoming and outgoing edges of the middle node of the
structure [68]. First, in a chain on trail U , the middle node, referred to as a mediator,
has one incoming and one outgoing edge on U , such as X → A → Y or Y ← B ← C

in Figure 2.1. Second, structures where both of the edges are directed away from the
middle node, for example, C ← B → D, are called forks. The middle node of a fork
is referred to as a confounder or a common cause of the other two nodes in a causal
context. Three nodes with exactly two edges between them are referred to as a v-
structure if the edges are oriented towards the middle node, such as B → D ← Y . If
B and Y were linked by an edge, the three nodes would not form a v-structure but a
structure with a collider. The term collider or, sometimes, unshielded collider is used
for nodes that have at least two incoming edges from two other, non-adjacent nodes.
If the two edges are not directed, the structure is called an unshielded triple. B is a
collider in the graph in Figure 2.1 as the graph contains two nodes X and Y such that
X → B ← Y and X 6− Y . D is not a collider in the graph, as its two parents B and
Y are adjacent, althoug+h it is a collider on the path X → B → D ← Y . Note that
for any of the structures, the middle node may have other edges to or from nodes that
are not on U such as the node B in the example of a v-structure X → B ← Y with
two outgoing edges to C and D.

Node X is an ancestor of node Y if a directed path exists from X to Y but
not from Y to X as is true in the running example. In this case, Y is a descendant
of X and the non-descendants of node X comprise all of those variables that are not
descendants of X, thus ancestors of X and nodes unconnected to X. In the example
graph, the nodes X, A, and Y are both the ancestors and the non-descendants of B
and its descendants are C and D. The only two nodes of which neither is an ancestor
of the other are C and D. Nodes always belong in the set of descendants of their
parents and in the set of ancestors of their children. Root nodes have no parents and
sink refers to a node without any children. In some sources, sink refers to the end node
of a directed path [94]. X is the only root node in the example graph and both C and
D are sinks.



8 Chapter 2. Causal Bayesian Networks

2.2 Bayesian Networks

Bayesian networks (BN) are probabilistic graphical models represented by a DAG G

which is combined with conditional probability distributions for each of the model
variables given their parents in G [66]. A BN is often defined for a set of discrete vari-
ables by the factorisation of the joint distribution of the variables [3, 15, 68], although
the same concepts can be extended to cover continuous variables [94]. As mentioned
above, a graph structure can be used to encode information about conditional indepen-
dence relations between the model variables. The amount of information regarding the
model’s joint distribution P directly available from DAG G depends on the conditions
satisfied by P with regard to G. If a probability distribution P factorises according to
a DAG G, G represents or is compatible with P [68].

Distribution P over variables X = {X1, . . . , Xn} satisfies the local Markov con-
dition with regard to G if and only if every node Xi is conditionally independent of
its non-descendants given the set of its parents Pa(Xi) [68, 94]. In causal terms, the
condition is referred to as the causal Markov condition and is defined as any variable
being independent of all other variables except its effects, direct and indirect, and direct
causes conditional on its direct causes. This condition implies that P can be factorised
as

p(X ) =
n∏
i=1

p(Xi | Pa(Xi)). (2.1)

If P can be factorised as above, the local Markov condition is implied with regard to G.
According to the local Markov condition, the example graph in Figure 2.1 implies the
factorisation p(X)p(A | X)p(Y | A)p(B | X, Y )p(C | B)p(D | B, Y ). The condition
does not, however, imply all of the independence relations in a graph. For example,
consider a graph with three variables X, Y , Z, and only one edge X → Y . According
to the local Markov condition, Y is independent of Z given X although Y and Z are
independent conditional on an empty set as seen from the factorisation implied by the
graph: p(X, Y, Z) = p(X)p(Y | X)p(Z).

All of the independence relations represented by a DAG G can be found by the
concept of d-separation where the letter d comes from the word directional [106]. A
trail between variables X and Y is active given a set of variables Z if none of the
non-colliders on the trail belong to Z and, for each collider on the trail, either the
collider or one of its descendants belongs to Z. Blocking a trail refers to modifying
the conditioning set Z by adding or removing variables from it so that the trail is no
longer active. Once a trail is inactive given a set Z, Z is said to block the trail. Two
sets of variables X and Y are defined as d-separated by a separate set of variables Z
if there are no active trails between X and Y given Z [e.g., 3, 50, 68, 94]. In other
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words, the set Z blocks every trail from X to Y. The conditioning set Z can be referred
to as a separating set for a pair of variables when conditioning on Z d-separates the
pair. If two sets of variables are not d-separated, they are d-connected. D-separation
links to conditional independence: if two variables X and Y are d-separated by Z in
graph G, then they are conditionally independent in all of the distributions P that are
compatible with G [68]. Conversely, if the variables are d-connected by Z, then they
are conditionally dependent given Z in at least one distribution P compatible with
G. The implication only applies to one direction and conditional independence of two
variables in a distribution P does not imply their d-separation in a graph with which
P is compatible, nor does their dependence imply d-connection.

In the running example, trail X → A → Y is active when no variables are
conditioned on, rendering the two variables d-connected given an empty set. Adding
A to the conditioning set blocks the trail and, as the other trails between X and Y are
blocked by the collider B which is not conditioned on, introduces d-separation of X
and Y . With A in the conditioning set, adding any other variable would unblock one
of the trails, breaking the d-separation. As B is not conditioned on, the trail between
X and D is active. Being a collider, D blocks trail X → B → D ← Y but conditioning
on it would unblock the trail. Y would thus be reachable from X if D was added to
the conditioning set. Conditioning on B would have an equivalent effect by unblocking
trail X → B ← Y . Because C is a descendant of B, adding it to the conditioning set
unblocks the same trail as conditioning on B directly.

If we know the set of conditional independence relations present in distribution
P , a DAG G that is compatible with P can be built with that information. The graph
representation of a distribution need not be unique, however. Consider a distribution
with three variables X, Y , and Z. If the only conditional independence relation in
the distribution is given as X ⊥⊥ Y | Z, the skeleton of the graph is X − Z − Y ,
as the pairs X, Z and Z, Y are not conditionally independent given any subset of
the other variables. Altogether four possibilities exist to direct the two edges: X →
Z → Y , X ← Z ← Y , X ← Z → Y , and X → Z ← Y . All but the last one,
X → Z ← Y , imply the same conditional independence relation, X ⊥⊥ Y | Z. A set of
DAGs that represent the same conditional independence relations is called a Markov
equivalence class or an equivalence class and two DAGs belonging to the same class
are Markov equivalent [3, 94]. All DAGs within an equivalence class contain the same
d-separation relations [94]. Two DAGs belong to the same equivalence class if they
have the same skeleton and the same set of v-structures [107]. DAGs in the same class
are likelihood equivalent if the data set meets the assumptions of linear relations and
normally distributed noise [36, 94]. In such a case, the DAGs in the equivalence class
cannot be separated from each other based on data alone as the model likelihood is
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equal for all of the class members. The graph X → Z ← Y is the only member of
its equivalence class whereas the other three graphs with the same skeleton form one
equivalence class together as they have the same empty set of v-structures.

A Markov equivalence class can be uniquely represented by a completed par-
tially directed acyclic graph (CPDAG) which can contain both directed and undirected
edges [10]. The process of forming a CPDAG from a DAG G is displayed in Figure 2.2.
The first step is to find the skeleton of the original graph, which for the running exam-
ple is shown in Figure 2.2b. In the second stage shown in Figure 2.2c, all of the edges
that belong to a v-structure in G are oriented with the same orientations as they have
in graph G. The example graph contains only one v-structure, X → B ← Y . Even
though B → D ← Y is a structure with a collider, it is not unshielded because B and
Y are adjacent and, therefore, is not a v-structure. Finally, as many of the remaining
edges as possible are oriented by enforcing two rules: no new v-structures must be
created and no cycles introduced. The arrow B − D must be oriented towards D in
order to avoid introducing a new v-structure X → B ← D and for the same reason the
arrow B −C is oriented towards C. After the two edges have been oriented, it can be
seen that the arrow D − Y must be directed towards D. Otherwise, the graph would
contain a cycle B → D → Y → B. Regardless of the orientation of the two edges that
remain undirected, no new v-structures or cycles are created, unless both edges were
oriented towards A. The resulting CPDAG in Figure 2.2d is a unique representation
of the equivalence class of the original DAG.

A common assumption in Bayesian networks is that of faithfulness for a given
distribution P and graph G [50]. The faithfulness assumption states that the condi-
tional independence of variables X and Y given a separate set of variables Z implies
the two are d-separated in G by Z. Faithfulness often holds, as introducing unfaithful
independence in a distribution requires precise fine-tuning of the model parameters. In
some practical applications, such fine-tuning is performed purposefully to achieve in-
dependence of two variables. For example, the air temperature inside a fridge depends
on the outside temperature but as the impact is actively counteracted, the two quan-
tities would statistically be independent. In this case, the distribution would include
a statistical independence between two variables that would not be d-separated in the
graph representing the process that generated the data. Unfaithful relations thus can
be created by designing a system to artificially introduce independence between two or
more quantities. Although most systems adhere to the faithfulness assumption, prob-
lems can arise in detecting weak dependence between variables. Weak dependence can
be misclassified as independence leading to errors in the graph structure. With the d-
separation criterion and the assumption of faithfulness, distribution P and compatible
graph G contain the same set of conditional independence relations.



2.3. Causality 11

X

A

B

C

D

Y

(a) Original DAG

X

A

B

C

D

Y

(b) Skeleton

X

A

B

C

D

Y

(c) v-structures

X

A

B

C

D

Y

(d) CPDAG

Figure 2.2: Finding the completed partially directed acyclic graph for the Markov equivalence class
of a given DAG.

2.3 Causality

As the famous phrase states, correlation does not imply causation. Statistical rela-
tionship between a pair of variables is insufficient to determine a causal connection
between the two [e.g., 68]. A classic example that highlights this problem concerns the
correlation between the amount of ice cream consumed and the number of drownings.
Clearly, eating ice cream does not cause one to drown nor does the causal relation hold
in the opposite direction. In this example, the problem arises from missing variables,
such as air temperature, that affect the probability of both events: both amount of
ice cream eaten and number of drownings tend to increase in warm summer months.
Correlation between two variables without a direct causal link between them is referred
to as spurious correlation [89].

Simpson’s paradox describes a phenomenon where the sign of the correlation
coefficient is reversed for the full data set as opposed to separate subsets of the data [7,
90]. As a fictional example, consider a data set collected by asking a number of people
their age, how much they exercise on average within a given time frame, and their
cholesterol level. The example is visualised in Figure 2.3. Inspecting the data set as a
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Figure 2.3: An example of Simpson’s paradox.

whole, the conclusion would be that higher amounts of exercise correlate with higher
cholesterol values which seems counter-intuitive. Once the different age groups are
analysed separately, on the other hand, the results support the prior belief of beneficial
effects of exercise on cholesterol levels. The reason for this “paradox”, in this case, is
that age correlates with higher amounts of both exercise and cholesterol or, in other
words, age acts as a confounder of the two other variables. Thus, the phenomenon
serves as a example of the importance of including all relevant variables in the analysis.
Once confounding variables are accounted for, true relationships between the variables
can be detected.

The discrepancy between causation and correlation raises the question of how
causal relationships are defined. Even the whole existence of causality as a concept
that is separate from correlation has been disputed with the argument that science
describes past events rather than defines necessary consequences of a sequence of actions
or perceptions [70, 62]. By this definition, causation is equated to perfect correlation
and spurious correlations are explained away by lack of data. Other definitions that
separate causality from correlation have been presented in various fields, including
statistics and philosophy.

In terms of propositional logic, causality can be defined as a deterministic relation
with a set of laws that determine the values of atomic propositions [88]. If a minimal
set of laws La required to determine a proposition a contains as a proper subset a
minimal set of laws Lb that determine proposition b, proposition b is said to have
causal precedence over a relative to La. In other words, b is said to cause a. Another
definition for deterministic causality states that an event a is a cause of event b if a
and b both occur and b would not have occurred without a [55].

Granger causality defines a causal relation between two time series a and b as
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Temperature

Ice cream

Drowning

(a) Causal structure with air temperature
as a latent variable.

Temperature

Ice cream

Drowning

(b) Causal structure after intervening on
eating ice cream.

Figure 2.4: An example of performing an intervention to detect causal relations.

the ability to use temporally preceding values of one time series to predict temporally
later values of the other [30]. Thus, a is said to cause b if a helps predict values of
b and a precedes b temporally. The definition includes a stochastic noise term, thus
allowing for the found relationships to be interpreted probabilistically. However, as
Granger causality only relies on statistical association, it has been said to serve to find
forecasting rather than causal relations [31].

To separate statistical dependence from a causal relationship, the difference be-
tween observations and interventions has been used to help define causality [68]. Con-
ditional probabilities of events, or variables, can be found by observing the values of
the variables. How the value of one variable affects the value of another cannot be
determined based on observation alone due to the possibility of confounding effects of
other latent or unconditioned variables, as exemplified by the link between eating ice
cream and number of drownings. Intervening on the suspected cause while control-
ling for all other variables except the suspected effect, on the other hand, allows the
detection of causal relationships between the two.

Randomised controlled trials rely on essentially the same argument [95]. Using
sufficiently large random samples from the population and changing the value of the
variable of interest, for example medical treatment, equates to an intervention while
controlling for possible confounders [68]. An interventional notation for probabilities
with the do-operator has been introduced, p(Y | do(X)), together with a set of inference
rules referred to as do-calculus [67]. The notation differs from that of conditional
independence, p(Y | X), to highlight the interpretation of intervening on X by actively
setting X to some value. Interventions do not suffer from confounders because setting
X to a specific value severs the links between X and its causes as the causes no longer
affect the value of X. However, the suspected effect can still be caused by other
variables.
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Continuing with the simple ice cream example, Figure 2.4 visualises the change
in causal relations when a variable is intervened on. The left panel shows the assumed
true causal structure for the three variables of which air temperature is unobserved.
From the structure, it can be seen that eating ice cream and drowning are statistically
dependent without interventions or otherwise controlling for the air temperature. If
we, for example, know the number of drownings our probability for the amount of
ice cream consumed is adjusted accordingly: a large number of drownings raises the
probability we assign for the current season to be summer which, in turn, raises our
probability that large quantities of ice cream is eaten. Explicitly setting the value of
variable ice cream to x, on the other hand, breaks the causal effect of temperature on
ice cream, shown in the right panel of the figure. As the value is manually set, the
temperature no longer has an impact on it. Because a pair of variables with a common
cause are unconditionally dependent, either the common cause must be conditioned on
or the causal relations must be broken to detect the non-adjacency of the two.

