321 research outputs found

    A novel neural network approach to cDNA microarray image segmentation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(Âź) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.This work was funded in part by the National Natural Science Foundation of China under Grants 61174136 and 61104041, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the International Science and Technology Cooperation Project of China under Grant No. 2011DFA12910, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Automatic gridding of DNA microarray images.

    Get PDF
    Microarray (DNA chip) technology is having a significant impact on genomic studies. Many fields, including drug discovery and toxicological research, will certainly benefit from the use of DNA microarray technology. Microarray analysis is replacing traditional biological assays based on gels, filters and purification columns with small glass chips containing tens of thousands of DNA and protein sequences in agricultural and medical sciences. Microarray functions like biological microprocessors, enabling the rapid and quantitative analysis of gene expression patterns, patient genotypes, drug mechanisms and disease onset and progression on a genomic scale. Image analysis and statistical analysis are two important aspects of microarray technology. Gridding is necessary to accurately identify the location of each of the spots while extracting spot intensities from the microarray images and automating this procedure permits high-throughput analysis. Due to the deficiencies of the equipment that is used to print the arrays, rotations, misalignments, high contaminations with noise and artifacts, solving the grid segmentation problem in an automatic system is not trivial. The existing techniques to solve the automatic grid segmentation problem cover only limited aspect of this challenging problem and requires the user to specify or make assumptions about the spotsize, rows and columns in the grid and boundary conditions. An automatic gridding and spot quantification technique is proposed, which takes a matrix of pixels or a microarray image as input and makes no assumptions about the spotsize, rows and columns in the grid and is found to effective on datasets from GEO, Stanford genomic laboratories and on images obtained from private repositories. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .V53. Source: Masters Abstracts International, Volume: 43-03, page: 0891. Adviser: Luis Rueda. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Hybrid clustering for microarray image analysis combining intensity and shape features

    Get PDF
    BACKGROUND: Image analysis is the first crucial step to obtain reliable results from microarray experiments. First, areas in the image belonging to single spots have to be identified. Then, those target areas have to be partitioned into foreground and background. Finally, two scalar values for the intensities have to be extracted. These goals have been tackled either by spot shape methods or intensity histogram methods, but it would be desirable to have hybrid algorithms which combine the advantages of both approaches. RESULTS: A new robust and adaptive histogram type method is pixel clustering, which has been successfully applied for detecting and quantifying microarray spots. This paper demonstrates how the spot shape can be effectively integrated in this approach. Based on the clustering results, a bivalence mask is constructed. It estimates the expected spot shape and is used to filter the data, improving the results of the cluster algorithm. The quality measure 'stability' is defined and evaluated on a real data set. The improved clustering method is compared with the established Spot software on a data set with replicates. CONCLUSION: The new method presents a successful hybrid microarray image analysis solution. It incorporates both shape and histogram features and is specifically adapted to deal with typical microarray image characteristics. As a consequence of the filtering step pixels are divided into three groups, namely foreground, background and deletions. This allows a separate treatment of artifacts and their elimination from the further analysis

    Microarray spot partitioning by autonoumsly organising maps thorugh contour model

    Get PDF
    In cDNA microarray image analysis, classification of pixels as forefront area and the area covered by background is very challenging. In microarray experimentation, identifying forefront area of desired spots is nothing but computation of forefront pixels concentration, area covered by spot and shape of the spots. In this piece of writing, an innovative way for spot partitioning of microarray images using autonomously organizing maps (AOM) method through C-V model has been proposed. Concept of neural networks has been incorpated to train and to test microarray spots.In a trained AOM the comprehensive information arising from the prototypes of created neurons are clearly integrated to decide whether to get smaller or get bigger of contour. During the process of optimization, this is done in an iterative manner. Next using C-V model, inside curve area of trained spot is compared with test spot finally curve fitting is done.The presented model can handle spots with variations in terms of shape and quality of the spots and meanwhile it is robust to the noise. From the review of experimental work, presented approach is accurate over the approaches like C-means by fuzzy, Morphology sectionalization

    Copasetic analysis: a framework for the blind analysis of microarray imagery

    Get PDF
    The official published version can be found at the link below.From its conception, bioinformatics has been a multidisciplinary field which blends domain expert knowledge with new and existing processing techniques, all of which are focused on a common goal. Typically, these techniques have focused on the direct analysis of raw microarray image data. Unfortunately, this fails to utilise the image's full potential and in practice, this results in the lab technician having to guide the analysis algorithms. This paper presents a dynamic framework that aims to automate the process of microarray image analysis using a variety of techniques. An overview of the entire framework process is presented, the robustness of which is challenged throughout with a selection of real examples containing varying degrees of noise. The results show the potential of the proposed framework in its ability to determine slide layout accurately and perform analysis without prior structural knowledge. The algorithm achieves approximately, a 1 to 3 dB improved peak signal-to-noise ratio compared to conventional processing techniques like those implemented in GenePixÂź when used by a trained operator. As far as the authors are aware, this is the first time such a comprehensive framework concept has been directly applied to the area of microarray image analysis

    Copasetic analysis: Automated analysis of biological gene expression images

    Get PDF
    Copyright [2004] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In the past decade computational biology has come to the forefront of the public's perception with advancements in domain knowledge and a variety of analysis techniques. With the recent completion of projects like the human genome sequence, and the development of microarray chips it has become possible to simultaneously analyse expression levels for thousands of genes. Typically, a slide surface of less than 24 cm2, receptors for 30,000 genes can be printed, but currently the analysis process is a time consuming semi-autonomous step requiring human guidance. The paper proposes a framework, which facilitates automated processing of these images. This is supported by real world examples, which demonstrate the technique's capabilities along with results, which show a marked improvement over existing implementations

    An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Get PDF
    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.</p
    • 

    corecore