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Abstract

Existing studies on data mining has largely focused on the design of measures and

algorithms to identify outliers in large and high dimensional categorical and numeric

databases. However, not much stress has been given on the interestingness of the re-

ported outlier. One way to ascertain interestingness and usefulness of the reported out-

lier is by making use of domain knowledge. In this thesis, we present measures to

discover outliers based on background knowledge, represented by a Bayesian network.

Using causal relationships between attributes encoded in the Bayesian framework, we

demonstrate that meaningful outliers, i.e., outliers which encode important or new infor-

mation are those which violate causal relationships encoded in the model. Depending

upon nature of data, several approaches are proposed to identify and explain anomalies

using Bayesian knowledge.

• We propose a novel approach which combines the use of Bayesian network and

probabilistic association rules to discover and explain anomalies in categorical

data set. The Bayesian network allows us to organize information in order to

capture both correlation and causality in the feature space, while the probabilistic

association rules have a structure similar to association mining rules. In particular,

we focus on two types of rules: (i) low support & high confidence and, (ii) high

support & low confidence. New data points which satisfy either one of the two

rules conditioned on the Bayesian network are the candidate anomalies.

• We design a measure to discover outliers in numerical data sets and data sets con-

taining mixture of data types using the domain knowledge captured by a Gaussian

Bayesian network and Hybrid Bayesian network respectively. By first construct-

ing a Bayesian network, depending upon type of data set, we identify those data

points as outliers which violate casual relationships encoded in the model.
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• Outliers are often identified as data points which are “rare”, ”isolated”, or ”far

away from their nearest neighbors”. We show that these characteristics may not

be an accurate way of describing interesting outliers. Through a critical analysis

on several existing outlier detection techniques, we show why there is a mismatch

between outliers as entities described by these characteristics and “real” outliers

as identified using Bayesian approach.

• Measures that we propose in this thesis are specially designed to give contextual

information of an anomaly, i.e., our approaches provide an explanation for the

outliers discovered. This in turn can be used to enrich our knowledge about the

underlying data generating process.

• We show that the Bayesian approaches presented in this thesis has better accuracy

in mining genuine outliers while, keeping a low false positive rate as compared

to traditional outlier detection techniques.
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Chapter 1

Introduction

1.1 Defining Anomalies

An anomaly is an observation in data acquired from a domain that is markedly “differ-

ent” from other observations. These different observations are also referred as outliers,

surprises, unusual, rare or exceptions. Hawkins [37] defined “an outlier is an observa-

tion which deviates so much from other observations as to arouse suspicions that it was

generated by a different mechanism”.

Anomaly detection methods have a wide variety of applications including fraud de-

tection for credit cards [28], public health monitoring [75] and intrusion detection for

cyber-security [10]. For example, the role of anomaly detection in credit card monitor-

ing is to detect exceptional transactions which might indicate that credit card has been

stolen and is being misused. In public health monitoring, anomaly detection techniques

can be used for detecting new disease outbreaks as early as possible. Intrusion detection

refers to detection of malicious activity in computer systems which may be indicative

of an authorized access into the system to carry out information theft or to disrupt the

network.

The real cause of outlier occurrence is often unknown to users or analysts. Some-

times, the outlier can be a flawed value resulting from poor quality of the data set. In

this case, no useful contextual information is conveyed by the outlier value. However,

it is also possible that an outlier represents correct, though exceptional information for

example anomaly detection applications listed above. In this case, the understanding

of the outlier will potentially provide new information. The identification of outliers is

1



CHAPTER 1. INTRODUCTION 2

important both for improving the quality of original data and for providing additional

unknown knowledge from the data. However, while in the first case the correct action is

to remove the outlier, in the second case a proper analysis is required so as to understand

why such anomalies appear in the domain and what are its causes.

There exist several factors which makes the task of anomaly detection very chal-

lenging. First, defining a region representing normal behavior and declare an observa-

tion in the data which does not belong to this normal region, as an outlier. However

this simple approach is rather challenging since defining a normal region which encom-

passes every possible normal behavior is a non-trivial task. Second, the difficulty of

obtaining enough labeled data to characterize anomalies. Hence, in most cases we need

to operate in an unsupervised setting where only the normal behavior can be modeled

and is used to discover deviations. Third, definition of normality and anomalies are

typically domain specific. So a technique designed for one application may not work

in other problem areas. Lastly, it is difficult to judge about the quality of the reported

outlier discovered by any outlier detection technique. For example, the determination

of whether an anomaly is “noise” in the data or embodies new information is challeng-

ing problem. The thesis will propose the use the Bayesian Networks to address this

challenge.

Existing studies on data mining has largely focused on the design of measures and

algorithms to identify outliers in large and high dimensional categorical and numeric

databases. However, not much stress has been given on the interestingness of the re-

ported outlier. Consider a hypothetical data set belonging to a certain region of the coun-

try, highlighting persons income and their expenditures. The sample data in Figure 1.1

represents relationship between persons income (X-axis) and expenditure (Y-axis). As

observed, data points are roughly clustered. We name them as C1, C2, C3 , C4, C5 and

C6 respectively. Cluster C1 and C3, indicates that in a given region, persons expendi-

ture is bounded within their income. Unlike clusters C1 and C3, data points forming

clusters C5, C6 indicates that there are very small percentage of people the expenditure

of whom are higher than that of their income. Likewise, there are few people in region

earning high but choose to spend low as represented by the cluster C2. Lastly, a cluster

C4 indicates percentage of people with high earning and high expenditure. We ask data

points that should be identified as anomalies? Whether it should be observations from

clusters C2, C4, C5, C6 , data points from clusters C3 or data points residing near or

inside dense cluster C1?
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Figure 1.1: Objects in two dimensional space

In the above example if the objective is to find outliers using existing techniques

such as distance based [47] or density based [17] then most likely these approaches

will find data points belonging to the clusters C2, C3, C4, C5 and C6 as highly ranked

potential outliers. This is because these data points are isolated, far away from their k

nearest neighbor, and hence are easily detected as outliers. Intuitively, high expendi-

ture when income is high as indicated by the data points in clusters C4 should not be

flagged as outliers. Similarly, data points forming cluster C2 are not anomalies. Real

outliers which “make sense” are the data points belonging to the clusters C5 and C6.

The challenge is to overcome the mismatch between outliers as entities “which are far

away from their neighbors” and “real” outliers.

One way to ascertain interestingness and usefulness of the reported outlier is by

making use of domain knowledge. In this thesis, we present measures to discover out-

liers based on background knowledge, represented by a Bayesian network. A Bayesian

network is a probabilistic graphical model for describing domain knowledge and rea-

soning under uncertainty. Bayesian networks use the graph metaphor to model (causal)

interactions among set of variables, where the variables are represented as nodes of

a graph and the interactions as directed links (also known as arcs or edges) between

the nodes. The key characteristic of Bayesian networks is their ability to encode di-

rectional relations which can represent cause-effect relationships, compared to other
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graphical models that cannot for example, Markov networks. It is common wisdom to

consider a good Bayesian network as a causal model where, causality flows in direction

of edges [48]. Their ability to represent domain knowledge in the form of directional

relationships is an important reason for choosing them as a baseline to explore obser-

vations which violate causal relationships. Based on domain knowledge captured by a

Bayesian network, we propose:

Definition: Interesting anomalies are those data points which violate the causal se-

mantic captured via a Bayesian network.

