
Single failure resiliency in greedy routing

Sahel Sahhaf∗, Wouter Tavernier∗, Didier Colle∗, Mario Pickavet∗ and Piet Demeester∗

∗Department of Information Technology (INTEC), Ghent University, iMinds

Gaston Crommenlaan 8, 9050 Gent, Belgium

Email:{sahel.sahhaf, wouter.tavernier, didier.colle, mario.pickavet, piet.demeester}@intec.ugent.be

Abstract—Using greedy routing, network nodes forward pack-
ets towards neighbors which are closer to their destination.
This approach makes greedy routers significantly more memory-
efficient than traditional IP-routers using longest-prefix matching.
Greedy embeddings map network nodes to coordinates, such
that greedy routing always leads to the destination. Prior works
showed that using a spanning tree of the network topology,
greedy embeddings can be found in different metric spaces
for any graph. However, a single link/node failure might affect
the greedy embedding and causes the packets to reach a dead
end. In order to cope with network failures, existing greedy
methods require large resources and cause significant loss in the
quality of the routing (stretch loss). We propose efficient recovery
techniques which require very limited resources with minor effect
on the stretch. As the proposed techniques are protection, the
switch-over takes place very fast. Low overhead, simplicity and
scalability of the methods make them suitable for large-scale
networks. The proposed schemes are validated on large topologies
with properties similar to the Internet. The performances of the
schemes are compared with an existing alternative referred as
gravity pressure routing.

I. INTRODUCTION

Next generation Internet protocols are required to increase
performance, capacity and packet forwarding rates in order
to meet future demands. Not only throughput requirements
are increasing but also the size of the routing tables are
growing ([1] reports more than 400K RIB entries in current
BGP routers) and in near future they are expected to increase
to 2 million entries. As traditional IP routing is based on
longest prefix matching in a routing table, the scalability
of current routing protocols is limited by the size of the
corresponding routing tables. Greedy routing can be considered
as an alternative to IP routing for future Internet. This routing
scheme does not require address lookup in order to find the
next hop and it is more memory efficient than IP routing based
on longest prefix matching.

In greedy routing, every node in the network is assigned
a coordinate in a metric space. Based on these coordinates,
every node forwards the incoming packets to a neighbor
which is closer to the destination of the packets. Using this
scheme, nodes are only required to store the coordinates of
their neighbors in order to make routing decisions. Network
coordinates can be based on physical locations of the nodes [2],
leading to the term geographic routing or virtual coordinates
embedded in a geometric space different from the physical
one, geometric routing [3]. A problem of these schemes is
that packets might reach a local minimum (lake or void),
meaning that there is no neighbor which is closer to the
packet’s intended destination than the current node. Greedy
embeddings are proposed as a solution to this issue [4]. In a
formal way, a greedy embedding for a given graph G(V,E)

into a metric space X , is a function from V (G) to X such that
for all graph nodes s 6= t, s has a neighbor u which decreases
the distance toward t in metric space X . Greedy embeddings
guarantee 100% successful delivery to every destination in the
network.

Robert Kleinberg proved that coordinates for nodes of any
type of graph can be found in a two-dimensional hyperbolic
space such that greedy routing is always successful [5]. The
derivation of the coordinates is based on a spanning tree of the
network graph. However, Kleinberg did not investigate the ef-
fect of dynamics in the network topology. We propose another
greedy embedding which is also based on the spanning tree of
the network. However, we use a very simple numbering of the
nodes and the embedding is not into a special metric space. The
proposed greedy embedding guarantees a distance-decreasing
path via the spanning tree of the network. Therefore, a single
change in the connectivity of this tree (link/node failure) might
affect the greedy embedding. This might lead the packets to a
void. Many existing approaches use face routing to bypass the
void and reach a node which greedy routing can be resumed
from [6]. Unfortunately, face routing techniques suffer of two
types of issues: i) local graph parts must be planar (or being
planarized.), and ii) the latter cannot always be guaranteed
to be found. Another possible solution is the re-construction
of the tree and re-calculation of the coordinates. Using this
approach, it is possible that too many nodes require changing
their coordinates and this might result into long disruptions.

