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Risk factor identi�cation is the basis for risk assessment. To quantify the safety risks of unmanned vessels in inland rivers, through 
analysis of previous studies, the safety risk impact factor framework of unmanned vessels in inland rivers is established based on 
three aspects: the ship aspect, the environmental aspect, and the management and control aspect. Relying on Yangtze River, a fuzzy 
Bayesian network of the sailing safety risk of unmanned ships in inland rivers is constructed. �e proposed safety risk model has 
considered di�erent operational and environmental factors that a�ect shipping operations. Based on the fuzzy set theory, historical 
data, and expert judgments and on previous works are used to estimate the base value (prior values) of various risk factors. �e case 
study assessed the safety risk probabilities of unmanned vessels in Yangtze River. By running uncertainty and sensitivity analyses 
of the model, a signi�cant change in the likelihood of the occurrence of safety risk is identi�ed, and suggests a dominant factor in 
risk causation. �e research results can provide e�ective information for analyzing the current safety status for navigation systems 
of unmanned ships in inland rivers. �e estimated safety risk provides early warning to take appropriate preventive and mitigative 
measures to enhance the overall safety of shipping operations.

1. Introduction

With the rapid development of science and technology, arti-
�cial intelligence has penetrated all aspects of human life more 
and more deeply. As an important branch of its development, 
driverless technology has had a major impact on social and 
economic development and national defense construction; it 
has become one of the hotspots in the AI (arti�cial intelli-
gence) �eld today. Due to the fast development of driverless 
technology and the shortage of labor faced by the shipping 
industry, the shipbuilding industry is still in the stages of struc-
tural adjustment, upgrading, and overcapacity. Shipowners are 
very eager for “smart, green, safe, and e�cient” ships, and 
unmanned ships are coming at a faster than expected speed. 
With the birth of Massterly, the world’s �rst unmanned ship-
ping company, unmanned ships began to enter the commercial 
era a¡er a time of being mere concepts. As early as the 1960s, 
remotely controlled unmanned ¢eets were widely used in the 
military �eld. In recent years, there has been a quick develop-
ment of technologies such as automatic control, Internet of 

�ings, and big data; environmental awareness technologies 
and communication and navigation technologies related to 
ships have also been widely improved, providing a broad tech-
nical feasibility for the development of smart ships/unmanned 
ships.

Inland navigation has an important position in the 
national economic system because of its large volume, low 
cost, convenience, and ¢exibility. Since its reform and opening 
up, inland navigation has developed rapidly. Especially in 
recent years, not only has economic growth accelerated, but 
environmental awareness has increased; however, the country 
has strengthened channel regulations of the inland waterway, 
which has led to a rapid increase in the volume of inland rivers, 
a large increase in the number of inland vessels and an increas-
ing density of navigation. For example, during the �rst half of 
2017, there were 140 waterborne tra�c accidents in the 
Yangtze River Maritime Administration area, including 58 
collision accidents, which accounted for 41.4% of the total 
accidents. According to research, human factors are o¡en the 
triggering factors of water tra�c accidents, and they are 
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dominant among the various factors. According to recent sur-
veys of waterway traffic accidents, the main causes of marine 
accidents are human factors, such as decision-making errors, 
operational errors, and improper emergency response. 
According to a report released by Allianz Insurance in 2012, 
75−96% of marine accidents are the result of human error. 
Surveys of Canada and the United Kingdom show that the 
proportions are 75% and 60%, respectively. In the design of 
the unmanned ship, the maneuvering of the ship is mainly 
operated on the shore with better working conditions through 
the expert decision-making system and the remote-controlled 
system; this fundamentally reduces the influence of human 
factors on navigation safety of the ship, which can reduce the 
probability of waterway traffic accidents. Autonomous systems 
may bring smarter and more efficient operations as well as 
emerging risks, due to lack of knowledge and operational 
experience with automated systems, and challenges related to 
verification of safety performance [1]. While paying attention 
to the safety of traditional ships, we will study the new risks 
brought by ship-shore integration on ship safety. �erefore, it 
is very important to study the navigation safety of unmanned 
vessels in inland rivers. In view of the navigation safety prob-
lem of unmanned vessels in inland rivers, this study proposes 
a study on the safety risk analysis of unmanned vessels in 
inland rivers.

�e main contributions of this paper are as follows:

(1) Establishment of a safety risk indicator system for 
unmanned ships in inland rivers.
(2) Construction of the risk assessment model of 
unmanned ships in inland rivers based on fuzzy Bayesian 
network.

2. Literature Review

�e concept of risk was first proposed in the seventeenth cen-
tury. �e nautical terminology from Spain was explained by 
the American scholar Haynes at the end of the 19th century. 
He explored the nature of risk, categorized risks, and points 
out the possibility that the term “risk” represents loss in eco-
nomics or other academic fields [2]. According to the theory 
of accident causation, any navigation risk is a description of 
the effect of the cause factor on the ship’s navigation process 
[3]. At present, the relevant theories of risk management have 
been relatively mature, and its application range covers many 
industries, from manufacturing to shipping to financial indus-
try. In particular, the term risk originated from navigation at 
the beginning, and the process of ship navigation was full of 
risks. In view of this, risk management research in the field of 
ship navigation is extremely rich; risk assessment is an 
extremely important part of risk management, so many schol-
ars have studied it.