In addition to statistical association and intervention, a third, more abstract
approach to identifying causal relationships is the use of counterfactuals [68]. Counter-
factuals are defined as statements or queries of the form “what would have happened”,
they concern the possible consequences of events that did not occur. Either determin-
istic or stochastic approach can be assumed when counterfactuals are used to define
causality. As reasoning with counterfactuals requires the imagining of situations con-
trary to what is observed, at least the current technological approaches cannot apply
this approach to automatically identify causal relationships. Consequently, including
people in the process is necessary to enable the detection of causal structures. This
notion holds especially when the available data is purely observational as the measure-
ments do not result from one or more interventions.

In the context of causal inference, having data for the variables relevant to the
process under inspection is essential for valid analysis as highlighted by a few simple
examples above. Including common causes is needed to account for possible confound-
ing effects when interventions are not possible for ethical or practical reasons. Whether
all effects of the variables are included does not matter in terms of the validity of the
causal structure. The assumption of causal sufficiency guarantees that all common
causes of two or more variables in set V are included in V [94]. Furthermore, including
latent common causes of two or more variables in the model does not satisfy the as-
sumption but they additionally have to be measured or have constant value. In the ice
cream example, either the air temperature would have to be measured or we could look
at a data set where it was constant. For example, if only measurements for days with
an average temperature of 15 degrees Celsius were analysed, the absence of a causal
relation between the two measured variables could be identified as the temperature



2.3. Causality 15

Fire

Smoke

Alarm

(a) True model

Fire

Smoke

Alarm

(b) SHD to true model: 1

Fire

Smoke

Alarm

(c) SHD to true model: 2

Figure 2.5: Example of performing comparisons among causal models with the Structural Hamming
Distance (SHD).

would not affect their values.
Distributional comparison among models with regard to a given data set is dis-

cussed in Subsection 4.2. When a ground truth model is available, identified causal
structures can be evaluated against the true model at structural level without account-
ing for model parameters and data distribution. For example, the structural Hamming
distance (SHD) between two graphs represents the number of edits required to trans-
form one graph into the other [16, 101]. Each edit comprises adding, deleting, or
removing an edge. The distance is computed by summing together how many miss-
ing edges, extra edges, and edges with an opposite orientation there are in a graph
compared with another graph. With SHD we can perform comparisons among both
DAGs [16] and completed partially directed acyclic graphs (CPDAGs) [101]. Although
SHD provides a useful metric for similarity between two graphical models, its applica-
tion is less straightforward when the studied models have a causal interpretation.

Consider an example of the causal structure between three variables “Fire”,
“Smoke”, and “Alarm” [69]. In the true causal structure for the process, fire causes
smoke and smoke causes a smoke alarm to go off, as displayed in Figure 2.5a. Now,
consider two causal models with SHD of one and two to the true model, shown in
Figures 2.5b and 2.5c, respectively. The model (b) with fire and alarm as causes for
smoke is more similar to the true model as measured with SHD than the model (c) with
fire as a cause for both smoke and alarm. However, it could be argued that model (c)
somehow represents common knowledge of the causal relationships between the three
variables more truthfully than model (b), although it misses the causal link between
smoke and alarm completely.

As shown in the example, SHD cannot be used blindly to determine which of a
set of causal models represents the true causal relations best even when the ground
truth is known. As a combination of missing, extra, and misoriented edges, the use of
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SHD for comparison can result in loss of information. Nonetheless, SHD is a common
metric for comparing a number of model structures to a known ground truth [e.g., 40]
and found useful especially in conjunction with other model metrics [16].



3. Causal Structure Discovery

The elicitation of causal structures from domain experts is time-consuming and un-
certainty in the elicited models cannot be easily measured [102]. Furthermore, all of
the causal connections in a given process can be unknown even to the experts. For
these reasons, automated methods for causal structure discovery (CSD) have been
long developed and researched. Unless otherwise specified, the algorithms presented
in this chapter assume faithfulness and causal sufficiency as defined above in Subsec-
tions 2.2 and 2.3, respectively. Possible other assumptions required by each algorithm
are stated explicitly.

We use a synthetic data set with five variables to demonstrate how the discussed
algorithms work. The data set contains a hundred data points sampled from the
following linear set of structural equations:

A := EA (3.1)

B := EB (3.2)

C := A−B + EC (3.3)

D := B + ED (3.4)

E := 0.5 ∗ C + EE (3.5)

Ei denotes the noise term of variable i. Each of the noise terms follows a zero-mean
Gaussian distribution with unit variance.

Constraint-based CSD algorithms that we discuss in Subsection 3.1 use statistical
tests of conditional independence to infer causal relationships between variables. Pairs
of variables that are found to be dependent conditional on any subset of the other
model variables are joined together with an edge. The term constraint-based refers to
using conditional independence relations as constraints on the set of possible graphs
for a given data set. We introduce score-based algorithms in Subsection 3.2. They use
a scoring metric to rank a heuristically chosen subset of possible causal graphs and
returning the highest-ranking model. For example, models can be scored with BIC or
log-likelihood of the model. We discuss scoring metrics for models in general later in
Subsection 4.2. In Subsection 3.3, we present algorithms that use structural equation

17
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models to find causal structures.

3.1 Constraint-based Algorithms

PC algorithm [93], which is named after its developers Peter Spirtes and Clark Gly-
mour, works in two phases. The first phase consists of identifying the skeleton, the
undirected graph that underlies a directed causal model. Beginning from a complete
undirected graph, each edge is tested for independence given a set of conditioning vari-
ables that increases in size by one in each iteration. In the first iteration, pairs of
variables are tested for independence given an empty conditioning set. For a pair of
variables A and B, the conditioning set is a subset of either the neighbours of A or
the neighbours of B, excluding A and B themselves. If neither A nor B has sufficient
neighbours for a conditioning set of the given size that is determined by the current
iteration, the two variables are interpreted to be dependent and, thus, adjacent. When-
ever an independence is discovered, the set of conditioning variables is stored as the
separating set for the pair of independent variables. Once none of the variables have
more neighbours than the size of the conditioning set, the first phase terminates.

In the second phase, the separating sets are used to find v-structures. V-structures
are discovered by identifying sets of three variables with exactly two edges between
them and where the separation set of the two non-adjacent variables does not include
the third variable. The edges in these structures are oriented towards the node with
an edge to each of the other two variables. Once all of the v-structures have been
discovered, as many of the remaining undirected edges are oriented as possible. An
orientation can be locked if the opposite orientation would create a new v-structure or
a cycle. Edges are oriented by applying these rules until no changes can be made. The
algorithm outputs a completed partially directed acyclic graph (CPDAG), the unique
graph representation of a Markov equivalence class, which can still contain unoriented
edges.

Example outputs from the two phases of running PC are displayed in Figure 3.1.
The first phase produces the skeleton of the causal model as well as the separating
sets for all of the pairs of variables that are adjacent. For the final result, as many of
the edges are oriented as possible adhering to the rules detailed above. The example
graph contains four unshielded triples: A − C − B, A − C − E, B − C − E, and
C − B − D. The only one of these where the separating set of the two non-adjacent
nodes does not include the middle node is A − C − B. Thus, the two edges are
oriented as A → C ← B. Because the separating sets imply no v-structures for
the other unshielded triples, the edge between C and E must be oriented towards E.
Finally, the edge B − D is left unoriented as either direction is compatible with the
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Vars SepSet
A, B
A, D
A, E C
B, E C
C, D B
D, E B

A B

C D

E

(a) Separating sets and skeleton

A B

C D

E

(b) CPDAG

Figure 3.1: Results from the two phases of the PC-algorithm.

identified conditional independence relations. The resulting equivalence class contains
the underlying true model in which the final edge is oriented as B → D.

Variations of PC include, for example, the conservative PC (CPC) [76] and ma-
jority rule PC (MPC) [12] both of which only direct edges in a v-structure if the
unshielded triple is determined unambiguous. The two algorithms differ in terms of the
definition of unambiguity. Detection of v-structures is performed by testing the inde-
pendence of the two non-adjacent nodes in an unshielded triple given all of the subsets
of their possible parents. The added conditional independence tests then result in one
or more separating sets for the two nodes. In CPC, an unshielded triple A − B − C
is unambiguous if B is included in either all or none of the possible separating sets
between A and C. On the other hand, MPC labels the unshielded triple unambigu-
ous if the number of sets that B is an element of is not exactly half of the number
of separating sets. Both algorithms categorise any remaining triples, which have not
been labelled unambiguous, as ambiguous. PC-Stable has been developed to overcome
the limitation of order-dependency of the original algorithm and is based on using the
adjacency lists of the nodes at the beginning of each iteration for levels of adjacency
in the skeleton discovery phase [12]. In addition, the orientation phase is guaranteed
to be order-independent with MPC’s strategy for finding v-structures.

The assumption of linearity in PC can be relaxed by selecting conditional inde-
pendence tests suitable for detecting non-linear relationships between variables. One
such extension is the kPC algorithm that applies kernel methods for independence de-
tection [99]. However, the approach does not scale well in terms of sample size or
the number of variables. Another non-parametric method for estimating non-linear
dependencies, GPDC, applies Gaussian process regression on the data to identify inde-
pendence relations [80]. Although the GPDC method facilitates discovering non-linear
relationships, it suffers from a lower detection power for linear relationships with small
sample sizes. Both kPC and GPDC inflict a higher computational cost than linear de-
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pendency estimation such as partial correlation and Gaussian conditional independence
test.

Fast Causal Inference (FCI) has been proposed as an algorithm that allows for la-
tent variables in the model for cases where causal sufficiency cannot be guaranteed [94].
The algorithm outputs a partial ancestral graph (PAG) instead of a DAG or a CPDAG
to enable encoding possible latent variables. In terms of edges, a PAG can contain
bidirected ↔ and directed → edges and edges with unknown orientation either at one
o → or both o − o ends. A bidirected edge implies the two adjacent variables have a
latent common cause and directed edges are interpreted as in DAGs and CPDAGs, the
source being a direct cause of the destination node. The symbol o at the end of an edge
indicates uncertainty about whether an arrow should be drawn there. Furthermore, a
variable with two uncertain edges, such as o − oAo →, can be marked as non-collider
o− oAo→ in which case at least one of the edges is outgoing.

Before outlining the algorithm, we provide the definition for a possible d-
separating set of the ordered pair A,B, denoted by PD-sep(A,B). If A 6= B, PD-
sep(A,B) contains all of those variables in V \ {A,B} to which exists an undirected
path U from A such that all of the variables on U except the end nodes are either
colliders or possible colliders. A variable Y is a possible collider on path U if it belongs
to an unshielded triple X, Y, Z on U and neither edge X − Y nor Y − Z is oriented
away from Y . Thus, PD-sep(A,B) can differ from PD-sep(B,A).

FCI consists of four phases, the first of which equals the first phase of the PC al-
gorithm, finding the skeleton of the causal model beginning from a complete undirected
graph. The second phase comprises the identification and orientation of v-structures
from unshielded triples based on the separating sets discovered in the first phase, as in
PC, although no further orientations are performed. In the third phase, a PD-sep is
constructed for each adjacent ordered pair of variables. If a pair of adjacent variables
A and B are d-separated given any subset of either PD-sep(A,B) or PD-sep(B,A),
the edge between them is removed and the subset is added to the separating set of the
variables. Without an oracle available to determine true d-separation, independence
tests are used to identify d-separation as in the first phase of the algorithm. Once all
of the adjacent pairs are tested given their possible d-separation sets, the remaining
edges are oriented in the final phase.

The orientation begins with initialising all of the edge orientations as uncertain,
marked with o at each end. Then, as in the second phase, v-structures are found
and oriented based on the separation sets of the variables in unshielded triples. If
an unshielded triple is not a v-structure, because the middle node is included in the
separating set of the two non-adjacent nodes, the middle node is marked as a non-
collider on the path containing the triple. As many of the remaining edges as possible
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● ●
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Figure 3.2: Partial ancestral graph output by FCI-algorithm.

are oriented following the rules that no new v-structures or cycles are created. Running
the algorithm on the same example as the PC algorithm outputs the PAG displayed in
Figure 3.2. The structure mostly resembles the one output by PC, but the algorithm
is unable to determine whether there are latent common causes for the variable pairs
A− C, B − C, and B −D.

Real-world data sets are often the result of multiple measurements at some time
intervals. PCMCI is an algorithm specifically designed for detecting lagged causal
relations from time series data [80]. The approach is based on combining a version
of the PC algorithm with momentary conditional independence (MCI) to generate a
method able to discover both linear and non-linear causal connections. In the first
phase, PC is applied to find possible time-lagged parent sets for each of the variables.
As no contemporaneous links are taken into account in this phase, all of the links can
be oriented with the assumption that causes must temporally precede their effects. Let
Xt reference the variable X measured at time step t. Now, any variables Xt−τ , τ > 0,
with a link to variable Yt are included in the possible parent set of Yt.

Once the possible parent sets for all of the model variables have been found, they
are used to test for causal relationships between all pairs of variables with lags between
0 and the maximum allowed time lag. The MCI test can be performed with any con-
ditional independence test and refers to the method of testing for a causal connection
between variables Yt and Xt−τ given the possible parent sets of both variables retrieved
in the first phase. The possible parent set of Xt−τ consists of the possible parent set of
Xt time-shifted by τ . Given the local Markov assumption, each variable is independent
of its non-descendants conditional on its parents. Because of this assumption, testing
for the independence of Yt and Xt−τ given the possible parent set of Yt allows the
determination of whether the two variables are causally linked. Adding the possible
parent set of Xt−τ to the conditioning set counteracts the influence of autocorrelation
in the time series. In the second phase, contemporaneous links are tested as well but
they are left unoriented as the temporal ordering does not exist to help distinguish the
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cause from the effect. An extension of the algorithm, PCMCI+, has been presented to
address the orientation of contemporaneous causal links [78].