In this paper, we propose recovery techniques to cope with
network failures in greedy routing without the re-calculation of
the coordinates. The proposed schemes guarantee single failure
resiliency. As the methods are protection, a very fast switch-
over is possible. The memory overheads both in network nodes
and in the packets are very limited and the loss in the quality of
the routing is insignificant compared to the existing methods.
Different parts of the routing, even upon facing a failure are
based on greedy routing. The methods work in such a way
that the local minima are avoided in the first place. Therefore,
unlike some available techniques [7], there is no need to
keep track of the visited nodes along a path. Low overhead,
simplicity and scalability of the methods make them suitable
for distributed implementation and therefore, usage in large-
scale networks.

The paper is structured as follows. In Section II, the related
works for greedy routing and recovery techniques are de-
scribed. Section III explains the proposed greedy embedding.
The two proposed recovery methods for link and node failure
are described in Section IV. Section V contains the evaluation
results for the proposed methods. Future works are discussed
in Section VI and finally Section VII concludes the paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55740236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. EXISTING WORK

As was mentioned earlier, face routing is one solution to
cope with local minima in greedy routing. This technique tries
to escape from a void, by routing around the area of the face in
a planar subgraph of the network, until greedy routing can be
resumed. The graph being planar is the major limitation of this
technique. Using greedy embeddings is the other solution and
Kleinberg proved that it is possible to find such an embedding
for any graph in the hyperbolic plane [5].

Regarding the network dynamics in greedy routing, there
are some methods which cope with the failures using face
routing [6]. However, not so many works investigate the effect
of failures in greedy routing based on greedy embeddings.
In [7], the authors propose an embedding in the hyperbolic
plane which allows incremental embedding to cope with
node addition in the network. In order to handle node/link
failures, they use an adapted routing algorithm in case a packet
reaches a dead end. The routing is called Gravity-Pressure.
The packets are forwarded via neighbors which decrease the
distance towards the destination as much as possible. In order
to avoid loops, a path trace needs to be maintained in every
packet from the moment a dead end is reached. This approach
causes a large overhead to the header of the packets. In
[8], we proposed recovery methods for link failures. The
greedy routing was based on the embedding in [5]. In this
paper, we propose a very simple greedy embedding and a
new recovery technique for single link failure. In the new
technique, we benefit from backup trees while the technique in
[8] was based on finding alternate paths for every link in the
primary tree. The new technique has some advantages on the
computation/communication cost compared to the technique
in [8]. We also propose a recovery technique for single node
failure using disjoint backup paths.

Redundant trees are commonly used for protection and
restoration in communication networks. In many cases, link-
disjoint or node-disjoint trees are generated to cope with
network failures. As finding two completely disjoint trees is
not possible in every network, maximally disjoint trees and
colored trees have been proposed [9], [10]. In the latter, the
methods try to find two trees rooted at the same node and
every node in the network has two disjoint paths to the root
in the two trees. It is proved by Itai and Rodeh [11] that for
every 2-connected graph, such trees can be generated. There
are some methods using multiple spanning trees to recover
from a single node/link failure. In these methods, trees are
found in such a way that for every possible single failure there
is at least one tree which does not contain that failed element
[12]. As these types of methods imply large overhead in every
node, we focus on the colored trees. We use this type of trees
for single link failure resiliency in greedy routing. As only
two trees are required, the memory overhead in every node
and also in packets is very limited. Both proposed recovery
techniques are protection schemes.

III. GREEDY EMBEDDING BASED ON THE SPANNING TREE

As explained earlier, local minima are a major drawback
of greedy routing. As a solution, we propose a simple greedy
embedding (numbering) of nodes which is based on the
spanning tree of the network. Using the proposed embedding,
every packet reaches its destination eventually.

Fig. 1. Steps of network nodes numbering

A. Nodes numbering

The general idea is to know the location of a node in the
spanning tree of the network. This information is useful in
order to find the distance between two nodes on the tree. This
distance is used to perform the greedy routing. Any type of
node numbering which indicates the location of a node in the
spanning tree of the network can be used in this scheme. In
the following, the required steps of a sample node numbering
are explained.

1) First the spanning tree of the network is constructed.
2) The neighbors of a node in the spanning tree of the

network are numbered from 1 to d (with d being the
degree of the node in the tree).

3) Each node can calculate the coordinates of its chil-
dren by adding the integer number assigned to each
child after the last non-zero field in its own coordi-
nate.