1.2 Why Bayesian Networks?

In this thesis we focus on use of Bayesian networks to capture domain knowledge in

order to mine interesting anomalies for the problem domain. There are several reasons

which have led us to this approach. First and foremost, we needed a knowledge rep-

resentation model which can encode domain knowledge based on which we could dis-

cern between “interesting” and “uninteresting” anomalies. Bayesian networks provide a

declarative representation of knowledge for the domain. The key property of a declar-

ative representation is the separation of knowledge from the reasoning process [48].

This implies, once Bayesian network is designed with domain knowledge, reasoning on

whether a new data point is an anomaly can be employed without updating the model.

Second, compared to other graphical models such as Decision trees and Markov mod-

els, only Bayesian networks can represent causal relationships. These characteristics

of Bayesian model can prove to be very useful in mining those observations which

violate common causal knowledge encoded in the model. Third, Bayesian networks

have a capacity to model the joint probability distributions (or JPD) compactly, which

means that we can study each causal interaction encoded in the model independently.

The JPD over all variables X1, X2...,X|X | is represented using chain rule as shown in

Equation 1.1. Where notation P(Xi | Pa(Xi)) denotes probability of Xi given a set of its

parent nodes denoted by Pa(Xi). This special feature of BN is very useful to explain the

reasons of unusual behavior of anomalies. Finally, Bayesian networks allow complex

probabilistic queries to be performed on the model which is an advantage for mining
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events which have either a high or a low probability to appear.

P(X1,X2....,X|X |) =
|X |

∏
i=1

P(Xi|Pa(Xi)) (1.1)

Example: We show the advantages of using BN for anomaly detection in the fol-

lowing example. Figure 1.2 presents a small hypothetical Bayesian network. Suppose

that we assume the knowledge encoded in the Bayesian network is complete and no

factors other than smoking (variable Smoking) can influence the probability of cancer

(variable Cancer) in a person. Furthermore, suppose both variables are binary in nature

with states present (or P) and absent (or A). From the anomaly detection point-of-view,

we may ask which observations are suspicious for this domain? We believe that the

observations could be: (1) presence of cancer in absence of smoking and, (2) absence

of cancer in presence of smoking. Both of these events could be anomalous because

they contradict the knowledge encoded in the model, i.e., high probability in presence

of cancer can be incurred only when it is known that a person smokes and has a lower

chance of cancer in absence of smoking.

Figure 1.2: Bayesian network representing causal interaction between Smoking and
Cancer

Figure 1.3: Bayesian network representing causal interaction between Smoking, Cancer
and X-ray

The causal dependency between Smoking and Cancer can help discover events

which under the domain knowledge are less likely to appear. The probabilistic queries

such P(Cancer = P | Smoking = A) or P(Cancer = A | Smoking = P) could be answered

to reveal if the event has high or low probability. Now suppose we extend the BN mod-

eled in Figure 1.2 by joining a variable X-ray with variable Cancer (refer Figure 1.3). In

this case, two causal relationships, (Smoking, Cancer) and (Cancer , X-ray) can be in-

dependently studied for anomalies due to Bayesian JPD and conditional independence



CHAPTER 1. INTRODUCTION 6

property. By understanding each causal interaction, we can potentially discover causal

relationship in which anomalies are present.

1.3 Contributions

In this thesis we present outlier detection approaches based on domain knowledge cap-

tured by a Bayesian network models specifically for categorical and numerical data sets.

We summarize our contributions as follows.

1. In order to discover “real” and “interesting” anomalies the integration of domain

knowledge into the discovery process is required. The domain specific knowl-

edge here can be treated as a model against which the data points violating com-

mon encoded knowledge are reported as “real” outliers. In this thesis, the use

of Bayesian networks is proposed to capture domain knowledge. Bayesian net-

works provide visualization of causal interactions among attributes that exist in

the domain. By exploiting these causal interactions, we can not only discover

interesting anomalies but, are also able to provide contextual information for the

discovered anomaly. We propose solution techniques for identifying anomalies

and providing an explanation for the discovered anomalies in data sets which

contain both categorical and numeric attributes.

2. We propose a novel algorithm which combines the use of Bayesian network and

probabilistic association rules to discover and explain anomalies in categorical

data. The Bayesian network allows us to organize information in order to cap-

ture both correlation and causality in the feature space, while the probabilistic

association rules have a structure similar to association mining rules. In particu-

lar, we focus on two types of rules: (i) low support & high confidence and, (ii)

high support & low confidence. New data points which satisfy either one of the

two rules conditioned on the Bayesian network are the candidate anomalies. Ex-

tensive experiments performed on well-known benchmark data sets demonstrate

that our approach is able to identify anomalies with high precision and recall over

existing traditional outlier detection techniques. Moreover, our approach can be

used to discover contextual information from the mined anomalies, which other

techniques often fail to do so.
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3. Outliers are often identified as data points which are “rare”, “isolated”, or far

away from their nearest neighbours. We demonstrate that meaningful outliers,

i.e., outliers which perhaps encode important or new information are those which

violate causal relationships. A critical analysis on distance based techniques is

presented which highlights why distance based criteria may not be an accurate

and effective technique to discover true outliers using real life examples and data

sets. We provide clear evidence that our approach, which uses Bayesian Net-

works, has the potential to discover real outliers.

4. We present a new measure to discover outliers in numerical data sets and also data

sets containing a mixture of data types by using a Gaussian Bayesian network and

a Hybrid Bayesian network respectively. Data points which violate the causal

relationships encoded in these two forms of networks are reported as outliers.

Several experiments performed confirm that outliers identified in this fashion are

in some sense “genuine” as they reveal new information about the underlying data

generating process.

1.4 Organization

This thesis is structured as follows. In Chapter 2, we introduce related work in re-

search of outlier detection techniques and highlight their key advantages and disadvan-

tages. The theoretical concepts of Bayesian networks, inference in Bayesian networks,

Bayesian structure and parameter learning and some leading Bayesian softwares and

packages are discussed in Chapter 3. In Chapter 4, we present novel anomaly detection

technique which combines use of Bayesian network and probabilistic association rules

to discover and explain anomalies in categorical data. A critical analysis on Bayesian

and distance based approaches for anomaly detection is also presented. A measure

for anomaly detection using Gaussian and Hybrid Bayesian networks is described in

Chapter 5 where, based on causal relationships encoded in the model, we identify those

points as outliers which violate these causal relationships. We conclude in Chapter 6

with a summary of the thesis, and directions of future research work.

