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ABSTRACT 

 

 Wildfire is a common hazard in the western U.S. that can cause significant loss of 

life and property. When a fire approaches a community and becomes a threat to the 

residents, emergency managers need to take into account both fire behavior and the 

expected response of the threatened population to warnings before they issue protective 

action recommendations to the residents at risk. In wildfire evacuation practices, incident 

commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as 

trigger points, such that when a fire crosses a feature, the selected protective action 

recommendation will be issued to the residents at risk. This dissertation examines the 

dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, 

reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled 

human-environmental system.  

 This dissertation is composed of three manuscripts. In the first manuscript, 

wildfire simulation and household-level trigger modeling are coupled to stage evacuation 

warnings. This work presents a bottom-up approach to constructing evacuation warning 

zones and is characterized by fine-grain, data-driven spatial modeling. The results in this 

work will help improve our understanding and representation of the spatiotemporal 

dynamics in wildfire evacuation timing and warnings. The second manuscript integrates 

trigger modeling and reverse geocoding to extract and select prominent geographic 

features along the boundary of a trigger buffer. A case study using a global gazetteer 
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GeoNames demonstrates the potential value of the proposed method in facilitating 

communications in real-world evacuation practice. This work also sheds light on using 

reverse geocoding in other environmental modeling applications. The third manuscript 

explores the spatiotemporal dynamics behind evacuation timing by coupling fire and 

traffic simulation models. The proposed method sets wildfire evacuation triggers based 

on the estimated evacuation times using agent-based traffic simulation and could be 

potentially used in evacuation planning.  

 In summary, this dissertation enriches existing trigger modeling approaches by 

coupling fire simulation, reverse geocoding, and traffic simulation. A framework for 

modeling wildfire evacuation as a coupled human-environmental system using triggers is 

proposed. Moreover, this dissertation also attempts to advocate and promote open science 

in wildfire evacuation modeling by using open data and software tools in different phases 

of modeling and simulation. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Wildfire is a common hazard in the western U.S. due to dry climate and seasonal 

drought, and studies have shown that the number of wildfires has increased in recent 

decades (Dennison, Brewer, Arnold, & Moritz, 2014; Westerling, Hidalgo, Cayan, & 

Swetnam, 2006). With the rapid population increase in the Wildland-Urban Interface 

(WUI) (Hammer, Radeloff, Fried, & Stewart, 2007; Hammer, Stewart, & Radeloff, 2009; 

Theobald & Romme, 2007), defined as the region where urban and wildland areas 

intermix (Stewart, Radeloff, Hammer, & Hawbaker, 2007), wildfires pose significant 

risks to residents and property (Hammer et al., 2009). Public safety in the WUI has 

attracted significant attention from a variety of perspectives (Cova, 2005; Haas, Calkin, 

& Thompson, 2013; Haight, Cleland, Hammer, Radeloff, & Rupp, 2004; Lampin-Maillet 

et al., 2010; Wolshon & Marchive, 2007).  

When a fire approaches a community, an incident commander (IC) needs to issue 

relevant protective action recommendations (PARs) to the threatened residents so as to 

ensure public safety (Cova, Dennison, & Drews, 2011; Paveglio, Carroll, & Jakes, 2008). 

The 2012 wildfire season is one example where a large number of residents were 

evacuated due to wildfire risks across many events. Figure 1.1 shows a wildfire 
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Figure 1.1 2012 wildfire evacuation map in the western U.S. 

 

evacuation map for the western U.S. in the 2012 wildfire season. This map was produced 

based on the data collected from reports of evacuations in the media. There were more 

than 100 fires in total that caused evacuations. The largest evacuation was caused by the 

Waldo Canyon fire in Colorado Springs, in which over 32,000 residents were evacuated 

(Wineke, 2012).  

Due to the continual loss of life and property caused by wildfires in the WUI, a 

significant amount of research has been conducted on wildfire risks in recent years. One 

line of research, which is the emphasis of this dissertation, is wildfire evacuation triggers. 

Wildfire evacuation triggers are prominent geographic features whereby wildfire 

evacuations will be recommended for the residents or firefighters in the path of the 

wildfire if the fire crosses these features (Cova, Dennison, Kim, & Moritz, 2005). The 
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previously proposed trigger modeling method uses fire spread modeling and geographic 

information systems (GIS) to generate buffers around the location of the threatened assets 

based on the estimated evacuation times needed by the threatened population to travel to 

safer places (Cova et al., 2005). The past few years have witnessed the development of 

various applications using this trigger modeling method, e.g., community evacuation 

planning (Dennison, Cova, & Moritz, 2007; Larsen, Dennison, Cova, & Jones, 2011), 

firefighter evacuation (Cova et al., 2005; Fryer, Dennison, & Cova, 2013), and pedestrian 

evacuation (Anguelova, Stow, Kaiser, Dennison, & Cova, 2010) in the wildlands.  

 

1.2 Research objectives 

This dissertation aims to improve our understanding of the complexity of wildfire 

evacuation both spatially and temporally by coupling fire spread and evacuation models. 

Specifically, this work supplements and improves the previously proposed trigger 

modeling method in both methodology and application, so as to develop a better 

understanding of how to use trigger modeling to gain more insight on evacuation timing 

and warning and facilitate communications during evacuations. The three primary 

objectives are listed as follows.  

First, this work aims to apply trigger modeling at a finer scale (at the household 

level) and explore whether new knowledge can be gained by integrating fine-grain trigger 

modeling with fire spread modeling to stage evacuation warnings.  

Second, this work explores how to associate trigger buffers generated by trigger 

modeling with real-world prominent geographic features. As noted, ICs use prominent 

geographic features as trigger points to facilitate communications and evacuation timing 
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but existing approaches conclude with a rasterized polygon that represents a trigger 

buffer (i.e., detecting the moment the fire crosses the buffer boundary can be difficult). 

Bridging the gap between trigger modeling and how trigger points are used in real-world 

applications will make trigger modeling more effective.  

Third, this dissertation aims to set wildfire evacuation triggers by coupling 

wildfire and traffic simulation models. Traffic simulation is used to estimate the total 

evacuation time needed by the threatened residents for a safe evacuation. The coupling of 

the evacuation traffic system with wildfire spread could further improve the applicability 

of trigger modeling in real-world evacuation practices because the critical input value of 

estimated evacuation time would be derived in a more systematic manner. As noted by 

Urbanik (2000), different factors and scenarios could be used to perform a sensitivity 

analysis and calculate more accurate evacuation time estimates (ETEs). We need to take 

into account uncertainty to evaluate the earliest, most, and latest probable time of fire 

arrival against earliest, most, and latest probable ETEs. 

In summary, the goal of this work is to improve our understanding and 

representation of the complex wildfire evacuation process by coupling models developed 

to represent human and environmental systems. This dissertation aims to advance current 

wildfire evacuation modeling and simulation using an interdisciplinary approach, which 

could also shed light on evacuation studies on other hazards.  

 

1.3 A coupled human-environmental system framework 

Wildfire is an integral part of the earth system and impacts and is impacted by 

other systems like human communities and ecosystems (Moritz et al., 2014). Thus, when 
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studying wildfire, we need to take into account the interactions between wildfire and 

other systems. As noted by Lindell (2013), evacuation modeling should take into account 

both hazards and the people to be evacuated. With the rapid advancement of 

computerized modeling and simulation, the coupling of the hazard model and the model 

of evacuation traffic has begun to emerge in modeling evacuations caused by different 

hazards in the past few years (Lämmel, Grether, & Nagel, 2010; Mas, Suppasri, Imamura, 

& Koshimura, 2012). In wildfire evacuation modeling, the question of how to couple 

models that represent the fire and the evacuation of the threatened population to better 

understand this complex process is also on the research frontier (Beloglazov, Almashor, 

Abebe, Richter, & Steer, 2016).  

Wildfire evacuation concerns both human and environmental systems, which are 

composed of many subsystems, as shown in Figure 1.2. The human systems primarily 

involve the ICs and evacuees’ behaviors during the evacuation process, e.g., the ICs’ risk 

perception and protective action selection, the timing of evacuation warnings, evacuees’ 

risk perception process, evacuees’ decision-making and departure times, and the 

evacuation traffic. The environmental systems can be divided into two categories: the 

natural and built environments. Fire spread is the primary natural environmental system, 

which is related to vegetation cover, topography, and weather conditions. The evacuation 

route systems are the built environment. Thus, wildfire evacuation process can be 

characterized as a complex coupled human-environmental system (CHES). 

Trigger modeling takes into account both fire spread and the evacuation of the 

threatened population, as calculating a trigger point requires both an estimate of the  

available time to act, as well as the time it will take for the community to complete any 
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Figure 1.2 A CHES framework for wildfire evacuation 

 

protective actions. The estimated evacuation time of the population at risk is used as the 

input time for trigger modeling, and fire spread modeling and GIS are used to create a 

temporal buffer around the population at risk. This coupling can be used to help develop 

a better understanding of evacuation timing. Moreover, trigger modeling is also an 

evacuation warning mechanism. When a fire crosses the boundary of a trigger buffer, the 

predefined protective action will be issued by the ICs to the threatened population in the 

path of the fire. Lastly, when trigger buffers are associated with prominent geographic 

features, communicating trigger points and detecting when they are crossed can be more 

easily improved.  

 

1.4 Study area  

Dense flammable fuels (e.g., chaparral), seasonal drought, and the Santa Ana 

wind make the WUI communities in southern California extremely vulnerable to wildfire 
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risk during the fire seasons (Keeley, Safford, Fotheringham, Franklin, & Moritz, 2009). 

The study site of this dissertation is Julian—a census-designated place (CDP) located in 

the east of San Diego County, California. As shown in Figure 1.3, Julian is surrounded by 

a large amount of fuels (short grasses and shrubs) and has only a limited number of 

egress points, making it a site representative of many exurban fire-prone communities in 

the American West.  

 

1.5 Organization of the dissertation 

The remaining dissertation is organized into four chapters. The next three chapters 

represent three standalone research articles on trigger modeling based on the proposed 

 

 

Figure 1.3 The map of Julian, California 
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CHES framework. The three articles demonstrate the couplings of different systems and 

use different modeling and analysis methods. The structure of this dissertation is shown 

in Figure 1.4.  

Chapter 2 proposes a method that integrates fire spread modeling and household-

level trigger modeling to construct evacuation warning zones and stage evacuation 

warnings. This chapter focuses on the coupling of fire spread and household evacuation. 

From a CHES perspective, fire spread is an environmental system, while household 

evacuation is a human system. Trigger modeling is used to couple these two systems, 

which produces the staged evacuation warnings that could help the ICs develop a better 

understanding of wildfire risk and improve evacuation decision-making.  

Chapter 3 extends trigger modeling by integrating it with reverse geocoding so 

that prominent geographic features are associated with generated trigger buffers. Reverse 

 

 

Figure 1.4 The structure of the dissertation 
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geocoding associates a geographic feature with a given pair of geographic coordinates. 

Since prominent geographic features concern spatial cognition and communications 

during evacuations, the data structure and algorithm given in this chapter make trigger 

modeling more applicable in real-world wildfire evacuation practices.  

The focus of Chapter 4 is coupling wildfire and traffic simulation models to set 

evacuation triggers. Specifically, microscopic traffic simulation performed at the 

household level is employed to estimate the total evacuation time of the communities in 

Julian area. The estimated evacuation times are used as the input for trigger modeling, 

and a statistical method is proposed to model and represent the uncertainty of evacuation 

time in the coupling process. Then fire and traffic simulation models are coupled to 

evaluate the value of the generated probability-based trigger buffers.  

Finally, Chapter 5 summarizes the three articles and future research directions in 

this field. Specifically, the conclusion section accents the couplings of human and 

environmental systems from a CHES perspective. This dissertation lays a foundation for 

a more comprehensive research of modeling wildfire evacuation as a CHES in the future.  
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CHAPTER 2
1
 

 

A HOUSEHOLD-LEVEL APPROACH TO STAGING WILDFIRE 

 EVACUATION WARNINGS USING TRIGGER MODELING  

 

2.1 Abstract 

Wildfire evacuation trigger points are prominent geographic features (e.g., ridges, 

roads, and rivers) utilized in wildfire evacuation and suppression practices, such that 

when a fire crosses a feature, an evacuation is recommended for the communities or 

firefighters in the path of the fire. Recent studies of wildfire evacuation triggers have 

used Geographic Information Systems (GIS) and fire spread modeling to calculate 

evacuation trigger buffers around a location or community that provide a specified 

amount of warning time. Wildfire evacuation trigger modeling has been applied in many 

scenarios including dynamic forecast weather conditions, community-level evacuation 

planning, pedestrian evacuation, and protecting firefighters. However, little research has 

been conducted on household-level trigger modeling. This work explores the potential 

uses of wildfire evacuation trigger modeling in issuing household-level staged evacuation 

warnings. The method consists of three steps: 1) calculating trigger buffer for each 

                                                 
1
 Reprinted from Computers, Environment and Urban Systems, with permission from 

Elsevier. Li, D., Cova, T. J., & Dennison, P. E. (2015). A household-level approach to 

staging wildfire evacuation warnings using trigger modeling. Computers, Environment 

and Urban Systems, 54, 56-67.  
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household; 2) modeling fire spread to trigger the evacuation of all households; and 3) 

ranking households by their available (or lead) time, which enables emergency managers 

to develop a staged evacuation warning plan for these homes. A case study of Julian, 

California is used to test the method’s potential and assess its advantages and 

disadvantages.  

 

2.2 Introduction 

Wildfires are a growing hazard in the western U.S. (Dennison, Brewer, Arnold, & 

Moritz, 2014) and pose significant risks to households in the Wildland-Urban Interface 

(WUI), defined as the area where residential development and wildlands meet (Davis, 

1990). Wildfires cause significant losses of life and property in the western U.S. every 

year, and public safety for the communities vulnerable to wildfires has attracted 

significant research attention (Brenkert–Smith, Champ, & Flores, 2006; Cova, 2005; 

McCaffrey & Rhodes, 2009; Paveglio, Carroll, & Jakes, 2008). Increasing trends in fire 

activity in the American West have coincided with rapid population growth in WUI areas 

(Theobald & Romme, 2007). These dual trends have become a challenge for public 

safety.  

When wildfire approaches a community, common protective actions for the 

residents include evacuation or shelter-in-place, which can be further classified into 

shelter-in-home and shelter-in-refuge (Cova, Drews, Siebeneck, & Musters, 2009). If 

enough time is available, evacuation provides a high level of life protection to threatened 

residents because they will be clear of the risk area. Shelter-in-place may be adopted 

when the residents are trapped by a rapidly spreading fire or when homeowners want to 
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stay to protect property (Handmer & Tibbits, 2005). Although the government policy in 

Australia offers homeowners a choice to stay and defend their homes (McLennan, 

Cowlishaw, Paton, Beatson, & Elliott, 2014; McNeill, Dunlop, Heath, Skinner, & 

Morrison, 2013), evacuation is the primary protective action in the U.S. Selecting 

appropriate protective action remains a challenge for emergency managers because they 

need to take into account both the hazard dynamics and population distributions. Hazard 

assessment is generally performed to determine the immediacy and impact of the hazard, 

while population monitoring is conducted to inform decision makers of the population 

vulnerable to the hazard (Lindell, Prater, & Perry, 2006). Protective action decision 

making is typically done at the spatial scales of communities or regions, but further 

research may be needed for variation in hazard at finer scales such as that of the 

household.  

Protective action selection is influenced to a large degree by timing—how much 

time is available for the residents to take action, and how much time is needed for the 

best option to be safe and effective? In practice, incident commanders (ICs) usually use 

prominent geographic features as trigger points to time protective-action 

recommendations. For example, when a fire crosses a ridgeline, evacuation 

recommendations may be issued to residents in the fire’s path (Cook, 2003). In order to 

better understand the mechanism of wildfire evacuation triggers and facilitate wildfire 

evacuation decision-making, Cova, Dennison, Kim, and Moritz (2005) proposed a 

method that uses geographic information systems (GIS) and fire spread modeling to 

delimit a trigger buffer around a vulnerable geographic asset. Trigger modeling has been 

applied to create evacuation trigger buffers for firefighters (Cova et al., 2005; Fryer, 
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Dennison, & Cova, 2013), and predefined communities (Dennison, Cova, & Mortiz, 2007; 

Larsen, Dennison, Cova, & Jones, 2011). However, little research has been conducted in 

setting triggers at the household level to help define evacuation warning zones. Moreover, 

fire spread rates influence evacuation decision making and the timing of protective-action 

recommendations (Kim, Cova, & Brunelle, 2006). Existing applications of trigger 

modeling neglect the modeling of wildfire spread toward a trigger buffer, and integrating 

fire spread modeling with trigger modeling may improve situational awareness during 

wildfire evacuations.  

The aim of this study is to perform trigger modeling at the household level and to 

use fire spread modeling to recommend departure times and associated staged evacuation 

warning zones. The first question concerns the spatial scale of trigger modeling: can 

trigger modeling be performed at the household level and what are the advantages and 

disadvantages of this scale? The second question is: can fire spread modeling and 

household-level trigger modeling be integrated to develop staged evacuation warning 

zones and recommended departure times at the most detailed scale? The rest of this paper 

is organized as follows. Section 2.3 provides a literature review of evacuation modeling 

and planning, fire spread modeling, and trigger modeling. Section 2.4 presents the three 

steps of the proposed method as well as the principles and theories underlying them. A 

case study of Julian, California is given in section 2.5, and section 2.6 ends the paper with 

discussions and conclusions.  
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2.3 Background 

2.3.1 Trigger modeling 

The raster data model represents the world with a regular grid and is a 

fundamental spatial data model in GIS (Chang, 2012). Trigger modeling uses a raster 

data model to represent the landscape and then employs fire spread modeling and GIS to 

create a buffer using the shortest path algorithm around a given location (P) with a given 

time (T) (Cova et al., 2005). Dennison et al. (2007) formulated trigger modeling into a 

three-step model—the Wildland Urban Interface Evacuation (WUIVAC) model. In the 

first step, the FlamMap software package is used to calculate the spread rates of the fire 

in eight cardinal and ordinal compass directions. The second step calculates fire travel 

times between adjacent raster cells and constructs a directional fire travel-time network. 

The third step reverses the arcs between adjacent cells and performs shortest path 

calculation using Dijkstra’s algorithm (Dijkstra, 1959) from a given location P with a 

given time interval T. It is important to note that the input P can be geographic objects at 

different scales, for example, the position of a firefighter or a firefighting crew, a house, a 

road, or a community. When P is the location of a firefighter or a house surrounded by 

fuels, it can be represented with one raster cell, while when P is a road or a community, it 

can be represented by a raster polyline or polygon. The input time interval T is the 

required evacuation time for the residents or firefighters at P, and it can be estimated 

using evacuation traffic simulation.  

Cova et al. (2005) used trigger modeling to create trigger buffers for a fire crew’s 

location, and another study conducted by Anguelova, Stow, Kaiser, Dennison, and Cova 

(2010) applied trigger modeling in pedestrian evacuation scenarios in wildland areas. 
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These studies have demonstrated the potential of trigger modeling for small geographic 

scale scenarios. Dennison et al. (2007) performed trigger modeling at the community 

level using historic maximum wind-speeds to show how trigger modeling can be used for 

strategic community-level evacuation planning.  

