30 research outputs found

    The classification of wink-based eeg signals by means of transfer learning models

    Get PDF
    Stroke is one of the dominant causes of impairme nt. An estimation of half post-stroke survivors suffer from a severe motor or cognitive deterioration, that affects the functionality of the affected parts of the body, which in turn, prevents the patients from carrying out Activities of Daily Living (ADL). EEG signals which contains information on the activities carried out by a human that is widely used in many applications of BCI technologies which offers a means of controlling exoskeletons or automated orthosis to facilitate their ADL. Although motor imagery signals have been used in assisting the hand grasping motion amongst others motions, nonetheless, such signals are often difficult to be generated. It is non-trivial to note that EEG-based signals for instance, winking could mitigate the aforesaid issue. Nevertheless, extracting and attaining significant features from EEG signals are also somewhat challenging. The utilization of deep learning, particularly Transfer Learning (TL), have been demonstrated in the literature to b e able to provide seamless extraction of such signals in a myria d of various applications. Hitherto, limited studies have investigated the classification of wink-based EEG signals through TL accompanied by classical Machine Learning (ML) pipelines. This study aimed to explore the performance of different pre-processing methods, namely Fast Fourier Transform, Short-Time Fourier Transform, Discrete Wavelet Transform, and Continuous Wavelet Transform (CWT) that could allow TL models to extract features from the images generated and classify through selected classical ML algorithms . These pre-processing methods were utilized to convert the digital signals into respective images of all the right and left winking EEG signals along with no winking signals that were collected from ten (6 males and 4 females, aged between 22 and 29) subjects. The implementation of pre-processing algorithms has been demonstrated to be able to mitigate the signal noises that arises from the winking signals without the need for the use signal filtering algorithms. A new form of input which consists of scalogram and spectrogram images that represents both time and frequency domains , are then introduced in the classification of wink-based EEG signals. Different TL models were exploited to extract features from the transformed EEG signals. The features extracted were then classified through three classical ML models, namely Support Vector Machine, k -Nearest Neighbour (k-NN) and Random Forest to determine the best pipeline for wink -based EEG signals. The hyperparameters of the ML models were tuned through a 5-fold crossvalidation technique via an exhaustive grid search approach. The training, validation and testing of the models were split with a stratified ratio of 60:20:20, respectively. The results obtained from the TL-ML pipelines were evaluated in terms of classification accuracy, Precision, Recall, F1-Score and confusion matrix. It was demonstrated from the simulation investigation that the CWT model could yield a better signal transformation amongst the preprocessing algorithms. In addition, amongst the eighteen TL models evaluated based on the CWT transformation, fourteen was f ound to be able to extract the features reasonable, i.e., VGG16, VGG19, ResNet101, ResNet101 V2, ResNet152, ResNet152 V2, Inception V3, Inception ResNet V2, Xception, MobileNetV2, DenseNet 121, DenseNet 169, NasNetMobile and NasNetLarge. Whilst it was observed that the optimized k-NN model based on the aforesaid pipeline could achieve a classification accuracy of 100% for the training, validation, and tes t data. Nonetheless, upon carrying out a robustness test on new data, it was demonstrated that the CWT-NasNetMobile-kNN pipeline yielded the best performance. Therefore, it could be concluded that the proposed CWT-NasNetMobile-k-NN pipeline is suitable to be adopted to classify -winkbased EEG signals for BCI applications,for instance a grasping exoskeleton

    Procesamiento y caracterización de bioseñales para su uso en interfaces de control y afectividad