Xia et al. [4] establish a risk ranking ANFIS model of a 
ship safety navigation system to accurately achieve risk assess-
ment on sailing ships. Taking uncertainty into consideration, 
Fu et al. [5] assessed the risks of major ship accidents in the 
Arctic waters through the use of the copula-based fuzzy event 
tree analysis approach. Chai et al. [6] evaluated the risk of ships 
being involved in ship collisions according to a quantitative 

risk assessment (QRA) model. Literature [7] used “Fuzzy 
based risk assessment” to assess cargo vessel accidents at the 
coasts and open seas of Turkey. Baksh et al. [8] proposed 
Bayesian Network (BN) to investigate the possibility of marine 
accidents such as collision, foundering, and grounding in the 
Northern Sea Route (NSR). �ieme et al. [9] adopt a Bayesian 
Belief Network (BBN) to estimate the Performance of Human 
Autonomy Collaboration (HAC) which as a part of risk model 
for AUV operation.

In the safety risk assessment of unmanned ships, the fol-
lowing scholars have conducted the following studies. Ter 
Brake et al. [10] discussed the latest developments and plans 
for the unmanned ship simulation project, MARIN developed 
a real-time dynamic risk index which would be integrated into 
Dolphin to monitor the safety of all ships and focus on 
unmanned ships. Rødseth et al. [11] pointed out that the 
MUNIN project was conducting a feasibility study for 
unmanned bulk carriers on intercontinental voyages. MUNIN 
adopted a risk-based design approach to develop technical 
and operational concepts, and used scenario analysis to iden-
tify risks and simplify the scope of operations, using system 
hazard identification to identify critical security risks and how 
to address them [11]. Wróbel et al. [12] developed a list of 
potential hazards associated with unmanned ships. According 
to the high uncertainty of the potential risk model, the 
Bayesian network model structure was given. Xiang et al. [13] 
analyzed the risk of URV used in the adaptive learning and 
fuzzy reasoning capabilities of Mamdani Fuzzy Neural 
Network (MFNN). Wróbel et al. [14] conducted a preliminary 
assessment of the impact of unmanned ships on maritime 
safety by 100 maritime incident reports. A hypothetical anal-
ysis framework enhanced by the Human Factors Analysis and 
Maritime Accident Classification System (HFACS-MA) was 
used. �e purpose of the analysis was to assess whether an 
accident occurs when the ship is unmanned, once an accident 
occurs - the consequences are different. Wróbel et al. [15] used 
Systematic �eoretic Process Analysis (STPA) to identify and 
study the most likely safety control structures of the remotely 
merchant ship system. Gerigk [16] proposed a perfor-
mance-oriented risk-based approach to estimate the risk of 
unmanned ship.

According to the presented literature review, we can see 
that most studies that have tried to assess and analyze the risk 
of ship safety. Most of these studies consider risk analysis of 
traditional ships; a few studies are qualitative research on 
unmanned ship risk. Using the Fuzzy Bayesian Network, this 
study is the first study which has focused on assessing quan-
titatively the risk for an inland unmanned ship. �e premise 
of risk assessment is to identify risk factors. Scholars have 
many achievements in the identification of traditional ship 
navigation safety risk factors. According to the literature, 50 
risk criteria related to shipping safety, are identified. Detailed 
criteria have been listed in Table 1.

3. Methodology: Fuzzy Bayesian Network

3.1. Bayesian Network.  �e Bayesian Network, namely the 
reliability network, is an extension of the Bayes method. It was 
proposed by Judea Pearl in 1986 and is a type of inference-based 
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Table 1: Most used risk criteria related shipping safety.

Target Level indicators Secondary indicators �ree-level indicator References

Factors of 
shipping risk

Human factor

Human errors
Skill-based errors [17–25]
Decision errors [17–20, 23, 24, 26, 27]

Perceptual errors [17–20, 24, 27]

Violations
Routine violations [18, 20, 21, 23, 25, 28]

Exceptional violations [18, 20, 21, 24, 25, 29]

Quality and experience of 
crew

Post adaptability of crew [19, 22, 30–32]
Situation awareness [18, 27]
Psychological factor [20, 22, 24, 27, 30, 33, 34]
Physiological factor [22, 24, 27, 28, 30, 33]

Technical factor [20, 22, 25, 29, 30, 33]
Experience [19, 20, 31]

Ship factor

Static information

Tonnage [31, 35–37]
Ship/vessel age [20, 30, 31, 33, 35, 37]

Ship type [20, 31, 38]
Ship size [19, 39]

Ship equipment, radar and other equipment 
configurations [18, 20, 26, 27, 29, 33, 40]

Maintenance issues [41]
Structural strength [12, 19, 25, 29, 30, 39, 42]

Watertightness [39]

Dynamic information

Buoyancy [12]
Technical faults [17, 26]

Speed and heading [31]
Vessel draught [31, 39]

Ship maneuvering performance [43, 44]
Ship Seaworthiness [19, 20, 31]

Ship stability [12, 19, 39, 42]
Stowage of goods Nature of the carried cargo [19, 29]

Environmental 
factor

Natural environment

Wind speed and direction [31, 35, 37, 39, 42, 45–47]
Visibility [18, 20, 30, 31, 33, 35, 46–48]

Weather condition [20, 38, 44]
Water current affects/stream [18, 20, 30, 31, 33, 46]

Wind and waves [19, 20, 30, 35, 39, 43, 46, 49]
Traffic volume [38, 50]

