820 research outputs found

    Research on High-performance and Scalable Data Access in Parallel Big Data Computing

    Get PDF
    To facilitate big data processing, many dedicated data-intensive storage systems such as Google File System(GFS), Hadoop Distributed File System(HDFS) and Quantcast File System(QFS) have been developed. Currently, the Hadoop Distributed File System(HDFS) [20] is the state-of-art and most popular open-source distributed file system for big data processing. It is widely deployed as the bedrock for many big data processing systems/frameworks, such as the script-based pig system, MPI-based parallel programs, graph processing systems and scala/java-based Spark frameworks. These systems/applications employ parallel processes/executors to speed up data processing within scale-out clusters. Job or task schedulers in parallel big data applications such as mpiBLAST and ParaView can maximize the usage of computing resources such as memory and CPU by tracking resource consumption/availability for task assignment. However, since these schedulers do not take the distributed I/O resources and global data distribution into consideration, the data requests from parallel processes/executors in big data processing will unfortunately be served in an imbalanced fashion on the distributed storage servers. These imbalanced access patterns among storage nodes are caused because a). unlike conventional parallel file system using striping policies to evenly distribute data among storage nodes, data-intensive file systems such as HDFS store each data unit, referred to as chunk or block file, with several copies based on a relative random policy, which can result in an uneven data distribution among storage nodes; b). based on the data retrieval policy in HDFS, the more data a storage node contains, the higher the probability that the storage node could be selected to serve the data. Therefore, on the nodes serving multiple chunk files, the data requests from different processes/executors will compete for shared resources such as hard disk head and network bandwidth. Because of this, the makespan of the entire program could be significantly prolonged and the overall I/O performance will degrade. The first part of my dissertation seeks to address aspects of these problems by creating an I/O middleware system and designing matching-based algorithms to optimize data access in parallel big data processing. To address the problem of remote data movement, we develop an I/O middleware system, called SLAM, which allows MPI-based analysis and visualization programs to benefit from locality read, i.e, each MPI process can access its required data from a local or nearby storage node. This can greatly improve the execution performance by reducing the amount of data movement over network. Furthermore, to address the problem of imbalanced data access, we propose a method called Opass, which models the data read requests that are issued by parallel applications to cluster nodes as a graph data structure where edges weights encode the demands of load capacity. We then employ matching-based algorithms to map processes to data to achieve data access in a balanced fashion. The final part of my dissertation focuses on optimizing sub-dataset analyses in parallel big data processing. Our proposed methods can benefit different analysis applications with various computational requirements and the experiments on different cluster testbeds show their applicability and scalability

    System simulation and modeling of electronics demanufacturing facilities

    Get PDF
    Over the last decade, pressure on the electronic industry has been increasing as concerns for product take-back, product stewardship and global warming have continued to grow. Various end-of-life management options are being expanded including recycling to recapture values from basic materials through reengineering and recovery of subassemblies and individual components for remanufacturing. While progress has been reported on life cycle assessment (LCA), disassembly planning, design for disassembly, and design for environment (DFE), very little research has been focused on demanufacturing from a systems perspective. The objective of this thesis is to build an interface between the user who knows the demanufacturing operation and a software engine, which performs the simulation, collects detailed operational data, and displays results. This thesis bridges the gap between the requirement of hard core simulation knowledge and demanufacturing terminology to present a computerized software tool. Arena, a commercially available discrete event simulation software, acts as an engine for performing these simulations. The developed software tool for demanufacturing contains objects necessary for facility layout, systematic workflow and simulation of the facility. Each object refers to a specific demanufacturing activity and uses detailed simulation logic behind its design to perform that activity. The user selects and locates these objects to layout the facility for a graphical representation of the demanufacturing operation. Objects provide a user screen to input necessary data for the complete description of the activity and its operational characteristics. By simulating the facility for various scenarios, the demanufacturer can compare different options for improving operations, resource utilization, equipment and layout changes. To examine improvement options from an economic perspective a first-order model of demanufacturing costs has been developed and integrated with the simulation software. An activity based unit cost model is used to identify fixed and variable costs associated with each product demanufactured. A small electronics demanufacturing facility was observed and evaluated to validate the simulation modeling and operational logic. The application illustrates the usefulness of demanufacturing system simulation tool to manage and improve the overall efficiency of facilities for economical operation. In summary, a computer-base tool for simulating demanufacturing facility from a systems perspective has been developed and validated. An activity based cost model has been integrated with the simulation to give demanufacturers the ability to examine the full operational and economic trade-offs associated with the business

    Technology transfer from NASA to targeted industries, volume 2

    Get PDF
    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure

    The 6G Architecture Landscape:European Perspective

    Get PDF

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Hampton University/American Society for Engineering Education/NASA Summer Faculty Fellowship Program 1986

    Get PDF
    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university will be faculty members appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the Fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education or industry

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Tools for the design of flexible manufacturind systems

    Get PDF
    Flexibility in manufacturing systems can broaden the horizons for a company. But the means for achieving it are far more critical. This trend is created by the increase in competitiveness, growth of technology along with demand variations, more customization, and short product life cycles. But Flexible Manufacturing Systems to most of the manufacturers sounds like a synonym for automation. A real Flexible Manufacturing System is designed when every unit of the company is synchronized in such a way to respond in a harmony to any changes that come against it. Fine-tuning of each and every part of the company is essential to make the company profitably sustainable to any internal or external changes. This research aims at realizing real flexibility in the company. It aims at bringing out the bottlenecks, the issues that a company owns and tries to solve them in a feasible way so as to make the company more and more self-reliant, countering all the external and internal changes that occur during its time. A process of conducting Flexibility audit is described in thesis, which is a powerful tool when, used methodically with the FM design process (Figure 3.1), The data gathered from audit is analyzed to identify factors contributing to inflexibility and to resolve them in a feasible innovative way. This philosophy when applied continuously over a period of time can build immunity against the change shock or the adjustment time
    corecore