The simplicity and low computational cost of the PC algorithm renders it a good
choice for analysing even large sets of data if the base assumptions of linearity and
Gaussianity are met. Different variants of PC provide some flexibility in terms of
stability of the results and assumptions regarding the data-generating process. FCI
provides a useful tool for analysing data sets when causal sufficiency is not guaranteed,
although its computational complexity due to the additional independence tests in
the third phase limits its application to large data sets. If the data set contains a
temporal dimension, PCMCI can be applied to detect both linear and non-linear causal
relationships from high dimensional time series. On the other hand, PC can be applied
to large linear time series data with good results if the temporal distances between
causes and effects are within the time resolution of the measurements. Using PC
instead of PCMCI to analyse time series data can be justified when the data set is
large because the time complexity of PCMCI is significantly higher than that of the
PC algorithm.

3.2 Score-based Algorithms

Greedy equivalence search (GES) is a greedy algorithm that finds a locally optimal
Markov equivalence class with respect to some decomposable scoring metric for which
a common choice is the BIC score [11, 60]. Decomposability of the score refers to the
global score of a graph being equal to the sum of the local scores of subgraphs that
consist of each variable and its parents separately [3]. The log-likelihood of a graphical
causal model is decomposable because the model likelihood factorises to terms of the
likelihood of a node given its parents, one term for each node. Although the algorithm
is based on assumptions of Gaussian noise distributions and linearity of the causal
relationships, it has been found to produce reasonable results even with moderate
non-linearity and non-Gaussianity [75].

Beginning from any causal graph, usually an empty graph, the algorithm works
in phases. First, edges are added to the model by selecting the one that improves
the graph’s score most until no improvements to the score can be made by further
additions. Second, edges are removed one by one with the same logic until a local
optimum has been reached. Finally, in the turning phase, different orientations for
the edges are tested similarly. The result from running GES on the running example
beginning from an empty graph is shown in Figure 3.3. The middle graph 3.3b shows
an intermediate result of the algorithm before convergence. The BIC scores displayed
under each graph can only improve by decreasing in every step.
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Figure 3.3: Results from running GES, beginning from (a) an empty graph, through (b) an in-
termediate result with final result shown in (c). Below each graph is shown its BIC score, lower is
better.

All of the edits in GES are done in the space of equivalence classes and, therefore,
edges are added without orientation unless the edge belongs to a v-structure or could
create a cycle. The removal or turning of an edge can result in unorienting other edges
that either belonged to a v-structure with the edited edge or were oriented to prevent
cycles. In practice, the edits are performed on oriented edges and the resulting graph
is transformed into the CPDAG representing the equivalence class that contains the
partially oriented graph. The score computed for each equivalence class during the
navigation is valid for every member DAG of the class due to models of an equivalence
class being likelihood equivalent under the assumptions of linearity and Gaussianity
of the noise distributions. Likelihood equivalence between members of an equivalence
class enables the computation of the model’s likelihood for the BIC score in each step
by computing the estimate for any realisation of the class. Thus, when testing an edge
A−B for addition, it suffices to compute the score difference either for A→ B or for
A← B.

The three phases are iterated over until the score cannot be improved by any
single modification to the Markov equivalence class. The turning phase and iteration
over the phases were not introduced in the original algorithm, but have been found to
improve the results later [34]. GES is inefficient when node in-degree is high as it scales
exponentially with regard to the size of the largest clique [11]. A clique in a graph is
a subset of nodes all adjacent to each other, a complete subgraph. The problem in
scaling can be counteracted by setting a limit to the number of parents allowed for any
one node. However, the solution introduces a new problem of how to select a correct
limit. A suboptimal value leads to a deterioration in the performance of the algorithm.

Optimisation of the GES has lead to a variant of the algorithm called the fast
greedy search (FGS) [75]. Higher computational efficiency is achieved by parallelisa-
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tion of the computation and by storing in a list information about all such edges whose
addition in the first phase of the algorithm would improve the overall score. Keeping
in memory those edges speeds up the first phase as the score differences from adding
each of the absent edges need not be separately computed after every step. The de-
composability of the scoring metric guarantees that the addition of an edge A−B does
not affect the score differences resulting from the addition of edges between nodes that
are not adjacent to either A or B.

Another variant of GES, the independent multiple-sample GES (IMaGES), has
been proposed to enable building aggregate causal models from multiple separate data
sets [74]. Combining data gathered from multiple sources such as medical patients
or measurement sites can introduce causal links between variables not present in any
single data set. The IMaGES algorithm addresses this problem by estimating the log-
likelihood of a graph G separately on each data set and then computing their average
to estimate the log-likelihood of the aggregate model. The data sets are assumed to
contain a roughly equal number of samples. Furthermore, the approach takes into
account data missing from a subset of the available data sets by computing the per-
data-set scores only for those edges whose end nodes are included in each data set.

A mainly score-based algorithm for CSD, fast hill-climbing (FHC) [24] resembles
GES in that it applies a greedy approach to the problem by performing single edits to
graphs to detect a locally optimal causal model for a given data set. Unlike GES, FHC
navigates in the space of DAGs directly instead of Markov equivalence classes. The
algorithm uses conditional independence tests to constrain the number of calculations
for score differences, in addition to employing a scoring metric for comparing models.
The search consists of one phase only during which both additions and removals of
edges are considered iteratively until no edit would improve the score. Each node A
is associated with a constantly updated list of nodes that are not parents of A. When
computing the impact of an edit on the model’s score, the two nodes at each end of
the edited edge are tested for independence conditional on the parents of either node.
If the nodes are found conditionally independent, neither can be a parent of the other
one. Intermediate and final results from applying FHC on the example are shown in
Figure 3.4. Although the final result contains an erroneous orientation in edge D → B,
it belongs to the same equivalence class with the true model.

For relatively low-dimensional data sets, GES has been found to perform well
even with the assumptions of linearity and Gaussianity partially broken [75]. If the
number of variables is in the order of hundreds or thousands, on the other hand, FGS
provides a more efficient method for CSD than GES. With multiple data sources that
cannot be combined without the risk of introducing new causal connections, IMaGES
can be used to build an aggregate model even when all of the data sets do not contain
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Figure 3.4: Results from FHC beginning from an empty graph. Scores are proportional to BIC.

measurements for all of the model variables. Although FHC offers speed-ups for sparse
graphs, which are graphs where nodes have few parents on average, the additional
conditional independence tests reduce the achieved efficiency.

3.3 Structural Equation Models

Structural equation models (SEMs) represent causal structures by defining each vari-
able as a function of its parents and some noise [68, 115]. Each SEM has a unique causal
graph representation which contains no cycles if the model is a recursive SEM [e.g.,
38]. In this thesis, only recursive SEMs are considered and, for simplicity, the attribute
“recursive” is dropped from the term in further mentions. The noise terms are assumed
to be independent of each other, resulting in a useful asymmetric relationship between
a child and a parent. Because the noise terms are mutually independent and the child is
defined in terms of its parents, the parent is independent of the noise term of the child,
but the child is not independent of its parent’s noise term. The various algorithms that
use structural equation models differ in the assumptions that are made regarding the
underlying causal model.

LiNGAM, an abbreviation for linear non-Gaussian acyclic models, applies inde-
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pendent component analysis (ICA) to identify causal relations and causal effect sizes
under assumptions of linearity of the causal relations and non-Gaussianity of the noise
distributions [87]. Only linearity, non-Gaussianity, and causal sufficiency are assumed,
the model is not required to satisfy faithfulness. ICA provides a method for separating
the independent components of a multivariate data set given sufficient samples by tak-
ing advantage of the asymmetry between the variables stemming from the assumption
of non-Gaussianity [13, 87].

Let X be a n × p data matrix where each of the n rows corresponds to a p-
dimensional observation. Let B be the coefficient matrix for the model variables that
is permutable to a strictly lower triangular matrix. The requirement of permutability
of B stems from the assumption of the causal model’s acyclicity. Now, a linear, non-
Gaussian acyclic causal model can be defined as

X = BXT + E, (3.6)

where E denotes the noise matrix that consists of the independent components [87].
ICA is applied to find a decomposition of the observed data matrix X = AE, where the
mixing matrix is given by A = (I − BT )−1. Non-Gaussianity of the noise distributions
ensures that A is identifiable [13].

The first phase of the algorithm consists of applying ICA to estimate the mixing
matrix A [87]. As ICA can identify the structure only up to a permutation of rows
and columns [13], a few additional steps are required to find a unique causal structure.
A−1 is permuted to produce a matrix W̃ with a diagonal of all non-zero elements and
each row of W̃ is divided by the corresponding diagonal element. Due to estimation
errors, the permutation with non-zero diagonal is not, in practice, unique for which
reason W̃ is estimated by finding the permutation of A−1 that minimises the sum of
the inverses of its diagonal elements. By subtracting the resulting W̃ from an identity
matrix of equal dimensions, an estimate of B of causal effects is obtained.

To discover the causal ordering, the matrix still needs to be permuted to be as
close to a lower triangular matrix as possible [87]. A number of pruning techniques can
then be applied because, in practice, the result would be a full model as the estimated
values are only approximately zero where the true theoretical value is zero. The DAG
obtained by applying LiNGAM on the running example is displayed in Figure 3.5.
As the noise distributions in the example data follow a Gaussian distribution, the
algorithm performs worse than the others that rely on Gaussianity. However, even
with one of the base assumptions broken, all of the true edges are found with only one
edge, E → C, incorrectly oriented and one extra edge.

Non-linear additive noise models (non-linear ANMs) provide a method to estimate
causal models from observational data without assuming linearity or Gaussianity [40].
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Figure 3.5: Result from LiNGAM

Causal models take the form

Xi = fi(Pa(Xi)) + Ei, (3.7)

for each of the model variables Xi where Ei denotes the additive noise term, fi is
some arbitrary function for Xi, and Pa(Xi) is the parent set of Xi in the model. No
assumptions are made regarding either the form of fi or the distribution of Ei.

The proposed procedure relies on testing all possible causal graphs for consistency
with the observed data set by using the assumption of statistical independence between
the noise of a variable and its parents. Consistency is tested by performing a non-
linear regression of each variable Xi on its parents. Then, a non-parametric statistical
independence test is performed to test the independence of the regression residuals and
Xi. If the residuals are found dependent on any Xi, the causal model is rejected. Only
models that pass all of the independence tests are considered consistent with the data.
As the approach returns all of the consistent models, graphs that contain subgraphs
consistent with the data are discarded from the results. In the case of linear fi and
Gaussian noise, non-linear ANM may not able to distinguish between orientations
A→ B and A← B. Neither the non-linear regression method nor the non-parametric
statistical independence test is fixed, but any appropriate methods such as Gaussian
process regression or kernel conditional independence tests can be employed [40].

Due to the requirement of iterating over all of the possible causal models, the non-
linear ANM can be applied only on low-dimensional data. However, with a large data
set the algorithm can provide a useful method for checking a causal model. Consider a
causal model that is obtained with some faster algorithm, by elicitation from a domain
expert, or both. Non-linear ANM can help test the model for consistency with the
data. Depending on the result, the model is either confirmed or discarded.

If the available data is known to contain linear relationships and the distributions
of the noise terms are non-Gaussian, LiNGAM has been shown to produce good results.
On the other hand, non-linear ANM provides a more general method than LiNGAM
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when such assumptions do not hold or are not known to hold, although its compu-
tational complexity limits its use to low-dimensional data. Other methods based on
structural equation models exist with different sets of assumptions regarding the data-
generating process. For example, the post-nonlinear model (PNL) relaxes the assump-
tion of additivity of the noise by defining variables as Xi := fi,2(fi,1(Pa(Xi))+Ei) [116].



4. Model Selection

On a general level, the problem our approach as well as other causal discovery methods
attempt to address is that of model selection. Model selection refers to studying the
performance of a set of models with varying complexities in order to select the best one
according to some pre-defined criterion, often predictive accuracy [e.g., 33, 42]. Once
the best model with respect to the chosen criterion has been selected, its performance
in terms of generalisability to previously unseen data is evaluated, which is called model
assessment [33]. Model selection forms a complex task which has received attention,
for example, in definition of the Bayesian workflow [28], which is discussed in Section 8.

In a causal setting, the task is to identify which one of a finite set of alternative
causal structures produces the best fit for the observed data. Prior knowledge is not
usually considered in model selection because the focus of the procedure is to identify
which model fits the data best and the prior distribution contributes towards parame-
ter choice rather than predictive accuracy [27]. Besides evaluating how well models fit
to the data, further criteria for estimating and comparing their performance include
detecting whether the model has overfit or underfit the data and whether distributional
changes occur in the process that generated the data. Methods for comparisons among
various models, for evaluating their goodness-of-fit to the data, and for detecting prob-
lems in them are thus needed to find a model with a good performance according to
chosen criteria. In Subsection 4.1, we introduce the problem of balancing a model’s bias
and variance. We address model scoring in Subsection 4.2 and discuss cross-validation
in Subsection 4.3.

4.1 Bias-variance Trade-off

The sample size of available data in model building is often limited which problem
is further exacerbated by the need to leave out some of the data from the training
set to validate and test the built models. With insufficient data to train the models,
high model complexity, or training the models for longer than necessary can lead to
overfitting [e.g., 29, 33, 35]. Overfitting happens when the model begins to fit the noise
in the training data instead of capturing the principal trends. On the other hand,

29
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underfitting occurs when the fitting is terminated before the model has learnt relevant
patterns from the data or when the model is too simple to describe them [33].

Model selection as well as model assessment is often performed by computing
the model’s prediction error that is obtained from applying a loss function L to data
that the model was not trained on. Prediction error over a validation sample that is
independent of the training sample can be referred to as the test error or the gener-
alisation error [33]. When the training data set is fixed, the squared prediction error
of a regression model can be broken down into three components: bias, variance, and
irreducible error [29, 33]. Same general idea applies outside the regression setting and
squared error. Both underfitting and overfitting relate to the trade-off between the
bias and variance of a model in model selection. The irreducible error is sometimes
called the Bayes’ error [42].