    Get PDF
    Las interfaces HCI y PC basadas en bioseñales constan de 3 fases: la captación de los datos, procesamiento y actuación sobre el sistema. El trabajo de esta tesis está centrado en el bloque de procesamiento de la información registrada por los electrodos. La naturaleza heterogénea de las bioseñales implica diferentes técnicas de captación y procesamiento para destacar y detectar aquellos elementos que son útiles para el objetivo que se busca. Para interfaces HCI, las señales deben se susceptibles de ser modificadas según la voluntad del individuo, destacando los transitorios asociados a estas acciones y minimizando aquellos elementos que puedan interferir negativamente, mientras que para PC los datos deben de contener información relativa al estado emocional del sujeto. El procesamiento de los datos es un elemento esencial para obtener unos resultados satisfactorios. A lo largo de la presente tesis se han expuesto dos técnicas de procesamiento basadas en la aplicación de envolventes inferiores, para eliminar o destacar transitorios en forma de campanas cóncavas/convexas de las señales EOG y ECG, y se han analizado las variaciones de las mismas junto a los datos de EEG ante situaciones de estrés y control de un teclado virtual

    Técnicas de control para el motor de corriente continua: Una revisión sistemática de literatura

    Get PDF
    La ingeniería de control se especializa en desarrollar procesos de alta calidad mediante el modelamiento matemático de diversos sistemas y el diseño de control que permite regular el comportamiento de un sistema utilizando condiciones deseadas. Las técnicas de control que se utilizan para el motor de corriente continua son de mucha utilidad al momento de llevar a cabo una estabilización de la velocidad o el par, algunas de ellas pertenecen a técnicas de control inteligente (lógica difusa y redes neuronales), pero la mayoría se centra en las técnicas de control clásicas (PI, PID) logrando resultados satisfactorios. Las técnicas de modelamiento matemático facilitan la representación de las ecuaciones diferenciales, dependiendo del tipo del motor DC se han utilizado diferentes técnicas (transformada de Laplace, espacio de estados). El software y hardware tienen una fuerte relación con lo que se refiere a las simulaciones y experimentaciones que se usan para validar el funcionamiento de un sistema complejo como lo es el motor CC. En este trabajo se presenta una revisión sistemática de literatura sobre técnicas de control, técnicas de modelamiento matemático, software y hardware que se aplican en un motor de corriente continua, para ello se analizó y resumió 75 artículos científicos de los últimos 4 años provenientes de cinco bases bibliográficas (IEEE Xplore, Digital Library, ScienceDirect, SpringerLink, ResearchGate, Preprints). Los documentos responden a tres preguntas de investigación planteadas en este estudio. Por medio de los resultados obtenidos se identificaron grandes ventajas y desventajas de las técnicas de control y modelamiento matemático, con respecto al software y hardaware se demostró su gran utilidad para la realización de sistemas automatizados

    Multimodal Wearable Sensors for Human-Machine Interfaces

    Get PDF
    Certain areas of the body, such as the hands, eyes and organs of speech production, provide high-bandwidth information channels from the conscious mind to the outside world. The objective of this research was to develop an innovative wearable sensor device that records signals from these areas more conveniently than has previously been possible, so that they can be harnessed for communication. A novel bioelectrical and biomechanical sensing device, the wearable endogenous biosignal sensor (WEBS), was developed and tested in various communication and clinical measurement applications. One ground-breaking feature of the WEBS system is that it digitises biopotentials almost at the point of measurement. Its electrode connects directly to a high-resolution analog-to-digital converter. A second major advance is that, unlike previous active biopotential electrodes, the WEBS electrode connects to a shared data bus, allowing a large or small number of them to work together with relatively few physical interconnections. Another unique feature is its ability to switch dynamically between recording and signal source modes. An accelerometer within the device captures real-time information about its physical movement, not only facilitating the measurement of biomechanical signals of interest, but also allowing motion artefacts in the bioelectrical signal to be detected. Each of these innovative features has potentially far-reaching implications in biopotential measurement, both in clinical recording and in other applications. Weighing under 0.45 g and being remarkably low-cost, the WEBS is ideally suited for integration into disposable electrodes. Several such devices can be combined to form an inexpensive digital body sensor network, with shorter set-up time than conventional equipment, more flexible topology, and fewer physical interconnections. One phase of this study evaluated areas of the body as communication channels. The throat was selected for detailed study since it yields a range of voluntarily controllable signals, including laryngeal vibrations and gross movements associated with vocal tract articulation. A WEBS device recorded these signals and several novel methods of human-to-machine communication were demonstrated. To evaluate the performance of the WEBS system, recordings were validated against a high-end biopotential recording system for a number of biopotential signal types. To demonstrate an application for use by a clinician, the WEBS system was used to record 12‑lead electrocardiogram with augmented mechanical movement information

