2,456 research outputs found

    Comparison study on AIS data of ship traffic behavior

    Get PDF
    AIS (Automatic Identification System) data provides valuable input parameters in ship traffic simulation models for maritime risk analysis and the prevention of shipping accidents. This article reports on the detailed comparisons of AIS data analysis between a Dutch case and a Chinese case. This analys is focuses on restricted waterways to support inland waterway simulations, comparing the differences between a narrow waterway in the Netherlands (the Port of Rotterdam) and a wide one in China (wide water way of Yangtze River close to the SuTong Bridge). It is shown that straightforward statistical distributions can be used to characterise lateral position, speed, heading and interval times for different types and sizes of ships. However, the distributions for different characteristics of ship behaviours differ significantly

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Dynamic risk assessment model of Tianjin VTS Water Area and its application

    Get PDF

    Port safety evaluation from a captain's perspective: The Korean experience

    Get PDF
    There are many factors affecting navigational safety in ports, including weather, the characteristics of the channels and vessel types, etc. This paper aims to identify the factors influencing navigational safety in ports and to analyze the extent to which such factors affect the safety of ports from the perspective of ship captains through a real case study. A quantitative analysis is carried out using the data collected from 21 captains who have over 10. years experience in operating ships individually. The identified factors indicate risk implications in ports. A fuzzy analytical hierarchy process is used to evaluate the importance of the factors and to rank the safety levels of the targeted ports in Korea from a captain's perspective. Consequently, among Busan, Ulsan, Gwangyang, Incheon, and Mokpo, Busan is evaluated by captains as the safest port, while Mokpo is the most risky. The research also reveals that it is applicable to use domain expert knowledge when historical failure data is unavailable or difficult to access to evaluate port safety. The result shows great research significance in terms of providing relevant stakeholders, such as port authorities and shipping companies, with an insight into port safety performance and thus facilitating the development of the associated risk control measures. © 2014 Elsevier Ltd

    Safety Risk Analysis of Unmanned Ships in Inland Rivers Based on a Fuzzy Bayesian Network

    Get PDF
    Risk factor identification is the basis for risk assessment. To quantify the safety risks of unmanned vessels in inland rivers, through analysis of previous studies, the safety risk impact factor framework of unmanned vessels in inland rivers is established based on three aspects: the ship aspect, the environmental aspect, and the management and control aspect. Relying on Yangtze River, a fuzzy Bayesian network of the sailing safety risk of unmanned ships in inland rivers is constructed. The proposed safety risk model has considered different operational and environmental factors that affect shipping operations. Based on the fuzzy set theory, historical data, and expert judgments and on previous works are used to estimate the base value (prior values) of various risk factors. The case study assessed the safety risk probabilities of unmanned vessels in Yangtze River. By running uncertainty and sensitivity analyses of the model, a significant change in the likelihood of the occurrence of safety risk is identified, and suggests a dominant factor in risk causation. The research results can provide effective information for analyzing the current safety status for navigation systems of unmanned ships in inland rivers. The estimated safety risk provides early warning to take appropriate preventive and mitigative measures to enhance the overall safety of shipping operations. Document type: Articl

    On risk management of shipping system in ice-covered waters : Review, analysis and toolbox based on an eight-year polar project

    Get PDF
    Publisher Copyright: © 2022 The AuthorsWith the climate change, polar sea ice is diminishing. This, on one hand, enables the possibility for e.g., Arctic shipping and relevant resource exploitation activities, but on the other hand brings additional risks induced by these activities. Increasing research focuses have been observed on the relevant topics in the complex and harsh polar environment and its fragile ecosystem. However, from risk management perspective, there is still a lack of holistic analysis and understanding towards safe shipping in the ice-covered waters and its available models applicable for managing risks in the system. Therefore, this paper aims to establish a framework and analysis for better understanding of this gap. The paper targets a comprehensive and long-term project specifically focusing on holistic safe shipping in ice-covered waters as the analysis basis. It firstly creates a holistic framework for the shipping system in ice-covered waters and then implements review and analysis of project publications on their overall features. Quantitative prediction models are selected for a structured applicability analysis. Furthermore, an extensive review outside the project following the elements established for the holistic shipping system is conducted so that this paper provides an overview of models for the shipping system in ice-covered waters, addressing the status of the current toolbox. Moreover, it helps to identify the next scientific steps on risk management of shipping in ice-covered waters.Peer reviewe

    Analysis and evaluation of maritime traffic risk in circumjacent water of Dagushan Peninsula of Dalian

    Get PDF

    Evaluation of the effectiveness of active and passive safety measures in preventing ship–bridge collision

    Get PDF
    The risk of ship–bridge collisions should be evaluated using advanced models to consider different anti-collision and bridge-protection measures. This study aimed to propose a method to evaluate the effectiveness of active and passive safety measures in preventing ship–bridge collision. A novel ship–bridge collision probability formulation taking into consideration different safety measures was proposed. The model was applied at Jintang Bridge in China where the surrounding vessel traffic is ultra-crowded. We calculated the collision probability between the bridge and passing traffic using automatic identification system (AIS) data, Monte Carlo simulation, and Bayesian networks. Results under four different safety measures (i.e., active measures, passive measures, both measures and none) were analyzed and compared. The analysis concluded that both active and passive safety measures are effective in reducing the ship–bridge collision probability. Active measures, if deployed properly, can provide protection at an equivalent level than passive measures against collision risks. However, passive measures, such as setting arresting cables, are necessary in cases where the response time of the active measures is long. The proposed method and the results obtained from the case study may be useful for robust and systematic effectiveness evaluation of safety measures in other cases worldwide.Postprint (published version
    • 

    corecore