Note that all fields of the root coordinate are zero. The
explained numbering of network nodes can be performed at
the same time as spanning tree construction. The exchanged
messages between nodes for tree generation can contain the
coordinate of the nodes as well. Figure 1 depicts an example
for the explained tree numbering (coordinate) and tree distance.
The number of non-zero fields in a coordinate represents the
level of that node in the spanning tree of the network. Using
these coordinates, the locations of nodes in the tree can be
determined easily. In this scheme, in order to determine which
neighbor is closer to the destination of a packet the tree
distance is calculated. The tree distance between two nodes
is actually the hop count on the tree between them. In Figure
1, the tree distance between node 110 and node 200 is 3.

B. Tree-distance calculation

In this section, the calculation of tree distance between two
nodes based on the assigned tree coordinates is explained. The
required steps for this calculation are as follows:

1) The closest common parent to both nodes should be
found.

2) The hop counts of each node to the common parent
should be calculated.

3) The sum of these two hop counts determines the tree
distance.

The first common fields in the coordinates of the two
nodes indicate the closest common parent to both nodes. In
each coordinate, the number of non-zero fields after the first
uncommon field represents the hop counts to the common



parent. The sum of hop counts of both coordinates determines
the tree distance between the two nodes. In Figure 1, consider
node 200 and node 110. The closest common parent for these
two nodes is the root. The counting starts from the first
uncommon field in both coordinates. In node 110 there are
2 nonzero fields and node 200 has only one non-zero field.
Therefore, the sum of these two hop counts determines the
tree distance between these two nodes which is 3.

C. Tree-based greedy routing

Upon arrival of a packet in a node, the tree distance
between every neighbor and the destination is calculated and
the neighbor which decreases the distance most is selected as
the next hop of the packet. This routing is different from tree
routing, because the shortcuts (the edges which are not in the
spanning tree) can also be taken and the tree is only used for
coordinate assignment and to guarantee a distance decreasing
path between every two nodes.

IV. RECOVERY TECHNIQUES IN GREEDY ROUTING

In order to perform greedy routing in the network, we
use the tree-numbering which was explained in Section III.
This numbering is based on the spanning tree of the network
which means that the spanning tree guarantees the distance-
decreasing path between every two nodes of the network.
Therefore, a change in the connectivity of this spanning tree
might affect the greedy embedding causing the packets to reach
a dead end. Figure 2 illustrates an example for a tree-edge
failure and the problem of local minimum. In the left figure,
the greedy path from S to D is determined by the solid line.
The depicted tree-edge failure makes the node 000 a local
minimum as it has no neighbor closer to D than itself. In this
section, we first explain a recovery method for a link failure
and then a method to cope with a node failure. Both methods
are protection schemes. In the methods, we assume that the
networks are biconnected.

A. Link Failure Recovery method (LFR)

In greedy routing, shortcut failures do not cause any
problem in the routing because the spanning tree provides a
distance-decreasing path between every two nodes. Therefore,
the proposed recovery method is only applied in case of a tree-
edge failure in the network. Protocols such as Bidirectional
Forwarding Detection (BFD) [13] can be used for failure
detection. Figure 2 illustrates the scenario of a shortcut failure
in the network. In the right figure, the greedy path upon
a shortcut failure is depicted by the dot line. As we see,
the distance-decreasing path is still available via the tree. In
order to provide a single tree-edge failure resiliency, we use
two sets of coordinates for the network nodes. Two different
spanning trees of the network for generation of these two sets
of coordinates are required. As previously mentioned, we use
colored trees which can be found for any biconnected network.
Colored trees, also known as Blue and Red trees, are two trees
rooted at the same node in the network with the following
property: for every node in the network, there are two disjoint
paths to the root node on these two trees. This does not imply
that the two trees are completely edge-disjoint. However, an
important property of them is that if an edge is common in

S

D

S

D

Fig. 2. The left figure depicts an example of local minimum in case of a
tree-edge failure. On the right an example for a shortcut failure is illustrated.

both trees, the direction that you pass the edge to get closer
to the root is opposite in the trees.

There are several works in the literature to generate these
types of trees [9], [10]. In [9], the authors propose to start by
the root node and try to find a cycle which includes the root.
Traversing the nodes of the cycle in one direction adds the
path to the blue tree and traversing in the opposite direction
determines the path for the red tree. The algorithm continues
by finding the next cycle or path, starting from and ending
to the visited nodes with unvisited intermediate nodes until
all the network nodes are visited. Different ways of selecting
the cycles/paths give different spanning trees with different
properties.