In addition to six chapters detailed above, this thesis contains one Appendix. For all

Bayesian networks shown in Chapters 4 and Chapter 5, list of attributes encoded in the

models are listed in Appendix A.



Chapter 2

Background

Anomaly or outlier detection aims for discovering patterns in data that do not conform

to a normal or expected behavior. The term normal refers to a baseline that may be

known a priori or learned through time. The presence of outliers in a data set may

be due to noise or unwanted system behavior. Noise may be caused by measurement

error or communication error, but the nature of unwanted system behavior is application

dependent. For example, in network or system performance monitoring, it may be

link or server failures, and in security, it may be denial of service attacks or intrusion

detection. In accounting and transaction monitoring, it may be due to fraud, whereas in

surveillance applications, it may be due to abnormal activity. The approaches used to

perform anomaly detection depend on the application and the nature of the data.

In this chapter we discuss existing anomaly detection techniques under three main

categories namely general, contextual and Bayesian network based approaches as shown

in Figure 2.1. General techniques which include distribution, distance and density are

ones which are oldest in the literature of outlier detection. The key characteristics of

distance and density based techniques are that they do not require prior knowledge of

the application domain in order to mine outliers, and are well suited for numerical and

categorical data sets. However, distribution-based approaches may require prior knowl-

edge about distribution of data to discover outliers. In contrast to general techniques,

contextual anomaly detection techniques aim for data points which are anomalous in

some context but not otherwise. These techniques do require domain knowledge before

discovering process. Similar to contextual techniques for outlier detection, Bayesian

network based techniques require to model domain knowledge. Under Bayesian set-

ting, anomalies are often those observations which are unseen or low probable.

8
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In addition to this categorization, there exist several variants which focuses in dis-

covering anomalies from spatial and sequential data sets. Sun, Chawla and Arunasalam

proposed spatial anomaly detection techniques in climate data and sequential anomalies

in protein sequences [68; 20; 69].

Figure 2.1: Broad categories of outlier detection techniques

2.1 Distribution-based Approaches

The problem of outlier detection has been extensively studied in the statistical com-

munity and is perhaps the oldest approaches. Definitions proposed by Hawkins [37],
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Barnett and Lewis [11] formed bases of outlier detection in statistics. Below we present

their classical definitions of outliers.

Definition 1: an outlier is an observation that “deviates so much from other obser-

vations as to arouse suspicions that it was generated by a different mechanism” [37].

Definition 2: an outlier is an observation that is “numerically distant from the rest

of the data” [11].

Consider the following sample data:

-0.91, -0.62, -0.87, -0.78, -0.61, -0.68, -0.77, -67.91, -0.99, -0.81, -0.73, -0.71

On inspection, without priori knowledge we can identify observation -67.91 as an

outlier since its value is very distinct from rest of the data. Distribution based ap-

proaches can further be categorized as those meant for univariate data, i.e., where ob-

servations are of single variable and those designed for multivariate data containing

multiple variables. We discuss each of the case below.

2.1.1 Univariate outliers

The most basic type of outlier detection is called univariate outlier detection, where

observations are of a single variable. In this setting, we are given a set of observations

(that are single values) and aim is to identify observations that are very far away from

the other observations. Suppose we are given set of n observations X = (x1, x2,..., xn).

In order to measure how far away any observation is from the rest of the data, measures

mean and standard deviation are used. Using these measures, outlying observations are

identified using Grubbs’ test or maximum normalised residual given by Equation 2.1.

Where µ represents mean over n set of observations X and σ is the standard deviation.

This simple test can be used to detect more than one outlier in a data set by applying it

iteratively, removing one observation every time. However, this simple test is unreliable

in the case if data contains large outliers. Reason being, large data values will distort
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the sample mean and standard deviation and hence the test.

G =
|xi−µ|

σ
(2.1)

The Grubbs test described above illustrates the challenge of detecting univariate out-

liers in observations that come from an unknown distribution. However, there are tests

for example student’s t-test which is used in the cases where it is assumed that data fol-

lows a normal distribution. As an another simple test which also assumes a normal dis-

tribution is by declaring all data instances that are more than 3σ distance away from the

distribution mean µ , where σ is the standard deviation for the distribution as outliers.

Such definition of outliers has application in for example, quality control domain [65].

In cases where distribution of data are not known at priori, Chebyshev’s inequality theo-

rem defined in Equation 2.2 is used by outlier detection techniques. where xi represents

the data, µ is the data mean, σ is the standard deviation of the data, and k represents

the number of standard deviations from the mean. Chebyshev’s inequality gives a lower

bound for the percentage of data that is within a certain number of standard deviations

from the mean, not dependent upon how the data is distributed.

P(|xi−µ| ≤ kσ)≥
(

1− 1
k2

)
(2.2)

An another method to analyse data for outliers for unknown distribution are due

to [73], who invented the boxplot as a way to visualize and explore data. An example of

boxplot is shown in Figure 2.2. The boxplot graphically depicts five number summary:

minimum (min), first quartile (Q1), median, third quartile (Q3) and the maximum (max).

In the simplest box plot the central rectangle spans the first quartile to the third quartile

called as interquartile range or IQR. In this setting, outliers are observations either (3 ×
IQR) or more above the third quartile or (3 × IQR) or more below the first quartile.

2.1.2 Multivariate outliers

In multivariate data, outlier detection becomes a slightly less intuitive problem because

it is not as obvious what is considered far away or atypical when observations are com-

posed of more than one variable. Observations of more than one variable introduce

new complexity into the outlier identification problem because in multivariate data it is
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Figure 2.2: Boxplot

necessary to take into account not only the individual variables, but also the interactions

of these variables. Take, for instance, the data shown in Figure 2.3. This figure shows

observations consisting of two variables (Var 1 and Var 2). There are two clear out-

liers visible in this figure (the red data point), yet these points are not outliers in either

direction (Var 1 or Var 2).

Mahalanobis[52] distance measure takes into account covariance that exist between

pair of variables in order to discover anomalies from a multivariate data. Let A be a (m

× n) matrix of observations where the row in A are the observations and the columns

of A are the variables.

Am,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . . ...

am,1 am,2 · · · am,n


Mahalanobis distance is calculated for each observation as defined in Equation 2.3.

Where x̄ is the center of the data estimated as a vector whose columns are the means

of the individual variables. The Σ−1 denotes the inverse of the (n × n) covariance
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Figure 2.3: Shows two data points visibly outliers but not outliers in either direction of
Var 1 or Var 2

matrix. The covariance between pair of variables is calculated using Equation 2.4. An

observation with a large Mahalanobis distance is considered as an outlier. Assuming

that the data follows a multivariate normal distribution, square of Mahalanobis follows

a Chi-Square distribution for a large number of instances. Therefore the proposed cutoff

point in Equation 2.3 is given by χ2
n , where χ2 stands for the Chi-Square distribution

for n dimensional data with signification level usually taken as 0.05.