The shape of trigger buffer depends on fuels, wind, and topography (Dennison et 

al., 2007), and a study by Larsen et al. (2011) used varied wind speed and direction to 

create nested, dynamic trigger buffers for a community using the 2003 Cedar Fire as a 

scenario. Fryer et al. (2013) used varied wind speed, wind direction, and fuel moisture to 

create a series of trigger buffers for firefighting crew escape routes using travel times 

calculated for different modes. It should be noted that the size and shape of trigger 

buffers can be affected by fuel moisture, wind speed, and wind direction (Fryer et al., 

2013), and this should be taken into account.  

 

2.3.2 Fire spread modeling 

Fire behavior is determined by the fire environment, which includes topography, 

fuel, weather, and the fire itself (Pyne, Andrews, & Laven, 1996, p. 48). Computerized 

modeling of wildfire spread has a long history (Rothermel, 1983), and fire spread models 

developed in the past few decades can be categorized into physical, semiphysical and 

empirical models (Sullivan, 2009a, 2009b). The Rothermel fire spread model (Rothermel, 

1972), a semiphysical model based on energy conservation principles and calibrated with 

empirical data, has been widely used in various fire modeling systems such as BEHAVE 

(Andrews, 1986), FlamMap (Finney, 2006), and FarSite (Finney, 1998). The elliptical 

fire shape model proposed by Van Wagner (1969) models fire spread rates for head fire, 
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flank fire, and back fire using an elliptical shape and has enjoyed great popularity in fire 

simulation. After fire behavior parameters are derived from fire spread models, fire 

growth models are utilized to propagate the fire across the landscape. The minimum fire 

travel time algorithm is used to propagate fire in FlamMap (Finney, 2002), while an 

algorithm based on Huygens’ principle is used in FarSite (Finney, 1998). Other fire 

propagation models include Delaunay triangulation and shortest path algorithms 

(Stepanov & Smith, 2012), and Cellular Automata (CA)-based models (Clarke, Brass, & 

Riggan, 1994). Recently developed fire models have begun to include complex 

interactions between fire and weather by coupling an atmospheric prediction model with 

a fire spread model (Clark, Coen, & Latham, 2004; Coen, 2005; Coen et al., 2013).  

The past few decades have witnessed the application of fire spread modeling in 

various fields, such as wildlife habitat preservation (Ager, Finney, Kerns, & Maffei, 2007) 

and wildfire risk evaluation (Carmel, Paz, Jahashan, & Shoshany, 2009). However, 

research on using fire spread modeling in wildfire evacuation is scarce. Postevent studies 

of wildfire evacuations have revealed the significant value of fire progression in 

understanding evacuation timing (Kim et al., 2006), and in this regard, fire spread 

modeling has a great potential in improving situational awareness and facilitating 

decision making in wildfire evacuations when it is integrated with evacuation modeling.  

 

2.3.3 Evacuation modeling and planning 

Evacuation is defined as the process of moving people from risk areas to safer 

areas and can decrease the loss of life and property when a natural or technological 

hazard becomes a threat to residents (Lindell, 2013). However, it was not until the mid-
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twentieth century that evacuation became a research topic (Quarantelli, 1954). In the U.S., 

the Three-Mile Island nuclear incident in the 1970s attracted significant attention from 

research domain and became a milestone for modern evacuation studies (Cutter & Barnes, 

1982). Numerous studies have been conducted on emergency evacuations in the past few 

decades and can be categorized into two types: behavioral and engineering studies 

(Murray-Tuite & Wolshon, 2013). Behavioral studies focus on public response and 

decision making (e.g., risk perception, evacuation decision making, and departure times) 

during emergency evacuations and on relevant socio-economic or psychological factors 

that influence behavior (Dash & Gladwin, 2007; Lindell & Perry, 1992; Lindell & Perry, 

2003). The engineering perspective focuses on transportation modeling and simulation 

techniques, and evacuation traffic simulation has enjoyed great popularity in the past few 

decades (Sheffi, Mahmassani, & Powell, 1982; Southworth, 1991). A growing trend in 

this field is to combine the social science and engineering perspectives in an 

interdisciplinary direction (Murray-Tuite & Wolshon, 2013; Trainor, Murray-Tuite, 

Edara, Fallah-Fini, & Triantis, 2012).  

Behavioral studies conducted on wildfire evacuation reveal that ICs and evacuees 

have different concerns during anticipation, warning, displacement, return and recovery 

phases (Cohn, Carroll, & Kumagai, 2006). Specifically, the ICs are concerned about 

evacuation timing—when to impose evacuation orders (Cohn et al., 2006), which is an 

important leverage point in the evacuation process. Warning compliance refers to the 

percentage of residents who choose to evacuate after they are given an evacuation 

warning and relies on people’s perception of the risk (Lindell et al., 2006). Previous 

research revealed that evacuation warnings have a significant effect on evacuation timing 
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(Sorensen, 1991), and thus determining the timing of warnings is an important problem in 

evacuation planning.  

Cova and Church (1997) used nodes and arcs to represent the transportation 

network and evaluate spatial evacuation vulnerability to wildfire using the critical cluster 

model (CCM) in Santa Barbara, California. It should be noted that this line of research 

quantifies the imbalance and contradiction between the rapid residential development in 

the WUI and the insufficient capacity of the transport infrastructure for evacuations and 

can be used to enlighten future community planning (Cova, 2005). The past several years 

have witnessed the application of microscopic traffic simulations to estimate evacuation 

travel times and test the effectiveness of neighborhood wildfire evacuation plans (Cova & 

Johnson, 2002; Wolshon & Marchive III, 2007). These studies use population data to 

generate evacuation travel demand and perform traffic simulations but do not take into 

account the progression of wildfire and its impact on evacuation timing. Postevent studies 

on wildfire evacuations have revealed that fire progression determines the timing of 

evacuation orders issued for the threatened residents (Kim et al., 2006). In this regard, 

incorporating fire progression into modeling and simulation becomes a necessity if we 

are to address the critical questions of who should be evacuated and when.  

Risk areas refer to the geographic areas threatened by a natural or technological 

hazard (Lindell, 2013), and risk area delineation has attracted a significant amount of 

research attention in the past few years (Arlikatti, Lindell, Prater, & Zhang, 2006; Zhang, 

Prater, & Lindell, 2004). Staged evacuation is defined as the evacuation practice in which 

the risk area is divided into evacuation warning zones, and these zones are evacuated in a 

progressive manner (Chen & Zhan, 2008). The strength of staged evacuation strategy 
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over simultaneous evacuation lies in that it can relieve traffic congestion and reduce total 

evacuation time when the evacuation travel demand significantly exceeds the capacity of 

the transportation network (Chen & Zhan, 2008). Another advantage of staged evacuation 

is that it can minimize the disruption of nonthreatened residents. Note that the advantages 

of staged evacuation are realized only if evacuees comply with the stages. It should also 

be noted that dividing the risk area into evacuation warning zones is the premise for 

staged evacuation. Existing studies usually establish evacuation warning zones prior to 

the study using aggregate data such that they are a given (Chen & Zhan, 2008; Sorensen, 

Carnes, & Rogers, 1992; Southworth, 1991; Wilmot & Meduri, 2005). This top-down 

approach is characterized by “risk area-evacuation zone-traffic simulations” and has been 

the dominant paradigm in evacuation modeling and simulation in the past few years. 

Although evacuation zoning has been examined (Murray-Tuite & Wolshon, 2013), it is 

still an under-researched subfield in emergency management. With the rapid 

development of computing power, modeling and simulation at the individual level have 

become a popular trend (Bonabeau, 2002), which provides a good opportunity to research 

staged evacuation zoning using a bottom-up approach.  

 

2.4 Methods 

In general, wildfire evacuations are conducted at a relatively small geographic 

scale from a few households up to a few thousand. Trigger modeling has been applied at 

the community scale, but this work aims to perform trigger modeling at a more detailed 

scale to examine household-level evacuation warning timing and zoning. Figure 2.1 is a 

conceptual representation of the proposed method. The red polygons represent fire  
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Figure 2.1 A conceptual representation of the method 

 

perimeters, while the black polygons represent evacuation trigger buffers (ETBs) for 

houses 1 and 2, respectively. Note that the shape of the fire perimeter is skewed in the 

same direction as the wind, while the two ETBs are skewed in the opposite direction of 

the wind to offer the same amount of warning time if fire should approach from that 

direction (i.e., a trigger buffer is a fire travel-time isochrone). The fire shown crosses the 

boundary of ETB 1 at time T1, so household 1 should be notified to evacuate at T1. 

Similarly, household 2 should be notified to evacuate at T2.  

Given a series of sparsely distributed exurban households H = {h1, h2,…,hn} and 

an estimated evacuation time for each household ET = {et1,et2,…, etn}, trigger modeling 

can be used to create ETBs B = {b1, b2,…,bn} for each household with relevant wind 

direction, wind speed, and fuel moisture. If the fire spread process has m time steps T = 
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{t1,t2,…, tm}, and the spreading fire crosses the boundary of ETB bi at time tj, then 

household hi should be warned to evacuate. These residents should have at least eti before 

the fire reaches their residence. With the progression of the fire, the recommended 

evacuation departure time (REDT) for each household hi can be derived and can be 

represented by REDT = {redt1, redt2,…, redtn}. Then, the derived evacuation departure 

times REDT can be used to group the households into staged evacuation warning zones Z 

= {z1, z2,…, zk}. An emergency manager could use these zones to issue staged evacuation 

warnings when the households are threatened by wildfire. 

The proposed method is formulated into a three-step process, and the workflow of 

the method is shown Figure 2.2. In the first step, trigger modeling is performed using the 

household locations, evacuation times for households, elevation, aspect, slope, vegetation 

cover, wind direction, wind speed, and fuel data as the inputs. The output of the first step 

is a set of ETBs, which can be used as inputs in the second step—fire spread modeling. 

Fire spread modeling uses the same set of environmental inputs, and the evacuation 

notifications are triggered when the fire crosses the boundary of the ETB of each 

household. The output of the second step is a set of REDTs for the households. In the 

third step, the REDTs of the households are used to divide the households into different 

evacuation warning zones.  

 

2.4.1 Step 1: household-level trigger modeling 

In the first step, trigger modeling is performed at the household level to generate 

the ETBs based on the estimated evacuation time. Evacuation time in this specific context 

refers to the time taken by a household from warning initiation to the time the household  
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Figure 2.2 Workflow of the research method 

 

arrives at safety (Lindell, 2008). The input time for trigger modeling is the estimated 

evacuation time for the target population. The inputs can be divided into two groups: one 

group that includes topography (elevation, slope, and aspect), vegetation (fuel and canopy 

cover), and weather (wind direction and speed) data that is used for fire spread modeling, 

and a second group that includes household locations and estimated evacuation times. 

In order to facilitate trigger modeling, the three-step process proposed by 

Dennison et al. (2007) is used to create ETBs for the households, as shown in Figure 2.3. 

The first step employs a fire spread modeling software package (FlamMap) that uses the 

topography, vegetation, and weather inputs to calculate fire spread rates (Finney, 2006).  
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Figure 2.3 Workflow of trigger modeling 

 

The second step uses the derived fire spread rates in eight cardinal and ordinal compass 

directions to calculate the travel times between orthogonally and diagonally adjacent 

raster cells, which are then used to construct a fire travel-time network. In this network, 

the arcs are directional and the weight of an arc denotes the fire travel time from one cell 

to its neighbor in that specific direction. In the third step, all the arcs in the network are 

reversed and Dijkstra’s algorithm (Dijkstra, 1959) is employed to traverse from a given 

cell containing a household until the accumulated travel time reaches a specified 

constraint time, in this case the estimated evacuation time. In this manner, a set of 

household-level ETBs can be derived using trigger modeling.  

 

2.4.2 Step 2: integrating fire spread with trigger modeling 

After the generation of trigger buffers for the households, fire spread modeling 

can be performed to trigger the evacuation warnings for households based their 
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corresponding ETBs. When the spreading fire on the landscape reaches the boundaries of 

the ETBs, those households should be notified to evacuate. When ICs use triggers in 

practice, they need to first estimate the evacuation times needed for the threatened 

population before they set triggers (Cova et al., 2005). 

 The first step can generate an ETB b   B for each household h   H = {h1, h2,…, 

hn}. Moreover, the spatial data used in fire spread modeling can also be used in FlamMap 

to generate a minimum fire travel time (MFTT) map, which is a raster map where the 

value for each cell within the map represents the MFTT it takes from the ignition cell to 

every raster cell in the landscape. The MFTT algorithm produces a travel-time network 

that depicts the shortest path that fire might take between the ignition and each raster cell 

in the landscape. We should note that the MFTT and Dijkstra’s algorithm used in fire 

growth modeling and trigger modeling both calculate the shortest path in a travel-time 

network and thus have taken into account the worst-case scenario (i.e., fire taking the 

most rapid path), which is of critical significance in evacuation timing. The resulting 

MFTT map can be used to trigger the evacuation of the households using their ETBs and 

obtain the REDT for each household.  

 The algorithm used for calculating the REDTs for the households is shown in 

Table 2.1. The MFTT map is used to simulate the fire spread across the raster landscape. 

The fire at the ignition point starts at time 0 (in minutes), which is also used as the 

starting time for the simulation. In the algorithm initialization, all households are added 

to a set that have not been warned (or triggered) to evacuate. As the fire progresses, the 

algorithm will search for the ETBs that are being crossed by the fire and record the 

household, as well as the time when fire crosses the boundary of its ETB. When a  
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Table 2.1 Algorithm for calculating recommended evacuation departure times  

1 tMax = getMaxTime(MFTTMap)        // get the maximum fire travel time  

2 setHousehold = getHouseholds()         // a set of households to be evacuated 

3 triggerBuffers = getTriggerBuffers()  // get the trigger buffer for each household 

4 mapHouseholdEvactime  = NULL      // record each household 

5 For t From 0 To tMax                        // iterate t from 0 to the maximum value 

6    For cell In MFTTMap                     // iterate each cell in the MFTT map 

7       If cell == t                                      // if the value of the cell is equal to t 

8          For household In setHousehold                 // for each household in the set 

9             If cell Is In triggerBuffer[household]     // if the cell is within the buffer 

10                setHousehold.remove(household)        // remove household from the set 

11                mapHouseholdEvactime.insert(household, t)  // add the household  

 

household has been triggered to evacuate, it is eliminated from the household set. The 

REDTs derived are relative to the fire ignition time and are also in minutes. Eventually, 

the REDTs for all the households are derived, which can be used to group the households 

into different evacuation warning zones in the next step.  

 

2.4.3 Step 3: evacuation zoning 

This step aims to develop bottom-up evacuation warning zones using the REDTs 

of the households according to above-mentioned procedures. Evacuation zoning should 

take into consideration both the REDTs and the spatial configuration of the households. 

In other words, the households with similar REDTs should be grouped into one zone, and 

the households in geographic proximity to each other should be included in one zone. At 

this point the zoning problem is transformed to a clustering problem with spatial 

constraints—the REDTs can be used as attributes and the household locations can be 

used to measure spatial closeness. Assunção, Neves, Câmara, and da Costa Freitas (2006) 

put forward the Spatial "K"luster Analysis by Tree Edge Removal (SKATER) algorithm 
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to cluster spatial features by partitioning a minimum spanning tree (MST) constructed 

using the features, which has been proved to be effective in clustering spatial features 

efficiently. Thus, the SKATER algorithm can be used to partition the households into 

different evacuation warning zones based on their departure times as well as their spatial 

configuration.  

When given a set of features, the SKATER algorithm requires that a connectivity 

graph be constructed using contiguous or proximal relationships. In this context, each 

node in the graph represents a household, and the value of edge between two features 

denotes the dissimilarity of REDTs. In the context of household evacuation zoning, the 

households are point features and proximity measurements between two households can 

be used to construct the connectivity graph. For example, K Nearest Neighbors (KNN) 

method can be used to define proximity based on the Euclidean distance between 

households. After the construction of connectivity graph, the SKATER algorithm prunes 

edges with high dissimilarity and uses Prim’s algorithm to derive a MST, which is a 

spanning tree with the minimum sum of dissimilarities over all the edges. Since sub-trees 

can be derived by cutting the tree at suitable places, the clustering problem is transformed 

to an optimal graph partitioning problem. The sum of intracluster squared deviations is 

used as an objective function in the optimization process, which reflects the intra-cluster 

homogeneity and should be minimized. It should be noted that the MST partitioning 

problem is NP-hard, and therefore a heuristic method is employed in SKATER to 

perform the tree partitioning at a relatively low computational cost (Assunção et al., 

2006). After the partitioning of the MST, the households are divided into different groups, 

which can be used as staged evacuation warning zones.  
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Since topography, fuel, and weather determine fire behavior and thus can 

determine the size and shape of the trigger buffer generated by trigger modeling 

(Dennison et al., 2007), the REDTs derived in the second step may not strictly reflect the 

distance decay principle. For example, if the REDT of household h1 is smaller than that of 

household h2, it means h1 should be evacuated earlier than h2. However, h2 may be closer 

to the fire front compared to h1 because they may differ in terms of topography, fuel, and 

weather. This influences the shape and size of the trigger buffer and can result in 

inconsistency between their distances to the fire front and their REDTs. In this regard, the 

evacuation warning zones derived directly using clustering method based on the REDTs 

need to be adjusted using prominent geographic features. The purpose of adjustment is to 

establish evacuation warning zones that are easily identifiable by the threatened residents 

and can be conveniently and effectively communicated to the public by ICs in issuing 

actual warnings. Common geographic features used to establish evacuation zone 

boundaries include roads, neighborhoods and other prominent physiographic (rivers) and 

cultural features (landmarks). Zip codes, or other administrative zones, can also be used 

to construct evacuation warning zones when a hazard threatens a large geographic area, 

but they are relatively rare in wildfire evacuations because most are performed for 

smaller areas. Finally, it should be noted that the results of this step are a series of 

delineated evacuation warning zones with REDT for each zone, which can be used to 

issue warnings to threatened residents and facilitate staged evacuation.  
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2.5 Case study 

 Flammable vegetation types, seasonal drought, and Santa Ana winds have made 

the fire-prone communities in southern California extremely vulnerable to devastating 

wildfires (Westerling, Cayan, Brown, Hall, & Riddle, 2004). Wildfires have caused 

significant losses in life and property in the past few decades in this area (Rogers, 2005). 

The devastating 1991 Tunnel Fire in Oakland/Berkeley cost 2475 homes and 25 lives, 

and the 2003 Cedar Fire in San Diego caused the loss of 2232 homes and 14 lives 

(Rogers, 2005). Public safety in these fire-prone communities in southern California has 

attracted a significant amount of attention in the past few years (Cova, 2005; Stephens et 

al., 2009). In the case study, Julian, a census-designated place (CDP) in San Diego 

County, California, is our study site. As noted by Dennison et al. (2007), Julian is 

relatively isolated from the metropolitan areas and is surrounded by large areas of fuels, 

making it a good case study for wildfire evacuation studies. A total number of 62 sparsely 

distributed households located in the southwest portion of Julian were selected, and the 

map for the distribution of these households is shown in Figure 2.4. The household 

locations were derived by calculating the centroids of the residential parcels in Julian 

using the 2010 parcel data downloaded from the GIS agency of San Diego County—

SanGIS. Other vector road network and Julian boundary data were also obtained from 

SanGIS. Python and the ArcGIS Python library ArcPy were used to transform household 

location data into raster cells. The raster data were at 30 m resolution and the study area 

contains 500 × 500 raster cells. A 2003 fuel map at 30 m resolution from the Fire and 

Resource Assessment Program (FRAP) at California Department of Forestry and Fire 

Protection was used as the fuel data. The compiled fuel data use the 13 Anderson (1982)  
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Figure 2.4 Sparsely distributed households in Julian, California 

 

fuel models and include 11 flammable fuel types and 3 unburnable fuel classes. The 30 m 

resolution digital elevation model (DEM) data obtained from the United States 

Geological Survey (USGS) was used to calculate aspect and slope data using the GIS 

software package ArcGIS. 