Assume a model of the form Y = f(X) + ε, where X represents the independent
data and Y the dependent variables, f is some deterministic function, and ε denotes
the stochastic noise in Y with zero mean and a variance of σ. The noise ε is further
assumed independent of both Y and X. Given a training data set D, we can obtain
an estimate of the function f , denoted by f̂ . Now, the decomposition of the prediction
error with squared error loss is given by

E[L(Y, f̂(X))] (4.1)

= E
[
(f(X) + ε− f̂(X))2

]
(4.2)

= E
[(
f(X)− E[f̂(X)] + ε+ E[f̂(X)]− f̂(X)

)2
]

(4.3)

= E
[(
f(X)− E[f̂(X)]

)2
]

+ E
[
ε2
]

+ E
[(
E[f̂(X)]− f̂(X)

)2
]

(4.4)

=
(
f(X)− E[f̂(X)]

)2
+ E

[
ε2
]

+ E
[(
E[f̂(X)]− f̂(X)

)2
]

(4.5)

= Bias2
(
f̂(X)

)
+ σ + Var

(
f̂(X)

)
, (4.6)

The result holds because the expectation of the difference between a random variable
and its expected value is always 0, the expected value of ε is 0, and ε is assumed
independent of Y and X. Due to f being deterministic,

(
f(X)− E[f̂(X)]

)2
is constant

and can therefore be moved outside the expectation.
The decomposition of a model’s prediction error helps understand the trade-

off that governs model selection. An example of such a decomposition is shown in
Figure 4.1. The irreducible error, σ, defines the lower limit of the prediction error as
the name suggests [33, 42]. No model can achieve a lower error rate than the variance in
the data-generating process. In a classification setting, an optimal model that obtains
the minimal error is called the Bayes’ classifier [42, 49]. Bias of a model measures
the distance between an optimal model, the expected value of Y which is f(X), and
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Figure 4.1: An example of a bias-variance decomposition. As the model complexity increases, the
bias decreases and the variance increases. Irreducible error stays constant and loss is computed as a
sum of the three.

the approximation [29]. A high bias indicates the model does not fit the data well
and therefore produces poor predictions. Finally, the variance of a model estimates
the model’s dependence on the training data [29]. If approximations of a model were
generated with different training sets, the variance expresses the expected variation
in the estimations. High variance thus suggests a strong dependency between the
estimated model and the training set, again leading to lower performance in predictions
on new data.

Models that are too simple to estimate the data-generating process accurately
tend to have high bias and low variance [29, 33]. On the other hand, complex models are
able to produce accurate in-sample predictions, that is, predictions for values included
in the training data set, but may not generalise well. Such models often have high
variance but low bias. Underfitting can be detected by measuring a model’s bias [33]
and, conversely, high variance can be caused by the model overfitting the training
data [29, 33]. Balancing these two opposite goals in finding a good model for a given
process is referred to as the bias-variance trade-off. It is important to check models
for each extreme, as avoidance of either high variance or low bias alone can lead to an
increase in the other measure [83].

A common method for detecting underfitting and overfitting is validation [e.g.,
33, 35, 42]. Generally, part of the available data, referred to as the test set or test
data, is set aside from the training data for testing purposes and this data is not used
for training at all. A model trained on the training data can be validated against
another separate data set, often referred to as the validation set. The validation set
is ignored during the model training, similarly to the test set, but can be used to
compare a number of models to perform model selection. On the other hand, the test
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0 2.42 3.80
1 1.38 1.31
2 0.31 0.31
3 0.30 0.27
4 0.24 0.33
5 0.23 0.23
6 0.23 0.28
7 0.18 103.20
8 0.18 62.92

Figure 4.2: On the left, training and validation data plotted together with regression lines for some
example models. On the right, a table of training and validation errors for the tested models with
regression functions of varying polynomial degrees.

data is used only for assessing the performance of the final model to evaluate how well
the model performs on previously unseen data. Essentially, the error computed on the
validation set is an estimate of the test error and thus provides an approximation of the
generalisation performance for model selection. The same data set cannot be part of
both validation and model assessment because the validation data is used multiple times
during the whole training process and the final model has therefore learnt to predict
the validation data well. Testing the final model’s performance on the validation data
would provide a biased estimate of the true performance on unseen data.

As a general rule, the training error reduces with additional learning and more
complex models due to higher flexibility allowing the model to fit the training data
more precisely [e.g., 33, 42]. The validation error does not have the same property
because the model is trained on a separate set and hence it helps determine the optimal
complexity or amount of training for the training data. At first, the validation error
decreases with model complexity until at some point it begins increasing. After the
minimum of the validation error has been reached, additional model complexity leads
to overfitting the training data. Conversely, before reaching the minimum validation
error, the model can be deemed to underfit the data. The same interpretations apply
for the amount of training executed as for the complexity. With just one validation data
set the minimum is approximate but it still serves as a sanity check against overfitting
and underfitting.

An example of model selection with a separate validation data set is shown in
Figure 4.2. The true model is defined as a fifth degree polynomial with Gaussian
noise. As expected, the training error decreases monotonically whereas the validation
error first decreases then increases after it reaches the minimum value of 0.23. In this
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example, the minimum validation error is obtained with the model complexity matching
the true model which, however, may not be always the case with a limited validation
set. Simple models fitted to polynomials of low degree such as zero or one result in
large errors on both the training and the validation set. Large errors indicate a poor
fit to the data or, in this case, the models having high bias. As the models get more
flexible, the validation error explodes when the degree of the polynomial is increased
to seven or eight, which serves as a sign of overfitting and the model capturing the
noise in the data rather than the relevant patterns. The same results can be seen by
studying the plotted regression lines in the figure but visually inspecting the models
becomes impractical with higher dimensions.

Real-world data can contain extreme data points for which the predicted values
according to a model differ much from the true values. Such data points are called
outliers [e.g., 42]. They can be the result of measurement errors, execution errors [1], or
a missing predictor indicating problems in the chosen model [42]. Execution error refers
to how the data was sampled. If the data set consisted of air temperature measured
during winter, a measurement from another population, such as the air temperature
of some day in June, would appear as an outlier. Sometimes identifying why some
samples have a different distribution than most of the data is not straight-forward. An
example of such a situation is found in modeling air temperature over a number of
years when a few of the samples are measurements from a year with extreme weather
conditions.

If the training data contains outliers, the model fit can be skewed from the true
trend resulting in a biased model that produces poor predictions for out-of-sample
data [1]. Validation offers a simple means to assess the model fit, also applying to
situations with outliers in the training set. Outliers in the validation set, on the other
hand, can result in problems in model selection. For example, if the validation set
contains a relatively high number of outliers for the process of interest, a model that
captures the outliers’ behaviour best could be selected instead of a model that fits the
main trends of the process.

In a data set with autocorrelation, that is, data with dependent samples such as
a time series, an outlier can occur as a single data point, a consecutive group, a period
of data [22]. Cross-calidation can help detect groups of outliers in time series data,
which is discussed further in Subsection 4.3, through identification of contiguous blocks
of data that behave differently from the rest. If large errors are found on one of the
validation sets only, it is possible it contains a group of outliers that affect the results,
although the interpretation is sensitive to the context and further analysis of the data
should be performed.

When building a model for some data-generating process, one basic assumption
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is that all of the data is sampled from the same distribution and the relationships
between variables stay constant. In real-world data, the assumption may not hold,
as the relationship between the independent and dependent variables can change over
time. The term concept drift refers to either abrupt or gradually forming changes in
the distribution of the data or in the relationships between variables [23, 85]. Variables
relate to each other through the conditional distribution of the dependent variable
Y given the independent variables X. Virtual concept drift refers to changes in the
data distribution p(X) and real concept drift to changes in the conditional distribution
p(Y | X), the relation between the dependent and independent variables [23]. An
example of a gradual concept drift can be found in the decrease in battery life of a
computer as a function of charging time over years. The change in battery life after
replacing the old battery with a new one would be a rapid change in the process. In
the case of gradual concept drift, observations located close together temporally can be
assumed to be drawn from the same distributions whereas distant observations suffer
from larger distributional differences. Concept drift is caused by changes in hidden
context [113]. Hidden context of a process includes both interventions on the system,
such as replacing an old battery, and missing explanatory variables such as those that
cause a decrease in the performance of a battery over its lifetime.

In the context of models that are used for prediction, the occurrence of concept
drift can render the trained model obsolete unless it is updated when the rapid change
happens or when the gradual change has affected the results noticeably [23]. On the
other hand, if models are used for understanding the underlying processes instead of
predicting unobserved values, adapting the models to the changes may not be necessary.
Detection of concept drift still carries relevance as one static model cannot describe
the full data set well but separate models may be needed. Similarly to detecting
outliers, cross-validation with contiguous blocks of data can help detect concept drift,
through the inspection of model performance when the separate folds are used for
validation. If models trained on data excluding a validation set perform poorly in the
validation, concept drift can explain the discrepancy. However, the same result can
indicate overfitting, misspecification of the model, or outliers, thus care must be taken
in the interpretation.

4.2 Model Scoring

Even if producing predictions for a given process is not the primary goal of building a
model, they can help estimate how well the model fits the data as well as detect possible
overfitting and concept drift as discussed in the previous Subsection 4.1. Both model
selection and model assessment can be performed based on measures of predictive
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accuracy, which are referred to as scoring rules [27]. Scoring rules enable comparisons
among a number of models as well as assessing the performance of a chosen model
in terms of fitting the data. Common scores for measuring a model’s fit to the data
include the log-likelihood of a hold-out data set in probabilistic prediction or mean
squared error (MSE) when point predictions are obtained [27]. In fact, if the model is
Gaussian with a constant variance σ, the two measures are proportional.

log p(y | θ) =
N∑
n=1

logN (yn | µ(xn), σ) (4.7)

∝ −1
2

N∑
n=1

(yn − ŷn)2, (4.8)

where µ(xi) = ŷi is the prediction output by the model for a new data point xi. The
result is the MSE of the model scaled by −N

2 .
Although log-likelihood provides a good estimate of a chosen model to the data,

its interpretation is not intuitive. On the other hand, the coefficient of determination,
or R2, provides an interpretable and common measure for evaluating model fit [42]. R2

for a linear model represents an estimate of the proportion of variance in the dependent
variable explained by the model, the true population value of which is denoted by ρ2.
It is computed with the ratio between sample estimates of variance under the chosen
model and a null model that contains no predictors. Sample estimates of variance are
computed using residuals from fitting the two models to the training data.

R2 = 1− VarM
Var0

(4.9)

R2 = 1−
∑N
n=1(yn − ŷn)2

N
÷
∑N
n=1(yn − ȳ)2

N
(4.10)

R2 = 1−
∑N
n=1(yn − ŷn)2∑N
n=1(yn − ȳ)2 , (4.11)

where ȳ is the mean of the observed dependent variables, representing the null model
with zero predictors. Although R2 often is defined only for measuring the predictive
power of a model within a training set, an out-of-sample R2 has been used with an
equivalent definition [97, 9]. Out-of-sample R2 can be evaluated by computing the sum
of squared errors for the chosen model and the null model on a validation or test set,
and subtracting their ratio from one. Similarly to the MSE, R2 is proportional to the
log-likelihood of a given data set when Gaussian distribution with a constant variance
is assumed, as the denominator in Formula 4.11 is constant with regard to the data
set.

The traditional definition of R2 does not provide a good estimator for the effect
of adding a predictor to the model as any new predictor always raises its value. This
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behaviour is caused by biased estimators of variance in the formula. One simple solution
to the problem is an adjusted R2, denoted from here on by R2

a, which is computed with
unbiased estimators of variance [42]:

R2
a = 1−

∑N
n=1(yn − ŷn)2∑N
n=1(yn − ȳ)2

N − 1
N − p− 1 (4.12)

R2
a = 1− (1−R2) N − 1

N − p− 1 , (4.13)

where N and p denote the sample size and number of predictors, respectively. With
the ratio of the degrees of freedom of the chosen model and the null model, the vari-
ance estimators are made unbiased and the value increases when new predictors are
introduced only when the increase in variance explained exceeds what is statistically
expected. From Formula 4.13, it can be seen that the adjusted R2 has a value lower
than or equal to the unadjusted R2.

The true proportion of variance explained by a model, ρ2, falls in the range [0, 1].
When R2 is estimated on the training data that the model is fitted on, the same
condition applies if the model has actually been fitted to the data instead of selecting a
model randomly or by some other criteria not based on the data. Computing the out-
of-sample R2

a for a validation set, on the other hand, can produce negative values if the
model fits the data worse than a null model that always predicts the mean of the data
set [97]. Even though a negative R2 value reduces the interpretability of the metric,
it serves to highlight poor generalisability and can help detect when the training and
validation sets cannot be treated as samples from the same distribution.

As shown above, R2 and, by extension, R2
a can be computed on either training

or validation data and under the assumptions of Gaussianity and constant variance
they are proportional to the log-likelihood of the model. One approach to generalise
the coefficient of determination to a Bayesian network is provided by its relationship
to the log-likelihood in the case of a linear model with one dependent variable. The
log-likelihood of a Bayesian network G with I variables is computed as a sum of the
factors implied by its structure:

log p(X1, . . . , XI) =
I∑
i=1

log p(Xi | PaG(Xi)) (4.14)

LetM be a linear model with some fixed parameters and a graph structure G and
let the variables of M have Gaussian noise distribution with constant variance. The
log-likelihood of each variable given its parents under model M is thus proportional to
the R2

a computed for the same variable under model M ,

log p(Xi | Pa(Xi)) ∝ 1−
∑N
n=1(xin − x̂in)2∑N
n=1(xin −X i)2

N − 1
N− | Pa(Xi) | −1 , (4.15)
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where x̂in is the prediction made under M for the nth sample: some function of the
nth sample of the parent set Pa(Xi). From equations 4.14 and 4.15, it follows that
the log-likelihood of the whole Bayesian network G is proportional to the sum of R2

a

computed separately for each variable. Furthermore, the log-likelihood is proportional
to the mean of the R2

a values, denoted by R2
a.

log p(X1, . . . , XI) ∝
1
I

I∑
i=1

(
1−

∑N
n=1(xin − x̂in)2∑N
n=1(xin −X i)2

N − 1
N− | Pa(Xi) | −1

)
(4.16)

The resulting value does not cover the full interval [0, 1] for a training data set, as each
Bayesian network contains at least one variable with no parents by definition. Its range
is thus given by [0, (I − 1)/I] for a Bayesian network with I variables as at least for
one variable R2

a = 0. However, by multiplying the value by I/(I − 1) it can be fixed to
cover the same range [0, 1] as the regular coefficient of determination, or [−∞, 1] when
computed on a validation set. We get as a result the following metric:

R
2
a = 1

I − 1

I∑
i=1

(
1−

∑N
n=1(xin − x̂in)2∑N
n=1(xin −X i)2

N − 1
N− | Pa(Xi) | −1

)
(4.17)

Because of the final scaling, R2
a has the two-variable R2

a as a special case.
The advantage of using R2 rather than the model’s log-likelihood to measure

goodness-of-fit stems from its easy interpretation as the proportion of variance ex-
plained. R2

a is essentially the log-likelihood of a Bayesian network transformed to the
same scale as the coefficient of determination. The value does not represent the pro-
portion of variance explained, but the mean of variances explained by regressing each
variable on its parents. Despite the difference in interpretation to that of R2

a, R
2
a is a

metric for probabilistic graphical models that provides a more understandable measure
of comparison between two or more models than the often used log-likelihood. It scales
in terms of percentage of explained variance whereas changes in the log-likelihood are
not linked to an easily interpreted quantity.