Di =
√
(xi− x̄)T Σ−1(xi− x̄) (2.3)

cov(X ,Y ) =
1

n−1

n

∑
i=1

(xi− x̄)(yi− ȳ) (2.4)

2.1.3 Advantages and Disadvantages of Distribution-based Tech-
niques

The advantages [74] [54] of distribution based techniques are as follows:

1. If the distribution estimation step is robust to anomalies in data, statistical tech-

niques provide a statistically justifiable solution for anomaly detection.
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2. If the underlying assumption of distribution of data hold true, statistical based

techniques can operate in an unsupervised setting without need of labels to eval-

uate results.

The disadvantages [74] [54] of distribution based techniques are as follows:

1. Statistical methods for anomaly detection usually depends on arithmetic mean

and technique may completely fail in case mean is outlier, refer Figure 2.4

2. This method suffers from what is described as “curse of dimensionality” [13].
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Figure 2.4: Shows mean as outlier

2.2 Distance-based Approaches

In distance based approaches for anomaly detection, each data point is analysed with

respect to its nearest neighbor. The basic assumption followed by these techniques

is that the normal instances occur in dense neighborhood while, anomalies occur far

from their closest neighbors [74]. We introduce two commonly available definitions of

distance based approaches below proposed by Knorr and Ng [45] and Ramaswamy et

al. [60].
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Definition 1: Let object O in a data set T is a DB(p, D)-outlier if at least fraction

p of the objects in T lies greater than distance D from O [45].

Definition 2: Given an input data set with N points, parameters n (total number of

outliers we are interested in) and k (number of neighbors of a point that we are inter-

ested in), a point p is a Dk
n outlier if there are no more than n-1 other points p’ such that

Dk(p’) > Dk(p) [60].

The main idea proposed by Knorr and Ng in their research of outlier detection [45;

46; 47] was to compute the anomaly score of a data instance by counting the number

of nearest neighbors that are not more than d distance apart from the given instance.

The distance-based approaches like proposed by Knorr and Ng require a distance or

a similarity measure defined by two instances. Distance between two data instances

is generally computed using Euclidean and Hamming measures depending on whether

variables are numerical or categorical. Ramaswamy et al. [60] simplified the definition

of outlier by stating that outliers are the top n data points whose distance to the kth

nearest neighbor is greatest. Consider Figure 2.5 where some random data points are

shown and let k (number of nearest neighbor) is set to 2. Data points O1 and O2 are

two outliers with distance to their 2nd nearest neighbour are largest. We now present

two classical distance based algorithms namely, Nested-Loop and Nested-Loop with

randomization and pruning algorithm.

2.2.1 Nested-Loop Algorithm

Nested-Loop algorithm is a very simple approach of mining outliers where a sequential

computation of distance between every two data points is performed until k neighbors

within distance D are found. If for each object, k neighbors within distance D are

found then the data point is not an outlier else it is marked as outlier. The worse case

complexity of this method is O(dN2) where, d and N are the dimensionality and size of

data set.

The Nested-Loop algorithm uses a block oriented design. Supposing buffer size of

B% of the data set size is given. The algorithm then divides the entire buffer space

in two halves called first and second arrays. It reads the data set into the arrays, and
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Figure 2.5: Shows top two outliers O1 and O2 with distance to their 2nd neighbor being
largest

directly computes the distance between each pair of objects. For each object O in the

first array, a count of its k neighbors is maintained. Counting stops for a particular object

whenever the number of k neighbors exceeds D. The pseudo-code of the algorithm can

be found in [69] [45].

2.2.2 Nested-Loop with Randomization and a Punning Rule

Bay and Schwabacher [12] proposed an algorithm for finding outliers by calculating

distance from its nearest neighbors using nested loops in conjunction with randomiza-

tion and pruning rule. The methodology presented gives near linear time performance

on many large data sets having continuous and discrete features. The main idea in the

algorithm presented is for each data point o; a track of its kth closest neighbors is made,

as the data set is scanned. When a data point (the kth closest neighbor) has a distance

less than cutoff threshold, the data point is no longer outlier and the next data point is

tracked. As more and more data points are processed the cutoff increases along with

the pruning efficiency.

The major strength of this algorithm is its near linear time performance as compared

to quadratic performance of algorithm based on a nested loop nearest neighbor search.

However, algorithm suffers from few limitation such as its dependence on parameters
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block size and k which has a considerable effect on discovering outliers. Also, the

algorithm assumes that the data is in random order and if data set is in sorted then

performance could be poor. The pseudo-code of the algorithm can be found in [59] [12].

2.2.3 Advantages and Disadvantages of Distance-based Techniques

The advantages of distance-based [74] techniques are as follows:

1. Distance-based techniques are purely data driven. These techniques are unsuper-

vised in nature and do not make any assumption about the underlying distribution

of the data.

2. These techniques can be applied directly on data sets containing variables of dif-

ferent data type by just changing the distance metric.

The disadvantages of distance-based [74] techniques are as follows:

1. Ascertaining quality of reported outliers is really challenging for distance based

techniques. There could exist cases where normal instances in data set may not

have enough k nearest neighbors or cases where anomalies satisfy nearest neigh-

bor condition.

2. Defining distance metric for complex data sets for example, graphs and sequences

could be challenging.

2.3 Density-based Techniques

Density-based methods estimate the density distribution of the input space and then

identify outliers as those lying in regions of low density. Such techniques estimate the

density of the neighbourhood of each data instance. An instance that lies in a neigh-

borhood with low density is declared to be an outlier while an instance that lies in a

dense neighbourhood is declared to be normal. The distance-based outlier techniques

discussed in the last section captures global outliers, because these definitions take a

global view of the data set. For a data set with a simple structure, for example, one

that contains one or more clusters with a similar density, these definitions work well.

However, for many data sets that have a complex structure with regions of differing
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density, the methods based on these two definitions may not be able to find all interest-

ing outliers. Density based approaches are well suited in this scenario. Such techniques

captures how isolated an object is with respect to its surrounding neighborhood rather

than the whole data set. Outliers targeted by this approach is called as local outliers.

To illustrate this, consider visualization of data set in Figure 2.6. This data set

contains two main clusters, one dense and one sparse. For two separated objects O1

and O2, which stay far away from the clusters are clear anomalies from both global and

local view. However, for a distance based approach, data points O3 and O4 lying close

to dense cluster will have distances approximately equal to any distance between two

points in the sparse cluster and hence may fail to detect them. Therefore, an outlier

detection method that takes into account local density variations is necessary to solve

this problem.
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Figure 2.6: Shows one dense cluster, one sparse cluster and four outliers

2.3.1 Local Outlier Factor

A popular density-based approach, Local Outlier Factor (LOF) was originally proposed

by Breunig et al. [17]. The LOF is computed for each object in the data set, indicating

its degree of outlierness. This quantifies how outlying an object is. The outlier factor

is local in the sense that only a restricted neighborhood of each object is taken into

account. The LOF of an object is based on the single parameter called MinPts, which is
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the number of nearest neighbors used in defining the local neighborhood of the object.