Different software packages and programming languages were used to implement 

the proposed method as a loosely coupled system (Brown, Riolo, Robinson, North, & 

Rand, 2005). It was assumed that 1 h is sufficient for each household to evacuate to a safe 

area, and thus the input time for trigger modeling was set to 1 h. The wildfire spread 

modeling software package FlamMap was used to perform wildfire spread modeling and 

get the maximum spread rates, maximum spread direction, elliptical parameters for 
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calculating directional fire spread, and MFTT map. The programming language C++ was 

used to create ETBs for each household in the first step and simulate the “fire triggers 

evacuation” process in the second step because it has good computational efficiency and 

its object-oriented programming (OOP) characteristics can favor the reusability of the 

code in the future. Since the SKATER clustering algorithm has been implemented in 

ArcGIS, ArcGIS was used to cluster the households into different groups based on their 

spatial locations and REDTs. Finally, Python was used to adjust the derived groups based 

on road segments to get the final evacuation warning zones, and ArcGIS was used to map 

the zones constructed using the proposed method.  

In order to better understand the characteristics of the proposed method, different 

fire ignition points and varying wind speeds were used for fire spread and trigger 

modeling. Specifically, 3 ignition points located 3 miles away from the centroid of the 

households were used, and 2 wind speeds (16 and 32 km/h) were used for each ignition 

point. In total, 6 scenarios were used to evaluate the proposed method, as shown in Table 

2.2. Wind directions were set from the ignition point towards the households, which 

denotes the worst-case scenario in terms of the risk imposed by the fire to the households. 

The map in Figure 2.5 illustrates the experiment design. The centroid of the households  

 

Table 2.2 Scenarios for fire spread and trigger modeling 

Scenario Ignition Wind direction Wind speed (km/h) 

1 west west 16  

2 west west 32  

3 southwest southwest 16  

4 southwest southwest 32  

5 south south 16  

6 south south 32  
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Figure 2.5 Map for the case study design 

 

was calculated, and a 4.8 km (3 miles) buffer was created around the convex hull of the 

households using ArcGIS. The three ignition points were placed on the boundary of the 

buffer to the west, southwest, and south of the centroid.  

The results of the 6 scenarios were derived using the proposed method, and Figure 

2.6 shows the clustering results for scenarios 1 and 2 using the group analysis tool in 

ArcGIS. Specifically, KNN was used as the spatial constraints and 8 neighbor households 

were used to determine the group one household will fall in. The number of groups was 

set as 2, 3, and 4, respectively, for each scenario, and the results for the group analysis are 

listed in Table 2.3. The geographic scale of the study area is relatively small, thus we can 

use road segments as the building blocks for evacuation warning zones, which is common 

in exurban wildfire evacuations. From the overlaid road network, we can note that the 

households are naturally clustered by road segments, and using road segments to adjust  
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Figure 2.6 Group analysis for scenarios 1 and 2 
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Table 2.3 Results of group analysis 

Scenario 

(groups) 

Group ID Count Mean (min) Std. Dev. Min (min) Max (min) 

1 (2) 1 27 307 43 255 458 

 2 35 206 37 127 277 

1 (3) 1 27 307 43 255 458 

 2 17 236 18 216 277 

 3 18 176 25 127 208 

1 (4) 1 4 387 41 361 458 

 2 17 236 18 216 277 

 3 18 176 25 127 208 

 4 23 293 24 255 340 

2 (2) 1 13 111 18 94 166 

 2 49 72 12 49 91 

2 (3) 1 13 111 18 94 166 

 2 25 82 6 73 91 

 3 24 61 7 49 71 

2 (4) 1 1 166 0 166 166 

 2 25 82 6 73 91 

 3 24 61 7 49 71 

 4 12 106 8 94 118 

3 (2) 1 25 386 48 336 522 

 2 37 285 34 225 356 

3 (3) 1 4 480 29 452 522 

 2 37 285 34 225 356 

 3 21 368 23 336 429 

3 (4) 1 4 480 29 452 522 

 2 15 319 17 285 356 

 3 21 368 23 336 429 

 4 22 263 22 225 302 

4 (2) 1 6 153 23 130 190 

 2 56 98 12 75 121 

4 (3) 1 6 153 23 130 190 

 2 31 89 7 75 99 

 3 25 109 7 98 121 

4 (4) 1 2 185 6 179 190 

 2 31 89 7 75 99 

 3 25 109 7 98 121 

 4 4 138 6 130 147 

5 (2) 1 5 1243 47 1174 1293 

 2 57 1066 38 944 1157 

5 (3) 1 5 1243 47 1174 1293 

 2 10 1005 24 944 1027 

 3 47 1079 25 1045 1157 
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Table 2.3 Results of group analysis (continued) 

Scenario 

(groups) 

Group ID Count Mean (min) Std. Dev. Min (min) Max (min) 

5 (4) 1 5 1243 47 1174 1293 

 2 10 1005 24 944 1027 

 3 14 1102 18 1082 1157 

 4 33 1069 21 1045 1126 

6 (2) 1 9 406 24 384 455 

 2 53 352 13 310 378 

6 (3) 1 9 406 24 384 455 

 2 21 364 5 358 378 

 3 32 344 10 310 359 

6 (4) 1 6 391 10 384 414 

 2 21 364 5 358 378 

 3 32 344 10 310 359 

 4 3 434 15 418 455 
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the zones will make issuing emergency warnings more convenient. Based on the structure 

of the road network and the spatial configuration of the households, six roads with names 

were chosen and one road with the name “Deer Lake Park Rd” was split into two parts 

because the households along it fall into two natural clusters. Table 2.4 gives the seven 

clusters of households grouped by their closest road segment, and the spatial 

configuration of the grouped households is shown in Figure 2.7. Then these road-segment 

household groups were used to adjust the results of the group analysis—voting was 

performed within each road-segment group, and the group is assigned with the most 

popular evacuation group ID of the households. The final adjusted evacuation warning 

zones for the six scenarios are shown in Figures 2.8-2.10. After adjusting the zones, 

heterogeneity is eliminated within each zone and the zones become homogenous. The 

final adjusted results also demonstrate that the spatial configuration of evacuation 

warning zones can reflect the spread direction of the fire. For example, the zones in 

Figure 2.8 are arranged from the west to the east, which corresponds to the wind direction 

in scenario 1 and 2; the zones in Figure 2.9 are arranged from the southwest to the 

northeast; and the zones in Figure 2.10 are arranged from the south to the north. Thus, 

wind direction can influence the spatial configuration of the zones. 

 

Table 2.4 The number of households by road segment 

Road name Number of households 

6th Street 12 

Van Duesan Road 11 

Old Cuyamaca Rd 9 

Slumbering Oaks Trl 8 

Pine Hills Rd 4 

Deer Lake Park Rd segment 1 (north) 14 

Deer Lake Park Rd segment 2 (south) 4 

Total number of households 62 
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Figure 2.7 Households grouped by road segments 
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Figure 2.8 Adjusted zones using road segments for scenarios 1 and 2 
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Figure 2.9 Adjusted zones using road segments for scenarios 3 and 4 
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Figure 2.10 Adjusted zones using road segments for scenarios 5 and 6 
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2.6 Discussion and conclusion 

Wildfire evacuation is a complex spatiotemporal process, which involves the 

progression of the fire and the evacuation of the at-risk population to safe areas. In order 

make sound warning decisions, ICs need to take into account many factors during 

evacuation, e.g., the direction and speed of fire progression, the population at risk, 

estimated evacuation traffic demand, and shelter selection. The complexity of the 

evacuation process can overwhelm ICs and poses significant problems for effective 

decision making (Drews, Musters, Siebeneck, & Cova, 2014). Postevent studies on fire 

progression and the timing of protective action recommendations during wildfire 

evacuations can help improve our understanding of the evacuation process and provide 

guidance for future evacuations (Kim et al., 2006). In this regard, simulations can be 

performed to help increase situational awareness and facilitate decision making during 

wildfire evacuations. This work presents a method that employs fire spread modeling and 

household-level trigger modeling to tackle wildfire evacuation warning timing and staged 

zoning from the IC’s perspective. Several implications from this study are summarized as 

follows.  

First, this study demonstrates that household-level wildfire evacuation trigger 

modeling is technically feasible. However, this finer-grain modeling and simulation costs 

significantly more computationally, and the necessity of performing modeling and 

simulation at the finer level should be determined before any endeavors are conducted. 

The value of performing trigger modeling at the household level is two-fold: first, for 

those isolated households in rural areas, household trigger modeling can be used to 

facilitate emergency warning at a very detailed level. Second, when household-level 
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triggers are integrated with fire spread, ICs can develop a better understanding of timing 

evacuation warnings and managing travel demand. This work focuses on the second 

implication and demonstrates how the integration of household trigger modeling and fire 

spread modeling can facilitate evacuation warnings and staged zoning. However, the first 

implication is equally important and has great potential in evacuation warning practice. 

With modern warning technologies like the reverse 911 system, household-level warning 

has become popular (Strawderman, Salehi, Babski-Reeves, Thornton-Neaves, & Cosby, 

2012). Household-level trigger modeling is a means of controlling evacuation timing 

based on the MFTT it will take for the fire to reach a specific household. Estimating the 

REDTs for sparsely distributed household in the WUI holds promise to improve 

emergency notification and warning at the household level, thereby improving public 

safety while minimizing the disruption of households that are not at risk. Future work 

could focus on using WebGIS to implement the trigger modeling on the server side, 

while using the most recent mobile computing to provide relevant emergency warning 

and notification at the client side (web or mobile client). This has been called “geo-

targeted warnings” and it represents a significant research challenge in issuing public 

warnings to people with location-based devices like cellphones (Aloudat, Michael, Chen, 

& Al-Debei, 2014; National Research Council, 2013). Moreover, modern sensor web 

technologies have capabilities to retrieve data from sensors and process the data in a near 

real-time manner (Chen, Di, Yu, & Gong, 2010). These sensor web technologies can be 

used to detect fire progress in wildfire evacuations and have great potential in facilitating 

decision making when they are integrated with trigger modeling. 

Second, integrating fire spread and trigger modeling is a central contribution of 
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this paper. This work uses a loosely coupled strategy to build the system. For example, 

the software package FlamMap is used to perform fire spread modeling, and ArcGIS is 

employed to accomplish group analysis and construct evacuation warning zones. This 

loosely coupled strategy has limitations when it comes to sensitivity analysis and will 

bring inconvenience to decision makers in wildfire evacuation, and more efforts should 

be devoted to building a tightly coupled system so as to facilitate the use of the method. 

Specifically, relevant open source libraries can be borrowed to couple the systems at the 

source code level, which could bring great convenience to decision making in wildfire 

evacuations.  

Third, this work examines building wildfire evacuation warning zones by using a 

risk-based, bottom-up approach that integrates fire spread and household-level wildfire 

trigger modeling, which proves to be applicable to staged evacuation planning. The 

geographic scales of evacuations vary with different hazard agents. For example, 

hurricane evacuations are usually performed at the country, state, or regional level, while 

wildfire evacuations are generally conducted at the community scale. The geographic 

scale of hazard agents determines the size of the risk area and the population at risk, 

which will eventually influence the size of evacuation warning zones. This study 

illustrates the use of road segments in delineating evacuation warning zones at the finer 

scale. The strength of using road segments lies in that people have great familiarity with 

the road names around them, which will significantly facilitate people’s perception of the 

risk area during the warning process. Traditionally, the ICs will estimate fire progress and 

then divide the risk area into evacuation warning zones using prominent geographic 

features. In this top-town method, the determination of the order of the evacuation 
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warning zones is determined by the spatial configuration of the zones relative to the fire, 

and the staged evacuation warnings are sent to the zones merely based on the ICs’ 

situational awareness. Taking the evacuation scenario in the case study as an example, 

the ICs can delineate the zones using road segments and send out warnings accordingly, 

but they cannot specify when to send warnings to each zone. The proposed method can 

generate evacuation warning zones with their corresponding REDTs, and the zones are 

aggregated and constructed based on the computation of the REDT for each household. 

Thus, the ICs can not only delineate the zones using prominent features, but also specify 

the REDT for each zone and recommend staged evacuation warnings accordingly. Thus, 

the proposed method makes a contribution to existing methods. 

Lastly, the assumptions used for fire propagation and trigger modeling should be 

taken into account. The MFTT and Dijkstra’s algorithm are employed for fire 

propagation modeling and trigger modeling, and they use the same data structure and 

both calculate the shortest path in a fire travel-time network. Fire propagation models can 

have different implications for different contexts. In the context of wildfire evacuation, 

the implication of using shortest path algorithms in a fire travel-time network is that fire 

propagates in the fastest manner in the landscape, which ensures that worst-case 

scenarios are considered in evacuation planning (i.e., the case with the least time 

available to take protective action). Fire travel times in modeling fire spread have 

significant implications because the speed of fire propagation directly influences 

evacuation timing. If fire growth from shortest path algorithms is faster than reality, the 

generated REDTs will have smaller values and the households will be evacuated earlier 

than they should be, which could result in unnecessary disruption. Conversely, if the fire 
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forecast propagates slower than reality, late evacuation could occur and the households 

will be placed in danger during evacuation (Handmer & Tibbits, 2005). Thus, the 

accuracy of fire propagation models should be taken into consideration. Finney (2002) 

compared fire-perimeter growth using MFTT with that from FarSite simulations, and the 

results indicate that the two methods can produce identical fire-growth expansions. 

Future work can use other fire propagation methods in the proposed method and compare 

their results with that of shortest path algorithms. Another assumption taken in our trigger 

modeling is that 1 h is sufficient for the households to safely evacuate. Although traffic 

congestions in exurban areas during wildfire evacuation is less likely to happen than in 

larger regional evacuations (e.g., hurricanes), poor design of the evacuation route systems 

may still result in the residents’ inability to evacuate (Cova, Theobald, Norman III, & 

Siebeneck, 2013). For example, road closures caused by the fire can influence households’ 

evacuation route choice and their evacuation times. As a result, traffic simulation could 

be performed in future work to further examine this assumption.  

This study integrates fire spread with trigger modeling and presents a novel 

simulation-based, bottom-up approach to establishing staged wildfire evacuation warning 

zones and warnings. This work also provides a road map for integrating different systems 

and can shed light on how to use simulation-based methods for wildfire evacuation 

decision making. Trigger modeling is highly sensitive to environmental factors and the 

evacuation zoning process is also sensitive to clustering methods. Thus, sensitivity 

analysis needs to be conducted in future work to evaluate how sensitive the proposed 

method is when input variables vary so as to help develop a better understanding of it 

(Lindell, 2008). Simulation-based sensitivity analysis has enjoyed great popularity in 
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spatial modeling and simulation in the past few years (Crosetto, Tarantola, & Saltelli, 

2000) and can be used to perform sensitivity analysis for the proposed method. We 

should note that a tightly coupled system needs to be implemented before hundreds of 

thousands of simulations can be run for sensitivity analysis. Moreover, since fire spread 

and trigger modeling are computationally intensive, modern parallel computing 

techniques will be employed to accomplish simulation-based sensitivity analysis. Finally, 

the principles for evacuation warning zone establishment still remain unclear at this 

moment due to the scarcity of research on evacuation zoning. These endeavors will 

perfect the proposed method and help develop a better understanding of wildfire 

evacuation warning timing and zoning.  
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CHAPTER 3 

 

SETTING WILDFIRE EVACUATION TRIGGERS  

USING REVERSE GEOCODING 

 

3.1 Abstract 

Wildfire evacuation trigger points are prominent geographic features (e.g., ridge 

lines, rivers, and roads) utilized in timing evacuation warnings. When a fire crosses a 

feature, a predefined evacuation warning is issued to the communities or firefighters in 

the path of the fire. Existing studies on trigger modeling have used fire spread modeling 

and geographic information systems (GIS) to create a raster buffer around a community 

or firefighter crew with the estimated evacuation time as the input. Current buffers 

generated by trigger modeling have limited utility because they are not explicitly tied to 

real-world geographic features, making it difficult to determine when a fire has crossed a 

trigger buffer. This work aims to address this limitation by using reverse geocoding to set 

prominent triggers that have more value to emergency managers. The method consists of 

three steps: first, trigger modeling is performed to calculate a trigger buffer; second, 

online reverse-geocoding is employed to retrieve geographic features proximal to the 

buffer boundary; third, a procedure is used to select geographic features that represent 

viable trigger points. A case study of Julian, California is presented using the proposed 

method, and the GeoNames online reverse-geocoding service is used to test the method. 
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The results demonstrate that the proposed method results in more salient trigger points 

that would have value to emergency managers in real emergencies. An important finding 

is that a feature will have more value as a trigger point when it is close to the trigger 

buffer boundary and fire front. 

 

3.2 Introduction 

The wildland urban interface (WUI) is defined as the area where urban settings 

and wildlands meet (Radeloff et al., 2005; Stewart, Radeloff, Hammer, & Hawbaker, 

2007). Most people move from urban areas to the WUI for rural amenities (Davis, 1990), 

and the past few decades have witnessed rapid WUI population growth in the American 

West (Hammer, Stewart, & Radeloff, 2009; Theobald & Romme, 2007). At the same 

time, the occurrence of and area burned by wildfires has grown, corresponding to an 

increase in drought severity in many regions (Dennison, Brewer, Arnold, & Moritz, 

2014). Wildfires pose a significant threat to WUI residents, and improving public safety 

in these areas has received considerable research attention (Brenkert–Smith, Champ, & 

Flores, 2006; Cova, 2005; Cova, Dennison, & Drews, 2011; Mell, Manzello, 

Maranghides, Butry, & Rehm, 2010). 

When an advancing fire becomes a threat to the residents of a community, 

protective actions may need to be taken to ensure public safety. Common protective 

actions in wildfires include evacuation and shelter-in-place (SIP) (Cova, Drews, 

Siebeneck, & Musters, 2009). When threatened residents have enough time to evacuate to 

safer places, incident commanders (ICs) tend to recommend this option to maximize 

public safety, but when a fire advances too fast and the residents do not have enough time 
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for evacuation, SIP may be recommended so that the residents will not be trapped en 

route (Cova et al., 2011). To aid in timing protective action recommendations (PARs), 

prominent geographic features (e.g., ridge lines, rivers, and roads) may be used as 

triggers, such that when a fire crosses a feature, a PAR will be issued to threatened 

residents or firefighters in the fire’s path (Cook, 2003; Cova, Dennison, Kim, & Moritz, 

2005). A key characteristic of effective trigger points is prominence, as it improves the 

chance that a triggering event is readily detected by decision makers. 

