4,275 research outputs found

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Imaging and 3D reconstruction of membrane protein complexes by cryo-electron microscopy and single particle analysis

    Get PDF
    Cryo-electron microscopy (cryo-EM) in combination with single particle image processing and volume reconstruction is a powerful technology to obtain medium-resolution structures of large protein complexes, which are extremely difficult to crystallize and not amenable to NMR studies due to size limitation. Depending on the stability and stiffness as well as on the symmetry of the complex, three-dimensional reconstructions at a resolution of 10-30 ˚ can be achieved. In this range of resolution, we may not be able to answer A chemical questions at the level of atomic interactions, but we can gain detailed insight into the macromolecular architecture of large multi-subunit complexes and their mechanisms of action. In this thesis, several prevalently large membrane protein complexes of great physiological importance were examined by various electron microscopy techniques and single particle image analysis. The core part of my work consists in the imaging of a mammalian V-ATPase, frozen-hydrated in amorphous ice and of the completion of the first volume reconstruction of this type of enzyme, derived from cryo-EM images. This ubiquitous rotary motor is essential in every eukaryotic cell and is of high medical importance due to its implication in various diseases such as osteoporosis, skeletal cancer and kidney disorders. My contribution to the second and third paper concerns the volume reconstruction of two bacterial outer membrane pore complexes from cryo-EM images recorded by my colleague Mohamed Chami. PulD from Klebsiella oxytoca constitutes a massive translocating pore capable of transporting a fully folded cell surface protein PulA through the membrane. It is part of the Type II secretion system, which is common for Gram-negative bacteria. The second volume regards ClyA, a pore-forming heamolytic toxin of virulent Escherichia coli and Salmonella enterica strains that kill target cells by inserting pores into their membranes. To the last two papers, I contributed with cryo-negative stain imaging of the cell division protein DivIVA from Bacillus subtilis and with image processing of the micrographs displaying the siderophore receptor FrpB from Neisseria meningitidis

    Heat Transfer at the Interface of Graphene Nanoribbons with Different Relative Orientations and Gaps

    Get PDF
    Because of their high thermal conductivity, graphene nanoribbons (GNRs) can be employed as fillers to enhance the thermal transfer properties of composite materials, such as polymer-based ones. However, when the filler loading is higher than the geometric percolation threshold, the interfacial thermal resistance between adjacent GNRs may significantly limit the overall thermal transfer through a network of fillers. In this article, reverse non-equilibrium molecular dynamics is used to investigate the impact of the relative orientation (i.e., horizontal and vertical overlap, interplanar spacing and angular displacement) of couples of GNRs on their interfacial thermal resistance. Based on the simulation results, we propose an empirical correlation between the thermal resistance at the interface of adjacent GNRs and their main geometrical parameters, namely the normalized projected overlap and average interplanar spacing. The reported correlation can be beneficial for speeding up bottom-up approaches to the multiscale analysis of the thermal properties of composite materials, particularly when thermally conductive fillers create percolating pathways

    In situ high-resolution structure of the baseplate antenna complex in <i>Chlorobaculum tepidum</i>