4.3 Cross-validation

Two levels of generalisation can be distinguished for test error: prediction error (PE)
and expected value of prediction error (EPE) [4]. PE measures how well a model trained
on a specific training set generalises to unseen test data whereas EPE can be seen as a
more general measure of a learning algorithm or a model structure. PE is computed as
the expectation of the selected loss function L, for example the MSE, over new samples
from the same distribution P from which the training set D that the model is fitted
on is sampled. EPE is defined as the expectation of the prediction error over training
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data sets of a given size.

PE = E[L(Y, f̂(X)) | D] (4.18)

EPE = E[L(Y, f̂(X))] = E[PE], (4.19)

where X and Y are independent and identically distributed (i.i.d.) samples from dis-
tribution P .

As we do not know the generating distribution, the exact PE and EPE cannot
be computed [4]. Approximations P̂E and ÊPE for the two errors can be found, which
introduces a new task of evaluating the uncertainty in the approximations. Common
methods to evaluate P̂E and ÊPE include cross-validation (CV) and bootstrapping
which are also used to estimate the uncertainty of the found approximations. For some
estimated quantities used to measure goodness-of-fit, such as R2, analytical solutions
exist to estimate the confidence intervals [92], although the same solution is not trivially
extended to cover the R2

a measure discussed in the previous Subsection 4.2. Although
it has been proven that no unbiased estimator of the variance of the k-fold CV error
exists [4], an almost unbiased estimator of the error variance has been shown possible
by using nested CV [105], defined later below.

Regular k-fold CV is implemented by first dividing the data used for training
and validation randomly into k folds [e.g., 33, 96]. Any sequential or other correlation
structures in the data set can be ignored when forming the blocks. Each fold is used in
turn to validate a model trained on the remaining k−1 folds. The cross-validation error
CVe is an average over the loss computed for the validation data in each iteration [96].

CVe = 1
k

k∑
i=1
L(Y∈i, f̂−i(X∈i)), (4.20)

where Y∈i and X∈i denote the dependent and independent samples in the validation
fold i. f̂−i represents a model fitted to the training sample that contains all of the data
not included in fold i. A special case of k-fold CV is the leave-one-out cross-validation
(LOOCV) where k equals the sample size, thus validating the fitted model on just one
data point in each iteration. One iteration of k-fold CV with k = 4 and one of LOOCV
are visualised in Figures 4.3a and 4.3b, respectively.

The main benefit of applying cross-validation is efficient use of data which often
is scarce. As the training set is partly different in each iteration, the CV error provides
an estimate of the expected prediction error, EPE [4]. Two considerations should be
taken into account when choosing the number of folds k [33]. A large number of folds
produces less biased estimates but, on the other hand, leads to a high computational
cost and the estimate can have large variance. CV with few folds requires less resources
and results in small variance but high bias. On the other hand, it has been proven that
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the size of the fold should disperse towards infinity at the same rate as the sample size
grows and that LOOCV does not produce asymptotically optimal results [86].

One source of bias in the CV error estimation stems from making modelling
choices outside a CV loop which can provide the model with an advantage leading to
underestimations of the error [105]. For example, if feature selection is performed using
both training and validation data, the validation data no longer serves as an unseen
test data set as the training of the model includes information from all of the data.
Nested CV has been proposed as a solution to this problem [105]. In the approach,
all modelling choices are made inside a k-fold CV loop with the relevant training data.
The training data is further split into k′ folds used for another CV loop within the
current iteration.

A further complication in measuring the goodness-of-fit of a model is introduced
by having correlated samples, such as those in a time series. We cannot assume the
data points are i.i.d. since autocorrelation introduces a temporal dependency between
the samples. The risk of overfitting increases when data that is generated by a dynamic
process is sampled over a limited time period. For example, if we have data on weather
conditions for June in a single year, training a model on that data set results in a
model that has specialised on data with a similar distribution. In such a case, the
model represents the available data set too faithfully and does not provide a general
understanding of the data-generating process in other contexts. With yearly variance
in weather conditions, the same model may not perform equally well on preceding or
subsequent years. The problem is how to measure generalisability of a model given
only a limited set of samples, which may not be independent samples from the same
distribution. One approach is to use CV by splitting the data into chunks of equal size
that are sufficiently large to account for the autocorrelation [5]. Unlike in traditional
CV on i.i.d. data, the splitting cannot be performed fully at random since data points
located temporally near each other are correlated.

A base case of validation in the context of time series data consists of splitting the
series into two data sets of which the first is used to train a model and the second to
validate it [8, 98]. The approach is sometimes referred to as fixed origin evaluation [98]
and an example of applying it on a temporal data set is shown in Figure 4.3c. A
more general version of out-of-sample evaluation of time series data is leaving out a
block of data from the end of the time series for evaluation and training the model
on a number of preceding data points, which is known as last block validation [5].
Last block validation, of which fixed origin evaluation is a special case, only refers to
how the data is split and can include splitting the data multiple times. Rolling-origin
evaluation either with recalibration or updates and rolling-window evaluation together
with the basic split into two are examples of last block validation [98]. In rolling-origin-
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Ignored Training Validation

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.3: Various approaches to prediction error estimation. Columns represent one iteration of
validation on temporally ordered data with first sample at the bottom and the last at the top. (a) k-
fold CV, (b) Leave-one-out CV, (c) Fixed origin evaluation, (d) Rolling origin evaluation, (e) Rolling
window evaluation, (f) h-block CV, (g) Modified CV, (h) hv-block CV, (i) Blocked CV

recalibration evaluation, the data is split into a number of chunks and each chunk is
in turn used to validate the model that is trained on all of the preceding chunks,
as displayed in Figure 4.3d. Rolling-origin-update evaluation uses a similar approach
but rather than training a new model in each iteration, the same model is used with
updated inputs. Instead of all of the preceding values, training a model on a set number
of preceding chunks to and then validating the trained model on the block following
the training data is known as rolling-window evaluation, shown in Figure 4.3e.

Regular k-fold CV with random train-validation split ignoring the temporal order
of train and validation data points has been applied to autoregressive models where
each observation is modelled as a function of a set number of preceding observations [6].
The assumptions required to render the approach theoretically valid include having a
stationary autoregressive model whose sample mean converges to its expected value
in the limit of infinite data. The joint probability distribution of a strictly stationary
model does not change over time [31]. In the presence of concept drift, for example, the
validity of regular CV is not guaranteed. In practice, the theoretical guarantees may
not be needed although stationarity and approximate independence of observations
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with time lags over a specified threshold are commonly assumed [5].
Forming validation sets with mutually independent observations can be done by

h-block cross-validation, shown in Figure 4.3f, which generalises LOOCV to depen-
dent data sets [8]. For each validation fold, h observations that precede and succeed
the observation used for validation are left out from the training set. The approach
guarantees the training data are approximately independent of the validation data as
long as h, the number of samples to remove, is chosen appropriately. Although h-
block CV enables the use of any samples in a validation fold, the training set size is
reduced significantly which reduces data efficiency. Similarly to LOOCV, h-block is
inconsistent and does not produce asymptotically optimal results when used for model
selection [73, 86]. A modification of this approach termed modified cross-validation
(MCV) allows folds with size larger than one with each fold consisting of a random
subsample of the original data, essentially generalising regular CV which corresponds
to having h = 0 [2, 5]. An example iteration of MCV is displayed in Figure 4.3g.

In order to overcome the inefficiency regarding data use in h-block CV while still
providing a valid evaluation method for time series data, hv-block cross-validation has
been proposed as a generalisation of LOOCV and h-block CV [73]. Parameter v is used
to control the size of the validation fold and h to ensure approximate independence.
Each data sample zi with index i ∈ {v, . . . , n − v}, where n is the sample size, is
in turn chosen as the centre point for the validation fold. The v samples preceding
and succeeding zi are included in the validation fold, resulting in a validation set of
size 2v + 1. All of the remaining data except for the h samples on either side of
the validation fold are used for training to ensure approximate independence of the
training and validation data as in h-block CV. The training set size in each iteration
is n − 2v − 2h − 1 or at most n − 2v − h − 1, reaching the maximum if there are no
samples on one side of the validation block. An example of hv-block CV is shown in
Figure 4.3h. A related approach, blocked CV, uses blocks of mutually exclusive and
continuous data as CV folds without excluding any additional data point from the
training data, which equals hv-block CV with h = 0, as shown in Figure 4.3i [5].

Generally, the samples included in the validation or test set have to succeed the
training set, whether there are gaps between the two data sets, in order to simulate real
life conditions as the goal often is to use past data to predict the behaviour of future
data [98]. A number of order-ignorant evaluation methods introduced above have been
designed specifically for time series data to allow more efficient use of the available data
than achieved with order-faithful methods. Even though temporal ordering should be
taken into consideration, an empirical study found little difference in error estimation
between various cross-validation methods [5]. The study compared regular CV, blocked
CV, modified CV, last block validation, and a variation on last block validation where
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validation is performed on the second instead of the last block to study the effect of
temporal ordering on the error estimates. Each method was applied on a number of
both simulated and real data sets. Results show that using only one split of the data, as
in last and second block evaluation, produces higher variance in the error estimates, but
no significant difference was detected between the CV approaches in terms of producing
too high or too low estimates. Although the error estimates were found equally robust
with the three cross-validation methods, modified CV uses data less efficiently than
regular or blocked CV. The researchers conclude with a recommendation to use blocked
CV although regular CV performed in the study equally well. All of the tested time
series data sets are stationary. As a consequence, the results as well as recommendations
made may not be applicable to non-stationary data.

The cross-validation methods introduced above have been proven valid only for
stationary time series. Concept drift as a source of non-stationarity can be detected,
however, with cross-validation if the validation folds are chosen not at random but as
contiguous blocks of data, as described in Subsection 4.1. Either blocked or hv-block
CV allows detecting both concept drift and outlier periods of data. By inspecting
the validation errors separately for each fold, we can identify blocks that are more
difficult to predict than others when training the model on the remaining data. Gradual
concept drift is harder to detect than abrupt changes in the data distribution. By
performing CV with different parameters, differences between training and validation
scores for certain blocks can imply either outlier regions or concept drift. Divergence
of the validation and training scores can indicate overfitting and such cases should be
investigated further to determine the cause of the divergence. The inspection, again,
can be done by reapplying CV on a subset of the data, additional data, or with different
number of folds. If the scores are found to converge when leaving out certain data folds,
the left out data may contain outliers that skew the results. Concept drift can be the
cause if the results vary depending on whether a subset of data from the beginning,
middle, or the end of the available observation period was used. Additional data can
help avoid overfitting.

The cross-validation methods discussed are defined for contiguous time series
with regular intervals and gaps. Non-contiguous time series data does not necessarily
introduce problems as gaps longer than the autocorrelation period of the data actually
ensure at least approximate independence of the samples on either side of the gaps.
These gaps thus allow the use of methods such as blocked, h-block, or hv-block CV
where some of the left-out data can be replaced with actual missing values, raising the
ratio of observed data used for training. Especially with hv-block CV the blocks can
be chosen to border with existing gaps in the data and additional data can then be left
out only when there is no gap before or after a validation block.



5. Applied Causal Modelling

Causal modelling has received much attention in the Earth system sciences recently,
such as in a review on commonly applied methods [79]. Excepting the fast hill-climbing
algorithm [24], an example can be found of a practical application in the field for each of
the algorithms discussed in Section 3. Due to difficulties in finding causal relations from
purely observational data, some focus has been directed towards developing methods for
incorporating knowledge from domain experts into causal analysis. Below we provide
a short review of work related to both causal modelling in Earth system sciences in
Subsection 5.1 and causal modelling for domain experts in general in Subsection 5.2.

5.1 Causal Modelling in Earth System Sciences

Granger causality [30] has gained popularity in practical research [e.g., 45, 91], possi-
bly due to its clear definition and simple application. Air temperature in the Southern
hemisphere has been found to Granger-cause air temperature in the Northern hemi-
sphere [45]. Further analysis shows the causal ordering between the two variables
probably results from human activity, providing evidence for humans likely contribut-
ing towards global trends in air temperature. In another study, carbon dioxide has been
determined to be a main cause for the global surface temperature when compared with
solar and volcanic activity as possible drivers [91]. The relationship is tested with an
extension on Granger causality designed to detect long-term causal relations from time
series data. However, the usage of Granger causality has been criticised for investigat-
ing the effect of human activity on global temperatures. The approach is argued to be
inappropriate due to long lags between the cause and detectable effects [100]. Although
an extension has been proposed to take into account long-term causal connections [48],
the extended method requires making additional assumptions including Gaussianity
of the variables which may not always be met. The possibility of latent variables is
mentioned as another limiting factor in the interpretation of results [48].

One of the earliest studies on the PC algorithm [93] in climate science applied
it to identify the causal relations between the gravity-adjusted heights from sea-level
at different locations in a climate network [18]. The climate network is defined a grid
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of N locations on Earth with temporal dimension taken into account by including 15
temporally sequential observations for each location in the network. Causal analysis
is thus performed on a climate network of size N × 15. Climate change has been
studied with the same method but applying it on data sets describing different time
periods obtained from a simulation climate model and comparing the results with
each other [17]. The study focuses on describing the change in climate rather than
performing causal analysis to form claims about the underlying causes behind the
phenomenon.

Most methods for causal analysis rely on the assumption of causal sufficiency,
that is, including in the model observations of all of the common causes of two or
more model variables. To overcome this limitation, the suitability of the fast causal
inference (FCI) algorithm [94], which allows the presence of latent variables, has been
tested on climate data [81]. The algorithm is applied to detect causal relationships
between Arctic temperatures and the jet streams. Results are compared with those
from another study [82] that applies PC to the same problem with the same data.
Although the approach is found promising, its limitations include lack of robustness
and reliability [81]. Furthermore, the high computational cost of FCI has been proposed
as one reason for the lack of practical applications for it [19].