Existing trigger research uses fire spread modeling and geographic information 

systems (GIS) to model and set triggers (Cova et al., 2005). Fire spread models simulate 

the spread of fire over time and space from an ignition point. In trigger modeling, 

modeled fire spread rates can be used to create a fire travel-time graph, and the graph can 

be traversed from the threatened geographic assets outwards to generate a trigger buffer 

for a specific estimated evacuation time. Initial work has been conducted to examine the 

sensitivity of trigger modeling with varying weather inputs (Fryer, Dennison, & Cova, 

2013; Larsen, Dennison, Cova, & Jones, 2011). However, little research has been done 

on the problem of identifying prominent geographic features to use as trigger points. 

Reverse geocoding, the reverse process of geocoding, can be used to associate place 

names with geographic coordinates, and has potential in associating geographic features 

with the modeled trigger buffers. The goal of this research is to bridge the gap between 

trigger modeling and real-world trigger points by incorporating reverse geocoding. 

Specifically, the research questions to be addressed include: 1) how can reverse 

geocoding be used to identify prominent geographic features to be used as real-world 

trigger points? 2) How can the features retrieved from reverse geocoding be used as 
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trigger points in wildfire evacuation practices?  

The remainder of this article is organized as follows. Section 3.3 gives an 

introduction to related work in trigger modeling and reverse geocoding. Section 3.4 

introduces the research methods, and section 3.5 presents a case study of the methods 

applied to Julian, California. Finally, section 3.6 provides an in-depth discussion about 

the computational efficiency of the method and the saliency of the features, and section 

3.7 concludes the article by summarizing the strengths and weaknesses of the proposed 

method along with future research directions.  

 

3.3 Background 

3.3.1 Trigger modeling 

Trigger points are prominent geographic features used by ICs in wildfire 

evacuations as a warning mechanism to facilitate communications and evacuation timing. 

Existing trigger modeling uses the raster data model to represent the landscape (Cova et 

al., 2005). The raster data model represents the earth surface with a set of regular cells 

and is widely used to represent spatial phenomena such as topography and vegetation in 

GIS (Goodchild, 1992). Trigger modeling employs fire spread modeling and GIS to 

create a trigger buffer around the geographic asset where the threatened population is 

located. The geographic assets can be viewed at different scales (e.g., community, house, 

road, and fire crew). Accordingly, assets at different geographic scales can be represented 

as a raster cell, raster polyline, or raster polygon. The current trigger modeling method 

has been formulated into a three-step process by Dennison, Cova, and Moritz (2007). In 

the first step, the fire spread modeling software FlamMap is employed to calculate fire 
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spread rates within a raster cell in eight directions under varying assumptions regarding 

fuel, wind, and humidity. FlamMap uses mathematical equations developed by 

Rothermel (1972) to calculate the fire spread rate in one direction using the fire shape 

model developed by Anderson (1983) to generate the two-dimensional spread rates 

(Finney, 2006). The second step constructs a network by connecting the centroids of 

orthogonally and diagonally adjacent raster cells to represent fire travel times between 

adjacent cells. A fire travel-time graph is derived with the nodes and edge weights 

representing the raster cells and the travel times, respectively. In the third step, the travel 

times between two adjacent cells are reversed, and the Dijkstra shortest path algorithm 

(Dijkstra, 1959) is employed to traverse the graph from the input raster feature outwards 

until the accumulated travel time reaches the input time constraint. The output of trigger 

modeling is a raster trigger buffer around the threatened asset for a specific input time 

(e.g., estimated evacuation time).  

Previous studies have demonstrated that trigger modeling may have great 

potential in a variety of applications. Cova et al. (2005) used trigger modeling to create 

buffers for the location of a fire crew along the road using the 1996 Calabasas Fire 

scenario in southern California and demonstrated how trigger modeling could be used to 

protect firefighters in an operational context. Another study conducted by Fryer et al. 

(2013) demonstrated the potential use of trigger modeling in avoiding firefighter 

entrapment in the wildlands using the 2007 Zaca Fire in southern California. Dennison et 

al. (2007) used trigger modeling to create buffers around the Julian area in San Diego 

County, California, which could be used for strategic community evacuation planning. 

Trigger buffers were also calculated for evacuation routes in Julian in this study. Another 
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community-level study conducted by Larsen et al. (2011) examined the feasibility of 

trigger modeling in the context of fire perimeters in the 2003 Cedar Fire in San Diego, 

California. This study found that trigger modeling could overestimate fire spread when 

generating trigger buffers, which could result in early evacuations when trigger buffers 

are used in issuing evacuation warnings. Anguelova, Stow, Kaiser, Dennison, and Cova 

(2010) applied trigger modeling to examine pedestrian wildfire risk and their results 

indicate that trigger modeling may have great potential in protecting pedestrians during 

wildfires in the wilderness. Recently, trigger modeling was also applied at the household 

level to stage wildfire evacuation warnings (Li, Cova, & Dennison, 2015). The size and 

shape of trigger buffers depend on various inputs used for trigger modeling such as input 

estimated evacuation times, topographic inputs (digital elevation model (DEM), aspect, 

and slope), environmental inputs (fuel type and cover), and weather inputs (wind speed, 

fuel moisture, and wind direction) (Dennison et al., 2007). Uncertainty associated with 

these inputs, for example, in weather inputs, can create a range of trigger buffers (Fryer et 

al., 2013).  

 

3.3.2 Geocoding and reverse geocoding 

Georeferencing, defined as the general process of relating information to 

geographic location (Hill, 2009), is an important concept in geographic information 

systems (GIS). Geocoding, an important georeferencing technique, usually refers to 

relating addresses or place names to geographic coordinates (Goldberg, Wilson, & 

Knoblock, 2007). Geocoding has been widely used in various applications such as public 

health (Krieger, 1992; Krieger et al., 2002; Rushton et al., 2006), crime (Andresen, 2006; 
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Ratcliffe, 2004), and traffic accident studies (LaScala, Gerber, & Gruenewald, 2000; Loo, 

2006). In these studies, addresses are usually available, and the researchers use geocoding 

to get the geographic locations of the subjects, crime incidents, or traffic accidents to 

examine the geographic distribution of the phenomena and relevant socioeconomic or 

environmental factors. Geocoding quality and its impacts on spatial analysis have 

attracted substantial research attention in the past few years (Bonner et al., 2003; 

Zandbergen, 2008; Zandbergen, 2009; Zandbergen, 2011; Zandbergen, Hart, Lenzer, & 

Camponovo, 2012). Specifically, widely agreed-upon metrics for evaluating geocoding 

quality include positional accuracy, completeness, and repeatability (Zandbergen, 2008). 

Positional accuracy refers to the displacement between a geocoded point to the “true” 

feature in the real world; completeness (or match rate) is usually defined as the 

percentage of input records that were successfully geocoded; and repeatability reflects 

how sensitive the geocoding results are to changes in factors like input baseline data and 

associated matching algorithms (Zandbergen, 2008). Reverse geocoding is a process that 

relates geographic features to given geographic coordinates (Kounadi, Lampoltshammer, 

Leitner, & Heistracher, 2013). Existing studies on reverse geocoding mainly focus on 

privacy issues (Kounadi et al., 2013; Krumm, 2007).  

Geocoding/reverse geocoding can be generally categorized into two types: 

conventional and online geocoding/reverse geocoding (Roongpiboonsopit & Karimi, 

2010). Conventional geocoding/reverse geocoding practices are usually conducted by 

GIS professionals using existing software (e.g., ArcGIS), and users can have more 

control on the reference data and geocoding/reverse geocoding methods. Online 

geocoding/reverse geocoding services are usually provided by commercial companies or 
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agencies as web services, and users can send requests according to predetermined format 

and receive results from these services. Compared to conventional offline 

geocoding/reverse geocoding, online services can be readily integrated into software 

systems developed on different platforms or in different programming languages. This 

platform and programming language-transparent feature has increased the popularity of 

online geocoding/reverse geocoding services. A number of studies have been conducted 

to evaluate the quality of online geocoding services (Karimi, Sharker, & 

Roongpiboonsopit, 2011; Roongpiboonsopit & Karimi, 2010). These studies employed 

the same metrics in evaluating offline geocoding quality to assess the quality of online 

geocoding services. Existing research on online reverse geocoding usually focuses on the 

accuracy of these services in urban areas (McKenzie & Janowicz, 2015). For example, a 

study by Kounadi et al. (2013) examined the accuracy and privacy issues of using 

different online reverse geocoding services in crime studies.  

 

3.4 Methods 

Existing trigger modeling is a computation-based approach that takes into account 

both fire spread and the response of the threatened population. Reverse geocoding could 

be potentially used to associate geographic features with trigger buffers in a 

computational manner. In this section, a three-step method that integrates trigger 

modeling and reverse geocoding is presented (Figure 3.1). In the first step, trigger 

modeling is performed for the threatened population. The outputs from this step are 

evacuation trigger buffers (ETBs) for specific input evacuation times. These raster  
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Figure 3.1 Workflow of the three-step method 

 

buffers are used as the input in the second step where reverse geocoding is used to 

retrieve geographic features around the boundary of the buffer. Specifically, online 

reverse geocoding services are used to perform this operation because they are platform 

and system-independent and readily available. In the third step, the retrieved geographic 

features are selected according to the constraints of estimated evacuation times imposed 

by the ICs. The uncertainty in the input times is taken into account and modeled to select 

features as trigger points. The following subsections describe each step in more detail.  

 

3.4.1 Step 1: trigger modeling 

In the first step, trigger modeling is performed to create buffers around the 

geographic location where the threatened population or assets are located (Dennison et al., 

2007). This method is based on the raster data model, and the input data can be 
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categorized into five groups: land cover data (fuel types and canopy cover), topographic 

data (DEM, slope, and aspect), weather inputs (moisture, wind speed, and wind direction), 

threatened assets (firefighter crew, community, road, house, etc.), and estimated 

evacuation times. Since trigger modeling is based on the raster model, all the input spatial 

data rely on the same spatial resolution and geographic extent. The threatened asset 

locations in vector format are converted to raster data and then coregistered with the other 

raster data. In the field of fire spread modeling, fuel characteristics such as height, size, 

loading, and arrangement are assigned based on fuel model classes, using systems 

described by Anderson (1982) or more recently by Scott and Burgan (2005). Remote 

sensing image classification can be used to assign discrete fuel models to continuous fuel 

properties across raster space, creating a fuel map. 

Figure 3.2 outlines the three-step process of trigger modeling. In the first step, all 

the input data are imported into FlamMap, and fire spread modeling is performed to 

calculate fire spread rates in eight cardinal and ordinal compass directions for each raster 

cell (Figure 3.2(a)). The second step uses the spread rates to compute the fire travel times 

between the centroids of orthogonally and diagonally adjacent raster cells to construct a 

fire travel-time graph. As shown in Figure 3.2(b), the centroids of the raster cells are the 

nodes, and the weights for the arcs are the travel times The arcs are directed because fire 

spread rates within one raster cell differ in each direction due to wind, fuel, and 

topography. In the third step, the directional arcs derived in the second step are reversed, 

and the Dijkstra (1959) shortest path algorithm is used to traverse from the input location 

cells until the accumulated travel time reaches the input time. This process is illustrated 

in Figure 3.2(c), which shows the resulting raster trigger buffer.  
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Figure 3.2 The three-step trigger modeling process 

 

3.4.2 Step 2: reverse geocoding 

Reverse geocoding can be considered as a basic spatial query operation in GIS. 

Users provide a point with geographic coordinates as the input, and the reverse-

geocoding process retrieves the nearest geographic feature from a spatial database. 

Online reverse geocoding services usually take one pair of geographic coordinates 

(latitude and longitude) as the input, whereby they return a feature name as well as its 

location as the output. However, in many real-world applications, the input can be other 

geometries instead of simple points, e.g., line features and polygon features. These 

complex features must be split into points before they can be processed by online reverse 

geocoding services. Miller and Wentz (2003) point out that GIS provides various 

representation and analytical capabilities to solve problems and that spatial representation 

determines the analytical methods used for the spatial analysis. Thus, when reverse 

geocoding is integrated with trigger modeling, the spatial representation employed in the 

latter is taken into account. Specifically, the centroids of the boundary cells are the 

vertices, while orthogonally adjacent cells are connected by edges. A boundary cell is 
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defined as a cell in the ETB that has at least one neighbor that does not fall within the 

ETB. As shown in Figure 3.3(a), the blue cells are inside cells, while the gray ones 

boundary cells. Figure 3.3(b) shows the graph representation of the boundary cells. Note 

that only orthogonally adjacent boundary cells are connected and each vertex can have 

four neighbors at most. Thus, the graph is a sparse graph and the adjacency list 

representation should be used.  

As noted earlier, the trigger is represented as a raster buffer around the input 

raster feature. From a modeling and computation perspective, PARs should be issued 

when the fire crosses the boundary. However, prominent geographic features are widely 

used in fire suppression and evacuation warnings to improve communication. Thus, we 

need to use the buffer boundary as the input to the reverse geocoding process to identify 

proximal geographic features. Specifically, the centroids of the boundary cells of the 

buffer, coined query points in this context, are extracted, and these points are then used as 

the input for reverse geocoding. An algorithm for extracting the query points and 

constructing the graph is given in Table 3.1. Note that edges only exist between one  

 

 

Figure 3.3 Illustration of boundary cells and the graph representation 
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Table 3.1 Algorithm for extracting query points from an ETB 

1 G = (V, E)                                              // a graph for storing boundary cells 

2 ETB = readData( )                                 // read data and ETB is a N by N array  

3 For i From 0 To N-1                                           // iterate each row 

4       For j From 0 To N-1                                     // iterate each column 

5             If isBoundaryCell(ETB(i, j) ) Is True      // if the cell is a boundary cell 

6                 G.addVertex(ETB(i, j))                        // add the cell to the vertex list 

7                 For neighbor In ETB(i, j).getNeighbors( )  // iterate each neighbor cell 

8                        If isBoundaryCell(neighbor) Is True    // if it is a boundary cell 

9                            G.addVertex(neighbor)                     // add it to the vertex list 

10                            G.addEdge(ETB(i, j), neighbor)       // add the edge to the list 

11                            G.addEdge(neighbor, ETB(i, j))       // add the edge to the list 

12                        EndIf 

13                 EndFor 

14             EndIf 

15        EndFor 

16 EndFor 

 

boundary cell and its four orthogonally adjacent boundary cells (Figure 3.3). Thus, the 

edges are based on the spatial relationship between boundary cells.  

Figure 3.4 demonstrates the process of extracting query points from the ETB 

generated by trigger modeling using the above algorithm. Specifically, Figure 3.4(a) 

shows an ETB generated by the trigger modeling around the given input geographic 

feature. Note that in this case, the input feature is a raster cell, which could represent a 

firefighter crew or a house located in the WUI. Large-scale features like communities or 

roads can be represented using a set of contiguous raster cells. Trigger buffers are usually 

skewed because of the wind and the variability of topographic factors. The ETB in Figure 

3.4(a) is generated using uniform topographic factors, and its skewedness is due to the 

direction and speed of the wind. Figure 3.4(b) illustrates the extracted boundary cells, and 

their centroids serve as the query points for reverse geocoding.  

In order to use these query points as input to retrieve geographic features via  
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Figure 3.4 Extracting query points from ETB 

 

reverse geocoding, a graph traversal operation needs to be performed so as to transform 

the two-dimensional boundary to a linear sequence. Breadth first search (BFS) and depth 

first search (DFS) are two popular graph traversal methods (Cormen, Leiserson, Rivest, 

& Stein, 2009). Since the edges in this context denote spatial adjacency, they will have 

the same weights. The BSF begins the search from a given staring vertex s and finds all 

vertices that are at distance d from s before it finds the vertices that are at a distance d+1, 

while the DFS will search the graph as deep as possible and then traverse other branches. 

In this context, if the top left boundary cell is chosen as the starting vertex, the BFS will 

traverse the graph in two directions, while the DFS will search the graph along one 

direction. Thus, a DFS is chosen to arrange the query points in a sequential order in one 

direction. The DFS method starts with the top left boundary cell in the graph and finds 

the neighbor boundary vertices from its four neighbor cells. Note that when it searches its 

four neighbor cells, it starts from its parent vertex and continues to search the rest of the 
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cells in a clockwise manner. In this way, the whole DFS will traverse the graph in a 

clockwise order. After the DFS, the two-dimension boundary of the ETB can be 

transformed into a linear sequence based on the spatial relationships between the cells. 

An example given in Figure 3.5 shows the DFS of the graph. Specifically, Figure 3.5(a) 

shows the graph and Figure 3.5(b) illustrates the results after DFS with each number 

denoting the traversal order for each boundary node. After the DFS, a linear sequence of 

vertices is derived that can be used as the query points for reverse geocoding. The 

features derived from reverse geocoding for each query point are stored for further 

analysis. The detailed DFS algorithm is given in Table 3.2.  

 

3.4.3 Step 3: feature selection 

The generated trigger buffer is usually skewed due to the variability in the input 

data. Previous studies on trigger modeling have revealed that the size and shape of trigger 

buffers depend on the inputs such as wind speed and direction (Dennison et al., 2007; 

Larsen et al., 2011). However, little research has focused on the uncertainty in the input  

 

 

Figure 3.5 An example of DFS of the graph 
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Table 3.2 The DFS algorithm for graph traversal 

1 G = (V, E)                              // a graph that represents boundary cells 

2 ReverseGeocoder                   // a reverse geocoder 

3 resultFeatures = { }                // the final feature set for the vertices 

4 For vertex In V                     // initialize the vertices in the graph 

5      vertex.setColor(‘white’)   // initialize each vertex to ‘white’ (unvisited) 

6      vertex.setParent(null)       // set the parent vertex for each vertex to null 

7 EndFor 
8 t = 0                                       // initialize visit time to 0 

9 startVertex = G.getStartVertex( ) 

10 Function DFSVisit(startVertex)       // a function for depth first traversal  

11       startVertex.setColor(‘gray’)         // set the vertex to ‘gray’ (being visited) 

12       t  += 1                                           // increase the current visit time by 1 

13       startVertex.setDiscoveryTime(t)  // set the discovery time to t 

14       For nextVertex In startVertex.getNeighbors( ) // get the neighbors 

15              If nextVertex.getColor( ) == ‘white’ // if the neighbor vertex is not visited 

16                  nextVertex.setParent(startVertex   // set the parent vertex of each neighbor  

17                  DFSVisit(nextVertex)      // search each unvisited neighbor recursively  

18              EndIf 

19        EndFor 

20        startVertex.setColor(‘black’)     // set the status of the vertex to ‘black’ (visited) 

21        t += 1                                         // increase the visit time by 1 

22        startVertex.setFinishTime(t)    // set the finish time to the current visit time 

23 EndFunction 

24 SortedV = sortByDiscoveryTime (V)   // sort the vertices by their discovery times 

25 For vertex In SortedV                         // iterate each vertex in V 

26       features = List( )       // create a list to store the features from reverse geocoders 

27       geoLocation = getGeoLocation(vertex)     // get the geographic coordinates  

28       feature = ReverseGeocoder.reverseGeocode(geoLocation)   // retrieve feature 

29       features.append(feature)                   // append the feature to the list 

30       resultFeatures[vertex] = features      // add the features for each vertex 

31 EndFor      

 

time for trigger modeling. As noted, trigger modeling needs an estimated evacuation time 

for the threatened population as the input. When trigger modeling is integrated with 

reverse geocoding, the uncertainty in the input time should be taken into account. Figure 

3.6 illustrates the feature selection process. Assume that the IC’s most probable 

evacuation time estimate (ETE) for a threatened community is Tmost and the derived 

trigger buffer for it can be denoted ETB(Tmost). Given that Tmost is usually estimated using 
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evacuation traffic simulation or simply based on the IC’s estimate, the actual time T 

could fall within a range [Tmin, Tmax], where Tmin denotes the minimum probable ETE 

while Tmax the maximum probable ETE. As noted, the ETB calculated by trigger 

modeling is a time buffer and the size of the ETB will increase with the increase of the 

input time. So when Tmin, Tmost, and Tmax are all given, three ETBs can be generated 

respectively using trigger modeling, as shown in Figure 3.6(a). Note that ETB(Tmost) is 

used as the input for reverse geocoding to extract the geographic features along its 

boundary. The spatial space for [Tmin, Tmax] can be derived by subtracting ETB(Tmin) 

from ETB(Tmax). Figure 3.6(b) shows the derived ring area that can be used for feature 

selection. All the features within the ring area could be used as trigger points, and when 

the fire crosses them, the threatened residents will have time T   [Tmin, Tmax] to evacuate 

to safer places.  