    Get PDF
    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix

    Spatio-temporal analysis of architecture and growth in bacterial colonies

    Get PDF
    Most microorganisms prefer to live in surface associated communities called biofilms, where their lifestyle differs considerably compared to their planktonic counterpart. The cell shape, as well as physical interactions determine the structure of bacterial biofilms. Due to cell growth, the size of the biofilm increases with time and the structure changes during biofilm maturation. This work aims at characterizing the structure and growth dynamics of dense colonies formed by gonococci. The first part of this thesis focuses on the characterization of the spatial structure of gonococcal colonies. Image analysis tools were developed that allowed determin- ing the positions of single cells within the spherical colonies. Using the position data, the radial distribution function (RDF) was calculated. The RDF showed short-ranged order but not long range order, reminiscent of liquids. Neisseria gonorrhoeae interact via their type 4 pilus (T4P) with surfaces and cells. T4P- T4P binding between adjacent cells generates attractive force that controls colony formation. We investigated the effect of T4P retraction of the local and meso- scopic structure of gonococcal colonies using strains with varying T4P retraction phenotypes. Reducing speed and frequency of T4P retraction reduced cell density and increased order in 6 h old colonies. Deleting T4P retraction results in loss of local order. After 24 h, density and local order increase for all strains, and larger holes inside the structures of gonococcal colonies emerged, which were independent of T4P motor activity. In conclusion, we show that gonococcal T4P active force generation is not necessary for development of local order, but it accelerates the process of achieving higher densities and local ordering inside spherical colonies. 1 1 Abstract In the second part of this thesis, we developed methods for measuring growth rates of colony-bound bacteria with spatial and temporal resolution. Growing gonococci generated a radial velocity field inside colonies that pointed from the centre of mass (COM) of colonies to its periphery. Close to the colony centres, velocities were minimal and increased towards the periphery of colonies. We showed that by characterizing the velocity field within the colony, the local growth rates can be measured. Independently, growth rates were determined by counting the offspring of single fluorescent cells that were distributed homogeneously inside the colonies. Both methods complement each other, because they have different advantages and disadvantages. Unexpectedly, heterogeneous growth profiles inside small gonococcal colonies emerged after 2 h of growth. To assess the hypothesis that nutrient limitation causes growth heterogeneity, we optimized the nutrient supply with a higher flow rate. Even though gonococcal growth improved slightly, growth profiles were still heterogeneous, indicating different limitations like mechanical constraints. Surprisingly, colonies that could not activate the stringent response developed heterogeneity in spatial and temporal growth even earlier. We suggest that stringent response is important for gonococcal biofilm maturation. Finally, the effect of azithromycin treatment on colony growth dynamics was investigated. We observed that after two generations times, growth rates dropped to low values throughout the colony indicating that azithromycin diffuses quickly through the whole colony and effects the majority of cells. In summary, we established tools for characterizing growth and death within dense spherical colonies at spatial and temporal resolution. This method will be useful to study the mechanisms of development of heterogeneity inside gonococcal colonies and their response to environmental changes like antimicrobial treatment

    Emergent properties of microbial activity in heterogeneous soil microenvironments:Different research approaches are slowly converging, yet major challenges remain

    Get PDF
    Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the usual bulk, macroscopic parameters used to characterize soils (e.g., granulometry, pH, soil organic matter and biomass contents) provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gases. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale). For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. In terms of microbial aspects, whereas a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because relevant experimental data are extremely scarce. For the overall research to move forward, it will be crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead

    Raman spectral imaging in tissue engineering & regenerative medicine applications

    Get PDF
    The label-free nature of Raman spectroscopy makes it a valuable tool for cellular and tissue characterisation. Its ability to probe molecular vibrations within biological structures without affecting their biochemistry offers an advantage over conventional histological and biochemical assays. Providing a pure investigation of unperturbed biological processes, without the need for introduction of exogenous molecules for labelling, makes the information Raman spectroscopy offers very valuable in deciphering complex biological functions and mechanisms. Raman spectral signatures are unique "fingerprints" of each biomolecule probed and can be used for cellular phenotype characterisation, tissue composition, disease development in a cellular or tissue level and much more. This thesis focuses on the use of Raman spectral imaging in novel biological applications displaying its flexibility across the fields of tissue engineering and regenerative medicine. Bone regeneration was the first biological process investigated, where Raman spectral imaging was used to characterise bioactive glass-assisted bone repair using standard and novel glass compositions. Newly-formed bone quality was assessed using multivariate analysis, showing similar quality between glass compositions and existing bone. Morphological analysis after in vivo implantation of bioactive glass particles showed distinct spectral zones confirming results from existing in vitro models. The second application, focused on the development of a novel Raman-based gene delivery tracking methodology. Viral particles, containing modified viral-nucleotides with alkyne bonds were produced were successfully detected using Raman spectral imaging in cells after infection. The implications of this technology offer a new cell screening methodology for gene therapy. Finally, the potential of Raman spectral imaging as a complementary technique for 3D cell culture systems was explored. A computational framework was developed which allows for the visualisation and quantification of subcellular structures. The accurate 3D reconstruction of whole cells of known architecture from a volumetric hyperspectral Raman dataset was reported here for the first time. Moreover, using spectral unmixing algorithms to quantify subcellular components, revealed an unprecedented molecular specificity. This allowed imaging of cells within hydrogel-based 3D cell culture systems. The synergy of Raman spectral imaging, multivariate and image analysis to answer complex biological questions offers objective biomolecular characterisation, quantification and visualisation of molecular architecture. This work demonstrates the potential of Raman spectroscopy as a valuable complementary tool in tissue engineering and regenerative medicine applications.Open Acces
    corecore