The LOF of an object p can be defined by Equation 2.5

LOFMinPts(p) =
∑o∈MinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|
(2.5)

The outlier factor of object p captures the degree to which we can call p an outlier.

It is the average of the ratio of the local reachability density of p and those of p’s

MinPts-nearest neighbors. The lower p’s local reachability density (lrd) is, and the

higher lrd of p’s MinPts-nearest neighbors are, the higher is the LOF value of p. The

local reachability density (lrd) of an object p is the inverse of the average reachability

distance (reach-dist) based on the MinPts nearest neighbors of p. The local density

can be ∞ if all the reachability distances in the summation are 0. This may occur for

an object p if there are at least MinPts objects, different from p, but sharing the same

spatial coordinates, i.e., if there are at least MinPts duplicates of p in the dat set. Local

reachability density is defined by Equation 2.6. The reachability distance of an object p

with respect to object o is defined by Equation 2.7.

lrdMinPts(p) =
(

∑o∈MinPts(p) reach−distMinPts(p,o)
|NMinPts(p)|

)
(2.6)

reach−distMinPts(p,o) = maxMinPts(o),dist(p,o) (2.7)

For any positive integer k, the k-distance of object p, denoted as k-distance(p), is

defined as the distance d(p, o) between p and an object o ∈ D where D is a data set such

that:

1. for at least k objects o’ ∈ D | p it holds that d(p, o’) ≤ d(p, o), and

2. for at most (k-1) objects o’ ∈ D | p it holds that d(p, o’) ≤ d(p, o)

Figure 2.7 illustrates the idea of reachability distance with k = 4. Intuitively, if

object p is far away from o (e.g., p2 in the figure), the reachability distance between the

two is simply their actual distance. However, if they are sufficiently close (e.g., p1 in

the figure), the actual is replaced by k-distance of o. The reason is that, the statistical

fluctuation of d(p, o) for all the p’s close to o can be significantly reduced. The strength
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of this smoothing effect can be controlled by the parameter k. The higher the value of

k, the more similar the reachability distances for objects within the same neighborhood.

Figure 2.7: Reachability distance

2.3.2 Advantages and Disadvantages of Density-based Techniques

The advantages of density-based [74] techniques are as follows:

1. Density-based techniques are purely data driven. These techniques are unsuper-

vised in nature and do not make any assumption about the underlying distribution

of the data.

2. These techniques gives advantage on data sets carrying densities of data points in

varying sizes for capturing local outliers.

The disadvantages of density-based [74] techniques are as follows:

1. Ascertaining quality of reported outliers is challenging as in the case in distance

based techniques.

2. The major drawback is the computational complexity which is O(N2).

2.4 Contextual-based Techniques

Anomaly detection techniques such as distribution, distance and density based dis-

cussed so far in this chapter discovers point based anomalies. All of these techniques
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consider an individual data instance as anomalous with respect to the rest of the data.

However, there could exist data points which are anomalous in a specific context but

not otherwise. The notion of context in data is induced by domain knowledge or by the

structure of data. Figure 2.8 taken from Chandola et al. [74] explains one example of

contextual outliers for a temperature time series. Figure shows the monthly tempera-

ture of an area over last few years. A temperature of 35F might be normal during winter

(at time T1) at that place, but the same value during summer (at time T2) would be an

anomaly.

Figure 2.8: Shows T2 as a contextual anomaly

Contextual outliers were addressed as conditional outliers by Song et al. [66]. They

proposed a method called conditional anomaly detection (CAD). The emphasis of CAD

methodology was to present user with anomalies which are interesting. For this they

integrated domain knowledge in the discovering process. They suggested to divide at-

tribute set of data into two categories namely environment and indicator attributes. En-

vironment attributes were precisely those attributes which accounts for trends in the

data, such as, season and temperature. The reminder of data attributes was called

indicator attributes. We now discuss example from [66] for understanding on envi-

ronment and indicator attributes. Consider Figure 2.9 where two variables namely,

Max daily temp and Num fever are monitored to detect disease outbreak at the earliest

possible instant. The first variable tells the maximum outside temperature on a given

day while, Num fever tells how many people were admitted to a hospital emergency

room complaining high fever. In this example, Max daily temp is the environment at-

tribute and, Num fever is the indicator attribute. In the Figure, data point O1 and O2

are both anomalies based on most conventional definitions. However, if it is considered

that Max daily temp is not directly indicator of anomaly but, instead is responsible in



CHAPTER 2. BACKGROUND 22

bringing trends then, data point O2 is not an anomaly. The reason being, encountering

large number of fever cases in a cold day is normal reducing interest in data point O2.

Whereas, data point O1 is interesting from an anomaly prospective since it signifies the

situation where there are number of people admitting in hospital with fever in a warm

temperature.

Max_daily_temp

N
um

_f
ev

er

O
2
: a clear anomaly

O
1
: a conditional anomaly

very hotvery cold

many

few

Figure 2.9: Shows O2 as a clearest anomaly whereas, O1 is a conditional anomaly

By forming the relational model between environment and indicator attributes, a

data point was flagged anomaly depending on how much its indicator attribute values

differ from the usual indicator attribute values. The three expectation maximization

based [26] learning algorithms were proposed in order to learn the dependency model

between two sets of attributes. In their work maximum likelihood estimation (MLE)

was used to fit a multidimensional data set to model described using the probability

density function for Gaussian Mixture Model. However, parametric distribution called

fCAD in their work does not treat all attributes identically. The fCAD had the form fCAD

(y | Θ, x) where, x is the set of environment attributes values, and y the set of indicator

attribute values. This implies that a data point’s environment attributes x are taken

as input, and used along with the model parameter Θ to generate the set of indicator

attributes y. By doing this, it is learnt how the environmental attributes map to the

indicator attributes. A data point is considered anomalous against the model learnt if its

indicator attributes cannot be explained in the context of environment attributes.
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Contextual outliers have also been explored in time-series and spatial data [16] [15].

2.4.1 Advantages and Disadvantages of Contextual-based Techniques

The advantage of contextual-based techniques is as follows:

1. The key advantage of contextual anomaly detection techniques is that they al-

low a natural definition for an anomaly in many real life application where data

instances tend to be similar within a context.

The disadvantage of contextual-based techniques are as follows:

1. The disadvantage of contextual anomaly detection techniques is that they are ap-

plicable only when a context can be defined. It may be difficult to define contex-

tual knowledge for every application domain.

2.5 Bayesian Network-based Approaches

As an expert system Bayesian networks have been used in various fields. Pearl et

al. [43] developed CONVINCE, an interactive decision-aiding expert system for sit-

uation assessment tasks. It was designed to help user in articulating ill-defined situation

assessment problems in a formal structure, guides the user in searching for relevant

information and data, and then deduces rational inferences from the formal structure.

Munin [5], a medical expert system for diagnosing neuromuscular diseases is an another

example of Bayesian application. Few more examples of usefulness and application of

Bayesian networks are: Pathfinder [39], an expert system that assists surgical pathol-

ogists with the diagnosis of lymph-node diseases and win95pts [23], an expert system

for printer troubleshooting developed by Microsoft. The reason of Bayesian popularity

is because of its graphical representation and strong statistical inference mechanism.