The algorithm for the feature selection process is shown in Table 3.3. Note that 

the ETB subtraction operation is to subtract one small ETB from a large one, and it is 

based on the raster data model. Moreover, the derived geographic features in the reverse 

geocoding step are points with geographic coordinates, and coordinate transformation 

needs to be performed to examine the spatial relationship between the features and the 

derived selection space in this step. All the features falling within the selection space are 

reserved and could be used as trigger points. The uncertainty in input times for trigger 

modeling is transformed to a two-dimensional selection space and this time-space 

transformation enables feature selection and can help the ICs develop a better 

understanding of input time uncertainty in setting triggers during wildfire evacuations.  
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Figure 3.6 Illustration of the feature selection process 

 

Table 3.3 Algorithm for feature selection 

1 Input:  Tmost                                                // the input time for trigger modeling 

2             Tmin                                                 // the lower bound 

3             Tmax                                                 // the upper bound 

4 resultFeatures = List( )                               // a list to store the selected features 

5 ETB(Tmost)  = TriggerModeling(Tmost)             // create the ETB for time Tmost  

6 ETB(Tmin) = TriggerModeling(Tmin)                // create the ETB for time Tmin 

7 ETB(Tmax) = TriggerModeling(Tmax)                // create the ETB for time Tmax 

8 SelectionSpace = ETB(Tmax) - ETB(Tmin)        // create selection space 

9 features  = ReverseGeocoding (ETB(Tmost))    // get geographic features  

10 For feature In features                                     // for each geographic feature 

11       If feature Is Within SelectionSpace   // if the feature falls within the space 

12           resultFeatures.append(feature)     // add the feature to the final result set 

13       EndIf 

14 EndFor 
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3.4.4 Implementation of the method 

This subsection introduces the implementation of the method. For the first step in 

the proposed method, the three-step trigger modeling procedure is used to create ETBs 

for the threatened geographic assets. As mentioned above, the software FlamMap is used 

for fire spread modeling, and then a C++ program is used to construct the fire travel time 

network and perform shortest path analysis to calculate the ETBs. The second step—

reverse geocoding—can employ either manual reverse geocoding or online reverse 

geocoding services. The latter can be conveniently integrated into various information 

systems and has enjoyed great popularity in the era of mobile computing. Moreover, such 

online services also relieve users from compiling reference data and handling all the 

technical details in many reverse geocoding practices. Since many services are managed 

by commercial companies and it is costly to maintain these services, many services will 

have limitations on the number of requests per day the users can make for free. Note that 

the users can always pay a certain fee to access unlimited service. When users make a 

request using these online services, the input geographic coordinates contained in the 

Hypertext Transfer Protocol (HTTP) request are extracted by these services, and the 

nearest feature is retrieved from the spatial databases and returned to the user in either an 

Extensible Markup Language (XML) or JavaScript Object Notation (JSON) format. The 

returned files in these structured formats can be easily interpreted by most programming 

languages, which makes such web services popular in modern software systems. Thus, 

online reverse geocoding is used in this work. Specifically, the service used is GeoNames, 

which is a global geographic database that contains millions of various geographic 

features. The GeoNames “findNearby” reverse geocoding application program interface 
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(API) can return the nearby feature for an input geographic point in XML or JSON 

format. Python was used to implement the proposed method. Two open source Python 

libraries were used in the implementation: the Universal Transverse Mercator (UTM) 

library was used to perform map projection between geographic and UTM coordinates 

and the PyShp library was used to save the final selected features into a shapefile format 

file.  

 

3.5 Case study 

With a combination of flammable vegetation (e.g., chaparral) and extreme 

weather conditions (Santa Ana winds), southern California has become one of the most 

vulnerable areas to wildfires in the U.S. Wildfires have caused significant losses of life 

and property in this area (Rogers, 2005). The area chosen for the case study is located in 

Julian—a census-designated place (CDP) in the east of San Diego County, California. 

The 2003 Cedar fire occurred in this area and caused 26 fatalities and the loss of 

thousands of buildings. Specifically, the Julian downtown area and the Whispering Pines 

and Kentwood communities were included as the threatened residential area in this case 

study. The selected residential area is surrounded by grass, shrub, and tree fuel types and 

can represent many fire-prone communities in the American West. As shown in Figure 

3.7, the residential area used as the input for trigger modeling is a raster polygon. The 

administrative boundary dataset of Julian was acquired from the GIS department of San 

Diego County (SanGIS). The fuel, DEM, aspect, slope, and canopy cover data were 

downloaded from the LANDFIRE project, an open data portal that provides national 

datasets used in wildfire-related studies in the U.S. (Rollins, 2009).  
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Figure 3.7 Map of Julian, California 

 

All the data acquired from LANDFIRE are at 30 m resolution, and the datasets 

include 1500×1500 raster cells and cover Julian and its surrounding area. Specifically, the 

fuel data in this study use the 13 Anderson fuel models (Anderson, 1982). Burnable fuel 

model 1 (short grass), 2 (timber), and 5 (brush) account for 58.4%, 22.6%, and 7.8%, 

respectively, while unburnable fuel model 91 (urban) and 99 (barren) are 2.7% and 4.2%, 

respectively. These fuel models account for 95.8% of all raster cells. The environmental 

parameters listed in Table 3.4 were used as the input for fire spread modeling.  

 

Table 3.4 Environmental parameters for fire spread modeling 

Wind direction Wind speed (km/h) Dead fuel moisture (%) Live fuel moisture (%) 

1 h 10 h 100 h Wood Herbaceous 

Northwest 16 5 5 5 65 65 
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The input ETEs Tmin, Tmost, and Tmax for trigger modeling were set to 75 min, 90 

min, and 105 min, respectively. The selection space was calculated by subtracting the 75 

min ETB from the 105 min ETB. As shown in Figure 3.8(a), the ETBs for input 

evacuation times of 75 min, 90 min, and 105 min were mapped in different colors around 

the Julian residential area. Figure 3.8(b) shows the boundary of the 90 min ETB, which 

was used to derive the query points for reverse geocoding. A total number of 1,023 query 

points were employed to retrieve geographic features using the GeoNames reverse 

geocoding service, and 28 unique features were derived as the results, which are shown 

as points in Figure 3.8(c). In the final step, the selection space was generated by 

subtracting the 75 min ETB from the 105 min ETB, which is shown as the blue area in 

Figure 3.8(d). Five features fall within the constructed selection space, as shown in 

Figure 3.8(d).  

The features derived from GeoNames include various types of natural and man-

made features, such as a populated place, mine, school, park, reservoir, and stream. These 

derived features could be potentially used as valuable trigger points. Note that the final 

five features derived using the proposed method could be potentially used as trigger 

points to provide residents with 75 ~ 105 min for their evacuation, assuming the real 

fire’s rate-of-spread (ROS) does not exceed the modeled ROS. Features that fall between 

the selection space and the residential area could be used as trigger points for an ETB 

generated using an evacuation time less than 75 min; and those falling out of the selection 

space could be potentially used for an ETB derived using an input time greater than 105 

min. Table 3.5 lists the five features in Figure 3.8(d). Specifically, the GeoNames feature 

identification (ID), name, and feature class are included for each feature. 
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Figure 3.8 Maps of ETBs and the retrieved geographic features 

 

Table 3.5 Retrieved geographic features from GeoNames 

GeoNamesID Name Feature class 

5345692 El Dorado Mine spot building farm 

5346201 Ella Mine Group spot building farm 

5337485 Cimarron Elementary School spot building farm 

5345212 Eastwood Creek stream lake 

5363094 Keystone Pilot Mine spot building farm 
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3.5.1 Feature prominence 

One issue related to the value of using derived features as trigger points is 

saliency, which refers to the degree to which a feature can be identified from its 

surrounding environment and used by nearby firefighters for communicat ion and 

navigation purposes during wildfire evacuations. We performed a viewshed analysis for 

the four derived features in Table 3.5. The feature “Ella Mine Group” was excluded 

because it is very close to “El Dorado Mine”. As shown in Figure 3.9, when a feature is 

used as a trigger point, the nearby firefighters located within the viewshed could easily 

detect it when the fire crosses the trigger point. This could also help firefighters 

communicate with others about the whereabouts of the fire and facilitate evacuation  

 

 

Figure 3.9 Results of viewshed analysis for the trigger points 
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warnings. From a visibility perspective, “Eastwood Creek” could be more effective than 

others because its viewshed covers a larger area that falls between the feature and the 

community. Note that viewshed analysis does not take into account the obstacles (e.g., 

smoke, trees, and buildings) between the firefighters and the trigger point, and more 

research should be conducted on this topic to develop a more complete set of metrics for 

feature prominence. Moreover, another aspect of saliency is about people’s spatial 

perception, and more empirical studies should be done to further examine how to use 

prominent geographic features as trigger points to support communications and 

navigation during wildfire evacuations. 

 

3.5.2 Spatial configuration 

In order to demonstrate the potential use of a derived trigger point from 

GeoNames, we selected the Eastwood Creek as a trigger point for three wildfire scenarios, 

as shown in Figure 3.10. Wildfire simulation was performed for each ignition point using 

the same environmental inputs listed in Table 3.4. The fire arrival and lead times for the 

ETBs and trigger point calculated using fire simulations are listed in Table 3.6. Fire 

arrival time contours were created to better illustrate the spatial relationships between fire 

perimeters (the numbers denote fire travel times) and the trigger point as well as their 

impacts on evacuation timing, as shown in Figure 3.11. In scenario 1 (Figure 3.11(a) and 

(b)), the modeled fire reached the community before it crossed the trigger point, which 

implies that this feature was not useful for this scenario. In scenario 2 (Figure 3.11(c)), 

when the fire crosses the trigger point, the residents should have about 70 min to evacuate 

before the fire reaches the community. In scenario 3 (Figure 3.11(e) and (f)) the lead time  
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Figure 3.10 Three scenarios for evaluating the method  

 

when the fire crosses the trigger point is 42 min, which may lead to insufficient warning 

time to evacuate. Note that the trigger point is located to the east of the boundary of the 

90 min ETB, which results in less lead time when it is used to trigger an evacuation 

warning, as shown in a larger scale map of scenario 2 in Figure 3.11(d). From the spatial 

configurations of fire perimeters, ETBs, and the trigger point, we can come to two 

conclusions. First, a trigger point has more value when it is close to the buffer boundary. 

Second, a trigger point has more value when it is closer to the fire front because wildfires 

can spread around a point feature. Thus, the ICs should use the retrieved features that are 

closer to the boundary of the ETB and the fire front as trigger points in wildfire 

evacuations. Another finding from the case study is that when retrieving features to set 

trigger points, we cannot simply reply on the geographic distance because the fire 

perimeters are usually skewed. Thus, all computations should be conducted in a space 

characterized by fire travel times rather than a simple Euclidean space.  
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Table 3.6 Fire arrival and lead times from wildfire simulations 

Fire arrival time (lead time)/min Ignition 1 Ignition 2 Ignition 3 

105 min ETB 420 (105) 239 (103) 239 (105) 

90 min ETB 437 (88) 253 (89) 256 (88) 

75 min ETB 458 (67) 269 (73) 270 (74) 

Trigger point 538 (-13) 272 (70) 302 (42) 

Community 525 (0) 342 (0) 344 (0) 

 

 

 

Figure 3.11 Fire perimeters for the three scenarios 
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3.5.3 Computational efficiency 

In the above case study, the centroids of all the boundary cells were used as the 

query points. Since it is computationally intensive to retrieve features from online reverse 

geocoding services, adjustments should be made to reduce the number of query points 

when we employ the proposed method to set trigger points for operational use purposes 

in wildfire evacuations. The centroid of the residential area was used to divide the study 

area into four quadrants. The proposed method can transform the centroids of the 

boundary cells of the ETB to a linear sequence of query points, which enables users to 

sample the query points using different intervals, as shown in Figure 3.12. We also 

visualized the distance between each query point and its corresponding feature, which 

reveals that the spatial configuration of the features will influence the efficiency the 

query process. The details of the analyses are listed in Table 3.7. Note that 15 out of 18 

features can be retrieved using only 78 query points, which reveals that we could use 

query points at resolutions coarser than 30 m since the feature density in this area is low. 

Moreover, we calculated the average computation time for each scenario by repeating the 

query process 10 times (Table 3.7) using a server with a two-core 2.3 GHz CPU, 4 GB 

memory, and stable network access in the university data center. The results reveal that 

the computation can be significantly reduced by selecting the query points close to the 

fire front and using larger sampling intervals. Moreover, parallel computing can also be 

used to speed up the computation. Thus, the proposed method for feature retrieval can 

also be effectively tailored for operational use. In terms of the computation time 

consumed for the whole method, the trigger modeling process is more time-consuming 

because a separate software package FlamMap is used to calculate fire spread rates.  
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Figure 3.12 Reverse geocoding results for sampled query points 

 

Table 3.7 Reverse geocoding results for different sampling intervals 

Sampling 

interval  

Number of query 

points 

Number of 

features 

Computation time 

(s)  

1 612 18 198.67 

2 306 18 98.8 

4 154 16 49.4 

8 78 15 26.1 
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3.6 Discussion 

This section includes further discussions on several problems and implications 

concerning the proposed method. First, the method in this work involves the coupling of 

trigger modeling and reverse geocoding. Specifically, trigger modeling can be considered 

as a reverse fire spread modeling process, and the ignition is from the input residential 

area in the case study. In terms of data model in GIS, trigger modeling is based on the 

raster data model and the calculation of the ETB is based on the shortest path algorithm 

performed over a constructed fire travel-time graph. Since reverse geocoding is based on 

vector points, conversion between vector and raster model is used to fill the gap between 

trigger modeling and reverse geocoding. Specifically, when an ETB is given as the input 

for reverse geocoding, the centroids of its boundary cells are extracted and used as the 

query points. After the geographic features are derived using reverse geocoding, these 

features are converted to raster cells and used in the third step of the method to select the 

features that can satisfy the evacuation time constraints. Note that a graph is used to 

represent the boundary of the ETB and the DFS graph traversal algorithm is employed to 

search the graph and derive an array of query points that are spatially adjacent. These 

practices align with the model and data structure utilized in trigger modeling. Since a 

variety of data used in fire spread modeling are in raster format, it is simple to perform 

raster-based fire spread modeling and the computation involved is acceptable. However, 

compared to the vector data model, the raster model lacks representational accuracy. 

Thus, future work could be conducted to examine the feasibility of using the vector 

model in trigger modeling and compare the difference between the two models in the 

generated ETBs.  
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Second, this work uses a publicly available online reverse geocoding service to 

retrieve geographic features around the boundary of the ETB. With the popularity of 

cloud computing, software as a service (SaaS) is being widely adopted in geospatial 

cyber-infrastructure (Yang et al., 2011; Yang, Raskin, Goodchild, & Gahegan, 2010). As 

noted, online reverse geocoding services can be integrated into various information 

systems with ease. However, the black-box characteristics of these online services pose 

challenges in various applications. For example, accuracy and privacy have been 

considered significant concerns for using online geocoding services in crime studies 

(Kounadi et al., 2013). In the context of trigger modeling, the accuracy of these online 

services is important, while privacy may not be a big concern. Specifically, the 

importance of the accuracy of these services lies in that the accuracy of the locations of 

the derived features that are used as trigger points could determine the evacuation timing 

for the residents at risk during wildfire evacuation. Thus, further study should be done to 

examine the accuracy of these online reverse geocoding services to help develop a better 

understanding of them before they are used in real-world practices. Another direction for 

future research is to examine the spatial distribution of prominent geographic features in 

the WUI and its surrounding wildland area so as to evaluate the potential of using these 

features as trigger points in these areas. 

Third, the geographic features retrieved from online reverse geocoding services 

are represented as geographic points, and the proposed method selects the features as 

trigger points based on the spatial relationship between them and the selection area 

calculated using the input time range. Note that a point can effectively represent small 

scale geographic features like a building but cannot represent features like rivers and 
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roads with an accepted level of accuracy. Thus, we also need to take into account spatial 

representation when using features as trigger points. The feature retrieved from 

GeoNames is a point feature, while Eastwood Creek should be represented as a polyline 

feature. Note that when a linear feature is used as a trigger point, its orientation and the 

spatial relationship between it and the fire perimeters also influence its effectiveness. It is 

also worth mentioning that the features that could be used as trigger points could be at a 

very fine scale and may not be readily available from existing data sources. A digital 

gazetteer is defined as a collection of geographic names with their footprints and 

descriptions (Goodchild & Hill, 2008; Hill, 2000). GeoNames is a global gazetter, but the 

footprints of the features are points. As a matter of fact, in a typical digital gazetteer, the 

footprints of geographic features are no longer restricted to points but also can be 

represented using polylines and polygons. Thus, further research could be conducted to 

examine how to design and build a digital gazetteer to support trigger modeling. 

Specifically, the features derived from a gazetteer could be points, polylines, and 

polygons, which will involve more complex spatial analysis during the feature selection 

step. More efforts could be made in future work to compile detailed geographic data and 

build a special web service for trigger modeling. Local emergency managers could work 

with their planning departments to inventory prominent geographic features that could be 

used as trigger points and use them in evacuation planning. 

Fourth, further research needs to be done to further examine the uncertainty 

associated with the input time for trigger modeling. In this work, 15 min was used to 

derive a time range to demonstrate the effectiveness of the proposed method. The input 

time for trigger modeling is usually based on the time needed for the safe evacuation of 
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the threatened population (Cova et al., 2005). Trigger buffers generated using different 

input times could be associated with different PARs. For example, if the input time is 

larger than the time needed by the residents or firefighters to evacuate to safe places, the 

generated trigger buffer could serve as an ETB; otherwise it could be associated with SIP. 

Thus, more work needs to be done to model the uncertainty in the input time. When 

estimating evacuation times for a threatened WUI community, traffic simulation could be 

employed to achieve the goal (Cova & Johnson, 2002; Wolshon & Marchive III, 2007). 