Navigation environment

Channel traffic conditions [20, 47, 50–53]
Bridge [30, 33, 54]

Channel dimension [31, 39]
Channel width affects [20, 30, 33, 39, 47]

Send radius of the waterway [20, 47]
Completeness of navigation aids [20, 26, 27, 30, 31, 33]

Restricted river depth [20, 39, 55, 56]
Occurrence of ice [55]

Shipwreck [19, 30, 33]

Management factor

External supervision

Completeness of maritime management 
laws and regulations [20, 30, 31, 33]

Equipment completeness of maritime 
monitoring system [25–27, 30, 31]

Adequacy of the supervision and 
management [20, 24, 30, 32]

Supervise violations or not [18, 20]

Internal management

Safety culture [20, 24, 25, 27, 30, 57, 58]
Correct problem timeliness [18, 20]

Organizational errors [17, 18, 25]
Completeness of emergency facilities on 

board [34]
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network based on probability uncertainty, and variability. It 
is suitable for expressing and analyzing various uncertainties 
and probabilistic events. �e network is applied to decisions 
that conditionally depend on multiple control factors; it can 
use proper reasoning from knowledge or information that is 
completely low, less accurate, or less certain. �e Bayesian 
network, due to its unique uncertainty knowledge expression 
form, rich probabilistic expression ability and incremental 
learning characteristics of comprehensive prior knowledge, 
has been used in many �elds. Especially in the �eld of tra�c 
safety, the Bayesian network has been successfully applied 
to tra�c disaster cause analysis, tra�c safety warning, 
and tra�c safety assessment and so on. In the �eld of ship 
navigation safety management, some countries have long 
applied Bayesian networks to risk analysis. Since the IMO’s 
general implementation of the FSA method in the �eld of 
ship navigation safety, many scholars have nested Bayesian 
networks into the FSA method to conduct a comprehensive 
assessment of ship navigation safety. In addition to being 
nested in the FSA method, Bayesian networks are currently 
being used separately for various types of waterway safety 
research [59–63].

�e Bayesian network based on Bayesian inference to 
quantify risk, but in the process of reasoning, the distribution 
of prior probability is needed. At present, the occurrence prob-
ability of basic events in many research projects is demon-
strated by using certain values. In the inland navigation, 
corporate organization, human factor management and other 
events have strong uncertainties, and the historical data that 
can be used is limited. It is di�cult to express the probability 
of occurrence with a certain value. �erefore, the expert knowl-
edge can be fully utilized, mainly by the semantic variables of 
expert evaluation, and the event probability of conceptual and 
fuzzy language description is transformed into triangular fuzzy 
number or trapezoidal fuzzy number. A¡er defuzzi�cation, the 
Bayesian network is adopted to reasoning to predict the ship-
ping safety risks probability. In the literature [64], the Bayesian 
Network and fuzzy set theory is used to diagnose the causes 
for high railway tra�c, but our �eld of research is safety risk 
analysis of unmanned ships in inland rivers.

3.2. Probabilistic Analysis Based on Fuzzy Set �eory. A fuzzy 
set is used to represent a set of things with speci�c properties 
whose boundaries are ambiguous. �e basic idea is to obscure 
the absolute membership in the classical set. �e language 
using the feature function can be expressed as: the membership 
of the element to the set is no longer limited to taking 0 and 1, 
but can take any value between 0 and 1.

3.2.1. Fuzzy number processing for expert language 
description. �e advantages of using the fuzzy method are: it 
is di�cult to give or obtain a speci�c value in the fuzzy state, 
and the linguistic variable can be introduced in order to more 
intuitively represent the expert’s evaluation result. Wickens 
[65] believes that the occurrence probability of events can be 
divided into seven di�erent levels of semantic values: very high 
(VH), high (H), faint high (FH), medium (M), faint low (FL), 
low (L), and very low (VL); the fuzzy number form and �-cut 
set are shown in Table 2.

To more accurately use the fuzzy number to quantify the 
occurrence probability of the entire event, it is necessary to 
combine the evaluation results of multiple experts. In this 
paper, the arithmetic average method is used to synthesize the 
evaluation results of many experts. �e comprehensive eval-
uation of n experts can be expressed as [64]:

In Equation (1), �(�) is the fuzzy occurrence probability of the �th event, ��� is the fuzzy value of the �th event judged by the �th expert, � is the number of events, and n is the number of 
experts [64].

3.2.2. Ambiguity Resolution Method. In fuzzy sets, ambiguity 
resolution is a process that takes relative representatives of the 
single value of the entire fuzzy set. �e methods of ambiguity 
resolution include full integral value algorithm, center of 
gravity method, extreme le¡ maximum method, extreme 
right maximum method, average maximum method, weighted 
average method, and membership degree limiting element 
averaging method. �e results obtained by di�erent ambiguity 
resolution methods are also di�erent. In theory, the center of 
gravity method is more reasonable, but the calculation process 
is more complicated. �e integral value method can use the �
-cut set operation to process the fuzzy number, which is easy 
to understand and simple to calculate. �erefore, this paper 
adopts this method and uses the optimization index � to re¢ect 
the opinions of the decision makers. It is assumed that � is an 
L-R type fuzzy number, and the calculation formula of the 
ambiguity resolution value of the fuzzy number � is as follows:

In Equation (2), � ∈ [0, 1] is the optimistic coe�cient. When � = 0 and � = 1, �(�), respectively correspond to the upper and 
lower bounds of the ambiguity resolution value of the fuzzy 
number P. When � = 0.5, �(�) is the representative value of 
the ambiguity resolution value of the fuzzy number �. ��(�) 
and ��(�)  are the integral values of the inverse function of the 
le¡ membership function and the right membership function 
of the fuzzy number, respectively. For triangular fuzzy num-
bers, ��(�) and ��(�) can be represented by �-cut sets, i.e., [64]

In Equation (3) and (4), ��(�) and ��(�) are the upper and 
lower bounds of the λ-cut set of the fuzzy number �; � = 0, 0.1, 0.2, ⋅ ⋅ ⋅ 1; Δ� = 0.1.
3.2.3. Probability Distribution of Fuzzy Bayesian Network 
Nodes. A fuzzy Bayesian network is a node variable that 
introduces fuzzy node variables into a Bayesian network. For 
a �nite set of nodes, it can be fuzzi�ed into a fuzzy random 

(1)�(�) = ��1 ⊕ ��2 ⊕ ... ⊕ ���� , � = 1, 2, ..., �.

(2)�(�) = (1 − �)��(�) + ���(�).

(3)��(�) = 12[
1∑
� = 0.1
��(�)Δ� + 0.9∑

� = 0
��(�)Δ�],

(4)��(�) = 12[
1∑
� = 0.1
��(�)Δ� + 0.9∑

� = 0
��(�)Δ�].
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variable �� and �� inherits all possible states of ��. �en, the 
fuzzy set of �� is:

�̃�� represents the �th fuzzy state of ��, and �̃�� can be expressed 
as:

���(�) indicates that the variable � in �� belongs to the degree 
of membership of the �th fuzzy state �̃�� in ��, and the condi-
tional probability of �̃�� for a given x condition can be expressed 
as:

Further assume that the causal dependence of variables in �
is represented by a directed arc:

�e probability of its dependence can be expressed by a con-
ditional probability table:

where �+�� represent the set of parent nodes of the fuzzy variable ��. �e fuzzy evidence of the fuzzy variable ui can be expressed 
as:

�e trust degree �(��) of the fuzzy variable �� is:

where: � represents the set of evidence on the set � of fuzzy 
variables.

In general, the result of the inference decision is to 
know the maximum possible state of the continuous 

(5)�� = {�̃�1, �̃�2, . . . , �̃��}.

(6)�̃�� = {�, ���(�)|� ∈ ��}.

(7)���(�) = �(�̃��|�),

(8)0 ≤ ���(�) ≤ 1,
��∑
�=1
���(�) = 1.

(9)� = {(��, ��)|� ̸= �, �, � = 1, 2, ..., �} ⊂ � × �.

(10)� = {�(���+��)|� = 1, 2, . . . , �},

(11)�(��) = (��1, (�0� ), ��2, (�0� ), ..., ���, (�0� )).

(12)�(��) = �(��|�) = (�(�̃�1), �(�̃�2), . . . , �(�̃��)),

variable xi corresponding to the fuzzy variable ��. For a 
fuzzy Bayesian network, the node �� is given a probability 
vector corresponding to all possible states after the infer-
ence. Conversely, the defuzzification method can be used 
to determine the maximum probability that the continuous 
variable xi is in continuous state �0� . By synthesizing all the 
fuzzy states, a unique fuzzy set �̃� can be determined. The 
unique continuous point �0�  can be located by the centroid 
method.

Let �(�→ ��) be the probability of transitioning from state �
to state ��, which de�nes the Markov chain in the state space. 
Let �(�) be the probability that the system is in state � at time �, and the de�nition of the Markov chain reaching steady state 
distribution is:

When the expected ¢ow in any direction between any two 
states is comparable, it can be called a detailed balance:

�� is used to represent the sampled node, and �� is the hidden 
variable except for ��. �e values of �� and �� in the current 
state are �� and ��. Now, for a new value ��� of �� to be condi-
tionally sampled on all other variables (including evidence 
variables), there is:

Given a Markov coverage, the probability of a variable and the 
probability of the parent node are proportional to the product 
of the probability of the corresponding child node:

(13)��̃�(�) =
��
∑
� = 1
���(�)�(�̃��),

(14)�0� =
∫�����̃�(�)��

∫��� �̃�(�)��
.

(15)�(��) = ∑
�
�(�)�(�→ ��).

(16)�(�) = �(�→ ��) = �(��)�(�� → �).

(17)�(� → ��) = �((��, ��) → (��� , ��)) = �(��� , ��, �).

(18)

�( �
�
�

��(��)
) = ��( ���

parents(��)
) × ∏
��⊂ Children(��)

�( ��
parents(
�)

).

Table 2: Fuzzy Number Form and �-cut Set [64].