However, these studies consider only the essential ideas about the structure and use of

Bayesian networks.

In other applications, Bayesian networks have been used for anomaly detection.

Barbara et al. [10], Sebyala et al. [64], Mingming [78] and Bronstein et al. [18] pro-

posed a network intrusion detection system based on Bayesian networks. For novelty

detection in video surveillance an approach was proposed by Diehl and Hampshire [27].
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Bayesian approach based rare event prediction in sensor data was proposed by Seong et

al. [21]. Wong et al. [75] presented a technique for disease outbreak detection.

A general approach of Bayesian based anomaly detection is in multi-class setting.

It uses a naive Bayesian network to estimate the posterior probability of observing a

class label (from a set of normal class labels and the anomaly class label), given a test

data instance. Bayesian network under this setting is trained on different classes, and

then a trained model is used to test a new observation with largest posterior is chosen

as the predicted class. Bayes estimator based network intrusion detection technique

proposed in [10] is based on anomaly detection system called Audit Data Analysis

and Mining(ADAM). ADAM applies association rule mining technique to look for the

abnormal events in the network data, and then a classification algorithm was used to

classify the abnormal events into normal or abnormal instances. Since knowledge on

classifier is restricted to nature of data present in the training data so, to avoid this

limitation, authors proposed pseudo-Bayes estimator as a means to estimate prior and

posterior probability of new attacks. Janakiram et al. [25] presented a technique based

on Bayesian network to identify local outliers in streaming sensor data. This technique

used Bayesian network to capture not only the spatio-temporal correlations that exist

among the observations of sensor nodes but also conditional dependence among the

observations of sensor attributes. Each node trains a Bayesian network to detect outliers

based on behaviors of its neighbor readings as well as its own reading. An observation

is considered as outlier if it falls beyond the range of the expected class.

There exist several variants to the basic approach discussed above which used Bayesian

networks for anomaly detection task. Examples of few studies are Seong et al. [21],

Babbar et al. [9], Babbar and Chawla [7], Wong et al. [75], Babbar and Chawla [8],Cansado

and Soto [19] and Wong et al. [75]. In all of these studies, Bayesian network has been

modeled to capture background knowledge and anomalies were discovered in an unsu-

pervised setting. Seong et al. [21] proposed a Bayesian network based on rare event

prediction methods for high concentrations of high ozone O3 forecasts in Seoul, Korea.

Using expert knowledge, Bayesian network was modeled and boundary conditions us-

ing chemical reaction equations were established for parameters governing concentra-

tion of O3. Babbar and Chawla [7] and Babbar et al. [8] proposed a technique for mining

interesting anomalies based on background knowledge captured by a Bayesian network

in categorical data sets. They exploited Bayesian causation and correlation encoded in

the feature space using two probabilistic association rules in order to reveal anomalies
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and to explain their anomalous nature. In [8], authors demonstrated that meaningful

outliers, i.e., outliers which perhaps encode important or new information are those

which violate causal relationships. The technique defined was especially designed for

numerical data sets which used causal inference to reveal and explain anomalies.

Cansado and Soto [19] proposed an unsupervised approach for mining outliers in

large databases using joint probability distribution (JPD) in Bayesian network. Using

JPD records where ranked according to their oddness. Highly common records well

explained by the model, received a high likelihood while, strange records received a

low likelihood. To learn Bayesian structure, authors extended Sparse Candidate Algo-

rithm [31] to able to use continuous variables.

Research contribution by Wong et al. [75] used a Bayesian network to model the

domain for detecting disease outbreak. In their approach, attribute set was divided in

user specified two groups, features those accounts for forming trends where grouped in

environmental set whereas, attributes left formed indicator set. The Bayesian network

used was conditioned on forming relation only between attributes belonging to environ-

mental set to attributes in the indicator set. An algorithm WSARE 3.0 was developed

to compare recent data against baseline distribution captured by the Bayesian network

with the aim of finding rules that summarizes significant patterns of anomalies.

2.5.1 Advantages and Disadvantages of Bayesian network Tech-
niques

The advantages of Bayesian network-based techniques are as follows:

1. Bayesian network-based approaches are designed on grounds of domain knowl-

edge which gives an advantage of mining genuine outliers.

2. Using Bayesian theoretical concepts like conditional independence assumptions

and joint probability distribution, we could explain why identified data point is

an anomaly.

The disadvantage of Bayesian network-based techniques is as follows:

1. Generally a large amount of data is required in order to learn Bayesian networks

in absence of domain experts.
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2.6 Summary and Conclusion

In this chapter, we presented extensive overview of existing outlier detection methods.

The methods discussed are closely related to or foundations of this thesis. Anomaly

detection methods discussed in Sections 2.1, 2.2 and 2.3 discovers point based anoma-

lies, i.e., these technique considers an individual data instance as anomalous with re-

spect to the rest of the data. The advantages of these techniques are several. First

and foremost, all these techniques are purely unsupervised except for few distribution

based techniques discussed in Section 2.1 where an underlying distribution is assumed

before process of anomaly detection is applied. Second, such techniques can be ap-

plied on data sets containing different data types by just changing the distance metric.

Lastly, the notion of global and local outliers given by distance (Section 2.2) and den-

sity (Section 2.3) techniques are capable of capturing anomalies residing far from their

neighbors, and those far from their local neighborhoods. The key limitation of these

techniques is that they are largely focused on the design of measures and algorithms

to identify outliers in large and high dimensional categorical and numeric databases.

However, not much stress has been given on the interestingness of the reported outlier.

In Chapter 5 and 6, we propose a Bayesian network approaches which claims to mine

“genuine” and “meaningful” outliers.

We also discussed in Sections 2.4 and 2.5 anomaly detection approaches which are

based on domain knowledge to discover anomalies. However, research in this area is

limited. To best of our knowledge, studies which considers importance of not only

identifying anomalies, but to also explain them is very limited. The techniques we

address in Chapters 5 and 6 for anomaly detection are capable of both discovering and

describing anomalies.



Chapter 3

Bayesian Network Models

The main focus of work in this thesis revolves around theory of Bayesian networks.

Bayesian networks is a kind of graphical model used to capture domain knowledge

for reasoning and decision making under uncertainty. In many problem domains uncer-

tainty is caused due to availability of vague and incomplete knowledge about the system.

As a result it may lead to inappropriate conclusions. Probabilistic theory, aided with the

methods of statistical analysis in Bayesian network provides means of coping with the

problem of uncertainty thus, help drawing conclusions which are possible. Probability

forms foundations of Bayesian network theory, and hence we first discuss key concepts

of probabilistic theory before proceeding to introduction on Bayesian networks.

The rest of the Chapter is organised as follows. Primarily concepts of probability

theory are discussed in Section 3.1. In Section 3.2, we introduce Bayesian networks.