Based on our previous studies, the degree and depth of a
tree has effect on the quality of the greedy routing. This means
that a spanning tree with higher degree and lower depth results
into a greedy routing which the length of the paths are very
close to the shortest path length between two nodes. Therefore,
we try to generate such trees using the algorithm in [9]. The
required steps are as follows:

1) Select the node with maximum degree as the root
node.

2) Search for the shortest cycle which includes the root.
3) Determine the paths for the blue and red trees by

traversing the cycle/path in two opposite directions.
4) Search for new paths/cycles (shortest), starting from

a visited node closer to the root.
5) Go to step 3.

[10] proposes a distributed algorithm to generate the col-
ored trees. They also use an ordering for the neighbors of the
nodes to reduce the average path length on the trees.

Once the colored trees are generated for a network, the
two sets of the coordinates can also be calculated based on
the numbering in Section III-A. Every node knows the two
coordinates for itself and also the two sets of coordinates for
all of its neighbors. We refer to the two colored trees as primary
and secondary trees. The greedy routing is always based on
the primary tree unless otherwise mentioned. The proposed
method for link failure recovery is referred to as LFR.

In order to recover a tree-edge failure, we need to distin-
guish the upward and downward failures. In the upward failure,
the failing link is passed to get closer to the root of the tree
while in the downward failure passing the failing link leads to
a node deeper in the tree (further from the root).



S

D

D

Fig. 3. Downward failure example. The primary and secondary trees are
depicted. The primary greedy path is depicted by solid line in the left. The
dot line represents the secondary path from failure detecting node (m) to the
root and then from root to D.

Considering these two types of failure scenarios, the for-
warding process upon reaching a downward failure is as
follows:

• From the failure detecting node, greedy route to the
root node based on the primary tree.

• From the root node greedy route to the destination on
the secondary tree (disabling shortcuts).

Forwarding in the case of an upward failure is similar with
the change of the trees:

• From the failure detecting node greedy route to the
root node based on the secondary tree.

• From the root node greedy route to the destination on
the primary tree (disabling shortcuts).

Figures 3 and 4 depict two examples for downward and
upward failure scenarios. The colored trees are generated for
the topology in Figure 1. In both figures, the primary tree is
in the left and the secondary is in the right. In the left, the
primary greedy path from S to D is depicted by solid line and
the secondary path is partly based on the primary tree and
partly based on the secondary tree. As the two paths from a
node to the root are completely disjoint on the primary and
secondary trees, greedy routing to the root based on one of
the two trees (whichever that is still connected to the root)
and switching to the other one in the root would definitely
lead to the destination of the packet.

In LFR method, a packet is augmented with:

1) Mode field: This field determines three modes for the
packets. i) normal greedy routing mode ii) recovery
mode before root iii) recovery mode after root. The
last two modes determine the recovery mode and also
whether the packet has reached the root node or not.

2) Direction field: This field determines the direction of
the failure (upward or downward).

3) Secondary Destination field: This field stores the
destination coordinate based on the secondary tree.

A packet starts from the source node with the mode field
set to normal greedy routing. Upon facing a failure in a node,
the mode field is changed to the recovery mode before root and
the direction field is set as well. Based on these two fields the
packet is forwarded to the root node. In the root, the mode field
is changed to recovery mode after root. Using these fields, each
node knows how to forward the packet towards the intended
destination.

D

S

D

D

D

Fig. 4. Upward failure example. The primary and secondary trees are
depicted. The primary greedy path is depicted by solid line in the left. The
dot line represents the secondary path from failure detecting node (n) to the
root (D).

The proposed method provides single failure resiliency
using only two spanning trees. This makes the method sig-
nificantly more memory efficient than the recovery methods
in which the colored trees are calculated for every node in the
network as the root.

Although the method recovers from every possible single
tree-edge failure, it introduces extra load on the root node. In
the following, we explain an improvement of the method to
cope with this issue.

1) Improved Link Failure Recovery method (ILFR): In
order to reduce the load on the root node, we need to introduce
an extra field in the header of the packet. Using this field
and an extra checking before forwarding a packet to the next
hop we reduce the load on the root node significantly. The
experimental results showed that on average for only 10%
of the source-destination pairs which greedy routing between
them faced the failing link, the packets would pass the root in
the recovery mode. The extra field in the header of the packet
is used to store the coordinate of the failure detecting node
(primary/secondary coordinate for upward/downward failure).
The general idea is that upon facing a failing link, we greedy
route based on only one of the primary or secondary trees and
if it is not possible to bypass the failing link, then we try to
follow the previous method. In this way, not all the packets
are routed to the root node.

