17,198 research outputs found

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Emerging technologies for reef fisheries research and management [held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003]

    Get PDF
    This publication of the NOAA Professional Paper NMFS Series is the product of a special symposium on “Emerging Technologies for Reef Fisheries Research and Management” held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003. The purpose of this collection is to highlight the diversity of questions and issues in reef fisheries management that are benefiting from applications of technology. Topics cover a wide variety of questions and issues from the study of individual behavior, distribution and abundance of groups and populations, and associations between habitats and fish and shellfish species.(PDF files contains 124 pages.

    Planning assistance for the 30/20 GHz program, volume 3

    Get PDF
    The three basic experiment categories and consolidated experiments proposed by members of the Carrier Working Group are defined by category and by carrier. The three experiment categories are: (1) Possible Service (PS); (2) Possible Service and Technology (PSAT); and (3) Possible Technology (PT). Under Task 9 Western Union provided review, recommendations and critique of the NASA generated Statement of Work (SOW) defining the technical requirements governing design, launch and operation of the 30/20 GHz experimental systems

    The Search for Extraterrestrial Intelligence (SETI)

    Get PDF
    A bibliography of reports concerning the Search for Extraterrestrial Intelligence is presented. Cosmic evolution, space communication, and technological advances are discussed along with search strategies and search systems

    Synthetic line and continuum linear-polarisation signatures of axisymmetric type II supernova ejecta

    Full text link
    We present synthetic single-line and continuum linear-polarisation signatures due to electron scattering in axially-symmetric Type II supernovae (SNe) which we calculate using a Monte Carlo and a long-characteristic radiative-transfer code. Aspherical ejecta are produced by prescribing a latitudinal scaling or stretching of SN ejecta inputs obtained from 1-D non-LTE time-dependent calculations. We study polarisation signatures as a function of inclination, shape factor, wavelength, line identity, post-explosion time. At early times, cancellation and optical-depth effects make the polarisation intrinsically low, causing complicated sign reversals with inclination or continuum wavelength, and across line profiles. While the line polarisation is positive (negative) for an oblate (prolate) morphology at the peak and in the red wing, the continuum polarisation may be of any sign. These complex polarisation variations are produced not just by the asymmetric distribution of scatterers but also of the flux. Our early-time signatures are in contradiction with predictions for a centrally illuminated aspherical nebula, although this becomes a better approximation at nebular times. For a fixed asymmetry, our synthetic continuum polarisation is generally low, may evolve non-monotonically during the plateau phase, but it systematically rises as the ejecta become optically thin. Changes in polarization over time do not necessarily imply a change in the asymmetry of the ejecta. The SN structure (e.g., density/ionization) critically influences the level of polarisation. Importantly, a low polarisation (<0.5%) at early times does not necessarily imply a low degree of asymmetry as usually assumed. Asphericity influences line-profile morphology and the luminosity, which may compromise the accuracy of SN characteristics inferred from these.Comment: 25 pages, 23 figures, accepted to MNRA

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Positioning in Indoor Mobile Systems

    Get PDF
    Non
    corecore