The performance of a number of causal structure discovery (CSD) algorithms has
been studied by applying them to detect the causal structure between an urban heat
island and urban rainfall in the summer [57]. Urban heat island is defined to refer-
ence an urban area with a higher air temperature than surrounding rural areas. The
six algorithms compared comprise PC, its two variants PC-Stable [12] and conserva-
tive PC [76], linear non-Gaussian additive models (LiNGAM) [87], and two variants
of greedy equivalence search (GES) [11, 60]: fast greedy search [75] and independent
multiple-sample GES [74]. Running PC, its variants, and LiNGAM on the available ob-
servational data produce equal causal structures, even though PC assumes Gaussianity
and LiNGAM, conversely, assumes non-Gaussianity. All in all, the researchers find the
results promising with an additional recommendation of including prior knowledge in
the analysis for robustness.

As another example of an algorithm based on structural equation models in ad-
dition to LiNGAM, the performance of non-linear additive noise models [40] has been
studied on multiple bivariate problems in the field of geoscience and remote sensing [71].
The method is applied on a set of 28 bivariate causal inference problems in geoscience.
Ground truth models used for evaluation are formed based on expert knowledge or
common sense. In addition, the approach is tested on a set of 182 causal problems
based on simulated data sets with existing ground truth models. Again, the results are
found encouraging as causal relationships are correctly detected with orientation taken
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into account better than expected by chance alone. The researchers add as a caveat
that the method is unsuitable in situations where the assumption of additive noise is
not met.

Specifically designed for causal analysis of time series data, PCMCI [78, 80] pro-
vides a suitable method for causal discovery in Earth system sciences by combining
the PC algorithm with momentary conditional independence. The approach has been
applied to data on air pressure at sea level generated from model simulations as well
as observed data [63]. Causal structures built from the simulated data are compared
with the structure found for the observed data in order to evaluate the accuracy of the
models and detect commonalities in the models’ development. The proposed causal
model evaluation provides a useful framework to evaluate climate models. Possibility
of concept drift in future observations and missing variables are mentioned as limiting
factors.

The PCMCI algorithm has also been used to identify the causal structure of
carbon dioxide flow [51]. Three data sets collected from three stations located around
the same area are studied to detect causal links in the flow process. Split by month and
filtered for daytime observations to account for seasonal variance, the data are analysed
with PCMCI to determine links that are found in one, two, or all of the data sets.
Although consistency is observed in the discovered edges, the results have high false
positive rate when assumptions such as linear relations and stationarity are not met.
A majority of the found causal connections are found to be contemporaneous which
prevents the algorithm from distinguishing causes from effects. As the algorithm does
not take into account common causes or mediators with zero lag, the found structure
can include spurious links. Nevertheless, the method is found to produce robust results
with better interpretability than methods purely based on analysing correlations in the
data.

5.2 Causal Modelling for Domain Experts

Proposals have been made for using prior knowledge together with CSD algorithms to
detect causal relationships from observational data. A common approach is suggested
as first eliciting relevant information from a domain expert and then incorporating that
knowledge into the analysis [e.g., 60, 64, 110]. The analysis itself is performed by an
expert in causal inference rather than the domain expert and the stages of knowledge
elicitation and causal analysis may be executed iteratively. Such an iterative method for
incorporating domain knowledge has been applied, for example, in medicine [21]. The
same approach with only one iteration has been applied to sea-breeze prediction [46].
Knowledge elicited from experts can include information on correlations, temporal or-
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derings, and the presence or absence of causal relations [64]. Temporal ordering for
a model is defined by specifying variable groups that can be sorted by their relative
temporal occurrence and the ordering may be provided partially for a subset of the
model variables or for the full set of variables. The groups of variables used to define
a temporal ordering are referred to as temporal tiers [64]. Another study suggests the
use of a causal model’s distance to a candidate model provided by a domain expert as
a prior for CSD [37]. The TETRAD software package has been developed to facilitate
the use of causal inference methods for domain experts directly [84]. The package
allows for incorporation of background knowledge into CSD in the form of temporal
tiers [54, 64, 84].

A recent paper presents a system, Outcome-Explorer, for building and exploring
causal models interactively [39]. The motivation for the system stems from the need
for explainable AI and it is targeted at both expert and non-expert users. Focus is
placed on the interpretation of an existing causal model although the provided solution
includes a module for causal model discovery. The user inputs a data set and then
selects one CSD algorithm whose output is displayed to the user. They may then edit
the selected model, at the same time evaluating the current model based on a number
of metrics and value manipulations. With the emphasis on studying the relations in
causal models, the model discovery performed with algorithms and expert interactions
is not given an explicit mathematical formulation. The navigation in the space of causal
models begins from a single graph although multiple algorithms are provided for finding
the initial model. Outputs from different algorithms are not displayed simultaneously
in a single frame for comparison.

The Visual Causality Analyst has been designed to facilitate the discovery and
visualisation of causal structures from observational data sets with both continuos and
categorical variables [111]. Analysis in the proposed system begins with applying an
algorithm similar to PC on the data set to identify a possible causal structure. After
the initial model has been found, the user may apply edits on the model by adding,
reversing, or deleting edges. Linear and logistic regression are used to estimate the
strength of the found causal relationships for continuous and categorical variables,
respectively. Once a variable has been selected, the appropriate regression method is
applied depending on the type of the variable. A number of metrics are computed from
regressing the variable on all of its direct causes in the current model. The metrics
include the p-values for regression coefficients and the R2 value.

Stating Simpson’s paradox as a motivator, the creators of the Visual Causality
Analyst propose another interface, Causal Structure Investigator, that allows dividing
the input data set and building separate causal models for each of the partitions [112].
As with the previous approach, the analysed data set can contain both continuous and
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categorical variables, a similar, PC-based algorithm is used for CSD, and the model
parameters are estimated with linear and logistic regression depending on the data
types of the variables. The main contribution of the new framework is the manual or
automatic division of data to enable building separate causal models for the partitions
and comparing the found models. By selecting one or more features, the user may
manually set ranges or values to generate data partitions. Alternatively, clustering
algorithms such as k-means may be run on the data to find a specified number of
clusters. Once causal models have been built for each of the data partitions, the
models represented as adjacency matrices can be clustered with k-means to find groups
of models with similar structure and models most representative of each cluster are
identified for the user. If the data is divided into equal sized partitions, pooling of the
causal links within model clusters can be perfomed by aggregating edges weighted by
the BIC scores of the containing models.

SeqCausal has been developed as a system for the causal analysis of multiple event
sequences and the visualisation of the found models [43]. The proposed approach is
designed to address the incorporation of expert knowledge into causal analysis of data
sets from different sources, for example, multiple patient records. Granger causality is
used as the underlying method for iteratively detecting causal structure by incorporat-
ing the user’s input into the CSD process. Through interactions, the user may impose
constraints on the causal structure which are integrated into the objective that is opti-
mised in each iteration. To enhance interpretability of the results especially when the
data contains a large number of variables, any links can be viewed separately from the
full causal structure. The separate visualisation is constructed to help the user deter-
mine the probability of the existence of a causal link by displaying the proportions of
event sequences where the effect follows the cause, the effect is not preceded by the
cause, and the effect does not follow the cause. Causal structures built for separate
subsets of the event sequences can be compared with BIC as the metric for scoring
models. The same score is used to track the effects that user modifications have on the
goodness-of-fit of the causal models.

CausalMGM [26] provides a method for visualising results that are obtained by
running a PC-based CSD algorithm on mixed categorical and continuous data. To
mitigate the curse of dimensionality, the user may perform feature selection to choose
a given number of variables most correlated with a target variable but whose correlation
with each other is minimised. First, all of the variables excluding the target variable
are sorted in descending order according to the correlation coefficient between them
and the target. Second, the next variable according to the ordering is moved to a
set of chosen variables if its correlation with any of the variables already in the set
does not exceed a pre-defined threshold. The second step is repeated until the set of
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chosen variables reaches the correct size or until no more features remain to choose
from. Causal structures are found with a modified version of PC-Stable designed to
allow for both continuous and categorical variables. Focus of the approach is placed
on facilitating CSD for domain experts and visualisation of the results. Editing the
found models is not possible within the proposed framework and interactions comprise
annotating the resulting causal graph’s edges and vertices.

Gathering information from domain experts is not trivial [25] and that informa-
tion is prone to a multitude of biases [102]. In our approach, however, rather than
eliciting prior probability distributions, we ask the expert to incorporate their beliefs
regarding the conditional independence relations between the variables in the model.
This task has been stated to be a simpler and more straight-forward one than prob-
ability elicitation [25]. Explicitly stating the assumptions brought into the model by
the expert further alleviates the issues of uncertainty. If all of the assumptions that
are made during the analysis are known, they can be scrutinised after a good model
has been found and listing the assumptions enables replication of the obtained results.
Furthermore, assumptions made during the model discovery can provide ideas about
which experiments should be performed in order to fix the model.



6. Methods

We propose that interactive causal structure discovery (interactive CSD) should contain
obtaining a selection of possible initial models, navigating in the space of causal models
to incorporate expert knowledge, and employing validation to detect problems such
as overfitting and concept drift. We do not aim to offer a definitive answer to how
these modules should be formulated or implemented but present one alternative for
manifesting the workflow. For example, we assume the user to be a rational Bayesian
agent with a constant prior that they do not update during the navigation. The
problem could be given a more complex formulation than the one we present.

In this section, we introduce one theoretical formulation of interactive CSD with
an expert user and describe our practical implementation. The computational formu-
lation of the problem and our proposed solution is discussed in Subsection 6.1. In
Subsection 6.2, we introduce our implementation of the solution.

6.1 Formulation

Given a data set X, the task is to find a causal structure modelled as a graph that fits
X and agrees with the expert’s prior knowledge. We formulate the problem as Bayesian
probabilistic modelling: X is assumed to be a sample from a probability distribution
p(X|θ) where the parameters θ define a causal model over the variables in X. If we
have a prior distribution p(θ) over all possible causal models, then Bayesian inference
provides the posterior distribution p(θ|X), after observing the data set X. We propose
a greedy optimisation of the posterior to find the maximum a posteriori (MAP) model
or at least a model with a locally optimal probability. The user is assumed to be a
rational Bayesian agent. The data set X is a Rn×p matrix with the rows denoted as
(x1, . . . , xn), each xi a vector of p observations.

In our formulation, the parameters θ are split into two: (θ, β), where θ repre-
sents parameters about the structure of the causal graph as edge probabilities, and β
represents the remaining model parameters, such as functional forms of parent-child
relationships, regression coefficients, and noise distributions. Their joint distribution is
then factorised as p(θ, β) = p(β|θ)p(θ) which allows us to separately specify a prior over
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the structure and a prior over the model parameters given the structure. We assume
that the data has been generated by a model with fixed but unknown “true” sets of
parameters, θT and βT , and that our data set has been sampled from the distribution
p(X | θT , βT ).

For a given model structure θ, we define a set of neighbours, N(θ), as the set
of models that can be reached by making one edit to the structure θ. An edit is a
modification to the model structure by either adding, removing, or reversing an edge
in the corresponding causal graph.

With the definition of conditional probability, the joint distribution of the full
prior information can be written as p(θ, β) = p(β | θ)pU(θ) where p(β | θ) is known
by the computer and pU(θ) by the user but typically not by the computer. We denote
by pC(θ) the prior distribution of θ assumed by the computer. The distributions pU(θ)
and pC(θ) are not necessarily equal. We assume a causal discovery algorithm can
find the maximum a posteriori model whose structure is θC with the computer’s prior
distribution pC(θ). The computer’s MAP solution is given by

θC = arg max
θ
p(X | θ)pC(θ) (6.1)

where β has been integrated over, p(X | θ) =
∫
p(X | θ, β)dβ, assuming the prior

pC(θ) for θ. In this formulation, the likelihood p(X | θ, β) as well as the priors of the
computer are assumed given.

Our objective is to find the user’s best solution θU , which is given as the MAP
solution given the user’s prior distribution:

θU = arg max
θ
p(X | θ)pU(θ) (6.2)

However, as the computer does not have knowledge about pU(θ), finding the solution
θU is non-trivial. A greedy approach to estimating the user’s best solution allows the
user to perform local moves in the parameter space θ. For each model defined by θ the
user can navigate to any state from its set of neighbours N(θ).

Beginning from the initial state obtained from applying a CSD algorithm, θC ,
in each step the user is assumed to greedily select a state that maximises the model’s
probability in the user’s posterior. The states thus form a sequence θ1, θ2, . . . where
θ1 = θC . At iteration t, the next state is given by:

θt+1 = arg max
θ∈N(θt)

p(X | θ)pU(θ) (6.3)

Once there are no more edits that would raise the posterior probability of the model
given the user’s prior, the user stops the exploration. With this process, θU or at least
a local optimum of the user’s posterior is found.
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6.2 Implementation

To measure a model’s fit to data, we use R2
a, adjusted coefficient of determination that

is averaged over all of the variables in the model and scaled to cover the range [0, 1],
or [−∞, 1] for a validation set.

R
2
a = 1

I − 1

I∑
i=1

(
1−

∑N
n=1(xin − x̂in)2∑N
n=1(xin −X i)2

N − 1
N− | Pa(Xi) | −1

)
(6.4)

As discussed in Subsection 4.2, R2
a is proportional to model log-likelihood under the

assumptions of Gaussianity and linearity. Although these assumptions may not hold in
practice, we use R2

a to estimate model log-likelihood for discovery of the approximate
MAP solution as described in the previous Subsection 6.1. In practice, each variable is
linearly regressed on its parents, adjusted coefficient of determination, R2

a, is computed
for that variable and, finally, the mean of the computed values multiplied by I/(I − 1)
is returned as the model’s score. The same method is used to estimate the score for
both training and validation sets. Validation score is simply computed by training the
regression models on the training data and then computing the R2

a for the validation
data.