In the upward failure, we route greedy based on the
coordinates of the primary tree. In every node, we need to
check if the next greedy hop is a node in the subtree below the
failure detecting node. This is why the extra field in the header
is required. Having this in mind, upon reaching an upward
failure, the forwarding process in every node is as follows:

• If the current node is in the subtree below the failure
detecting node:

◦ Find the next greedy hop based on the primary
tree (using shortcuts).

If the found next hop is not in the subtree
below the failure detecting node, then go
to that node.
Else, use secondary coordinates to go to
the root.

• If the current node is out of the subtree below the
failure detecting node:

◦ Find the next greedy hop based on the primary
tree.

If it is not in the subtree below the failure
detecting node, then go to that node.



Fig. 5. The required backup paths for a node in the network.

Else, find the next hop based on the pri-
mary tree (disabling shortcuts).

We observe that some extra checking is added in every
node to see if the next hop is in the subtree below a certain
node. This checking can be performed easily based on the
coordinates of the nodes. As explained in Section III-A,
the coordinates indicate the location of a node in the tree.
Therefore, it is very easy to determine if a node is in a certain
subtree (by just checking if they have common first fields in
their coordinates).

The reason that this method leads to the destination is that,
in a tree-edge failure scenario, the tree is disconnected to two
subtrees, namely A and B. In order to reach the destination,
we need to reach to the subtree B from subtree A. As the
network is biconnected, there is always a shortcut to subtree
B. If this shortcut is not found by greedy routing we need to
use the path to the root (using secondary coordinate). Once we
are in the correct subtree as destination, by checking that the
shortcuts do not lead to subtree A, greedy routing will always
lead to the destination.

The downward failure scenario is handled exactly the same
however, the place of secondary and primary tree is changed.
The reason that we can use the secondary tree and consider
the failure as an upward failure is due to the properties of the
colored trees. In case an edge is common in both trees, the
direction to pass the edge to get closer to the root is opposite in
the two trees. That is why we can consider a downward failure
in the primary tree as an upward failure in the secondary tree.
If the failing link is not common, this replacement does not
cause any issue. However, as the secondary coordinates are
used, we need to check that the destination (with secondary
coordinate) is in the subtree below the failure detecting node
or out of it. If it is out of it, then the procedure is exactly the
same as upward failure but on the secondary coordinates. If
not, normal greedy routing based on the secondary coordinates
will lead to the destination.

B. Node Failure Recovery method (NFR)

The similar method can be used to recover a node failure.
The colored trees should be generated in such a way that the
paths from every node to the root is node-disjoint on two trees.
However, this method cannot recover the failure of the root
node. Therefore, in this section, we propose a method which
uses disjoint backup paths to recover any single node failure.
In greedy routing based on the spanning tree of the network,
the leaves of the tree do not require recovery.

D

S

D

S

Fig. 6. Node failure example. The primary greedy path is depicted by solid
line in the left. The dot line in the right, represents the secondary path.

The use of disjoint backup paths to recover failure is
abundant in the literature. The general idea is to recover a node
failure locally. This means that we use backup paths to bypass
the failing node and then the greedy routing is resumed to the
destination. As the proposed method is a protection scheme the
backup paths are required to be determined before any failure
in the network. We try to find a backup path between every
two neighbors of a node in the tree. In other words, if we only
consider the tree, for every node in the network, backup paths
to its grandchildren, grandparent and siblings (nodes two hops
away) are found. Figure 5 depicts the required backup paths
for a node in the network.

Upon facing a failing node as the next hop, based on
the coordinate of the destination, the node can decide which
backup path to use. Greedy routing is resumed once the failing
node is bypassed.

Storing an entry in the intermediate nodes along the backup
paths implies a large memory overhead on those nodes. In
order to avoid such memory overhead, we try to route greedy
along the backup paths. This means that instead of storing an
entry in every intermediate node, we check that up to which
node along the path, greedy routing path is equal to the backup
path. We call this node a hub node. Starting from this node,
we continue checking to find the next hubs until we reach the
last node of the backup path. Therefore, at the end of this
checking we find some hub nodes which greedy routing from
one to the next one is equal to the backup path. Now only
these hub nodes are required to be stored in the protecting
node. The forwarding process upon facing a node failure is as
follows:

1) Select the correct backup path based on the destina-
tion coordinate (the one which leads to the direction
of the destination, use tree numbering).