    A framework to measure human behaviour whilst reading

    Get PDF
    The brain is the most complex object in the known universe that gives a sense of being to humans and characterises human behaviour. Building models of brain functions is perhaps the most fascinating scientific challenge in the 21st century. Reading is a significant cognitive process in the human brain that plays a critical role in the vital process of learning and in performing some daily activities. The study of human behaviour during reading has been an area of interest for researchers in different fields of science. This thesis is based upon providing a novel framework, called ARSAT (Assisting Researchers in the Selection of Appropriate Technologies), that measures the behaviour of humans when reading text. The ARSAT framework aims at assisting researchers in the selection and application of appropriate technologies to measure the behaviour of a person who is reading text. The ARSAT framework will assist to researchers who investigate the reading process and find it difficult to select appropriate theories, metrics, data collection methods and data analytics techniques. The ARSAT framework enhances the ability of its users to select appropriate metrics indicating the effective factors on the characterisation of different aspects of human behaviour during the reading process. As will be shown in this research study, human behaviour is characterised by a complicated interplay of action, cognition and emotion. The ARSAT framework also facilitates selecting appropriate sensory technologies that can be used to monitor and collect data for the metrics. Moreover, this research study will introduce BehaveNet, a novel Deep Learning modelling approach, which can be used for training Deep Learning models of human behaviour from the sensory data collected. In this thesis, a comprehensive literature study is presented that was conducted to acquire adequate knowledge for designing the ARSAT framework. In order to identify the contributing factors that affect the reading process, an overview of some existing theories of the reading process is provided. Furthermore, a number of sensory technologies and techniques that can be applied to monitoring the changes in the metrics indicating the factors are also demonstrated. Only, the technologies that are commercially available on the market are recommended by the ARSAT framework. A variety of Machine Learning techniques were also investigated when designing the BehaveNet. The BehaveNet takes advantage of the complementarity of Convolutional Neural Networks, Long Short-Term Memory networks and Deep Neural Networks. The design of a Human Behaviour Monitoring System (HBMS), by utilising the ARSAT framework for recognising three attention-seeking activities of humans, is also presented in this research study. Reading printed text, as well as speaking out loudly and watching a programme on TV were proposed as activities that a person unintentionally may shift his/her attention from reading into distractions. Between sensory devices recommended by the ARSAT framework, the Muse headband which is an Electroencephalography (EEG) and head motion-sensing wearable device, was selected to track the forehead EEG and a person’s head movements. The EEG and 3-axes accelerometer data were recorded from eight participants when they read printed text, as well as the time they performed two other activities. An imbalanced dataset consisting over 1.2 million rows of noisy data was created and used to build a model of the activities (60% training and 20% validating data) and evaluating the model (20% of the data). The efficiency of the framework is demonstrated by comparing the performance of the models built by utilising the BehaveNet, with the models built by utilising a number of competing Deep Learning models for raw EEG and accelerometer data, that have attained state-of-the-art performance. The classification results are evaluated by some metrics including the classification accuracy, F1 score, confusion matrix, Receiver Operating Characteristic curve, and Area under Curve (AUC) score. By considering the results, the BehaveNet contributed to the body of knowledge as an approach for measuring human behaviour by using sensory devices. In comparison with the performance of the other models, the models built by utilising the BehaveNet, attained better performance when classifying data of two EEG channels (Accuracy = 95%; AUC=0.99; F1 = 0.95), data of a single EEG channel (Accuracy = 85%; AUC=0.96; F1 = 0.83), accelerometer data (Accuracy = 81%; AUC = 0.9; F1 = 0.76) and all of the data in the dataset (Accuracy = 97%; AUC = 0.99; F1 = 0.96). The dataset and the source code of this project are also published on the Internet to help the science community. The Muse headband is also shown to be an economical and standard wearable device that can be successfully used in behavioural research

