407 research outputs found

    The haptic perception of spatial orientations

    Get PDF
    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Neuropsychological and behavioral studies on object grasping in humans with and without vision

    Get PDF
    Sensorimotor transformations are used to translate sensory information on intrinsic properties of objects (i.e., size, shape, orientation) onto motor commands for appropriate hand-object interaction. Hence, the direct result of sensorimotor transformation for reach-to-grasp action is hand kinematics (hand shaping) fitting with the object size. We assembled and evaluated a sensor-based glove to measure finger flexion during reaching of differently sized cylinders. Once ensured of the good functioning of the tool, we adopt the glove in two studies dealing with grasping with and without vision. The first study aimed to causally draw a functional map of PMC for visually-based grasping. Specifically, online TMS was applied over a grid covering the whole precentral gyrus while subjects grasped three differently sized cylinders. Output from our sensor glove was analyzed with a hypothesis-independent approach using classification algorithms. Results from classifiers convincingly suggested a multifocal representation of visually-based grasping in human PMC involving the ventral PMC and, for the first time in human, the supplementary motor area. The second study aimed to establish whether the gaze direction modulated hand shaping during haptically-based reaching as it does during visually-based reaching. Participants haptically explored and then grasped an object of three possible sizes aligned with body midline while looking in the direction of the object or laterally to it. Results showed that gaze direction asymmetrically affected finger flexion during haptically-based reaching. Despite this asymmetrical effect, the investigation provided evidence for retinotopic coding of haptically-explored objects

    Haptic perception

    Get PDF
    Fueled by novel applications, interest in haptic perception is growing. This paper provides an overview of the state of the art of a number of important aspects of haptic perception. By means of touch we can not only perceive quite different material properties, such as roughness, compliance, friction, coldness and slipperiness, but we can also perceive spatial properties, such as shape, curvature, size and orientation. Moreover, the number of objects we have in our hand can be determined, either by counting or subitizing. All these aspects will be presented and discussed in this paper. Although our intuition tells us that touch provides us with veridical information about our environment, the existence of prominent haptic illusions will show otherwise. Knowledge about haptic perception is interesting from a fundamental viewpoint, but it also is of eminent importance in the technological development of haptic devices. At the end of this paper, a few recent applications will be presented

    Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern

    Get PDF
    Robotic algorithms that augment movement errors have been proposed as promising training strategies to enhance motor learning and neurorehabilitation. However, most research effort has focused on rehabilitation of upper limbs, probably because large movement errors are especially dangerous during gait training, as they might result in stumbling and falling. Furthermore, systematic large movement errors might limit the participants’ motivation during training. In this study, we investigated the effect of training with novel error modulating strategies, which guarantee a safe training environment, on motivation and learning of a modified asymmetric gait pattern. Thirty healthy young participants walked in the exoskeletal robotic system Lokomat while performing a foot target-tracking task, which required an increased hip and knee flexion in the dominant leg. Learning the asymmetric gait pattern with three different strategies was evaluated: (i) No disturbance: no robot disturbance/guidance was applied, (ii) haptic error amplification: unsafe and discouraging large errors were limited with haptic guidance, while haptic error amplification enhanced awareness of small errors relevant for learning, and (iii) visual error amplification: visually observed errors were amplified in a virtual reality environment. We also evaluated whether increasing the movement variability during training by adding randomly varying haptic disturbances on top of the other training strategies further enhances learning. We analyzed participants’ motor performance and self-reported intrinsic motivation before, during and after training. We found that training with the novel haptic error amplification strategy did not hamper motor adaptation and enhanced transfer of the practiced asymmetric gait pattern to free walking. Training with visual error amplification, on the other hand, increased errors during training and hampered motor learning. Participants who trained with visual error amplification also reported a reduced perceived competence. Adding haptic disturbance increased the movement variability during training, but did not have a significant effect on motor adaptation, probably because training with haptic disturbance on top of visual and haptic error amplification decreased the participants’ feelings of competence. The proposed novel haptic error modulating controller that amplifies small task-relevant errors while limiting large errors outperformed visual error augmentation and might provide a promising framework to improve robotic gait training outcomes in neurological patients

    Instructional eLearning technologies for the vision impaired

    Get PDF
    The principal sensory modality employed in learning is vision, and that not only increases the difficulty for vision impaired students from accessing existing educational media but also the new and mostly visiocentric learning materials being offered through on-line delivery mechanisms. Using as a reference Certified Cisco Network Associate (CCNA) and IT Essentials courses, a study has been made of tools that can access such on-line systems and transcribe the materials into a form suitable for vision impaired learning. Modalities employed included haptic, tactile, audio and descriptive text. How such a multi-modal approach can achieve equivalent success for the vision impaired is demonstrated. However, the study also shows the limits of the current understanding of human perception, especially with respect to comprehending two and three dimensional objects and spaces when there is no recourse to vision

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques

    Enhancing the E-Commerce Experience through Haptic Feedback Interaction

    Get PDF
    The sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product choices. However, with recent advances in haptic research and technology, it is possible to simulate various physical properties such as heaviness, softness, deformation, and temperature. The research described here investigates the use of haptic feedback interaction to enhance e-commerce product evaluation, particularly haptic weight and texture evaluation. While other properties are equally important, besides being fundamental to the shopping experience of many online products, weight and texture can be simulated using cost-effective devices. Two initial psychophysical experiments were conducted using free motion haptic exploration in order to more closely resemble conventional shopping. One experiment was to measure weight force thresholds and another to measure texture force thresholds. The measurements can provide better understanding of haptic device limitation for online shopping in terms of the availability of different stimuli to represent physical products. The outcomes of the initial psychophysical experimental studies were then used to produce various absolute stimuli that were used in a comparative experimental study to evaluate user experience of haptic product evaluation. Although free haptic exploration was exercised on both psychophysical experiments, results were relatively consistent with previous work on haptic discrimination. The threshold for weight force discrimination represented as downward forces was 10 percent. The threshold for texture force discrimination represented as friction forces was 14.1 percent, when using dynamic coefficient of friction at any level of static coefficient of friction. On the other hand, the comparative experimental study to evaluate user experience of haptic product information indicated that haptic product evaluation does not change user performance significantly. However, although there was an increase in the time taken to complete the task, the number of button click actions tended to decrease. The results showed that haptic product evaluation could significantly increase the confidence of shopping decision. Nevertheless, the availability of haptic product evaluation does not necessarily impose different product choices but it complements other selection criteria such as price and appearance. The research findings from this work are a first step towards exploring haptic-based environments in e-commerce environments. The findings not only lay the foundation for designing online haptic shopping but also provide empirical support to research in this direction
    • 

    corecore