Language description Fuzzy number form λ-cut set
Very low (VL) ��� = (0.0, 0.1, 0.2) ���� = [0.1� + 0, −0.1� + 0.2]
Low (L) �� = (0.1, 0.2, 0.3) ��� = [0.1� + 0.1, −0.1� + 0.3]
Faint low (FL) ��� = (0.2, 0.3, 0.4, 0.5) ���� = [0.1� + 0.2, −0.1� + 0.5]
Medium (M) �� = (0.4, 0.5, 0.6) ��� = [0.1� + 0.4, −0.1� + 0.6]
Faint high (FH) ��� = (0.5, 0.6, 0.7, 0.8) ���� = [0.1� + 0.5, −0.1� + 0.8]
High (H) �� = (0.7, 0.8, 0.9) ��� = [0.1� + 0.7, −0.1� + 0.9]
Very high (VH) ��� = (0.8, 0.9, 1.0) ���� = [0.1� + 0.8, −0.1� + 1]
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environmental factor and supervision and management 
factor, for example, like ship full load rate, ship balance, ship 
tonnage, ship age, ship stability, ship buoyancy, ship speed, 
ship maintenance, visibility, wind speed, water current, 
channel tra�c, channel width, restricted river depth, 
inadequate supervision, planned inappropriate operation, 
failure to correct known problem, supervisory violations, 
and so on, these safety risk factors between unmanned ship 
and traditional ship are similar. According to the presented 
literature review on the safety risk of unmanned ships, we can 
clarify the following issues: while paying attention to the safety 
of traditional ships, we must study the new risks brought by 
ship-shore integration to shipping safety.

Is it possible to eliminate human factors in the sailing 
safety of unmanned ships when compared to traditional 

When changing the value of each variable ��, the number of 
multiplications required is equal to the number of child nodes 
of ��.

�rough the above calculation, the posterior probability 
of a single node can be obtained, and the probability of the 
target node risk can be �nally obtained, which is the compre-
hensive shipping risk probability of the unmanned ship in the 
inland river.

4. Influencing Factors of Navigation Safety Risk 
of Unmanned Navigation Vessels in Inland Rivers

4.1. Overview of In�uencing Factors of Unmanned Ship 
Navigation Risk of Inland River. In fact, the ship itself factor, 

Table 3: Node table at each level of Inland river unmanned ship navigation safety risk status.

Target node Intermediate node Sub-node Evidence node

Inland river unmanned ship 
navigation safety risk status

Ship factor

Ship stowage

Full load rate
Ship balance

Hazardous nature of cargo
Cargo fastening degree

Tonnage and age
Tonnage

Age

Structure and performance
Buoyancy reserve

Speed of ship
Initial stability height

Equipment and maintenance
Integrity rate of out�t

Ship maintenance

Environmental factor

Weather condition

Fog
Rain
Wind

Illumination

Channel condition

Channel width
Keel clearance

Sailing restrictions
Obstructed building

Channel tra�c density

Hydrological condition
Flow rate
Flow state

Parking condition
Berth utilization

Anchorage condition

Interference factor
Floating objects hinders navigation
Speed and direction of interference 

boat

Management and controlling 
factor

Human-related

Human error
Technical failures

Situation awareness
Information overload

Reliability and security of con-
trol device

Remote operation reliability
Power device stability

Cyber security
Information transmission security

Emergency response capability Emergency rescue capability

Safety supervision Security check strength
Fault maintenance timeliness
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in developing and maintaining high-level situation awareness 
in dynamic systems [67]. Technical failures can play an impor-
tant role at the outset, as in most newly systems; as experience 
increases, they can be expected to be overcome. But human 
error would continue to be a huge challenge for unmanned 
ships [67–69]. �e shore-based control of the ship contains 
new safety issues and an interesting question will be the inter-
action of manned and unmanned vessels in the same tra�c 
zone. �e design and rules of each control algorithm and rules 
for the internal decision logic of the autonomous ship are 
coded by human so¡ware engineers. Maintaining situational 
awareness is also critical to the safe and e�ective control of 
ships [70]. When the operator takes over the ship control sub-
system to solve the problem, it means that the possibility of 
human error is not eliminated, but instead it is transferred to 
a control center hundreds of miles away [14].

Some engineering-related issues may a�ect the unmanned 
shipping safety [12]. �e problem of normal operation of var-
ious engines on board may be the cause and result of naviga-
tional accidents. For example, stranding may be caused by a 
malfunction of the steering device. On the other hand, if the 
ship is stranded, it will cause serious damage to the rudder. In 
addition, the loss of electricity can cause most of the ship’s 
systems to fail, including propulsion, steering, communication 
and ballast. Poor system design, such as poor consideration 
on ergonomics and maintainability of the system/components 
will put the ship in danger.

Ship handling is considered a complex task. On a tradi-
tional ship, crewmembers handling vessel rely on navigational 
instruments (e.g., radar or ECDIS) and visual information 
from the environment (e.g., available wave or water direction). 
�e spatial movement of ships (e.g., rolling, slamming, pitch-
ing, or heaving) and the inertial performance of ships with 
relation to maneuverability are all contribute to the decisions 
made regarding vessel handling [68]. However, when the 
unmanned ship concept is introduced, it will be a big di�culty 
to maintain a high-level of situation awareness [67]. 
Information overload and automation awareness issues will 
a�ect ship handling. Automation and remote operations 
involve the ship being equipped with and loading multiple 
sensors, and the operator may be exposed to too much infor-
mation to understand the situation. If one monitors several 
ships, the problem may expand; moving the focus from one 
ship to another may be a potential disaster point. Delay and 
cognitive horizons may also be potential in¢uencing factors. 
Signals are transmitted by satellite or other means, which 
means there is always a delay in remote operation. Too much 
wait time can suppress the actual task implementation, i.e., if 
the distance/wait time is too long; it may exceed the “cognitive 
range” in remote operations.