2) Add the hub nodes corresponding to that backup path
to the header of the packet.

3) Greedy route to the first hub, second hub and so on
until reaching the end node of the backup path.

4) Resume greedy routing to the destination.

Figure 6 depicts an example for node failure scenario. The
correctness of the scheme can be proved by considering that
the scheme actually follows the greedy route to the destination.
Although, in case of facing a failing node a backup path to
bypass the node which leads to the correct direction of the
destination is used instead. In the following, we explain how
the hub nodes can be determined using a few probe messages.

1) Hub nodes determination: We refer to a node as a
protecting node once we are searching for backup paths to
the nodes two hops away from that node. The hub nodes
corresponding to the found backup paths are stored in this



node. These hubs are determined using probe messages. Once
the backup paths are found, the protecting node starts the
probing. Every node in the backup path knows the next hop.
These entries can be removed once the hub nodes are found.
Several types of probe messages are required. i) Greedy-Check
message checks whether greedy routing to a node along the
path gives the equal path as the backup path. ii) Start-Check
message is used to inform a node along the path to start the
same procedure for the rest of the nodes. The last two types
are iii) Ack and iv) NotAck which will be described when to
be sent.

• The protecting node sends a Greedy-Check message
to the first node in the backup path.

• Upon arrival of the Greedy-Check message to the
specified node in the destination field of the message,
this node sends back an Ack (next hop included) to
the protecting node.

• The protecting node stores the last node which sent
back an Ack and sends another Greedy-Check to the
next node along the path.

The above procedure continues up to the point that greedy
routing path is not the same as the backup path.

• A node sends a NotAck to the protecting node if it
detects that greedy routing to a node along the backup
path is not the same as the backup path.

• Upon receiving the NotAck message, the protecting
node determines the previously stored node as the
first hub, and sends a Start-Check message to that hub
node.

• The hub node starts sending Greedy-Check messages
to the rest of the nodes along the path.

• If the hub node receives a NotAck, it sends back the
last stored node to the protecting node.

• The protecting node repeats the same procedure with
the new hub and continues to find all the hub nodes.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed methods through
simulation. The simulation environment is mostly based on
Python code. In order to evaluate the algorithms on large
topologies, some parts of the code are optimized in C++.
Libraries such as Networkx, Numpy and scipy are used for
graph-based and numerical implementations.

In this experimental evaluation, we considered topologies
with properties similar to the Internet. The topologies were
evaluated at different scales from 100 up to 1000 nodes.
They were generated based on the Barabasi-Albert (B-A)
model [14]. In this model, a preferential attachment mechanism
is used in order to generate random scale-free1 topologies.
Using this mechanism, the nodes with higher degree are more
probable to receive new links which results into a power-law

1A scale-free network is a network whose degree distribution follows a
power law, at least asymptotically. That is, the fraction P (k) of nodes in the
network having k connections to other nodes goes for large values of k as
P (k) ≈ c.k−γ . The value of γ is typically in the range 2 < γ < 3.

degree distribution with γ equal to 3. The depicted results
in every different experiment are averaged over 10 different
random B-A topologies. These generated topologies have very
similar properties in terms of degree distribution, number of
links, etc. There are two sets of results, one for the LFR method
and one for the NFR. The proposed schemes are evaluated for
different aspects such as routing quality, memory overhead in
network nodes, and overhead added to the packets. In order
to have an overview of the performance of the schemes, we
compare the results with gravity pressure method proposed in
[7]. The reason to choose this method for comparison is that
its greedy embedding and routing are also based on a tree and
it is applicable in any type of topology.

A. Stretch Evaluation

Using the proposed schemes, all the packets reach their
intended destination without facing any dead end or loop. We
evaluate the stretch for the proposed schemes. The stretch is
defined as the ratio of the length of the path as produced by
the greedy routing scheme, to the shortest path length for the
same source-destination pair. In Figures 7 and 9, three different
scenarios are compared. First the stretch without any failure in
the network is calculated. Then the stretch in case of a single
element failure is calculated both in the proposed schemes and
in the gravity pressure method. The stretch in case of a failure
is calculated as the ratio between the path length generated by
greedy routing with the recovery method to the shortest path
length after removing the faulty element from the topology.
As the stretch results of the LFR and ILFR are very similar,
we only report the results for the LFR method.

