1,154 research outputs found

    Embedding Four-directional Paths on Convex Point Sets

    Full text link
    A directed path whose edges are assigned labels "up", "down", "right", or "left" is called \emph{four-directional}, and \emph{three-directional} if at most three out of the four labels are used. A \emph{direction-consistent embedding} of an \mbox{nn-vertex} four-directional path PP on a set SS of nn points in the plane is a straight-line drawing of PP where each vertex of PP is mapped to a distinct point of SS and every edge points to the direction specified by its label. We study planar direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for convex point sets.Comment: 11 pages, full conference version including all proof

    Computing k-Modal Embeddings of Planar Digraphs

    Get PDF
    Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family

    Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

    Get PDF
    When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180∘,360∘\{0,180^\circ, 360^\circ\}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360∘360^\circ, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.Comment: 21 pages, 10 figure

    Single failure resiliency in greedy routing

    Get PDF
    Using greedy routing, network nodes forward packets towards neighbors which are closer to their destination. This approach makes greedy routers significantly more memory-efficient than traditional IP-routers using longest-prefix matching. Greedy embeddings map network nodes to coordinates, such that greedy routing always leads to the destination. Prior works showed that using a spanning tree of the network topology, greedy embeddings can be found in different metric spaces for any graph. However, a single link/node failure might affect the greedy embedding and causes the packets to reach a dead end. In order to cope with network failures, existing greedy methods require large resources and cause significant loss in the quality of the routing (stretch loss). We propose efficient recovery techniques which require very limited resources with minor effect on the stretch. As the proposed techniques are protection, the switch-over takes place very fast. Low overhead, simplicity and scalability of the methods make them suitable for large-scale networks. The proposed schemes are validated on large topologies with properties similar to the Internet. The performances of the schemes are compared with an existing alternative referred as gravity pressure routing

    Upward Point-Set Embeddability

    Full text link
    We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph DD has an upward planar embedding into a point set SS. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of kk-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 11-switch tree), we show that not every kk-switch tree admits an upward planar straight-line embedding into any convex point set, for any k≥2k \geq 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks

    Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space

    Full text link
    The rigidity of the Positive Mass Theorem states that the only complete asymptotically flat manifold of nonnegative scalar curvature and zero mass is Euclidean space. We study the stability of this statement for spaces that can be realized as graphical hypersurfaces in Euclidean space. We prove (under certain technical hypotheses) that if a sequence of complete asymptotically flat graphs of nonnegative scalar curvature has mass approaching zero, then the sequence must converge to Euclidean space in the pointed intrinsic flat sense. The appendix includes a new Gromov-Hausdorff and intrinsic flat compactness theorem for sequences of metric spaces with uniform Lipschitz bounds on their metrics.Comment: 31 pages, 2 figures, v2: to appear in Crelle's Journal, many minor changes, one new exampl
    • …
    corecore