    A framework to measure human behaviour whilst reading

    Get PDF
    The brain is the most complex object in the known universe that gives a sense of being to humans and characterises human behaviour. Building models of brain functions is perhaps the most fascinating scientific challenge in the 21st century. Reading is a significant cognitive process in the human brain that plays a critical role in the vital process of learning and in performing some daily activities. The study of human behaviour during reading has been an area of interest for researchers in different fields of science. This thesis is based upon providing a novel framework, called ARSAT (Assisting Researchers in the Selection of Appropriate Technologies), that measures the behaviour of humans when reading text. The ARSAT framework aims at assisting researchers in the selection and application of appropriate technologies to measure the behaviour of a person who is reading text. The ARSAT framework will assist to researchers who investigate the reading process and find it difficult to select appropriate theories, metrics, data collection methods and data analytics techniques. The ARSAT framework enhances the ability of its users to select appropriate metrics indicating the effective factors on the characterisation of different aspects of human behaviour during the reading process. As will be shown in this research study, human behaviour is characterised by a complicated interplay of action, cognition and emotion. The ARSAT framework also facilitates selecting appropriate sensory technologies that can be used to monitor and collect data for the metrics. Moreover, this research study will introduce BehaveNet, a novel Deep Learning modelling approach, which can be used for training Deep Learning models of human behaviour from the sensory data collected. In this thesis, a comprehensive literature study is presented that was conducted to acquire adequate knowledge for designing the ARSAT framework. In order to identify the contributing factors that affect the reading process, an overview of some existing theories of the reading process is provided. Furthermore, a number of sensory technologies and techniques that can be applied to monitoring the changes in the metrics indicating the factors are also demonstrated. Only, the technologies that are commercially available on the market are recommended by the ARSAT framework. A variety of Machine Learning techniques were also investigated when designing the BehaveNet. The BehaveNet takes advantage of the complementarity of Convolutional Neural Networks, Long Short-Term Memory networks and Deep Neural Networks. The design of a Human Behaviour Monitoring System (HBMS), by utilising the ARSAT framework for recognising three attention-seeking activities of humans, is also presented in this research study. Reading printed text, as well as speaking out loudly and watching a programme on TV were proposed as activities that a person unintentionally may shift his/her attention from reading into distractions. Between sensory devices recommended by the ARSAT framework, the Muse headband which is an Electroencephalography (EEG) and head motion-sensing wearable device, was selected to track the forehead EEG and a person’s head movements. The EEG and 3-axes accelerometer data were recorded from eight participants when they read printed text, as well as the time they performed two other activities. An imbalanced dataset consisting over 1.2 million rows of noisy data was created and used to build a model of the activities (60% training and 20% validating data) and evaluating the model (20% of the data). The efficiency of the framework is demonstrated by comparing the performance of the models built by utilising the BehaveNet, with the models built by utilising a number of competing Deep Learning models for raw EEG and accelerometer data, that have attained state-of-the-art performance. The classification results are evaluated by some metrics including the classification accuracy, F1 score, confusion matrix, Receiver Operating Characteristic curve, and Area under Curve (AUC) score. By considering the results, the BehaveNet contributed to the body of knowledge as an approach for measuring human behaviour by using sensory devices. In comparison with the performance of the other models, the models built by utilising the BehaveNet, attained better performance when classifying data of two EEG channels (Accuracy = 95%; AUC=0.99; F1 = 0.95), data of a single EEG channel (Accuracy = 85%; AUC=0.96; F1 = 0.83), accelerometer data (Accuracy = 81%; AUC = 0.9; F1 = 0.76) and all of the data in the dataset (Accuracy = 97%; AUC = 0.99; F1 = 0.96). The dataset and the source code of this project are also published on the Internet to help the science community. The Muse headband is also shown to be an economical and standard wearable device that can be successfully used in behavioural research

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions
    corecore