Our approach is not restricted to a specific validation method but a suitable
scheme may be chosen based on the characteristics of the analysed data. In the ex-
periments, we use two different methods for validation depending on whether the data
samples are independent of each other. Independent data are split into two equal-sized
data sets one of which is used for training and the other for validation. Time series are
validated with blocked CV [5]: the data are split into contiguous blocks each of which is
used for validation in one iteration while the rest are used for training. Our main goal
in the model selection is not to produce predictions based on the currently available
data, but to find a good model which helps explain the underlying process that gener-
ated the data. Therefore, we can ignore the temporal ordering of the cross-validation
folds when performing model validation. Final cross-validation score is computed as
an average over the validation scores for the separate blocks.

The process of causal discovery begins with running a number of CSD algorithms
on the data. Outputs from the algorithms are displayed to the expert user as circular
graphs together with their respective validation scores. Variables are placed at same
positions in the circular graphs to facilitate comparisons among the structures. The
causal structure with the highest validation R2

a is chosen as the initial model by default
but the expert may choose any of the algorithm outputs to begin their navigation from.

In the experiments, we use a default set of algorithms and their parameters—PC
with significance levels of 0.01 and 0.1, greedy equivalence search (GES), and linear
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Figure 6.1: Interface for expert interactions in CSD. Adjacency matrix (a) shows the effects of all
possible edits on the validation score. Graph (b) shows the current causal structure and its validation
score. Expert user may edit the current structure by clicking the cell of the adjacency matrix that
corresponds to the edge being edited.

non-Gaussian models (LiNGAM)—although the algorithms could be chosen by the
expert in practice. LiNGAM produces a single DAG as output but both PC and
GES produce a completed partially directed acyclic graph (CPDAG) that uniquely
represents a Markov equivalence class. To allow easy comparison among the results,
we iterate through all of the DAGs in the equivalence classes output by PC and GES,
and display to the user five highest-scoring DAGs from each class. If the data meets
the assumptions of linearity and Gaussianity, all of the models that belong to a specific
equivalence class are likelihood equivalent. In such cases, the five DAGs displayed to
the user from each class are chosen randomly.

Current model is displayed both as an upper-triangular adjacency matrix by
clicking on which edits to the model can be performed and as a circular graph, as
shown in Figure 6.1. The graph is drawn with variables in the same positions as in the
outputs of the CSD algorithms. At each step of the process, the effect of all possible
edits on the validation score of the current model are computed as described above
and shown to the expert in the adjacency matrix. Using this information together
with their prior knowledge, the expert may then perform edits until satisfied with the
current model. All of the edits that the expert performs are stored and shown to them
throughout the process, allowing them to return to a previous state as well as state
explicitly the assumptions included in the model discovery.



7. Experiments

In our approach, causal structure discovery (CSD) algorithms are used to provide initial
models for the expert user to begin their analysis. The algorithms’ outputs can act as
“global” navigation points the expert may jump to instead of making local navigational
moves with single edits. The algorithms included in the experiments comprise PC-
Stable with two significance levels 0.1 and 0.01, greedy equivalence search (GES), and
linear non-Gaussian additive models (LiNGAM). The main reasons for selecting these
algorithms were to have a diverse group of algorithms based on differing approaches for
which ready implementations exist. Our proposed procedure can be extended easily to
other algorithms for which reason the set included at this stage is somewhat irrelevant.
All of the selected algorithms assume causal sufficiency and linear causal relations.

Other algorithms with ready implementations that we considered were fast hill-
climbing (FHC) [24] and fast causal inference (FCI) [94] but they were not included
because the run time of FHC was too slow for the experiments given our resources and
the results from FCI would not be comparable: FCI outputs a partial ancestral graph
instead of a DAG or a Markov equivalence class as the other chosen algorithms. For
all of the CSD algorithms, we used the implementations available in the R package
pcalg [44]. The experiments were performed with version 3.6.3 of the R language [72]
and the code is available online†.

7.1 User Simulations

Synthetic data are created by generating random directed acyclic graphs parameterised
by number of vertices and then sampling the graph with random edge weights for data
sets of varying sizes. Each graph is generated with a sparsity of 0.3, meaning that
with a probability of 0.3, each pair of variables is adjacent leading to graphs where
approximately a little under one third of variable pairs are linked by an edge. Model
variables are defined as an ordered sequence which is used as a topological ordering
for the model. All of the edges are oriented according to the order, away from the

†https://www.dropbox.com/s/j88hd7xv9k5w41z/ICSD_kdd2021.zip?dl=0
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first variable, to ensure acyclicity. The additive noise for each variable follows a zero-
mean distribution which is randomly chosen from two options: either uniform (-0.1,
0.1) or Gaussian with a standard deviation of 0.1. The reason for including two types
of noise distributions is to create data sets which almost follow assumptions made by
the algorithms while still breaking some of them. All of the algorithms we use in
the experiments assume linearity but additionally, PC and GES assume Gaussianity
of noise and LiNGAM assumes non-Gaussianity. Selecting the noise distribution for
each variable randomly from the two alternatives essentially creates data that does not
conform fully to either set of assumptions.

A user is modelled with a parameter k ∈ [1/3, 1/2] to represent their level of
knowledge of the true states of all possible edges. Each pair of variables has three
possible states for the connecting edge in terms of causal dependence: absent or present
with an arrow in either direction. The prior for an edge thus consists of a discrete
distribution over the three exclusive events. We assume the edges in a causal model to
be independent and, therefore, can compute the prior distribution of the full graph as
the product of the edge priors, or as a sum of the edge priors in log-space. As we know
the true causal model, k determines the prior of the true state of an edge and the two
remaining states have prior probabilities of (1− k)/2 each.

In theory, k can take values in the range [0, 1] as it represents probabilities. If
k = 1, the user knows the true state of all edges absent from and present in the causal
graph that generated the synthetic data with a probability of one, in which case the
posterior is dominated fully by the prior and the model’s fit to data is not taken into
account. If k = 1/3, the user has no prior information about the causal structure
and the posterior is dominated by the model likelihood as the prior is flat for all of
the possible edges. We do not consider here the possibility of incorrect knowledge, so
k ≥ 1/3 always, and we found that values higher than 1/2 do not produce interesting
results as such high levels of knowledge lead to near-constant results.

In addition to studying the impact that the level of knowledge has on the results,
we test the effect of partial knowledge where the user has information about two thirds
of the variable pairs but no knowledge of the remaining pairs. This corresponds to
using two values of k, one for the known parts of the graph and another, 1/3, for
the unknown parts. Edges with a flat prior regardless of the user’s level of knowledge
k are chosen randomly to cover approximately one third of all of the possible edges.
Remaining edges are given priors with probability k for the true edge state as described
above.

We use the structural Hamming distance (SHD) to compare causal models [16].
As discussed in Subsection 2.3, SHD between two graphs represents the number of
edits required to transform one graph into the other, where an edit comprises either
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adding, deleting, or reversing an edge. For each set of parameters (k, sample size,
number of variables, proportion of unknown variable pairs), a hundred random graphs
are generated to find meaningful distributions for the metrics used.

7.1.1 Experiment 1: Effect of Expert Knowledge

In Experiment 1, we examine how expert knowledge results in better models by simu-
lating a user navigating in the model space. After running the default set of algorithms
on a simulated data set, the highest scoring output is chosen as the initial model. The
model is edited one step at a time, greedily selecting the neighbouring model with the
highest user posterior.

For each model, the posterior is computed with the simulated user’s prior, param-
eterised by k, combined with the model’s approximate log-likelihood. Log-likelihood
is estimated by linearly regressing each variable on its parent set in the model and
computing the mean squared error of the fitted linear model on the validation data.
The estimates for all of the model variables are subtracted from zero and the final value
is divided by 2.

When the current model has the highest posterior over all of its neighbours, the
navigation ends. Our approach is not designed to find some true model but a model
with a locally maximal probability in the user’s posterior. However, in our experiments,
the user’s prior corresponds to the true model with only the level of knowledge k varied
and, thus, to evaluate the results, we use the SHD between the final models from
simulations and the true model.

Figure 7.1 shows the results of Experiment 1. We see that with knowledge of all
pairs of variables (upper figures), higher levels of user knowledge lead to models closer
to the ground truth than the average initial model which is denoted by a dotted line.
In contrast, greedily optimising the model score, which corresponds to using a flat user
prior with k = 1/3, generally leads to worse models than the initial model in terms
of SHD. This observation is explained by the true model not having necessarily the
highest R2

a which is proportional to the log-likelihood. For example, with 10 nodes and
small sample size, the average score of the true model is 0.54 and the average for a
model found with flat prior is 0.66. For 5 nodes and large samples, the corresponding
values are 0.36 for the true model and 0.43 for the result of navigation with a flat
prior. The results underline the need to rely on both the data-based score and expert
knowledge to find good models.

Even when the user has no knowledge of the causal connections between a third
of the variable pairs (bottom figures), user interaction improves the initial model when
the data set is small or contains few variables. When the expert’s knowledge has no
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Figure 7.1: Experiment 1. Mean structural Hamming distances to the ground truth model. Error
bars represent mean ± standard deviation, dotted lines the mean SHD of the initial model to ground
truth. Above results with full knowledge, below one third of knowledge missing. Incorporating more
expert knowledge leads to models closer to ground truth, especially with small sample sizes.

missing information (upper figures), the resulting models are closer to the true model
than the initial model for k ≥ 0.34 with small sample size and for k ≥ 0.37 with
large samples. This observation suggests that even low levels of user knowledge lead
to better models.

As expected, expanding the sample size improves the performance of the CSD
algorithms leading to better initial models as seen from the black dotted line being
below the red one. However, high levels of knowledge still improve these initial models
converging them towards the true model which, in these experiments, corresponds to
the posterior model of the simulated user when no information is missing, the prior
covers all pairs of variables. Adding more model variables (Figure 7.1b) expands the
model space which negatively affects the initial model given by the CSD algorithms,
leading to higher SHD values. Again, including user knowledge still improves the final
result in all cases except in the case of large data and missing knowledge (bottom
Figure 7.1b).

7.1.2 Experiment 2: Effect of Initial Model

In Experiment 2, six graphs are used as initial models for the navigation: an empty
graph, the true graph, and the highest scoring model for each of the four default
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Figure 7.2: Experiment 2. Pairwise structural Hamming distances when running analysis on the
same data beginning from different initial models. Variance in the distances shows the final model is
affected by choice of initial model.

algorithms. Navigation is performed as in Experiment 1 but we use SHD to compare
the resulting models with each other instead of with the ground truth. Comparisons
among models found through navigation allow us to determine whether the initial
model affects which model is found and, therefore, whether it is useful to have a
number of different initial models to choose from.

Figure 7.2 shows the pairwise SHDs between final models when different initial
models are used for the same data and level of knowledge. We used seven variables
to generate the data sets each with a sample size of one thousand and set a flat prior
to a third of the possible edges for all values of k. The resulting final models are
mostly equal with majority of pairwise SHD values at zero but, with lower levels of
knowledge, the results contain more variance, which is expected. If the expert has
strong knowledge of the underlying process, the initial model bears little importance
as the strong prior dominates the posterior. With lower values of k, there is more
uncertainty in which local optimum, of which there can be multiple, is found as the
navigation mainly depends on the candidate models’ fit to the data. Navigation in
the space of causal models may be initiated from any graph, for example we could
always use an empty DAG as the initial model. The results, however, show that the
choice of initial model can affect which model is obtained. As the final model can
be different depending on the initial model, beginning from an empty graph may not
always produce optimal results.
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Figure 7.3: An example of an expert user navigation with data for April 2014.

7.2 Real-world Use Cases

The real-world data set is a set of measurements collected at the SMEAR II (System for
Measuring Forest Ecosystem-Atmosphere Relationships II) station at Hyytiälä, Finland
from 2013 to 2015 [59]. The data are part of the FLUXNET2015 data set [65] and the
measurements are averaged at half hour intervals. Variables included in the analysis
are shortwave downward radiation (Rg), air temperature (T), vapour pressure deficit
(VPD), sensible heat flux (H), latent heat flux (LE), and net ecosystem exchange
(NEE). A detailed characterisation of the variables is outside our scope but further
information is available in a collection of research on forest ecology [32, 103]. We keep
observations where the potential shortwave downward radiation is at least 80% of the
daily maximum to mitigate effects of diurnal variation on the data distribution [51].
Additionally, measurements with gap filled values for NEE, H, or LE are filtered out
to avoid introducing artificial causal relations. After filtering, the data set contains
817 data points for April 2013–2015, 854 data points for May 2013–2015, and 215 data
points for August 2015. We perform the analysis on three combinations of months—
April, April & May, and April & August—and varying number of years for April.

In each case, the highest scoring model output by the default set of four algo-
rithms, PC-Stable with significance levels 0.01 and 0.1, GES, and LiNGAM, is used
as an initial point for the navigation. We use k-fold blocked cross-validation to obtain
training and validation scores for the graphs by splitting the data into k blocks of con-
secutive data points. Each block is then used as a validation set in one iteration while
the model is trained on the remaining blocks. The number of blocks varies between use
cases but, depending on the subset of the available data used, a block covers a period
of approximately half a month, a month, or two months. Training score is the R2

a over
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Figure 7.4: Use case 1. Showing the user the validation and training scores allows them to (a) detect
and (b) mitigate overfitting problems. Validation and training R

2
a with data from (a) April 2014; (b)

April and May 2013–2015. Note the different scaling of the y-axes.

the training data averaged over the k folds. Similarly, we compute the validation score
as the mean R

2
a over the CV folds using the trained model to predict values for the

validation set.
Figure 7.3 displays an example of how an expert user may edit graphs to navigate

in the space of causal models. The trajectory of model scores for the navigation are
shown in Figure 7.4a. The final model 8 in the figure has been provided by two domain
area experts and the initial model 1 was obtained from the default set of algorithms.
In use cases 1 and 2, model 8 is used as the target model in which the navigation ends
beginning from an initial model. However, the initial models in the use cases are not
equal.

7.2.1 Use Case 1: Detection of Overfitting

Overfitting is a common problem in modelling although, to the best of our knowledge,
it has not been addressed in previous work in the context of interactive CSD. In this
use case, we demonstrate how the user can detect overfitting by inspecting the training
and validation scores as well as differences between them with 2-fold blocked CV on
data measured in April 2014. Already the initial model, the best model output by the
default algorithms as measured by R2

a, has a negative validation score which is shown
in Figure 7.4a. As discussed in Subsection 6.2, a negative validation score indicates
the mean of the validation data produces better predictions than the trained model.
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Figure 7.5: Use case 2. Results from analysis with data from (a) April 2013–2015 and August 2015,
(b) April 2013–2015. Concept drift can be detected by cross-validation and resolved by leaving out
the data with a different distribution. Note the different scaling of the y-axes.