And the model proposed by Lindell (2008) could be modified and leveraged to take into 

account findings from empirical studies and calculate the ETEs. Thus, evacuation traffic 

simulation could be performed to model the uncertainty in the input time from a 

statistical perspective, which will further improve trigger modeling. 

 

3.7 Conclusion 

The proposed method provides a means of associating the ETBs generated by 

trigger modeling with geographic features in the real world. The case study reveals that 

features close to buffer boundary and the fire front may have more value when used as 

trigger points. Also, salient features may also have more value because they make it 

much easier for officials (or residents) to detect when the trigger event has occurred. The 

proposed method can be used for both setting trigger points long before any actual fire 

occurs (strategic) and setting trigger points during a fire (operational) application. This 

supplements the existing trigger modeling method and makes it more applicable in real-

world evacuation scenarios.  

In conclusion, this work presents a method that supplements current trigger 
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modeling by associating geographic features with the ETBs generated by trigger 

modeling, and the case study demonstrates the feasibility of the method for strategic and 

operational uses in wildfire evacuations. Note that the method represents a preliminary 

attempt toward making trigger modeling more applicable in real-world practices and 

could be further improved in the aspects mentioned in the discussion section. It is also 

worth mentioning that this line of research involves the use of prominent geographic 

features in exurban areas and may also be potentially employed in wilderness landmark-

based navigation and search and rescue (SAR) (Duckham, Kulik, & Worboys, 2003; 

Millonig & Schechtner, 2007; Zhu & Karimi, 2015). Future work can focus on above-

mentioned aspects so as to develop a better understanding of using salient geographic 

features to facilitate communications and navigation during wildfire evacuations.  
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CHAPTER 4 

 

SETTING WILDFIRE EVACUATION TRIGGERS BY COUPLING 

FIRE AND TRAFFIC SIMULATION MODELS: 

 A SPATIOTEMPORAL GIS APPROACH 

 

4.1 Abstract 

Wildfire evacuation triggers are prominent geographic features utilized in wildfire 

suppression and evacuation practices, and when an approaching fire crosses a feature, an 

evacuation warning is issued to the communities or firefighters in the path of the fire. 

Current wildfire trigger modeling methods consider the evacuation time as an input from 

a decision maker and use fire spread modeling to create a trigger buffer around a 

threatened population. This paper extends the current trigger modeling method by 

coupling fire and traffic simulation models to set triggers using a spatiotemporal GIS 

framework. A key aspect of this framework is that evacuation time is estimated from 

traffic simulation models rather than expert judgment. A three-step method is proposed to 

couple the two models and evaluate the generated trigger buffers. The first step is to use 

traffic simulation to estimate a range of evacuation times for the threatened community. 

The second step calculates the cumulative probabilities for distinct evacuation times and 

generates probability-based trigger buffers. The last step evaluates the value of the 

generated buffers by coupling fire and traffic simulation models to examine the spatial 
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configurations of evacuation traffic and fire perimeters. A case study of Julian, California 

is used to test the proposed method. The results indicate that the proposed method 

improves the dynamic representation of evacuation traffic and fire spread during wildfire 

evacuations, which could help improve our understanding of wildfire evacuation timing 

and decision making. Finally, the paper concludes with the strengths and limitations of 

the proposed method, as well as future research directions.  

 

4.2 Introduction 

Wildfires are a common hazard in the western U.S. due to seasonal precipitation 

variability and frequent droughts, and studies have shown that the number of wildfires 

has increased in recent decades (Dennison, Brewer, Arnold, & Moritz, 2014; Westerling, 

Hidalgo, Cayan, & Swetnam, 2006). The Wildland-Urban Interface (WUI) is defined as 

the area where urban areas and wildlands meet or intermix (Stewart, Radeloff, Hammer, 

& Hawbaker, 2007). In the American West, with the rapid population increase in the 

WUI, wildfires pose a significant risk to many residents (Hammer, Stewart, & Radeloff, 

2009), and public safety has become an increasing concern for fire-prone WUI 

communities (Brenkert–Smith, Champ, & Flores, 2006; Cova, 2005; Cova, Theobald, 

Norman, & Siebeneck, 2013; Paveglio, Carroll, & Jakes, 2008). Recommending timely 

and effective protective actions to the public is important when wildfires threaten life and 

property. The most common protective actions in wildfires include evacuation and 

shelter-in-place, and the latter can be further classified into shelter-in-refuge and shelter-

in-home (Cova, Drews, Siebeneck, & Musters, 2009). In the U.S., shelter-in-place 

recommendations are rare, and evacuation is the primary protective action (Drews, 
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Musters, Siebeneck, & Cova, 2014). 

In the U.S., first responders are responsible for both wildfire suppression and 

evacuation when a fire poses a threat. Incident commanders (ICs) need to take into 

consideration the fire, the population in the risk area, as well as the evacuation route 

systems to evaluate the risk before they issue the most effective protective action notices 

to the residents at risk. Evacuating the right residents at the right time is a critical and 

challenging problem. Evacuating the residents too early might cause unnecessary 

community disruption and adversely affect the credibility of emergency managers if the 

fire does not ultimately threaten the evacuated residences, due to either successful fire 

suppression or the change of weather. Conversely, if the residents are evacuated too late, 

they could be placed in danger because they might not have enough time to safely leave 

the threat area (Handmer & Tibbits, 2005).  

The reason evacuation timing is a complex problem in wildfire evacuation is two-

fold. On one hand, the clearance time for communities at risk must be estimated before 

ICs can issue evacuation orders to the threatened residents. The total network clearance 

time is composed of the authorities’ warning receipt time, the households’ warning 

receipt time, preparation time, and vehicular travel time (Lindell, 2008). On the other 

hand, ICs have to estimate the available time for communities to evacuate before any 

orders can be made. The available time in this context refers to the time the residents 

have before the fire approaches the residences, which is primarily determined by fire 

progression rates. Thus, the complexity of evacuation timing puts decision makers in a 

difficult situation when they have to issue evacuation orders. 

In wildfire suppression and evacuation, it is a common practice to use prominent 
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geographic features such as ridges and rivers as trigger points (Cook, 2003). When a fire 

crosses a feature, the community or firefighters in the path of the fire will be notified to 

evacuate. A wildfire evacuation trigger is a timing mechanism that takes into account 

both spatial and temporal dimensions of the risk fire poses to the residents. Current 

trigger modeling methods employ fire spread modeling to calculate the fire spread rates 

and then use geographic information systems (GIS) methods to derive a buffer around a 

place P with a given time T using the shortest path algorithm (Cova, Dennison, Kim, & 

Moritz, 2005). If a fire crosses the boundary of the trigger buffer, the residents in the path 

of the fire should be notified to evacuate, and they will have time T for their safe 

evacuation. Trigger modeling can play a significant role in helping the ICs develop a 

better understanding of evacuation timing. However, the previously proposed method 

assumes that the total evacuation time T is given as an input from a decision maker, and 

time T could be estimated based on a more systematic method.  

Wildfire evacuations occur in both time and space, and modern GIS has the 

capability to model complex spatiotemporal processes (Goodchild, 2013; Kwan, 

Richardson, Wang, & Zhou, 2015; Miller & Shaw, 2015; Yuan, Nara, & Bothwell, 2014). 

Traffic simulation has been widely used to estimate evacuation time in evacuation 

modeling for decades (Southworth, 1991) and can be used to estimate the input 

evacuation time T for trigger modeling. This purpose of this research is to couple fire and 

traffic simulation models by using a spatiotemporal GIS framework to improve our 

understanding of wildfire evacuation timing and better support evacuation decision-

making. Specifically, the research questions to be addressed include: 1) how can the 

uncertainty in the evacuation time be modeled and represented when we couple fire and 
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traffic simulation models to set triggers? 2) Will the estimated evacuation times from 

traffic simulation have value when they are used as the input for trigger modeling to 

create evacuation trigger buffers? 3) How can we evaluate the value of trigger buffers 

generated using the estimated evacuation times? 

The remainder of this paper is organized as follows. Section 4.3 provides a 

literature review of evacuation traffic simulation, wildfire spread and trigger modeling, 

and spatiotemporal GIS. The proposed method is presented in section 4.4, and a case 

study of Julian, California is given in section 4.5. Finally, sections 4.6 and 4.7 end this 

paper with conclusions and future research directions. 

 

4.3 Background 

4.3.1 Evacuation traffic simulation 

The traditional four-step demand model—trip generation, trip distribution, mode 

split, and traffic assignment—has been widely used in transportation planning to evaluate 

and balance demand and supply so as to build better transport systems (de Dios Ortúzar 

& Willumsen, 2001). Based on transportation planning models, Southworth (1991) 

formulated regional evacuation modeling as a five-step process: 1) trip generation; 2) 

evacuee mobilization; 3) destination selection; 4) evacuation route selection; and 5) 

evacuation plan setup, analysis, and revision. Travel demand modeling deals with 

modeling the number of trips that will be generated from the origins over a given 

duration of time (Pel, Bliemer, & Hoogendoorn, 2012). Note that the risk area should be 

delineated before we perform travel demand modeling (Wilmot & Meduri, 2005). In 

general, there are two kinds of travel demand models in evacuations: sequential travel 
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demand modeling and simultaneous travel demand modeling (Pel et al., 2012). Sequential 

travel demand approaches involve modeling travelers’ departure time choice, which is 

accomplished by applying a response curve to determine the percentage of trips for each 

time interval. Certain probability distributions can be used for trip generation, e.g., the 

Poisson distribution (Cova & Johnson, 2002). “S-shaped” departure time curves have 

been widely used in travel demand modeling in evacuation studies (Lindell & Prater, 

2007a). For example, Tweedie, Rowland, Walsh, Rhoten, and Hagle (1986) used a 

Rayleigh probability distribution function to approximate the mobilization time. The 

simultaneous travel demand models usually utilize some specific binary logit models to 

calculate the share of households that choose to evacuate over time, and the accuracy of 

these models relies on the utility functions used in evacuation decision-making modeling 

(Pel et al., 2012). 

In general, traffic simulation models can be categorized into macroscopic, 

mesoscopic, and microscopic based on their levels of detail (Pel et al., 2012). With the 

rapid development of computing power, microscopic traffic simulation has enjoyed great 

popularity in evacuation modeling and simulation in recent years (Chen, Meaker, & Zhan, 

2006; Cova & Johnson, 2002). The primary advantage of microscopic traffic simulation 

is that it can model detailed behaviors concerning the activity of a vehicle agent over the 

road network, which can be used to discover new knowledge concealed by macroscopic 

approaches (Chen & Zhan, 2008). Han, Yuan, and Urbanik (2007) put forward a four-tier 

measures of effectiveness (MOE) framework for evacuation: 1) evacuation time; 2) 

individual travel time and exposure time; 3) time-based risk and evacuation exposure; 

and 4) time-space-based risk and evacuation exposure. These MOEs could be derived by 
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analyzing the results from a microscopic evacuation traffic simulation. Note that this 

work focuses on using traffic simulation to estimate the evacuation time of a community 

to provide input for trigger modeling.  

 

4.3.2 Wildfire spread and trigger modeling 

Wildfire spread is a complex spatiotemporal process. Since it is not realistic to 

conduct experiments using a real fire to examine its impacts on other ecological or human 

systems, computerized modeling of wildfire spread can be used to perform simulations. 

Wildfire spread modeling includes several key steps: fuel type modeling, fire behavior 

modeling, and fire growth modeling. Different fuels are categorized into fuel models 

based on their physical characteristics. A fuel model usually includes its unique 

identification (ID) and key values for relevant physical characteristics for calculating fire 

behavior (e.g., fuel load, and fuel bed depth) (Anderson, 1982). Note that different 

countries usually develop and use different fuel model systems. In the U.S., two widely 

used fuel model systems are the 13 Anderson Fuel Models (Anderson, 1982) and the 40 

Scott and Burgan Fuel Models (Scott & Burgan, 2005). The Rothermel fire behavior 

model (Rothermel, 1972), a semiphysical model that uses mathematical equations 

calibrated by empirical experiments to model rate of spread and fire intensity, has been 

widely used in many fire modeling software systems, e.g., FlamMap (Finney, 2006) and 

FarSite (Finney, 1998). The elliptical fire shape model has been widely used to model fire 

spread rates on a two-dimensional plane (Van Wagner, 1969). Fire growth models are 

used to model the propagation of fire in the landscape, and growth models include the 

minimum fire travel time model (Finney, 2002) and the cellular automata (CA) model 
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(Clarke, Brass, & Riggan, 1994). Wildfire simulation has been widely used in a variety of 

applications, e.g., wildfire management (Alexandridis, Russo, Vakalis, Bafas, & Siettos, 

2011), wildfire risk assessment in the WUI (Massada, Radeloff, Stewart, & Hawbaker, 

2009), and evaluation of wildfire risk on wildlife habitat (Ager, Finney, Kerns, & Maffei, 

2007).  

Wildfire evacuation triggers are agreed-upon prominent geographic features in the 

landscape, which are used by emergency managers to issue evacuation orders or take 

other emergency response measures should a fire cross one (Cook, 2003; Cova et al., 

2005). Typical wildfire evacuation triggers include prominent features like ridge lines, 

rivers, and roads. Based on the trigger mechanism in hurricane evacuations, Cova et al. 

(2005) introduced the idea of modeling triggers in wildfire evacuations and proposed a 

method that uses fire spread modeling and GIS to set triggers. Dennison, Cova, and 

Moritz (2007) formulated trigger modeling into a three-step model: 1) fire behavior 

modeling; 2) construction of the fire travel-time graph; and 3) creation of trigger buffers 

using the Dijkstra’s shortest path algorithm (Dijkstra, 1959). Previous studies have shown 

that trigger modeling could be potentially used in protecting firefighter crews (Cova et al., 

2005; Fryer, Dennison, & Cova, 2013), community evacuation planning (Dennison et al., 

2007; Larsen, Dennison, Cova, & Jones, 2011), and pedestrian safety protection in the 

wildlands (Anguelova, Stow, Kaiser, Dennison, & Cova, 2010). Note that the previously 

proposed trigger modeling method considers the evacuation time as a given input from a 

decision maker, and the work herein examines how to employ traffic simulation to 

estimate the evacuation time.  
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4.3.3 Spatiotemporal GIS 

GIS was designed and used to store, manage, process, and analyze static spatial 

data in the early stages of its development (Chang, 2012). However, many geographic 

phenomena are complex spatiotemporal processes, which calls for more advanced GIS 

capabilities to model and represent both the spatial and temporal dimensions of these 

phenomena (Langran & Chrisman, 1988). Space-time modeling and representation in 

GIS can be generally divided into two categories: the discrete and the continuous view 

(Peuquet, 2001). The discrete view focuses on representing and modeling the movements 

of discreet objects in the space over time, and this line of research is characterized by 

time geography (Hägerstraand, 1970), which has enjoyed great popularity in mobility 

studies in the past few years (Miller & Shaw, 2015). Specifically, in the context of 

wildfire evacuation, the evacuees can be represented as moving objects within the road 

network over time. The continuous view concerns representing objects as attributes 

attached to a location (Peuquet, 2001). In this regard, wildfire spread and trigger buffer 

can be represented and modeled as a raster polygon with fire travel time as an attribute. 

This work focuses on developing a GIS framework to study the space-time coupling of 

fire and traffic simulation models for trigger modeling. Recent years have witnessed the 

development of many space-time methods that support spatiotemporal queries (Pultar, 

Cova, Yuan, & Goodchild, 2010; Pultar, Raubal, Cova, & Goodchild, 2009; Yuan, 2001), 

and these methods could be employed to perform spatiotemporal queries and 

computation in the model coupling process in this work.  
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4.4 Research method 

Spatial representation to a large degree determines the methods used in 

subsequent modeling and analysis practices (Miller & Wentz, 2003). Trigger modeling 

uses the raster data model to represent the landscape. Figure 4.1(a) illustrates wildfire 

spread modeling, in which the fire starts from the ignition point and spreads outwards to 

create a series of perimeters. In trigger modeling, the fire spread rates in eight directions 

for each raster cell are reversed and a fire travel time graph is constructed. Then a 

shortest path algorithm is performed to traverse the graph from the input community 

outwards to create a trigger buffer, as shown in Figure 4.1(b). If a trigger buffer is 

generated for a given input time T, the threatened population in the input residential area 

will have time T to evacuate to safe places when a fire crosses the boundary of the buffer.  

Note that this example assumes that uniform topographic and fuel model inputs are used, 

and the wind is from the south. Thus, the fire perimeter is skewed towards the wind  

 

 

Figure 4.1 Illustration of wildfire spread and trigger modeling 
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direction, while the trigger buffer is skewed in the opposite direction. Similar to the time-

space convergence concept in transport geography (Janelle, 1969), wildfire spread and 

trigger modeling are based on time distance rather than Euclidean distance (Gatrell, 

1983). In the context of community wildfire evacuation, the ICs need to make protective-

action selections based on how much time is available before the fire reaches the 

threatened communities and how long it will take for the safe evacuation of the 

threatened population. Thus, evacuation timing plays a significant role in the ICs’ 

evacuation decision making.  

Wildfire evacuation occurs in both space and time. When a fire approaches a 

community and becomes a threat to the residents, relevant protective action 

recommendations may be issued. From a wildfire risk perspective, trigger modeling can 

be considered as an evacuation timing and warning mechanism based on fire risk. Yuan 

(1997) gives a summary of the spatiotemporal scales and sizes of resolution of different 

wildfire studies such as fire forecasting, analysis of fire phenomena, fire behavior/growth 

modeling, fire effect assessment, fire history, and fire management. The two key 

processes during wildfire evacuation include wildfire spread and the evacuation of the 

residents. These two processes are both complex spatiotemporal processes, and we need 

to take into account their spatiotemporal scales as well as sizes of resolution when 

coupling them. In this work, a spatiotemporal GIS framework is used to couple fire and 

traffic simulation models, as shown in Figure 4.2. Evacuation traffic takes place in the 

road network, which is a constrained geographic space. The estimated evacuation times 

are used as the input for trigger modeling. As for fire spread modeling, geographic 

distance between two adjacent raster cells is converted to fire travel times in different  
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Figure 4.2 A spatiotemporal GIS framework for model coupling  

 

directions. Note that the spatial dimensions of fire spread and traffic simulations are 

converted to fire travel time and evacuation time respectively. Then a time-space 

conversion is performed to generate a raster trigger buffer for a given input evacuation 

time T. Note that a trigger buffer is a time buffer and takes into account both evacuation 

and fire travel times. After the buffers are generated, fire and traffic simulation models 

are coupled to perform spatiotemporal computation and reveal the spatiotemporal 

patterns of evacuation traffic and fire spread. The following three subsections introduce 

the detailed steps of the coupling process.  