Reliability and maintenance management are essential for 
unmanned ships. Traditional ships seem to rely heavily on the 
crew on board as on-site resources to recover from failures at 
sea and to perform preventive maintenance programs online 
during maritime navigation. �e lack of permanent crew on 
board will greatly reduce the ability to monitor site conditions 
and prevent and correct manual maintenance tasks during 
maritime navigation. �is means that systems that are essential 
for operation need to be designed for remote maintenance or 

manned ships? In response to this question, the following 
scholars’ research gives us an answer. �e MUNIN project 
demonstrates the unmanned ships technology is feasible, and 
also shows the unmanned system is as safe as a traditional 
manned system. It is a seriously misunderstand to say an 
unmanned system will eliminate human error. Unmanned 
vessels do not mean eliminating human factors. On the con-
trary, there is a need to pay more attention to human factors 
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Figure 2:  Analysis of the proportion of the Yangtze River trunk 
accident causes.
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Figure 1: Yangtze River trunk line accident classi�cation between 
2010 and 2017.
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waterways. When inland river vessels are to avoid collisions, 
in addition to passing and clearing obstacles or the coming 
ship, it is also necessary to consider that any collision avoid-
ance decisions taken should not be too close to the boundary 
of the channel or the shore wall; limiting the impact of navi-
gable water space is a prerequisite for making safe and e�ective 
collision avoidance decisions. Because of the limitation of the 
width of the channel, inland vessels o¡en travel along the 
coast, which may cause di�culties due to the in¢uence of 
water ¢ow and shore suction, resulting in collision and 
grounding risks.

Based on the limitation of the navigation channel scale, 
the in¢uence of the ship’s maneuverability is very obvious, 
which has a direct impact on the ship collision risk [43, 66]. 
Maneuverability of a ship mainly refers to the performance of 
the ship to maintain or change its speed, heading and position. 
Ship handling performance mainly includes the ship’s heading 
stability, rotation, and heading. When an obstacle or ship is 
found, the ship should change the course or speed in time to 
avoid collision. If the steering is used alone, the ship is required 
to have good rotation and heading. �erefore, for ships with 
better maneuverability, the collision risk with obstacles or the 
incoming ships will be smaller than it is for ships with poor 
maneuverability. �is is because ships with poor maneuvera-
bility have di�culty in quickly following the driver’s com-
mands to control the ship course or speed, and the collision 

for ¢exibility and extended maintenance intervals. �e lack of 
permanent crew members also puts higher demands on the 
maintenance arrangements for port stays.

In the context of autonomous and remotely operated ves-
sels, concerns about cyber security are further increased, with 
the system’s connectivity further extended to allow the vessel 
to operate in autonomous mode or remotely. �is means that, 
in principle, anyone who is skilled and capable of entering the 
ICT system can control the ship and change its operation 
according to the hacker’s goals. In addition to intrusion sys-
tems, the operation of automated vessels may also be threat-
ened by intentional interference or spoo�ng of AIS or GPS 
signals or data communications between the ship and the land 
control center.

For unmanned vessels sailing in inland rivers, it is also 
necessary to consider the impact of space constraints in nav-
igational waters [43]. �e following pose a potential collision 
hazard to sailing vessels: the scale of the channel being limited, 
the river channel changing frequently, the water level ¢uctu-
ating with the season, the shape of the water ¢ow being com-
plex and variable, the channel being narrow and curved, the 
ship sailing density being high, and the number of bridges and 
the increasing number of buildings across the river becoming 
limitations, and obstacles for the navigation of inland vessels. 
�erefore, the primary factor for analyzing the collision risk 
of unmanned ships in inland rivers is the restriction of inland 
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�e ship �eld expert group 1 contains 10 researchers and sta� 
from China Shipbuilding Industry Corporation, China Ship 
Research Institute and China Maritime Safety Administration. 
Each expert has more than eight years of work experience 
and has profound knowledge in the �eld of ship navigation 
safety. �e research team conducted a questionnaire survey 
for this group of experts, initially identi�ed the main sources 
of risk, conducted a literature review, expanded the risk 
source framework, and used the Delphi method to organize 
experts to analyze the ship navigation risk factors and obtain 
preliminary analysis results. �e expert group 2 consists of 
10 professors and associate professors from the Institute of 
Shipbuilding Industry Management and Institute of Systems 
Engineering a�liated to universities. �is group of experts 
reviews the results of the preliminary analysis of risk sources 
to test their scienti�c basis, comprehensiveness, and operation. 
If the review is passed, the risk assessment framework can be 
constructed based on the results of the analysis. Otherwise, the 
above operations are repeated on the basis of the comments 
of the members of expert group 2. Using the above steps to 
complete 4 times iterative process analysis, more complete risk 
factor analysis results can be obtained.

Based on Table 1, through the literature review 50 risk cri-
teria had been identi�ed, including 11 human criteria, 16 ship 
criteria, 15 environmental criteria, and 8 management criteria. 
According to the frequency of repetitions in literatures, sailing 
characteristics of unmanned ships, characteristics of inland 

risk when confronted with obstacles or incoming ships is also 
much greater. Ships should take reasonable collision avoidance 
measures according to their handling performance. �erefore, 
the maneuverability of the ship is a very important factor for 
the collision risk of the ship.