After the model is edited, the training and validation scores diverge radically. Negative
validation scores throughout the navigation can indicate overfitting or concept drift,
and further investigation is required to determine the cause of the problem. Because
the data contain samples from one month only, a likely issue is overfitting: the model
specialises on the training data leading to inability to predict the validation data well.
Once we add data to cover both April and May in 2013 through 2015, the validation
score stays clearly positive for all three cross-validation folds and the training and
validation score averages follow the same pattern throughout the analysis, as shown in
Figure 7.4b.

Cross-validation is a well-known technique for controlling overfit, although we
are not aware of its application in interactive CSD. This use case shows how CV can
be used in interaction with the user. Without checking models for overfitting, we risk
obtaining a model that does not generalise or does not reflect the true phenomena
in the data. Showing the user validation and training scores enables them to decide
whether the model has overfit the data.

7.2.2 Use Case 2: Detection of Concept Drift

Another problem that can arise in causal modelling with real-world data is concept
drift. To demonstrate how the user can detect concept drift with blocked cross-
validation, we analyse a data set containing samples from April in 2013–2015 and
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Figure 7.6: Result of navigation without any prior knowledge of the model when beginning from (a)
the algorithm output with highest score and (b) an empty graph.

from August 2015. For one of the four folds, the score is negative already for the initial
model and the mean validation score falls below zero after two edits. Furthermore, the
validation and training score means diverge after the second edit. We notice that al-
though the validation score is negative for more than one of the folds, the score for the
fold containing the August data is clearly inferior to the rest, which suggests potential
concept drift. Leaving out the problematic August data and repeating the analysis
improves the scores significantly, leading to similar, non-negative trajectories for the
training and validation scores, as shown in Figure 7.5b.

This use case illustrates how the user can detect concept drift that can occur in
real-world systems. Undetected concept drift can result in a model that fits none of
the subsets of data well. Problematic subsets of the data can be identified by the user
by displaying to them information on the validation and training scores for each of the
cross-validation folds consisting of contiguous data blocks.

7.2.3 Use Case 3: Effect of Initial Model

Depending on the choice of initial model, different models that fit the data approxi-
mately equally well can be found. When the expert has strong knowledge of causal
relationships between all pairs of variables, the initial model has little impact on the
final model as the strong prior dominates the posterior. However, when the user has
little or no knowledge of the data-generating process, results are more sensitive to
variations in the initial model than with high levels of knowledge due to the greedy
approach to finding a local optimum of the posterior. To demonstrate this idea, we
assume a flat user prior and begin navigation both from the highest scoring output
obtained from the default set of CSD algorithms and from an empty graph. In each
step, we greedily navigate to the neighbour with highest score and stop once the score
cannot be improved by a single edit. The final models obtained with no knowledge and



62 Chapter 7. Experiments

different initial models are displayed in Figure 7.6. A slightly different local optimum
of the approximate posterior is reached depending on the initial model. Even though
the two models are rather similar with a structural Hamming distance (SHD) of two,
the example highlights the possibility of finding a different model that fits the data
equally well or better when changing the initial model. Although a good result from
our approach does not necessarily resemble a “true” model as the aim is to find a local
optimum of the user’s posterior, we note here that the SHD between the experts’ model
8 in Figure 7.3 and the final models in Figure 7.6 are seven and five, respectively.



8. Discussion

In this thesis, we have illustrated through experiments with simulated rational user and
use cases with real-world data how an expert user’s prior knowledge can be incorporated
into causal structure discovery (CSD) through interactions. Our focus has been on
discovering causal model structures from observational data but we propose a Bayesian
formulation of the problem. The models we discuss are Bayesian networks that are
assigned with a causal interpretation which is not necessary for the validity of the
proposed procedure. Hence, the conclusions we present can be applied more generally
to Bayesian model building.

Our results show how adding even low levels of background knowledge the outputs
from CSD algorithms can be improved in terms of fitting both the data and the expert’s
prior knowledge. Because our formulation of the process relies on a greedy optimisation
of the user’s approximate posterior, the choice of initial model for the navigation can
affect the final result if the approximate posterior contains multiple local optima. With
cross-validation, problems of overfitting and concept drift can be detected which enables
the expert user to investigate the causes of such issues.

We provide a Bayesian formulation of the problem underlying CSD and our pro-
cedure for performing the analysis partly fits the Bayesian workflow [28]. The main
differences are that we do not have access to the user’s prior distribution and we are
interested only in the model structure and not in the remaining model parameters.
From the Bayesian workflow, our approach contains the modules of choosing an initial
model, fitting and evaluating a model, modifying the model, and comparing a number
of models.

Comparisons among models are performed both when the expert chooses an initial
model from the algorithm outputs as well as during the analysis when they make
decisions regarding which model to navigate to. Although we leave out causal effect
size estimation from the workflow, model fitting is performed to provide the expert with
estimates on goodness-of-fit of the model structures. For the estimates, we use cross-
validation to evaluate the model to efficiently use the data and to enable detection
of problems in the modelling process. During the navigation, the expert iteratively
modifies the current model to move to the best one of the neighbouring models with
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respect to their prior knowledge and goodness-of-fit.
Apart from the initial model selection, models are compared only with their

neighbours. The expert can perform the navigation multiple times beginning from
different initial models and then compare the final results. A possible extension to our
current approach would be to allow side-by-side navigation and comparisons among
models with different initial points instead of comparing only the final models. With
multiple concurrently edited models, the expert could inspect the number of models
where each edge is present or absent and use that information to construct an aggregate
causal model. Alternatively, seeing multiple models simultaneously can help the expert
distinguish between them better than by inspecting each model alone.

Our solution relies on a number of assumptions which may not be necessary with
a different approach to apply the suggested procedure to interactive CSD. We assume
linear relationships and Gaussianity of noise in the data: the score we use to evaluate
model fit and provide approximation of the model’s log-likelihood is based on linear
regression and is proportional to log-likelihood only under linearity and Gaussianity.
However, real-world data sets cannot be expected to follow such constraints faithfully
and a different set of assumptions could produce different results. The carbon dioxide
flux data set we analysed in the use cases is an example of a data set where Gaussianity
and linearity are not fully met and the domain experts’ input is essential to counteract
the negative effects of invalid assumptions. It would be interesting to study how exactly
the results are affected by the choice of assumptions regarding the functional family and
noise distribution of the data. One option for a more generally applicable framework
would be to use non-parametric approaches to likelihood estimation, such as Gaussian
processes [114] or kernel conditional density estimation [41].

Regarding the user, we assume that an expert user can be modelled as a rational
Bayesian agent, which is a strong albeit commonly used assumption [e.g., 14, 104]. Even
though people have been found to act in an approximately Bayesian manner, they tend
to overestimate the posterior of events with low true probabilities and underestimate
the posterior of events with high true probabilities [109]. Prior research has shown
that to express their beliefs, people often use biased heuristics which do not conform
to the Bayes’ rule [102]. On the other hand, even though people are not, in general,
fully Bayesian, the Bayes’ rule has been found to be the most likely rule they follow
in decision making [20]. We assumed in our formulation only that the experts act
as Bayesian rational agents. In future research, more complex user models could be
employed to model the user’s biases in addition to their knowledge. For example,
resource rationality refers to modelling human cognition as the rational use of limited
cognitive resources [56]. It has been proposed as an alternative to biased heuristics
for explaining the cognitive behaviour of people which can be suboptimal in terms
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of rationality. Such approaches that take into consideration cognitive limitations of
people could help provide estimates of uncertainty in the found causal models.

In the field of interactive visualisation, a study has found that people perform
approximate Bayesian inference when averaged over a group of individuals although
their personal estimates are biased [47]. With large sample sizes, the aggregated esti-
mates deviate from the fully Bayesian estimates although aggregation is found useful
with small data sets [47]. These findings provide motivation for future research into
generalising our approach to allow multiple experts to aggregate and incorporate their
prior beliefs into the causal structure discovery through interactions.

The data set from our use cases consists of a number of measurements over time
although time was not included as a variable in the analysis. Taking into account
the temporal dimension in causal model building would enable the discovery of lagged
causal relations. For example, a headache is not cured immediately on the ingestion of
pain medication but the effect can be observed after a short period of time. Allowing
lagged effects enables the modelling of feedback loops without concurrent cycles in the
models. The interactions we have proposed would be valid likewise with lagged con-
nections but the visualisation of the causal models would require some changes. Often
temporal causal models are visualised as gridded graphs where each row corresponds to
a model variable and each column to a time step with the current time t as the right-
most column and number of columns equal to maximum number of lags allowed [79].
A similar visualisation could be included in interactive CSD although the adjacency
matrix through which interactions are performed in our approach would require some
changes.

Our proposed procedure focuses solely on identifying a causal structure for the
process of interest. However, with the current implementation it would be reasonably
simple to estimate the effect sizes for the found causal relations. Under the assumptions
of linearity and Gaussianity, the effect sizes can be estimated as the coefficients from
linearly regressing variables on their parents [58]. Different methods would need to be
deployed together with clear definitions of effect sizes if a different set of assumptions
were used. Another consideration for effect size estimation stems from the incorpora-
tion of expert knowledge. Eliciting numeric estimations from experts tends to result in
more bias than the simpler task of eliciting beliefs regarding statistical independence
relations [25]. Furthermore, our proposed interactions are insufficient for eliciting effect
size estimations from the user. More fine-grained types of interactions would be needed
to allow the expert to input their beliefs of the effect sizes.

We use a number of CSD algorithms to provide the expert user with a selection
of initial models for the navigation. In our formulation, the initial models are a sample
from the computer’s posterior distribution but other methods for finding initial models
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exist and could be used here. Considering the Bayesian aspects of our proposal, em-
ploying Bayesian methods for the first step of the procedure would seem natural. For
example, Markov chain Monte Carlo for structure learning of Bayesian networks has
received attention recently [e.g., 52, 53, 108]. Our approach is easily extendable to new
methods for providing the initial models and one topic for future research would be to
study and compare how the methods used for the initial CSD affect the final results.

As discussed in Subsection 4.3, multiple cross-validation methods exist for data
with temporal dependencies. The choice of method depends on properties of the avail-
able data and different methods can produce different results. Here, we have tested our
approach using only one cross-validation method for dependent data and a separate
one for dependent data. We did not perform experiments to determine whether our
choices are optimal and further research is needed to study the effect the choice of
cross-validation method has on the results.

In addition to building models to understand the processes of interest, our pro-
cedure can be used to iteratively perform feature selection. By building causal models
for a process, we can find which variables act as drivers for a chosen target variable.
With the set of drivers and the target as model variables, we can perform the inter-
active analysis again to discover the causal structure between them. Running causal
analysis multiple times on the same data but with different variables could help the
expert understand the underlying processes better.

Finally, our experiments and use cases serve to exemplify both how the approach
could be used in practice and that the results are sensible in theory. The setting in the
simulated user experiments does not, however, represent fully how the method would
be used by field experts. User studies are needed to determine the usefulness of the
approach in practical settings. The evaluation of the results poses a difficult prob-
lem in real-world circumstances as we cannot compare them with the user’s posterior
distribution.



9. Conclusions

Previous work in adding interactivity to causal structure discovery (CSD) has focused
on building systems for domain experts rather than exploring the theoretical framework
for the process. When building an end product, the system has to take into account
the intended application area which usually encompasses making a set of assumptions
that may not be valid for other problems. Our goal was to develop a high-level,
modular workflow that can be applied to a variety of problems by changing the exact
implementation to fit the circumstances. In this thesis, we have proposed such a
procedure for interactive CSD and one manner of implementing the solution in practice.
We have focused on applying interactive CSD to problems in Earth system sciences
but the workflow remains valid for data sets pertaining to other fields.

The procedure consists of three parts—discovery of the set of initial models,
navigation in the space of causal models, and validation for model selection and
evaluation—whose exact formulation is not fixed. Through simulated user experi-
ments and use cases with real-world data we have shown how incorporating a domain
expert’s prior knowledge into causal analysis and providing the expert with multiple
initial models to choose from can improve the results. By improvement we refer to
finding models that fit both the data and the domain expert’s prior knowledge better
than without combining automated methods with expert interactions. We demon-
strated in the use cases how cross-validation can help detect overfitting and concept
drift which are commonly occurring problems in real-world settings where the sample
size of available data is limited.

Automated methods alone are often unable to establish the orientation of a causal
relation even when its existence can be determined. Some algorithms, such as those
based on structural equation models, are able to distinguish between the two possi-
ble directions between causally linked variables by assuming independent and non-
Gaussian noise. Apart from LiNGAM, the algorithms we used to discover the set
of initial models assume Gaussian noise distributions. When the data adhere to the
Gaussian assumption, most orientations of edges during the navigation represent the
expert’s prior knowledge rather than information that can be ascertained from the
data. Real-world data, however, rarely meets such assumptions fully.
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As discussed in the previous Section 8, many questions and possibilities for exten-
sions in interactive CSD still remain open. Our problem formulation and its practical
implementation form just one alternative for manifesting the workflow. A different set
of assumptions would lead to other solutions. User studies would help determine the
steps that are needed to ensure the practical applicability of our approach. In order to
build interactive systems for use in research, different methods for implementing the
workflow need to be explored and validated in different settings and application areas.

Evaluating the results of interactive model building is non-trivial. The found
models cannot be compared with some ground truth as the goal of the process is
to find models that represent not only the best fit to data but also the background
knowledge of the expert. In this work, we were able to perform model comparisons
in the simulated user studies because of the model we assumed for the user. We did
not consider incorrect knowledge and, thus, comparisons with the true model of the
synthetic data were possible. In real-world application, knowledge that is contrary
to the true model cannot be ruled out and, furthermore, a true model is often not
available.

Even though further research is needed to explore the optimal implementations
for the workflow, our experiments serve to demonstrate the potential of the approach
in practical applications. The results show it is useful to incorporate a domain expert’s
prior knowledge into causal analysis by allowing interactions as part of causal structure
discovery. Providing the expert with multiple initial models to choose from is found
similarly useful and cross-validation helps the expert detect overfitting and concept
drift when analysing finite data sets while allowing efficient use of the data to build
models. Despite the issues and disclaimers discussed in this and the previous chapter,
our approach seems reasonable and shows potential for systems of interactive causal
structure discovery.
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