 

4.4.1 Step 1: estimate evacuation time using traffic simulation 

In the first step, traffic simulation is performed to estimate the evacuation time of 

a fire-prone community. Specifically, microscopic traffic simulation is used for 
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evacuation time estimation. Based on the five-step evacuation modeling procedure 

proposed by Southworth (1991), the workflow for estimating evacuation time is shown in 

Figure 4.3. Since wildfire evacuations are usually at a smaller geographic scale than 

hurricane evacuations, household-level travel demand modeling has enjoyed great 

popularity (Cova & Johnson, 2002; Wolshon & Marchive, 2007). Thus, household data 

are used to generate evacuation travel demand. Since the exact number of vehicles for 

each household is unknown, a statistical distribution is usually used to assign a number to 

each household as the number of vehicles, e.g., the Poisson distribution (Cova & Johnson, 

2002). Thus, a Poisson distribution is used to generate the number of vehicles to 

randomly assign to each household (e.g., 0, 1, 2...n). Determining the departure time 

profiles is a prerequisite for estimating evacuation time. It is assumed that all the 

households will choose to evacuate after they receive the warnings and the departure time 

D follows a normal distribution D ~ N(µ, σ), where µ is the mean departure time and σ 

the standard deviation. As for destination selection, it is assumed that all the evacuees  

 

 

Figure 4.3 Workflow of traffic simulation 



105 

 

will choose the closest egress. Finally, the assumption used for route selection is that all 

the evacuees will choose the shortest path.  

The total evacuation time is defined as the time span from the start of the 

evacuation (when the evacuation warning is sent out) to the time when the last vehicle 

reaches the destination egress in the road network. Han et al. (2007) point out that the 

evacuation time to 95% population evacuated is more practically meaningful compared to 

a complete 100% evacuation rate. Thus, the evacuation times when 50%, 75%, 95%, and 

100% of the population have arrived at the destination are calculated to evaluate the value 

of the estimated evacuation times as input for trigger modeling. And the four estimated 

evacuation times are denoted with T50, T75, T95, and T100, respectively, as shown in Figure 

4.4. For a given evacuation scenario, trip distribution and traffic assignment could be 

considered constant, and the evacuation travel demand will vary in each run of the 

simulation. Finally, n sets of four estimated evacuation times can be derived from n runs 

of simulation, and these evacuation times are used as the input to create trigger buffers in 

trigger modeling. Note that many traffic microsimulators have the capabilities to  

 

 

Figure 4.4 Illustration of the four estimated evacuation times 
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simulate the traffic using second as the time step. The final estimated evacuation times 

are converted to minutes since the temporal resolution for fire spread and trigger 

modeling is a minute. 

 

4.4.2 Step 2: generate probability-based trigger buffers 

In this step, the estimated evacuation times from Step 1 are aggregated and then 

used to generate probability-based trigger buffers. Note that since there could be repeated 

values in the n input evacuation times, the total number of unique evacuation times m 

should be no larger than n (1 ≤ m ≤ n). All the m distinct estimated evacuation times for a 

specific scenario are sorted in an ascending order and can be denoted with a set Te = 

{t1, …, tm}. Let fk (1≤ k ≤ m) be the cumulative frequency of evacuation time tk, and the 

probability that a trigger buffer bk generated using tk can ensure the successful completion 

of a specific evacuation is defined as    
  

 
, as shown in Figure 4.5(a). In this way, a 

trigger buffer bk is associated with a probability value pk. As shown in Figure 4.5(b), the 

probability of the outmost trigger buffer bm is pm = 100%. We need to associate the 

generated trigger buffer surface with the evacuation traffic simulation when interpreting 

the results. For any evacuation time tk ≤ tk+1 (1 ≤ k < m), the generated trigger buffer bk 

will fall within bk+1. For the outmost surface bm, all the trigger buffers generated fall 

within it, which means that if it is used as the trigger buffer in wildfire evacuation, the 

probability that it could ensure the successful completion of an evacuation for the specific 

scenario will be 100%; however, if we use the innermost surface b1 as the trigger buffer 

in this evacuation scenario, the probability that it can ensure the successful completion of 

the evacuation will be p1.  
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Figure 4.5 Illustration of probability-based trigger buffers 

 

The three-step procedure for trigger modeling is used to create trigger buffers, as 

shown in Figure 4.6 (Dennison et al., 2007). First, the fire spread modeling software 

package FlamMap is used to calculate the fire spread rates in eight directions for each 

raster cell. Second, the fire spread rates are used to compute the travel times between 

adjacent raster cells and construct a fire travel-time graph. Note that the nodes are the 

centroids of the cell and the weights of the edges denote the travel time from one node to 

its neighbor in that direction. Third, the edges in the graph are reversed and the Dijkstra 

(1959) shortest path algorithm is used to traverse the graph from the community cells 

outwards until the accumulated fire travel time reaches the input evacuation time T. Note 

that a trigger buffer is represented by a raster polygon around the community. The trigger 

buffers will be a set of raster polygons around the community. The time distance between 

the boundary of a trigger buffer and the community depends on the evacuation time and 

the fire travel time in that direction. Since fire spread rate is determined by many 

environmental factors (e.g., fuel model, topography, and wind), the shape of a trigger 

buffer is usually skewed.  
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Figure 4.6 Workflow of creating probability-based trigger buffers  

 

4.4.3 Step 3: evaluate the value of the generated trigger buffers 

In this step, wildfire and traffic simulation models are coupled to evaluate the 

value of the trigger buffers generated in Step 2. The conceptual diagram of the evaluation 

procedure is given in Figure 4.7. The probability-based trigger buffers are used as input 

for this step. The fire perimeter for each time step can be computed from wildfire 

simulation, and when the fire reaches the boundary of the evacuation trigger buffer at 

time t0, the community at risk will be notified to evacuate. The same environmental 

inputs, fire spread rates, and shortest path algorithm are used to construct a fire simulator. 

Note that when the fire reaches the community at time t2, the fire travel time t2 - t0 should 

align with the input evacuation time T for the trigger buffer.  
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Figure 4.7 Conceptual diagram of the evaluation procedure 

 

 After evacuation warnings are sent out, vehicles start to depart from the 

household origins and travel towards the egress nodes. In order to better evaluate the 

value of the generated trigger buffers, wildfire simulation is used to examine the spatial 

relationship between fire front and the vehicles en route. Beloglazov, Almashor, Abebe, 

Richter, and Steer (2016) used person-threat distance to measure evacuees’ exposure to 

fire risk during the evacuation process. In this work, the person-threat distance was also 

employed as a metric to evaluate the value of a trigger buffer. Specifically, the shortest 

distance between the fire front and the vehicles en route at time step t2 when the fire 

reaches the community is calculated, as shown in Figure 4.7. The trajectory of a vehicle v 

can be represented with a series of points with corresponding times TP(v) = {tp1, …, tp1}. 

Each element tp   TP includes time t and the location p and can be represented by tp = (t, 

p). For each vehicle v   V, we can derive the specific tp = (t, p) when t is equal to t2 and 

calculate the minimum distance between its location p and the fire front. Note that 

wildfire simulation model is based on the raster data model and the shortest distance is 

the minimum Euclidean distance between the point p and the centroids of the raster cells 

that represent the fire front at time step t2. The shortest distance could reflect the risk the 
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fire poses to the closest evacuee when it reaches the community. If the distance is too 

small, the evacuee could be trapped by the fire; otherwise if the evacuee is very far from 

the fire front, it means that the trigger buffer used may lead to early evacuation. 

Moreover, we also extract the locations of the evacuees and aggregate them at the road 

link level at time t2. If we map the results out, we can get a snapshot of the evacuation 

process such that we could more directly examine the spatial configuration of evacuation 

traffic and the fire front. In this way, we could develop a better understanding of the 

potential use of the estimated evacuation times in trigger modeling.  

 

4.5 Case study 

Southern California is one of the areas that are most vulnerable to wildfires in the 

American West due to flammable fuels (e.g., chaparral), seasonal drought, and Santa Ana 

wind events. A case study was conducted to evaluate the value of the proposed method, 

and Julian, a census-designated place (CDP) in San Diego County, California, was 

chosen as the study site. Julian is surrounded by wildlands, and the evacuation route 

system only includes a few exits, which makes it representative of many high fire-risk 

and low-egress communities in the western U.S. As shown in Figure 4.8, there are three 

exits in the evacuation route system—Highway 78 West, Highway 78 East, and Highway 

79 South. The residential area used is composed of three communities: the Julian 

downtown area, the Whispering Pines community, and the Kentwood-in-the-pines 

community. The household locations were derived by extracting the centroids of the 

residential land parcels downloaded from the GIS department of San Diego County—

SanGIS, and a total of 744 households in this area were used in this study.  
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Figure 4.8 Map of Julian, California 

 

Coding of the road network used to take a significant amount of time and efforts 

(Cova & Johnson, 2002). With the development of traffic simulators, existing road GIS 

data from various sources can be readily used in modern traffic simulation software. In 

this study, the evacuation module of an open-source traffic microsimulation software 

package named MATSim was used to perform traffic simulation and estimate the 

evacuation time (Lämmel, Grether, & Nagel, 2010). The road network data were from 

OpenStreetMap, a crowd-sourcing open data initiative with millions of contributors all 

over the world (Haklay & Weber, 2008). OpenStreetMap uses points, polylines, and 

polygons to represent various geographic features. Relevant tags are used to organize 

various attributes, and users can retrieve attributes from a feature record conveniently. 

The data from OpenStreetMap can be readily used in MATSim (Goetz & Zipf, 2012). 



112 

 

The downloaded road data were edited using an open-source tool named Java 

OpenStreetMap Editor (JOSM) and its MATSim plugin. Specifically, the speed limits of 

the highways and residential roads were set to 17.882 m/s (40 mph) and 11.176 m/s (25 

mph), respectively, during the network coding process.  

Egress points will also be the nodes on the road network and will be used as 

destination nodes. Points of egress could be derived from a specific local evacuation plan 

or from previous evacuation practices. Household-level Origin-Destination (OD) demand 

in microsimulation will be determined by the locations of households and points of egress 

on the road network. In this case study, it is assumed that a fire will arrive from the 

southeast, and all residents will use the western egress (Highway 28 West) as their exit. 

MATSim uses the number of “persons” to denote the number of trips from one origin 

node. Since a personal vehicle is the primary transport mode in wildfire evacuations in 

the U.S. (Wolshon & Marchive, 2007), a Poisson distribution number generator was 

implemented in Java to assign a random number to a household as the number of vehicles 

departing from this node. Specifically, the mean values used for the Poisson distribution 

were 2, 3, and 4. As for the departure times, two normal distributions with different 

standard deviations were used. As shown in Table 4.1, six scenarios with different 

combinations of travel demand and departure time profiles were used. Note that λ denotes 

the mean value of the Poisson distribution for travel demand, and µ and σ are the mean 

value and standard deviation of the normal distribution for departure times. The traffic 

simulation was run 100 times for each scenario to estimate the evacuation times. Note 

that the normal distribution is used for computation convenience, and use of this specific 

distribution does not affect the generalizability of the method.  
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Table 4.1 Parameters for different evacuation scenarios  

Scenario λ µ (min) σ (min) earliest (min) latest (min) 

1 2 40 5 0 80 

2 2 40 20 0 80 

3 3 40 5 0 80 

4 3 40 20 0 80 

5 4 40 5 0 80 

6 4 40 20 0 80 

 

 The calculated evacuation time estimates (ETEs) as well as their cumulative 

probabilities are listed in Table 4.2. Note that we calculated the evacuation times when 

50%, 75%, 95%, and 100% of the evacuees have arrived at the safe areas for each 

scenario. We also summarized the minimum, mean, maximum, and standard deviation of 

the evacuation times for each case. The corresponding cumulative probability values are 

shown in the parentheses. These estimated evacuation times can be used as the input for 

trigger modeling to generate trigger buffers, and each trigger buffer will be associated 

with the probability that it could ensure the successful completion of that evacuation for 

that specific scenario. 

Relevant data for fire spread modeling were prepared beforehand. These data 

primarily include vegetation cover data (fuel models), weather data (e.g., wind speed and 

wind direction), and topographic data (digital elevation model (DEM), slope, and aspect). 

The fuel model and topographic data were downloaded from LANDFIRE—a national 

open data initiative for wildfire studies (Rollins, 2009). The spatial resolution of all the 

raster data used is 30 m. The residential raster polygon was acquired by combining the 

convex hull of the households and the raster cells with unburnable fuel model values  
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Table 4.2 Cumulative probabilities for four ETEs (unit: min) in six scenarios  

Scenario 1 2 3 4 5 6 

T50 min 75(1%) 78(4%) 106(1%) 105(1%) 137(1%) 139(2%) 

mean 81.5(64%) 82.3(56%) 113.4(53%) 112.4(52%) 145.1(58%) 144.3(55%) 

max 88(100%) 88(100%) 122(100%) 119(100%) 155(100%) 151(100%) 

sd 2.6 2.4 3.5 2.7 3.2 2.7 

T75 min 111(2%) 113(2%) 159(1%) 158(1%) 209(1%) 210(1%) 

mean 118.7(55%) 119.1(56%) 169(52%) 168.1(51%) 219.4(58%) 218.8(63%) 

max 127(100%) 128(100%) 182(100%) 179(100%) 233(100%) 229(100%) 

sd 3.5 3.4 4.6 3.8 4.4 4.0 

T95 min 139(1%) 141(2%) 201(1%) 200(1%) 266(1%) 268(1%) 

mean 148.6(56%) 148.7(58%) 213.6(55%) 212.7(53%) 278.9(57%) 278.4(57%) 

max 159(100%) 160(100%) 229(100%) 227(100%) 295(100%) 292(100%) 

sd 4.4 4.2 5.5 4.9 5.5 5.1 

T100 min 146(1%) 148(1%) 211(1%) 211(2%) 280(1%) 282(1%) 

mean 156(53%) 156.2(52%) 224.8(54%) 223.9(51%) 293.8(57%) 293.3(57%) 

max 167(100%) 168(100%) 241(100%) 239(100%) 311(100%) 308(100%) 

sd 4.6 4.3 5.7 5.2 5.8 5.4 

 

around it. A south wind with speed 16 km/h (10 mph) was used for fire spread modeling 

in FlamMap. The 1 h, 10 h, and 100 h dead fuel moisture values used were 5%, and the 

live wood and herbaceous fuel moistures were set to 65%.  

The generated probability-based trigger buffers for scenario 1 are shown in Figure 

4.9. When the fire crosses the boundary of the outmost 88 min trigger buffer in Figure 

4.9(a), the probability that the lead time could ensure the successful completion of the 

evacuation in which 50% of the evacuees have arrived at the safe areas for this case is 

100%; if we use the minimum 75 min trigger buffer, the probability will be 1%. Thus, a 

trigger buffer with a larger probability value could better ensure the  successful 

completion of the evacuation. Note that the maximum evacuation time for a 100%  
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Figure 4.9 Generated probability-based trigger buffers for scenario 1 

 

evacuation is 167 min and this buffer can ensure a safe evacuation for this scenario but 

might lead to earlier evacuation and cause unnecessary disruptions when it is used in 

wildfire evacuation practice. In this way, the uncertainty in evacuation time can be 

reflected directly by the probability values associated with the generated trigger buffers, 

which could help facilitate the ICs’ decision making during wildfire evacuations.  

 The trigger buffers generated using the maximum evacuation times for different 
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scenarios are displayed in Figure 4.10. The evacuation times and sizes of trigger buffers 

increase with the increase of evacuation travel demand. For scenarios with the same 

travel demand, the speed of evacuation has little influence on the total evacuation time. 

We constructed a fire simulator using the fire spread rates from FlamMap and the shortest 

path algorithm and employed wildfire simulation to evaluate the value of the derived 

trigger buffers in Figure 4.10. As shown in Figure 4.11 (the numbers in the map denote 

fire travel times), the fire ignition point is located 4 km from the boundary of the 

residential area. Note that the fire perimeters are skewed downwind and the trigger 

buffers are skewed upwind. When the fire reaches the boundary of a trigger buffer at time 

t0, the threatened residents are warned to evacuate; when the fire reaches the boundary of 

the community at time t2, the residents are in the midst of evacuation and the person-

threat distances at this moment were calculated. The calculated fire travel times are 

shown in Table 4.3. Note that time T denotes the input times for trigger modeling and the 

maximum evacuation times from Table 4.2 were used. The time t = t2 – t0 computed from 

fire simulation aligns with the input time T. The locations of the en route vehicles were 

extracted at time t from the results of traffic simulation and the person-threat distances 

were computed. Table 4.4 gives the statistics of the person-threat distances for one run of 

the traffic simulation. For each scenario, the minimum person-threat distance increases 

when trigger buffers generated with larger input times are used (i.e., the risk to 

evacuating residents is reduced). When the maximum evacuation times for T100 are used 

for trigger modeling, all the evacuees have arrived at the safe area by the time the fire 

reaches the boundary of the community (i.e., the risk to the trailing evacuating residents 

is reduced).  
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Figure 4.10 Trigger buffers generated using 100% evacuation times for six scenarios 
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Figure 4.11 Fire perimeters from wildfire simulation 

Table 4.3 Derived fire travel times from fire simulation (unit: min) 

Scenario 1 2 3 4 5 6 

T50 T 88 88 122 119 155 151 

t0 264 264 230 233 196 200 

t2 351 351 351 351 351 351 

t 87 87 121 118 155 151 

T75 T 127 128 182 179 233 229 

t0 227 224 169 173 119 122 

t2 351 351 351 351 351 351 

t 124 127 182 178 232 229 

T95 T 159 160 229 227 295 292 

t0 193 193 122 124 57 60 

t2 351 351 351 351 351 351 

t 158 158 229 227 294 291 

T100 T 167 168 241 239 311 308 

t0 185 185 112 114 41 47 

t2 351 351 351 351 351 351 

t 166 166 239 237 310 304 
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Table 4.4 Person-threat distances for different scenarios in one run (unit: m) 

Scenario 1 2 3 4 5 6 

T50 min 2,106.9 2,106.9 1,778.6 2,078.7 1,778.6 1,778.6 

mean 3,187.0 3,232.3 2,940.7 3,013.6 2,813.1 2,838.4 

max 9,457.6 9,457.6 9,457.6 9,457.6 9,400.7 9,457.6 

sd 1,507.9 1,554.8 1,298.9 1,260.1 1,105.6 1,089.7 

T75 min 2,574.7 2,810.8 2,574.7 2,574.7 2,574.7 2,574.7 

mean 4,100.3 4,564.6 3,776.9 3,650.5 3,267.7 3,233.2 

max 9,457.6 9,457.6 9,457.6 9,400.7 9,400.7 9,457.6 

sd 1,933.6 1,998.9 1,816.2 1,746.5 1,491.0 1,464.1 

T95 min 9,692.8 9,692.8 9,692.8 9,692.8 8,935.8 6,827.2 

mean 9,692.8 9,692.8 9,692.8 9,692.8 9,198.0 8,045.2 

max 9,692.8 9,692.8 9,692.8 9,692.8 9,457.6 9,457.6 

sd 0 0 0 0 195.6 737.0 

T100 min 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 

mean 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 

max 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 9,692.8 

sd 0 0 0 0 0 0 

 

In order to better reveal the dynamics of evacuation traffic and fire spread, the 

locations of the evacuees when the fire reaches the community were extracted and 

mapped out in Figures 4.12-4.14. The vehicles were aggregated at the link level and the 

vehicle counts for the links were also visualized. The maps indicate that for each scenario 

more en route evacuees are closer to the fire front when small trigger buffers are used. 