Figure 7 depicts the average stretch for link failure scenario
in which the stretch over every possible pair of source-
destination is calculated and averaged. The stretch is evaluated
considering every tree-edge, one at a time as a failing edge and
the average over all of the results is calculated. Each point
in the graph represents the average value over 10 different
B-A topologies. As we see, the proposed scheme has an
insignificant effect on the stretch. The gravity pressure showed
more negative effect on the routing quality however, the
most performance gain in our proposed methods are in terms
of overhead. Figure 8 depicts the stretch distribution in the
networks with 1000 nodes. In this graph, the x axis shows
the stretch values for all possible source-destination pairs in
the network. As we see, almost 40% of the source-destination
pairs have the stretch 1 and very few pairs have stretch higher
than 2.5. The distributions before and after failure are very
similar.

We performed the same experiment for node failure sce-
nario. The network nodes were considered as failing nodes,
one at a time, and the average stretch over all the cases was
calculated. Figures 9 and 10 illustrate the stretch results for
the NFR method. Again the effect on the stretch is very low
in the proposed method and the gravity pressure results show
more impact on the quality of the routing.

Based on the results of both link and node failure scenarios,
the proposed schemes scale very well with the increase in the
number of nodes. Observing this trend enables us to extrapolate
the resulting performance up to large-scale topologies.



200 400 600 800 1000
Number of nodes

1.15

1.20

1.25

1.30

1.35

1.40

A
v
e
ra

g
e
 s

tr
e
tc

h

Average stretch

0 faulty link
1 faulty link
G-P

Fig. 7. The average stretch for scenarios without failure, single link failure
in the LFR method and gravity pressure algorithm.

Fig. 8. Stretch distribution for scenarios without failure and single link failure
in the LFR method. The network size is 1000.

B. Memory Overhead

In this section, the implied overhead by the proposed
schemes is evaluated. Figure 11 depicts the percentile of the
required memory (number of entries) in the network nodes for
the link failure scenario. As every node needs to store an extra
coordinate for every neighbor (coordinate on the secondary
tree), the memory overhead in every node is proportional to
the degree of that node in the network. Therefore, the graph
in Figure 11 somehow represents the degree distribution in the
networks. Based on the results, in almost all the networks with
different sizes, the third quartile of the values is around 10 and
in the networks with 1000 nodes the maximum value is almost
120. In the scenario of a node failure, we need to calculate the
number of hub nodes corresponding to the backup paths which
are stored in every node. Figure 12 depicts the percentile of
the required memory (number of entries) in the network nodes.
The reason for the large differences between minimum and
maximum values are due to the fact that the chosen spanning
trees have a root node with maximum possible degree and lots
of leaves (nodes with degree one). Therefore, for some nodes
very few backup paths are required and for some so many
backup paths are calculated. The values on top of the graph
represent the maximum degree of the tree. In the networks of
size 1000, the third quartile is almost 100 and the maximum

200 400 600 800 1000
Number of nodes

1.10

1.15

1.20

1.25

1.30

1.35

A
v
e
ra

g
e
 s

tr
e
tc

h

Average stretch

0 faulty node
1 faulty node
G-P

Fig. 9. The average stretch for scenarios without failure, single node failure
in the NFR method and gravity pressure algorithm.

Fig. 10. Stretch distribution for scenarios without failure and single node
failure in the NFR method. The network size is 1000.

value is 725.

In our next experiment, we evaluate the number of hub
nodes in all the backup paths calculated in the network. Figure
13 illustrates the percentile of these numbers. As we see, in
the networks of 1000 nodes, the maximum number of hubs in
the backup paths reach up to 4 nodes. This means that in the
worst case the number of fields added to the header of a packet
upon facing a failing node is 4. As Gravity Pressure also uses
a path trace in each packet, we calculated the size of the table
stored in every packet which is in the Pressure mode of the
algorithm in order to have a comparison with NFR. Here, we
report the percentile of the size of the table in the packets in
Pressure mode for networks with 1000 nodes and one single
node failure. The 25 percentile is 35, the median is 82, the 75
percentile is 140 and the maximum value is 223. On average
the size of this table is 87. Comparing these results with the
maximum number of hubs in NFR determines the efficiency
of the proposed method in terms of overhead.

