36 research outputs found

    Adaptive hypertext and hypermedia : workshop : proceedings, 3rd, Sonthofen, Germany, July 14, 2001 and Aarhus, Denmark, August 15, 2001

    Get PDF
    This paper presents two empirical usability studies based on techniques from Human-Computer Interaction (HeI) and software engineering, which were used to elicit requirements for the design of a hypertext generation system. Here we will discuss the findings of these studies, which were used to motivate the choice of adaptivity techniques. The results showed dependencies between different ways to adapt the explanation content and the document length and formatting. Therefore, the system's architecture had to be modified to cope with this requirement. In addition, the system had to be made adaptable, in addition to being adaptive, in order to satisfy the elicited users' preferences

    Adaptive hypertext and hypermedia : workshop : proceedings, 3rd, Sonthofen, Germany, July 14, 2001 and Aarhus, Denmark, August 15, 2001

    Get PDF
    This paper presents two empirical usability studies based on techniques from Human-Computer Interaction (HeI) and software engineering, which were used to elicit requirements for the design of a hypertext generation system. Here we will discuss the findings of these studies, which were used to motivate the choice of adaptivity techniques. The results showed dependencies between different ways to adapt the explanation content and the document length and formatting. Therefore, the system's architecture had to be modified to cope with this requirement. In addition, the system had to be made adaptable, in addition to being adaptive, in order to satisfy the elicited users' preferences

    Evaluation of topic-based adaptation and student modeling in QuizGuide

    Get PDF
    This paper presents an in-depth analysis of a nonconventional topic-based personalization approach for adaptive educational systems (AES) that we have explored for a number of years in the context of university programming courses. With this approach both student modeling and adaptation are based on coarse-grained knowledge units that we called topics. Our motivation for the topic-based personalization was to enhance AES transparency for both teachers and students by utilizing typical topic-based course structures as the foundation for designing all aspects of an AES from the domain model to the end-user interface. We illustrate the details of the topic-based personalization technology, with the help of the Web-based educational service QuizGuide—the first system to implement it. QuizGuide applies the topic-based personalization to guide students to the right learning material in the context of an undergraduate C programming course. While having a number of architectural and practical advantages, the suggested coarse-grained personalization approach deviates from the common practices toward knowledge modeling in AES. Therefore, we believe that several aspects of QuizGuide required a detailed evaluation—from modeling accuracy to the effectiveness of adaptation. The paper discusses how this new student modeling approach can be evaluated, and presents our attempts to evaluate it from multiple different prospects. The evaluation of QuizGuide across several consecutive semesters demonstrates that, although topics do not always support precise user modeling, they can provide a basis for successful personalization in AESs

    Design of interactive visualization of models and students data

    Full text link
    This document reports the design of the interactive visualizations of open student models that will be performed in GRAPPLE. The visualizations will be based on data stored in the domain model and student model, and aim at supporting learners to be more engaged in the learning process, and instructors in assisting the learners

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in filtering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modified accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: • We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ profiles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. • We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for finding the smallest counterfactual explanations. • We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-specific item representations. We evaluate all proposed models and methods with real user studies and demonstrate their benefits at achieving explainability and scrutability in recommender systems.Unsere zunehmende Abhängigkeit von komplexen Algorithmen für maschinelle Empfehlungen erfordert Modelle und Methoden für erklärbare, nachvollziehbare und vertrauenswürdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklärbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen ändern, muss dessen Entscheidungsprozess nachvollziehbar sein. Erklärbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die Lücke zwischen dem von uns erwarteten und dem tatsächlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stärken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu filtern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene Erklärungen für deren personalisierte Empfehlungen. Diese Erklärungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre früheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können Erklärungen für den Fall, dass unerwünschte Inhalte empfohlen werden, wertvolle Informationen darüber enthalten, wie das Verhalten des Systems entsprechend geändert werden kann. In dieser Dissertation stellen wir unsere Beiträge zu Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. • Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc Erklärungen für die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese Erklärungen zeigen Beziehungen zwischen Benutzerprofilen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die Erklärungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. • Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von Erklärungen für PageRank-basierte Empfehlungsdienste. PRINCE-Erklärungen sind für Benutzer verständlich, da sie Teilmengen früherer Nutzerinteraktionen darstellen, die für die erhaltenen Empfehlungen verantwortlich sind. PRINCE-Erklärungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um präzise Erklärungen zu finden. • Wir präsentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die Qualität der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und Erklärungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspezifischer Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    AH 2003 : workshop on adaptive hypermedia and adaptive web-based systems

    Get PDF

    AH 2003 : workshop on adaptive hypermedia and adaptive web-based systems

    Get PDF

    NAVIGATION SUPPORT AND SOCIAL VISUALIZATION FOR PERSONALIZED E-LEARNING

    Get PDF
    A large number of educational resources is now made available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produced at least two problems: how to help students to find the most appropriate resources and how to engage them into using these resources and benefit from them. Personalized and social learning have been suggested as potential ways to address these problems. This work attempts to combine the ideas of personalized and social learning by providing navigation support through an open social student modeling visualization. A series of classroom studies exploited the idea of the approach and revealed promising results, which demonstrated the personalized guidance and social visualization combined helped students to find the most relevant resources of parameterized self-assessment questions for Java programming. Thus, this dissertation extend the approach to a larger collection of learning objects for cross content navigation and verify its capability of supporting social visualization for personalized E-Learning. The study results confirm that working with the non-mandatory system, students enhanced the learning quality in increasing their motivation and engagement. They successfully achieved better learning results. Meanwhile, incorporating a mixed collection of content in the open social student modeling visualizations effectively led the students to work at the right level of questions. Both strong and weak student worked with the appropriate levels of questions for their readiness accordingly and yielded a consistent performance across all three levels of complexities. Additionally, providing a more realistic content collection on the navigation supported open social student modeling visualizations results in a uniform performance in the group. The classroom study revealed a clear pattern of social guidance, where the stronger students left the traces for weaker ones to follow. The subjective evaluation confirms the design of the interface in terms of the content organization. Students’ positive responses also compliment the objective system usage data

    Sistemas hipermédia adaptativa para suporte de ambientes de aprendizagem construtivistas

    Get PDF
    Tese de Doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    The use of learning styles in adaptive hypermedia

    Get PDF
    Computer-based learning has become a common phenomenon in the modern age. Many distance-learning systems distribute educational resources on the Internet and indeed entire study programmes are now widely available online. Such a large amount of content and information can be intimidating to learners, who may exhibit different individual characteristics, such as variation in goals, interests, motivation and/or learning preferences. This suggests that a uniform approach taken by learning environments to deliver materials and resources to students is not appropriate and that personalisation of such materials/resources should address users' differences to provide a customised learning experience, thus enhancing its effectiveness, lowering drop-out rates and maintaining high student motivation. This thesis addresses the latter issue of learning preferences, specifically investigating learning styles as an adaptation mechanism for personalised computer-based learning. A number of previous studies indicated the positive effect that this kind of adaptation provides, but under closer examination these were not conducted in a scientifically rigorous manner and thus their findings are somewhat limited. This research utilises a quantitative and highly objective approach to investigate visual/verbal and sequential/global learning styles in different user groups. Three user trials were carried out to discover whether there were any benefits to using these learning styles for studying in an adapted environment. Overall, no statistically significant benefits were found and these findings now shed doubt as to whether learning styles are indeed an effective mechanism for personalised learning
    corecore