Another finding is that evacuation route system geometry will influence the evacuees’ 

exposure to fire risk. For example, many vehicles will be put into a queue at these 

converging links and these links will become congested, resulting in the evacuees’ being  
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Figure 4.12 Evacuation traffic for scenario 1 and 2 

 

exposed to the fire risk. If the congested link is located close to the fire front, the fire 

could trap the evacuees en route and cause deaths. Moreover, with the increase of 

evacuation travel demand, more evacuees will be exposed to fire risk. The results from 

100 runs of traffic simulation for each scenario were aggregated to obtain all the links 

that have evacuation traffic when the fire reaches the community. As shown in Figures 

4.15-4.17, the above-mentioned findings are still very evident for all the links with 

evacuation traffic in the 100 runs of traffic simulation. 
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Figure 4.13 Evacuation traffic for scenario 3 and 4 
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Figure 4.14 Evacuation traffic for scenario 5 and 6 
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Figure 4.15 Links with evacuation traffic for scenario 1 and 2 
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Figure 4.16 Links with evacuation traffic for scenario 3 and 4 
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Figure 4.17 Links with evacuation traffic for scenario 5 and 6 
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4.6 Discussion 

This work presents a spatiotemporal GIS framework that enables coupling fire 

and traffic simulation models to set triggers. The method could provide a spatial 

perspective on evacuation timing by taking into account both evacuation traffic and fire 

spread. The ICs could have a better understanding of evacuation timing through this 

method. Previous studies have examined the influence of the structure of the road 

network on wildfire evacuation risk (Church & Cova, 2000; Cova & Church, 1997). The 

results in this study reveal that we could better reveal the dynamics of evacuation traffic 

and fire spread in wildfire evacuations when we couple fire and traffic simulation models 

to set triggers. The interdisciplinary nature of this work allows us to pursue answers to 

more questions concerning the complex dynamics of evacuation warning, evacuation 

traffic, and fire spread during wildfire evacuations. Future research can focus on the 

following four aspects. 

First, some assumptions were made during traffic simulation, which cannot 

consider all possible spatiotemporal patterns of the evacuation traffic during wildfire 

evacuations. Note that complete compliance and a normal distribution of distribution of 

departure times are used for computation convenience. Evacuation departure times are a 

function of warning receipt and household preparation (Lindell, 2008). Future work could 

focus on taking into account more findings (e.g., evacuation shadow) from empirical 

studies to better estimate evacuation time (Lindell, Kang, & Prater, 2011; Murray-Tuite 

& Wolshon, 2013; Wu, Lindell, & Prater, 2012). Specifically, more factors could be 

taken into account to better model evacuation travel demand. For example, the 

distribution of the population differs significantly during the day time and at night 



127 

 

(Kobayashi, Medina, & Cova, 2011), and in the case study, we made the assumption that 

all the evacuees are at home. This could be a typical evacuation scenario in the night time. 

People may involve in many activities in the day time, e.g., driving to work, picking up 

children from school, and going to the grocery store. Recent years have witnessed the 

popularity of activity-based analysis and modeling in transportation studies (Miller & 

Shaw, 2015). Note that MATSim supports activity-based traffic simulation (Bekhor, 

Dobler, & Axhausen, 2011), which could be used to model wildfire evacuation during the 

day time. Moreover, further studies should also be conducted to better model departure 

times. Many empirical studies use curves to model departure times (Lindell & Prater, 

2007a). However, note that departure time profiles can vary from one incident to another. 

Even in the same geographic area, a curve function that is the best fit to the empirical 

data from one case may not be a good fit for other cases. Thus, different departure curves 

could be used for estimating evacuation time in future work.  

Second, it is assumed that the residents in the whole residential area receive 

warnings at the same time during the evacuation. However, staged evacuation is very 

popular in real-world evacuations because the fire could be suppressed by the firefighters 

and the wind might also change its direction. Thus, more work should be conducted to 

further examine the impacts of staged evacuations on the total evacuation time of the 

communities. Risk area delineation is a key step towards performing staged evacuations. 

Risk area accuracy is an important issue in hurricane evacuations, and previous studies 

have examined the factors that influence people’s perception of risk areas (Arlikatti et al., 

2006; Zhang et al., 2004). Compared with hurricane risk areas, it is more difficult to 

define risk areas in wildfire evacuations because wildfire can come from any direction for 
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those households surrounded by fuels. Protective action warnings in wildfire evacuations 

are sent out dynamically with the spread of the fire (Kim, Cova, & Brunelle, 2006). The 

dynamic nature of risk area delineation in wildfire evacuations makes it a challenge to 

perform staged evacuation traffic simulations. A recent study by Beloglazov et al. (2016) 

used staged evacuation strategies in wildfire evacuation simulation based on very 

different set of assumptions. Future work could explore the impacts of staged evacuation 

strategies on evacuation time estimation in trigger modeling.  

Third, more research should be conducted to examine how to associate trigger 

buffers with protective action selections. Evacuation could maximize public safety and is 

the primary protective action during wildfire evacuations in the U.S. However, when the 

fire is too close to the residences or the evacuation route systems, an evacuation order 

could make the residents trapped en route. In this case, a shelter-in-place order should be 

issued. Thus, protective action selection relies on evacuation timing—whether the 

threatened population will have enough time for their safe evacuation. In this regard, 

trigger modeling could be employed to create trigger buffers associated with different 

protective action recommendations. Note that traffic simulation can be used to estimate 

the probable worst-case and best-case evacuation time of a community given the 

assumptions used in the study (i.e., these extremes are subjective). The trigger buffer 

generated with the probable best-case evacuation time could be associated with a shelter-

in-home order because it is difficult for the community to accomplish a safe evacuation 

within such a short time. On the contrary, the probable worst-case evacuation time could 

be used to create a trigger buffer for evacuation recommendation. Cova, Dennison, and 

Drews (2011) presented an optimization-based model for protective action selection in 
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wildfire evacuation. With more scenarios taken into account during evacuation traffic 

simulation, the proposed simulation-based method in this work could also be potentially 

tailored for protective action selection modeling. Moreover, when emergency manager 

make evacuation decision, a false positive decision error can ensure public safety but will 

incur evacuation costs, reduce credibility, and decrease future warning compliance, while 

a false negative error (i.e., not evacuating residents when the threat impacts them) could 

cause loss of life and property (Lindell & Prater, 2007b). These should also be taken into 

account in protective action selection modeling. 

Lastly, with the popularity of open science in various disciplines, more efforts 

should be devoted to examining how to promote open science in wildfire evacuation 

modeling. Open science could be considered as an extension of the open source software 

initiative in scientific research. Specifically, Sui (2014) argues that open science in the 

field of GIS should include the openness in data, software, hardware, standards, research 

collaboration, publication, funding, and education/learning. As for wildfire evacuation 

modeling, open science should primarily focus on open data, open model, open software, 

and open research collaboration at this moment. In this work, open data were used for the 

case studies. Future work could focus on developing a WebGIS system to publish the 

generated trigger buffers, which could potentially facilitate training and education in 

wildfire evacuations. As for open model and software, the previously proposed trigger 

modeling procedure employs the FlamMap software for fire spread modeling and a 

separate C program to generate trigger buffers. Although FlamMap is free to the public, it 

is not open-source. This limitation makes it difficult for the users to integrate fire spread 

modeling into their software systems. Studies have shown that the open-source library 
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fireLib can be effectively used for fire spread modeling (Bogdos & Manolakos, 2013; 

Sousa, dos Reis, & Pereira, 2012). Thus, some open-source fire spread modeling libraries 

like fireLib should be employed to implement trigger modeling to improve the reusability 

and scalability of the model. The traffic simulation tool MATSim is an open-source 

project, which makes it convenient to take into account the above-mentioned factors by 

customizing the functionalities in MATSim. Finally, since wildfire evacuation modeling 

is an interdisciplinary field, more efforts should be made to encourage collaboration 

among researchers with different backgrounds.  

 

4.7 Conclusion 

A spatiotemporal GIS framework to couple fire and traffic simulation models to 

set triggers during wildfire evacuation is presented. The key contributions of this work 

are as follows. First, the spatiotemporal scale and resolution of evacuation traffic and fire 

spread are taken into consideration under the spatiotemporal GIS framework. This could 

facilitate more complex spatiotemporal computation to further examine the dynamics of 

evacuation traffic and fire spread in wildfire evacuations in future work. Second, the 

proposed method takes into account the uncertainty in evacuation time and represents the 

uncertainty using the probability-based trigger buffers, which can reflect the uncertainty 

induced by the departure time and travel demand distribution. When the ICs use the 

proposed method to set triggers, the trigger buffers that include evacuation time 

information for the evacuation traffic could help them make better decisions. Third, the 

proposed method geovisualizes the evacuation traffic when the fire reaches the 

community, which gives a spatial perspective on evacuation timing. The ICs could use 
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this method to more directly examine the dynamics of evacuation traffic and fire spread, 

which could improve their situational awareness and facilitate their evacuation decision-

making. The case study demonstrates the potential value of the trigger buffers generated 

using the proposed method, and the findings in this work could be potentially be used by 

the ICs to facilitate evacuation planning and evacuation decision-making in wildfires. 

The proposed method could be used to identify the population that is vulnerable to 

wildfire risk during evacuation and help emergency mangers and city planners adjust 

evacuation route systems or residential planning codes for hazard mitigation and 

emergency preparedness. 

In summary, the proposed spatiotemporal GIS framework enriches the previous 

trigger modeling method by incorporating traffic simulation into trigger modeling. With 

the estimated evacuation times from evacuation traffic simulation as the input, the ICs 

could develop a better understanding of evacuation timing when they use trigger 

modeling to set triggers in wildfire evacuation practices. Moreover, this work used open 

data in traffic simulation and trigger modeling, which lays a foundation for open wildfire 

evacuation modeling in future work.  
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CHAPTER 5 

 

CONCLUSION 

 

5.1 Summary 

Wildfire evacuation is a complex human-environmental process that occurs in 

space and time and involves environmental dynamics and human decision making. This 

complexity makes it a challenge to model and simulate this process as a coupled system. 

This dissertation represents a preliminary step in establishing a coupled human-

environmental system (CHES) framework for wildfire evacuation modeling and 

simulation. This work models wildfire evacuation as a CHES by coupling wildfire spread 

modeling, trigger modeling, reverse geocoding, and traffic simulation. The contributions 

of the three chapters are summarized as follows.  

Chapter 2 applies trigger modeling at a finer scale (at the household level) and 

integrates it with fire spread modeling to stage evacuation warnings. First, this work 

couples fire simulation with evacuation modeling, which represents the frontier of current 

evacuation research. The notion of coupling the hazard model with the evacuation model 

has enjoyed great popularity in the past few years (Lämmel, Grether, & Nagel, 2010). 

The nature of emergency evacuation is a CHES, which calls for more interdisciplinary 

collaboration between physical hazard modelers and transportation evacuation modelers. 

Second, trigger modeling is used to identify the changing set of threatened households as 
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a fire approaches a community, in addition to deriving their recommended evacuation 

departure times. Specifically, the mechanism of how trigger modeling can be used for 

evacuation warning and departure timing is modeled. The definition of trigger modeling 

highlights how a fire triggers a predefined protective action warning as its proximity to 

households in a community increases. This work implements this process by 

incorporating dynamic fire simulation into trigger modeling, which makes an important 

contribution to the existing trigger literature. Third, this work performs trigger modeling 

at the household level and aggregates the household-level departure times to construct 

evacuation zones and stage evacuation warnings. Agent-based modeling (ABM) refers to 

the process of capturing the emergent phenomena of a system from fine-grain modeling 

of the individual agents (Bonabeau, 2002). This bottom-up approach reflects the spirit of 

agent-based modeling and enables the discovery of new knowledge in this field at a more 

detailed level. Fourth, GIS provides an important platform for model coupling in this 

work. The raster data model is employed to couple fire simulation and trigger modeling. 

In summary, Chapter 2 makes a contribution to the wildfire evacuation literature by 

coupling the fire simulation model with the evacuation trigger model and demonstrates to 

address a familiar problem in a novel manner—staging household-level evacuation 

warnings.  

 Chapter 3 employs reverse geocoding to retrieve prominent geographic features 

along the boundary of modeled trigger buffers to use them as trigger points. In real-world 

wildfire evacuation and suppression practices, trigger points are usually prominent 

geographic features (e.g., ridges, rivers, and roads) because emergency managers need to 

know when the fire crosses the trigger. This work bridges the gap between trigger 
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modeling that produces polygons and how trigger points are actually identified in practice, 

which makes trigger modeling more applicable in real-world applications. The data 

structure and algorithm given in this work associate a trigger buffer with proximal 

geographic features along its boundary. Moreover, the feature selection process takes into 

consideration the uncertainty in the evacuation time for trigger modeling and employs 

map algebra to construct a selection space to obtain the features and use them as trigger 

points. The procedure also takes into account the resolution and accuracy of the raster 

data model used in trigger modeling. This chapter extends and improves the previously 

proposed trigger modeling method by adding a functionality to use reverse geocoding to 

obtain prominent geographic features to set trigger points.  

Chapter 4 couples fire and traffic simulation models to set wildfire evacuation 

triggers under a spatiotemporal GIS framework. This chapter employs spatiotemporal 

modeling to model and represent space and time in fire spread and evacuation traffic 

processes that occur in different spaces (i.e., landscape versus road network). Traffic 

simulation is used to estimate the evacuation time of a community and provides the 

estimated evacuation times as the input for trigger modeling. Fire simulation is employed 

to calculate fire spread rates for each raster cell to create trigger buffers in trigger 

modeling. This chapter provides a space-time perspective for trigger modeling and makes 

a contribution to the theoretical underpinnings of trigger modeling with the notion of a 

probability based trigger buffer (i.e., trigger points can be assigned a probability of 

providing enough time to clear an area for a given set of modeling assumptions). The 

coupling of these two models takes into account the uncertainty in evacuation time but 

not the uncertainty in the fire spread rates. This work sheds light on the coupling of 
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human and environmental systems in wildfire evacuation modeling.  

The three chapters that make up this dissertation involve couplings of different 

human and environmental systems. GIS plays a significant role in modeling and 

representing the spatiotemporal processes in these systems. This CHES perspective can 

help improve our understanding of the complexity in wildfire evacuation. More 

importantly, the CHES framework enables us to discover new knowledge that would be 

difficult to obtain using traditional modeling methodologies. Note that the three chapters 

are connected by the theme of trigger modeling. Future work could build on the findings 

in these three chapters by including more complexity found in human and environmental 

systems.  

 

5.2 Future work 

The interdisciplinary nature of this dissertation provides a fruitful avenue to 

identify novel research questions for future research. The following paragraphs provide 

some ideas for future work and then list the key components towards building a more 

comprehensive CHES framework for wildfire evacuation modeling and simulation.  

Chapter 2 demonstrates the potential use of trigger modeling in staging 

evacuation warnings at the household level. Future research following this chapter is 

planned as follows. First, more work should be done to further examine how to integrate 

the hazard model with evacuation models at the source code level and develop relevant 

tools to facilitate the use of the integrated model. The existing trigger modeling procedure 

involves the use of the FlamMap software and a separate C program (Cova, Dennison, 

Kim, & Moritz, 2005), which has limitations in deploying trigger modeling on 
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supercomputers or cloud computing platforms for batch processing. Second, more efforts 

should be made to explore how to design and build evacuation zoning systems for 

household-level evacuation analysis, modeling, and planning. Although previous studies 

on evacuation zoning have reached a consensus on some important principles for 

evacuation zoning systems (e.g., using prominent geographic features to delimit 

evacuation zones to facilitate communications), this area remains an under-researched 

field in emergency management (Murray-Tuite & Wolshon, 2013). One potential use of 

evacuation zoning systems is to issue warnings to the threatened population in staged 

evacuations, which could reduce traffic congestions in large scale evacuations (Wilmot & 

Meduri, 2005). However, existing evacuation zoning systems are established at very 

coarse scales and do not support household-level warnings, which could be very common 

for those sparsely distributed households in exurban areas, as demonstrated in Chapter 2. 

Thus, more research should be conducted to design and build better wildfire evacuation 

zoning systems. Modern technologies in spatial database and WebGIS can be employed 

to establish more robust evacuation zoning systems. Third, the proposed household-level 

trigger modeling model could also be used to design and develop geo-targeted warning 

systems. Note that geo-targeted warning systems are location-based and thus should be 

closely related to evacuation zoning systems. Moreover, mobile computing can also be 

incorporated into geo-targeted warning systems to facilitate evacuation warnings during 

wildfires.  

Chapter 3 uses reverse geocoding to retrieve prominent geographic features along 

the boundary of the generated trigger buffers to use them as trigger points. This work 

bridges the gap between trigger modeling and how trigger points are used in real-world 
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applications. Future work to be conducted is listed as follows. First, metrics for 

evaluating the quality of digital gazetteers or online reverse geocoding services should be 

defined. Note that general metrics like accuracy can be used in various applications, 

while special metrics for trigger modeling (e.g., feature types) should also be defined. 

Second, existing online gazetteer or reverse geocoding services should be evaluated using 

the developed metrics. It is always important to compare and evaluate the existing 

available services before we start to design and implement new services. Third, if 

existing services cannot satisfy our needs, a special digital gazetteer for trigger modeling 

should be designed and developed to support the use of trigger modeling in evacuation 

communications and warnings. Spatial database and WebGIS can be leveraged to 

implement a gazetteer specially designed for trigger modeling. Finally, more empirical 

studies should be conducted to explore how incident commanders choose and use 

prominent geographic features as trigger points. This line of research focuses on human 

beings’ spatial cognition and communications, which are complex human systems that 

we should take into account. Overall, Chapter 3 falls within the field of geographic 

information retrieval (GIR) (Jones & Purves, 2008). Note that existing gazetteer or 

reverse geocoding services usually use points to represent geographic features, which has 

limitations in representing linear features (e.g., roads, and rivers) or large polygon 

features. Thus, this should be taken into account if we are to design and implement a 

special digital gazetteer for trigger modeling.  

Chapter 4 models and represents the uncertainty in the total evacuation time of a 

threatened community to set triggers by coupling fire and traffic simulation models. This 

is a typical coupling of an environmental and a human system. Future research should 
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focus on the following aspects. First, more work needs to be done to further examine how 

to represent the uncertainty of the evacuation time from traffic simulation in trigger 

modeling. Only six scenarios were used in Chapter 5, and we need to take into account 

more factors for a more accurate estimation of evacuation time. Furthermore, more work 

should be conducted to examine how to use traffic simulation and trigger modeling for 

protective action selection modeling during wildfire evacuations. Cova, Dennison, and 

Drews (2011) conducted preliminary work on this topic, and future work could follow 

this line of research and model protective action selection in a more thorough manner.  

In summary, the future research directions mentioned above could further 

improve wildfire evacuation modeling and simulation methodologically. Furthermore, all 

the findings in these three chapters should be synthesized to further couple fire spread 

modeling, trigger modeling, traffic simulation, and reverse geocoding to model the whole 

evacuation process as a CHES, which will make a significant contribution to natural 

hazards studies. This research direction emphasizes the coupling of different models, 

which calls for more interdisciplinary collaboration. More importantly, a CHES 

framework should be developed to cover the principles involved in the coupling process, 

which include, but are not limited to, systems thinking, model composition, 

spatiotemporal representation and modeling, and software design and implementation. 

This CHES framework will not only advance wildfire evacuation modeling and 

simulation but also shed light on evacuation studies on other hazards.  
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