4.2. Bayesian Network Node Composition of Unmanned Ship 
Navigation Risk of Inland River. �e inland water network is 
densely distributed, and the tra�c volume of channel is large; 
the types of accidents are diverse, and the social environment 
around the channel is complex, including public areas such as 
bridges, commercial areas, and residential areas. In the event of 
collisions, �res, etc., it will cause heavy casualties and property 
loss. �erefore, studying the sailing safety risks of inland 
unmanned vessels has great signi�cance. Factors a�ecting 
ship risk continuously change with time and environment. 
�erefore, detailed risk identi�cation of ships should not only 
consider static risk factors related to ship safety; it should 
also take under consideration many dynamic factors such 
as meteorology, hydrology, and tra�c ¢ow, as well as factors 
which vary with the movement of the ship’s position, such as 
the width of the channel and the curvature of the channel. In 
view of the complexity and diversity of ship navigation risks, 
the combination of objective analysis and subjective judgment 
is adopted, which is based on the principle of risk factor 
selection and combined with literature and expert opinions 
from various �elds to analyze ship navigation risk factors. 
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cultural education, and science and technology. �e Economic 
Belt of the Yangtze River covers an area of 400,000 square 
kilometers, accounting for 4% of China’s land area, but its 
population and GDP account for 18% and 25% of China’s 
population. Its population density, economic density, and per 
capita GDP are 4.5 times, 6.2 times, and 1.4 times of China’s 
average level, respectively. It occupies an important position in 
China’s national economy. �e Yangtze River shipping volume 
accounts for 41% of China’s total inland shipping. �erefore, 
it is reasonable to study the safety mechanism of inland 
navigation based on the Yangtze River shipping. According 
to the current statistical caliber, the types of shipping accidents 
are generally divided into: collision, sinking, grounding, 
stranding, damage through contact, �re, windstorm and 
other accidents. According to the information provided by the 
Yangtze River Maritime Safety Administration, the proportion 
of the various types of accidents on the Yangtze River trunk 
line between 2010 and 2017 is shown in Figure 1. It can be seen 
that the most common occurrences are collision accidents, 
followed by grounding accidents.

According to the information provided by the Yangtze 
River Maritime Safety Administration, the project team 
reached the following conclusions through analysis: the causes 
of the waterway tra�c accidents on the Yangtze River can be 
divided into ship aspect, crew aspect, shipping company 
aspect, navigation environment and natural disaster and other 

waterways, similarity and correlation of criteria, available data 
and suggestions of experts, were considered to select the �nal 
criteria. Based on these conditions, the academic experts and 
ship �eld experts were asked to specify which of the criteria 
should be considered. �en, by analyzing the suggestions of 
experts, the project team divided the navigation risk factors of 
unmanned ships into three aspects: ship aspect, environment 
aspect, and management and control aspect. Each risk element 
was a node of the Bayesian network. �e target node (also 
known as the root node) was the “safety risk status of inland 
navigation for unmanned ships,” and the three categories of 
“ship,” “environment” and “management and control” were 
used as intermediate nodes. According to the attributes of spe-
ci�c in¢uencing factors, it is further divided into 13 subnodes. 
Finally, the project team considered 11 ship factors, 15 envi-
ronmental factors, and 11 management and control factors, 
which provided a total of 37 factors to serve as evidence nodes 
that directly a�ect the navigation risk of inland unmanned 
vessels. �e nodes at each level are shown in Table 3.

5. Application of the Methodology: Case Study

5.1. Navigation Accident Analysis of Unmanned Ships in 
Yangtze River. �e Yangtze River Basin is one of the most 
developed areas in China’s industry, agriculture, commerce, 
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Figure 5: Reverse reasoning learning result.



11Journal of Advanced Transportation

the navigation accidents of the Yangtze River trunks from var-
ious risk factors, and distributed the statistical results to the 
expert group. Based on the statistical results of the classi�ca-
tion, the expert group gave the language description of the 
fuzzy probability value. We assumed that the weights of the 
experts are the same. According to Table 2 and Equations (1) 
to (4), adopting the arithmetic mean method and the defuz-
zi�cation method, we obtained the prior probability of each 
node. �e distribution probabilities for primary causes of 
shipping safety of inland river unmanned ship are shown in 
Figure 4.

In this study, as shown in Figure 4, in the BN analysis 
demonstrates the probability of sailing safety status is only 
0.31. �e reason for the low probability is that compared with 
sailing in open water, unmanned ships are restricted by nav-
igation channels in the inland river, plus the technology of 
unmanned ships is still immature, and various reasons have 
made the sailing security of unmanned vessels in Yangtze 
River greatly reduced.

5.3. Bayesian Network Reasoning. Based on the Bayesian 
network model, the Bayesian network forward and reverse 
causal reasoning techniques are used to conduct risk prediction 
and diagnosis, respectively. Managers can estimate the risk 
level of ship navigation safety based on prior knowledge, and 
can also predict risk level when the new evidence appears 

reasons. Among them, the crew aspect is divided into illegal 
sailing and improper operation. �rough analysis of the causes 
of grade accidents in recent years, we found that the main 
cause of accidents was the crew’s improper operation, account-
ing for 52%, and accidents caused by the crew’s illegal sailing 
accounted for 18%, this reveals that 70% of the accidents were 
caused by crew factors. Ship factors and navigational environ-
ments and natural disasters are the objective causes of acci-
dents. Figure 2 re¢ects the frequency of various accidents.