Summary and basic notations followed in this chapter are presented in Section 3.3.

Section 3.4 deals with foundations of Bayesian network. The general rule of flow of

information in Bayesian models is discussed in Section 3.5. Section 3.6 is focussed on

basic concepts involving continuous variables in Bayesian networks. Different kinds

of probabilistic inference and variable elimination algorithm are discussed in Section

3.7. We briefly introduce Bayesian parameter and structure learning in Section 3.8. In

Section 3.9, we discuss Bayesian networks as causal models. Finally, in Section 3.10,

we briefly discuss popular Bayesian software and packages.

27
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3.1 Probabilistic Theory

3.1.1 Probability and Events

Probability refers to the likelihood or relative frequency for something to happen. For

example, the weather report might say “there is high probability of rain today”. Prob-

abilistic theory deals with such estimates and the rules which they should obey. Prob-

abilities are assigned to events say α , which can be considered as an outcome of an

experiment for example, a coin flip. The set of possible events for an experiment is

addressed as event space and, is often denoted by symbol Ω. For example, in case of

dice, we might set Ω = {1, 2, 3, 4, 5, 6}. Given event space, probability distribution

over events denoted by P(α) satisfies following three conditions:

1. For any event α , 0 ≤ P(α) ≤ 1

2. P(Ω) = 1

3. For any two mutually exclusive events α and β the probability that either α or β
occur is given by Equation 3.1

P(α or β ) = P(α ∨β ) = P(α)+P(β ) (3.1)

Condition 1 simply says that probability is a non-negative real number less than or

equal to 1. By condition 2 it is meant that all possible outcomes have the maximal

possible probability of 1. Condition 3 states that if two events cannot co-occur then, the

probability that either one of them occurs equals the sum of the probabilities of their

individual occurrences.

3.1.2 Random variables

In a daily life, it is often more natural to consider attributes of the outcome. For ex-

ample, a person might have attributes such as “age”, “gender”, “height” and many

more. Formally, a random variable is relation of attributes to their values in differ-

ent outcomes. Random variable can take different set of values depending on its type.
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Broadly, random variable can take finite values (categorical, for example gender) or in-

finitely many values, integer or real (for example, height). We follow the convention of

using upper case letters to denote random variables such as X, Y, Z. And, lower letters

to denote generic value of a discrete random variable, i.e., P(X = x) denotes probability

of random variable X in x. The notation Val(X) represent set of values discrete random

variable X can take. For example, Val(gender) = {male, female}. If notation, |Val(X)|
specifies total number of value X has then, Equation 3.2 holds. The distribution over

such a variable is called a multinomial.

|Val(X)|

∑
i=1

P(X = xi) = 1 (3.2)

Unlike discrete random variables, continuous random variables can take infinite set

of possible real numbers in ℜ. Probability over continuous random variable X is defined

as a probability density function (PDF), p : ℜ → ℜ if it is a nonnegative integral

function which satisfies Equation 3.3. That is, the integral over the set of possible values

of X is 1. The PDF defines a distribution for X as in Equation 3.4 for any x in event

space. Continuous random variables can have simplest PDF from Uniform to more

complex Gaussian distributions. A random variable X has a Gaussian distribution with

mean µ and variance σ2, denoted N(µ; σ2), if it has the PDF defined in Equation 3.5∫
Val(X)

p(x)dx = 1 (3.3)

P(X ≤ a) =
∫ a

−∞
p(x)dx (3.4)

p(x) =
1√

2πσ
e−

(x−µ)2

2σ2 (3.5)

A Gaussian distribution has a bell-like curve where the mean parameter control the

location of peak and variance determines how the Gaussian peaked is. In Figure 3.1

PDF of two Gaussian distribution are shown.
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Figure 3.1: Example PDF of two Gaussian distributions

3.1.3 Conditional probability and Chain rule

Suppose we consider a distribution over a population of patients visiting a hospital.

Here space of outcome is simply set of all patients in the population. Now, suppose we

want to reason around the patient’s test result (say event α) and possibility of a disease

(say event β ). That is, given test result, we are interested in knowing chances of a

disease. More precisely, after learning that an event α is true, how do we change our

probability about β occurring? Concept of conditional probability helps solving such

queries. Formally, conditional probability on β given α is defined as in Equation 3.6.

P(β |α) =
P(α ∩β )

P(α)
(3.6)

Equation 3.6 can be rearranged as Equation 3.7. This equality is known as chain

rule in probability. If suppose α1, α2,....,αn are n events, then probability of these

events can be expressed using Equation 3.8. Chain rule allows expressing probability

of a combination of several events in terms of the probability of the first, the probability

of second given the first and so on. In chain rule, order of events does not change the

result, i.e., we can put events in any order. For three events, α1, α2, α3, example of

chain rule is presented by Equation 3.9

P(α ∩β ) = P(α |β )(P(β ) (3.7)
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P(α1∩ ....∩αn) = P(α1)P(α2|α1)....P(αn|α1∩ ...αn−1) (3.8)

P(α1∩α2∩α3) = P(α1)P(α2|α1)P(α3|α1,α2) (3.9)

As with discrete random variables, conditional probabilities can be defined over

continuous variables. Suppose, we are interested in defining P(Y | X = x). We could

not use Equation 3.6 for P(X = x) = 0 which is not defined. To avoid this, conditioning

on event (x - ε) ≤ X ≤ (x + ε) could yield positive probability [48]. We define in

Equation 3.10 conditional probability when ε → 0.

P(Y |X) = lim
ε→0

P(Y |X− ε ≤ X ≤ X + ε) (3.10)

The limit in Equation 3.10 can be derived from a continuous joint probability p(x,

y). Consider an event Y such that, a ≤ Y ≤ b. Equation 3.10 can be solved as below:

lim
ε→0

P(Y |X−ε ≤X ≤X+ε)=
P(a≤ Y ≤ b,x− ε ≤ X ≤ x+ ε)

P(x− ε ≤ X ≤ x+ ε
)=

∫ b
a
∫ x+e

x−e p(x′,y)dydx′∫ x+e
x−e p(x′)dx′

(3.11)

In case ε is sufficiently small, approximation can be applied on Equation 3.11 by

factor
∫ x+ε

x−ε p(x′)dx′ ≈ 2ε p(x). Similarly factor:

P(a≤ Y ≤ b|x− ε ≤ X ≤ x+ ε)≈
∫ b

a 2ε(x,y)dydx′

2ε p(x)
=
∫ b

a

P(x,y)
p(x)

dy (3.12)

Thus, p(x,y)
p(x) is the density of P(Y | X = x).

3.1.4 Bayes’ rule

Using symmetry property, Equation 3.7 can be rewritten as 3.13. Further, Equation 3.13

derives Bayes’ rule represented by Equation 3.14.

