350 research outputs found

    Audio Bank: A High-Level Acoustic Signal Representation for Audio Event Recognition

    Full text link
    Automatic audio event recognition plays a pivotal role in making human robot interaction more closer and has a wide applicability in industrial automation, control and surveillance systems. Audio event is composed of intricate phonic patterns which are harmonically entangled. Audio recognition is dominated by low and mid-level features, which have demonstrated their recognition capability but they have high computational cost and low semantic meaning. In this paper, we propose a new computationally efficient framework for audio recognition. Audio Bank, a new high-level representation of audio, is comprised of distinctive audio detectors representing each audio class in frequency-temporal space. Dimensionality of the resulting feature vector is reduced using non-negative matrix factorization preserving its discriminability and rich semantic information. The high audio recognition performance using several classifiers (SVM, neural network, Gaussian process classification and k-nearest neighbors) shows the effectiveness of the proposed method.Comment: 6 pages, 9 figures, published in IEEE International Conf ICCAS 2014 (Best paper award

    WATCHING PEOPLE: ALGORITHMS TO STUDY HUMAN MOTION AND ACTIVITIES

    Get PDF
    Nowadays human motion analysis is one of the most active research topics in Computer Vision and it is receiving an increasing attention from both the industrial and scientific communities. The growing interest in human motion analysis is motivated by the increasing number of promising applications, ranging from surveillance, human–computer interaction, virtual reality to healthcare, sports, computer games and video conferencing, just to name a few. The aim of this thesis is to give an overview of the various tasks involved in visual motion analysis of the human body and to present the issues and possible solutions related to it. In this thesis, visual motion analysis is categorized into three major areas related to the interpretation of human motion: tracking of human motion using virtual pan-tilt-zoom (vPTZ) camera, recognition of human motions and human behaviors segmentation. In the field of human motion tracking, a virtual environment for PTZ cameras (vPTZ) is presented to overcame the mechanical limitations of PTZ cameras. The vPTZ is built on equirectangular images acquired by 360° cameras and it allows not only the development of pedestrian tracking algorithms but also the comparison of their performances. On the basis of this virtual environment, three novel pedestrian tracking algorithms for 360° cameras were developed, two of which adopt a tracking-by-detection approach while the last adopts a Bayesian approach. The action recognition problem is addressed by an algorithm that represents actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. The proposed method learns a codebook of frequent sequential patterns by means of an apriori-like algorithm. An action is then represented with a Bag-of-Frequent-Sequential-Patterns approach. In the last part of this thesis a methodology to semi-automatically annotate behavioral data given a small set of manually annotated data is presented. The resulting methodology is not only effective in the semi-automated annotation task but can also be used in presence of abnormal behaviors, as demonstrated empirically by testing the system on data collected from children affected by neuro-developmental disorders

    Identifying recovery patterns from resource usage data of cluster systems

    Get PDF
    Failure of Cluster Systems has proven to be of adverse effect and it can be costly. System administrators have employed divide and conquer approach to diagnosing the root-cause of such failure in order to take corrective or preventive measures. Most times, event logs are the source of the information about the failures. Events that characterized failures are then noted and categorized as causes of failure. However, not all the ’causative’ events lead to eventual failure, as some faults sequence experience recovery. Such sequences or patterns constitute challenge to system administrators and failure prediction tools as they add to false positives. Their presence are always predicted as “failure causing“, while in reality, they will not. In order to detect such recovery patterns of events from failure patterns, we proposed a novel approach that utilizes resource usage data of cluster systems to identify recovery and failure sequences. We further propose an online detection approach to the same problem. We experiment our approach on data from Ranger Supercomputer System and the results are positive.Keywords: Change point detection; resource usage data; recovery sequence; detection; large-scale HPC system

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Graph based Anomaly Detection and Description: A Survey

    Get PDF
    Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the ‘why’, of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field

    Generic Object Detection and Segmentation for Real-World Environments

    Get PDF

    Inferring Anomalies from Data using Bayesian Networks

    Get PDF
    Existing studies on data mining has largely focused on the design of measures and algorithms to identify outliers in large and high dimensional categorical and numeric databases. However, not much stress has been given on the interestingness of the reported outlier. One way to ascertain interestingness and usefulness of the reported outlier is by making use of domain knowledge. In this thesis, we present measures to discover outliers based on background knowledge, represented by a Bayesian network. Using causal relationships between attributes encoded in the Bayesian framework, we demonstrate that meaningful outliers, i.e., outliers which encode important or new information are those which violate causal relationships encoded in the model. Depending upon nature of data, several approaches are proposed to identify and explain anomalies using Bayesian knowledge. Outliers are often identified as data points which are ``rare'', ''isolated'', or ''far away from their nearest neighbors''. We show that these characteristics may not be an accurate way of describing interesting outliers. Through a critical analysis on several existing outlier detection techniques, we show why there is a mismatch between outliers as entities described by these characteristics and ``real'' outliers as identified using Bayesian approach. We show that the Bayesian approaches presented in this thesis has better accuracy in mining genuine outliers while, keeping a low false positive rate as compared to traditional outlier detection techniques

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks
    • 

    corecore