VI. DISCUSSIONS AND FUTURE WORK

We have used colored trees (also known as independent
trees) to guarantee a single link failure resiliency in the
network. To recover more failures in the network, multiple



Fig. 11. Percentile of the required memory (nr. of entries) in network nodes
in single link failure scenario.

Fig. 12. Percentile of the required memory (nr. of entries) in network nodes
in single node failure scenario.

independent trees are required. An interesting direction for
future work is to recover multiple simultaneous failures using
minimum number of independent trees which can be applied
in large-scale networks. Another interesting work is to find a
method to re-calculate the colored trees in such a way that the
disruption is insignificant in order to recover multiple failures
which are not simultaneous.

In the scenario of node failure, the proposed scheme can
be used to recover multiple node failures. The only difference
is to find multiple disjoint backup paths instead of only one.
Using this method, the memory overhead in the nodes is also
dependent on the number of failures that is guaranteed to be
recovered. This scheme allows to recover multiple failures as
long as the two failing nodes are not adjacent. So it is also a
future plan to recover multiple node failures in any location.

VII. CONCLUSION

We proposed two recovery methods for single link and
node failure in greedy routing. We also proposed a simple
embedding based on the spanning tree of the network in order
to perform the greedy routing. In the scenario of a link failure,
backup trees were used and for node failure scenarios, backup
paths were considered. Using these techniques, there is no
need to re-calculate the coordinates of the nodes. The proposed
schemes are protection schemes which result into a fast switch-
over. In the experimental evaluation, both methods showed
interesting stretch characteristics compared to the existing
alternatives and the added overhead to the packets was very
low. The proposed methods can be used in large-scale networks
due to their scalability, simplicity, low overhead and limited
resource requirement.

Fig. 13. Percentile of the number of hubs for backup paths in the network.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the EULER project (Grant 258307), part of the Future
Internet Research and Experimentation (FIRE) objective of the
Seventh Framework Programme (FP7).

REFERENCES

[1] G. Huston, “BGP routing table reports,” 2013, http://bgp.potaroo.net/.

[2] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in Proceedings of the 6th annual international

conference on Mobile computing and networking. ACM, 2000, pp.
243–254.

[3] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker,
and I. Stoica, “Beacon vector routing: Scalable point-to-point routing
in wireless sensornets,” in Proceedings of the 2nd conference on

Symposium on Networked Systems Design & Implementation-Volume

2. USENIX Association, 2005, pp. 329–342.

[4] C. Papadimitriou and D. Ratajczak, “On a conjecture related to geomet-
ric routing,” Theoretical Computer Science, vol. 344, no. 1, pp. 3–14,
2005.

[5] R. Kleinberg, “Geographic routing using hyperbolic space,” in IN-

FOCOM 2007. 26th IEEE International Conference on Computer

Communications. IEEE, 2007, pp. 1902–1909.

[6] D. Chen and P. Varshney, “A survey of void handling techniques
for geographic routing in wireless networks,” IEEE Communications

Surveys and Tutorials, vol. 9, no. 1, pp. 50–67, 2007.

[7] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing
for dynamic graphs,” in INFOCOM 2009, IEEE, 2009, pp. 1647–1655.

[8] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester, “Link
failure recovery technique for greedy routing in the hyperbolic plane,”
2012, http://dx.doi.org/10.1016/j.comcom.2012.08.023.

[9] M. Médard, S. Finn, and R. Barry, “Redundant trees for preplanned
recovery in arbitrary vertex-redundant or edge-redundant graphs,”
IEEE/ACM Transactions on Networking (TON), vol. 7, no. 5, pp. 641–
652, 1999.

[10] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint
multipath routing using colored trees,” Computer Networks, vol. 51,
no. 8, pp. 2163–2180, 2007.

[11] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” Information and Computation, vol. 79, no. 1,
pp. 43–59, 1988.

[12] J. Farkas, C. Antal, G. Tóth, and L. Westberg, “Distributed resilient
architecture for ethernet networks,” in Design of Reliable Communi-

cation Networks, 2005.(DRCN 2005). Proceedings. 5th International

Workshop on. IEEE, 2005.

[13] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD),”
RFC5880, 2010.

[14] A. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–511, 1999.


