3,559 research outputs found

    Location Analytics for Transitioning to Fire Resilient Landscapes

    Get PDF
    Wildfire risk is significant for forest and vegetative landscapes, particularly in regions where climate change is resulting in prolonged droughts and extended fire seasons that are a fire risk to people and property. An important component of mitigation is restoration programs that transition landscapes to be more fire resilient. A collaborative partnership between the US Forest Service and university researchers is reported that takes advantage of location intelligence. This paper reviews this general planning problem and details location analytic based approaches for informing mitigation efforts. Application of results highlight the ability to optimize goals and objectives while maintaining project area needs and treatment thresholds

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    MODELING OF PHYSICALLY-BASED PREDICTIVE FIRE EVENTS IN A VIRTUAL ENVIRONMENT FROM GEOSPECIFIC DATA

    Get PDF
    Climate change and corresponding extreme weather events, such as wildfires, present significant threats to personnel and critical infrastructure on military installations and the communities in which they live. The inherent dynamic and unpredictable nature of wildfires makes it imperative to develop robust frameworks for understanding and managing wildfire risk. This thesis addresses this urgency by developing a computational technique to simulate wildfire impacts through virtual modeling using geospatial data. Using a fast-running fire modeling software, HFIRE, surface fire spreads are simulated on the fictional continent of Dystopia. A Monte Carlo simulation is conducted to analyze wildfire events, assess fire spread, and evaluate direct and indirect impacts to a designated military installation. Model excursions consider how potential climate change consequences affect these impacts. The findings underscore that drier conditions invariably result in increased fire severity and more frequent impacts to the military installation. Furthermore, it enables the identification of high-risk areas subject to wildfires. These results can facilitate enhanced preventive measures and more effective emergency responses, thereby minimizing the vulnerability of military installations to wildfires in an era of climate change.Approved for public release. Distribution is unlimited.Major, United States Marine CorpsStrategic Environmental Research and Development Program (SERDP

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    Integration of forest fire management with SDI: user requirements.

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.Forest fires management is not only an emergency task, the preventive task could be even more important, being better avoid the possibility of a forest fire ignition before it start or reduce its hazard, that latter try to extinct it. To implement a useful forest fire management into a SDI is crucial to know the user requirements, which is the spatial information they manage, which are the GIS applications they manage in their work, which are the alerts send a receive in the forest fires context. A Survey has been done to have a better compression of the reality and user requirements. A review of Spanish and European works in forest fires and emergency management has been done to identify which are the actual challenges in emergency management

    A GIS-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model

    Get PDF
    [EN]This article discusses the integration of two models, namely, the Physical Forest Fire Spread (PhFFS) and the High Definition Wind Model (HDWM), into a Geographical Information System-based interface. The resulting tool automates data acquisition, preprocesses spatial data, launches the aforementioned models and displays the corresponding results in a unique environment. Our implementation uses the Python language and Esri’s ArcPy library to extend the functionality of ArcMap 10.4. The PhFFS is a simplified 2D physical wildland fire spread model based on conservation equations, with convection and radiation as heat transfer mechanisms. It also includes some 3D effects. The HDWM arises from an asymptotic approximation of the Navier–Stokes equations, and provides a 3D wind velocity field in an air layer above the terrain surface. Both models can be run in standalone or coupled mode. Finally, the simulation of a real fire in Galicia (Spain) confirms that the tool developed is efficient and fully operational.Junta de Castilla y León; Fundación General de la Universidad de Salamanc

    Real-Time Wildfire Monitoring Using Scientific Database and Linked Data Technologies

    Get PDF
    We present a real-time wildfire monitoring service that exploits satellite images and linked geospatial data to detect hotspots and monitor the evolution of fire fronts. The service makes heavy use of scientific database technologies (array databases, SciQL, data vaults) and linked data technologies (ontologies, linked geospatial data, stSPARQL) and is implemented on top of MonetDB and Strabon. The service is now operational at the National Observatory of Athens and has been used during the previous summer by emergency managers monitoring wildfires in Greece
    corecore