5.2. Determining the Probability Distribution of Fuzzy Bayesian 
Network Nodes. �e Bayesian network structure model can be 
constructed by so¡ware such as Matlab, GeNIe2.3, and Netica. 
Although Matlab so¡ware can perform network structure 
learning by loading Bayesian network packets, its disadvantage 
is that it requires a lot of programming and cannot sensitively 
re¢ect the change relationship between various risk factors. 
GeNIe2.3 and Netica so¡ware can visually re¢ect the 
structural changes through visualized pages. �erefore, this 
paper uses the widely used GeNIe2.3 so¡ware to construct the 
Bayesian network model. �e relationships among all nodes 
are established, and the �nal graphical structure of Bayesian 
Network model is shown in Figure 3.

Based on the statistical data of ship accidents on the 
Yangtze River trunks collected by the Yangtze River Maritime 
Safety Administration, the research team classi�ed and ranked 
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Figure 6: Sensitivity analysis of the Bayesian network.
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greater the sensitivity of the node, the more sensitive it is to 
the safety risk level of the unmanned ship. It should be taken 
as an important parameter and structure of the complex 
system. �rough sensitivity analysis, key risk impact factors 
a�ecting the navigation safety of inland river unmanned 
vessels can be identi�ed, and parameters that need further 
improvement are identi�ed. Sensitivity analysis is one of the 
statistical decisions that provides new ideas for risk analysis. 
In this paper, the GeNIe 2.3 model is used to directly set the 
navigation safety risk of the inland river unmanned ship as the 
target node. Based on the Bayesian network, survey data and 
online learning results, sensitivity analysis of other in¢uencing 
factors can be directly performed to identify key risk factors in 
the target. According to the reverse reasoning of the previous 
section, the sensitivity analysis of the Bayesian network is 
performed using GeNIe2.3, as shown in Figure 6.

Figure 6 shows the sensitivity analysis results of the 
Bayesian network model with the importance of the safety 
evaluation index of inland river unmanned ship. �e deeper 
the red color indicated by the box indicates the more sensitive 
it is to the overall risk impact. �erefore, the more sensitive 
sailing safety risks are mainly concentrated in the risk of equip-
ment and maintenance, weather condition, hydrological con-
dition, and reliability and security of control device.

A sensitivity analysis was performed to assess the sensitivity 
of the Bayesian network to some of the most critical variables. 
�e tornado diagram can more accurately re¢ect the impact of 
these more sensitive factors on the overall risk. From Figure 7, 
we can �nd ten top ranked indicators. Taking Figure 7, the state 
probability of “Safety_status” in state “Safety” as an example, 
the �rst histogram shows that when other factors are constant, 

continuously during the navigation process. Conversely, when 
the risk of an accident increases, the risk diagnosis can be 
based on the posterior probability, and then measures can be 
taken in a targeted manner.

When using GeNIe2.3 so¡ware for reverse reasoning, set-
ting the �rst state of the safety status to 100%, the key risk 
in¢uencing factors under this risk level can be inferred 
inversely. �e inference results are shown in Figure 5.

As shown in Figure 5, the �rst state of the end node is set 
to 100%, and the probability change value of each node is 
reversely inferred. From the analysis results, the probability 
values of the �rst state of almost all nodes are improved. �e 
changes in the three secondary indicators are signi�cant, dat-
ing back to the third-level indicators, the probability of the 
�rst state for weather condition has risen by 13%, and hydro-
logical condition, ship stowage, structure and performance, 
reliability and security of control device, equipment, and 
maintenance have risen by about 9%; during the forth-level 
indicators, the probability of the �rst state for information 
transmission security, fog, ¢ow state, cargo fastening degree, 
wind, and tonnage have risen by about 4%. �is shows that 
the safety of inland river shipping can be improved by improv-
ing the conditions corresponding to the above evaluation 
indexes.

5.4. Sensitivity Analysis. Sensitivity analysis of the Bayesian 
network indicates the e�ect of small changes in the model’s 
local parameters or evidence on the target node. Minor 
changes in sensitive factors can lead to signi�cant changes 
in the evaluation results, while changes in nonsensitive 
factors have little e�ect on the results of the evaluation. �e 

0.305 0.31 0.315 0.32

1: Equipment_and_maintenance = EM0 | Integrity_rate_of_out�t = I0, Ship_maintenance = S0

2: Wind = W0

3: Flow_state = F0

4: Ship_factor = SF0 | Ship_stowage = SS0, Tonnage_and_age = TA0, Structure_and_performance = SP0, Equipment_and_maintenance = EM0

5: Fog = F0

6: Safety_status = Safety | Ship_factor = SF0, Management_and_control_factor = MCF0, Environmental_factor = EF1

7: Hydrological_condition = HC0 | Flow_rate = FR0, Flow_state = F0

8: Safety_status = Safety | Ship_factor = SF0, Management_and_control_factor = MCF1, Environmental_factor = EF1

9: Safety_status = Safety | Ship_factor = SF0, Management_and_control_factor = MCF1, Environmental_factor = EF0

10: Weather_condition = WC0 | Fog = F0, Rain = R0, Wind = W0, Time_of_day = I0

Sensitivity for safety_ status = safety
Current value: 0.313461 Reachable range: [0.304607 .. 0.322316]

Figure 7: Tornado diagram of sensitivity for “Safety_status = Safety.”
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and safety experts to estimate the probability of unmanned 
ship safety considering the factors most contributing to the 
existing environmental and operational conditions.
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