P(α ∩β ) = P(β |α)(P(α) (3.13)
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P(α |β ) = P(β |α)(P(α)

P(β )
(3.14)

It is common to think of Bayes’ rule in terms of updating our belief about a hy-

pothesis α in the light of new evidence β . Specifically, posterior belief P(α | β ) is

calculated by multiplying our prior belief P(α) by the likelihood P(β | α) that β will

occur if α is true. The power of Bayes’ rule is that in many situations where we want

to compute P(α | β ) it turns out that it is difficult to do so directly, yet we might have

direct information about P(β | α). Bayes’ rule enables us to compute P(α | β ) in terms

of P(β | α).

For example, suppose that we are interested in diagnosing cancer in patients who

visit a clinic. Let α represent the event person has cancer, and let β represent the event

person is a smoker. On the basis of past data, let we have prior probability of events,

P(α) = 0.1 and, P(β ) = 0.5. Suppose, We are interested in knowing probability of

person suffering from cancer given he smokes, i.e., P(α | β )? It is difficult to solve this

query directly. However, we are likely to know P(β | α) from records specifying the

proportion of smokers among those diagnosed. Suppose P(β | α) = 0.8. Based on this

information, we can compute our query using Bayes’ rule, refer Equation 3.15. Thus,

in the light of evidence that the person is a smoker we revise our prior probability from

0.1 to a posterior probability of 0.16.

P(α |β ) = (0.8×0.1)
0.5

= 0.16 (3.15)

Application of Bayes’ rule is central to inference in Bayesian network which we

will discuss shortly.

3.1.5 Joint probability distribution and Marginalization

Unlike conditional probabilities which are used to determine how much the occurrence

of one event influences the occurrence of another event, joint probabilities determines

the likelihood of two separate events simultaneously. The joint probability for two

events, α and β , is expressed mathematically as P(α ,β ). Joint probability is calculated

by multiplying the probability of event α , expressed as P(α), by the probability of event

β , expressed as P(β ). Consider example of diagnosing cancer in patients taken above.

Let α and β represent events person has cancer and person is a smoker respectively.
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The joint probability of these events would be 0.05.

In comparison to joint probabilities, marginalization helps computing probability of

subset of events from Ω. For example, we might want to compute P(X) from a joint

distribution P(X, Y, Z). This is computed by summing over all possible combinations

of values Y and Z to solve P(X). For example, suppose Val(Y) = (y1, y2) and, Val(Z) =

(z1, z2). Then, P(X) can be computed from the joint distribution as below:

P(X ,Y,Z) = ∑
Y

∑
Z

P(X ,Y,Z) =

P(X ,Y = y1,Z = z1)+P(X ,Y = y1,Z = z2)

+P(X ,Y = y2,Z = z1)+P(X ,Y = y2,Z = z2) (3.16)

3.2 Introduction to Bayesian Networks

Bayesian network (BN for short) is a kind of probabilistic graphical model which com-

bines probability with graph theory to compactly represent real world problems. Prob-

ability gives advantage of dealing with “uncertainty”. In many problem domains it is

not always possible to create complete, consistent models of the world thus, to obtain

a meaningful conclusions, it is required not only to deal with what is possible, but also

about what is probable [48]. On the other hand, graph theoretic side of graphical models

helps describing knowledge of complex problems in simpler modules providing richer

insights of domain in question. Through combined use of graphical structure and proba-

bilities, Bayesian model provide capability of drawing conclusions on what information

is known.

Consider a situation of a complex medical problem. Where information on patients

in the form of symptoms, their test results, physical characteristics are given. Objective

in this problem is to analyse given information to reach to a conclusion of possibility of

disease. Given number of interconnected aspects like symptoms and other information

for every patient, Bayesian network can help assist domain expert in diagnosis for the

possibility of disease. Based on knowledge of how different entities are connected

to each other, Bayesian network can reason to answer many interesting queries such

as: possibility of presence of disease, given symptoms and few test results? Or given

disease, what is the likeliness of positive test results?
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In Bayesian network, graphical structure encode domain knowledge specified by

setting interrelationship among random variables (like symptoms, physical character-

istics of patients in example above) connected through an arrow from a source to a

target variable in a system. The direct dependency between two variables using an ar-

row are often addressed as a cause-effect relationship in Bayesian terminology. Two

components are customary to construction of BN namely, qualitative and quantitative.

Qualitative component deals in identifying variables of interest for the domain, and then

a graphical structure is formed by linking two variables if there exist a relational depen-

dency between them. Bayesian network are kind of directed acyclic graphs (DAGs),

meaning that edges in a graph have direction and, that there is no cycle within the

graph. Quantitative component specify parameters indicating strength of relationship

between connected variables in the Bayesian network.

Another most common kind of probabilistic graphical model is a Markov model [48].

Unlike Bayesian network, Markov model is undirected. However, both of these modesl

consist of set of random variables representing our domain but, differ on how these ran-

dom variables are connected. In a directed model, a directed edge is used to describe

direct influence of one variable on another. Whereas, in a undirected model no such

direction is defined. However, both these models describe similar perspective in terms

of solving probabilistic queries. In Figures 3.2a and 3.2b a simple example of Bayesian

and Markov model are presented respectively. The graphical structure of both these

models consists of three nodes indicated by round boxes with their names appearing

in corresponding boxes. In Bayesian network example there exist two direct depen-

dencies: Y on (X and Z) and, (2) Z on X. In contrast to this, edges in Markov model

correspond to a notion of direct probabilistic interaction between the neighbouring vari-

ables. For example, X depends on (Y and Z), Y on (X and Z) and Z on (X and Y). In

this chapter, we focuss on theoretical concepts of Bayesian models since it form bases

of this thesis.

(a) A Bayesian network (b) A Markov model

Figure 3.2: A simple Bayesian and Markov models
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3.3 Summary of Notations

Table 3.1 summarizes notation used for Bayesian networks in this chapter.

Notation Description

Discrete variable

Continuous variable
BN Bayesian network
CPT Conditional probability table
CPD Conditional probability distribution
X, Y, Z Variables/nodes
X, Y, Z Set of variables/nodes
C Child node
X⋄ Set of discrete nodes in a model
Xτ Set of continuous nodes in a model
|X| Total number of variables in a model
x, y, z, xi, yi, ci States of variables
Val(X) Set of configuration/states of variable X
|Val(X)| Total number of states X takes
Anc(X) Ancestors of X in model
Dec(X) Descendants of X in model
NonDes(X) Non descendants of X in model
G Bayesian graph
Pa(C) Parents of child node C in a model
E Set of edges in a model
Xp Set of parent nodes in a model
P(X = xi) Probability of X in xi
P(C = ci | Pa(C)) Conditional probability of child node C in ci given parents
ε Evidence in a model
q Query node in a model
X→ Y→ Z Path in a model
X 
 Y 
 Z Trail in a model

Table 3.1: Bayesian network: notations and basic concepts
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3.4 Understanding Bayesian network Model

3.4.1 Variables, Nodes and States

A variable X in BN can be defined as a concept about which information can be stored.

The notion of variables and nodes are often used interchangeably in Bayesian terminol-

ogy. Common types of nodes used in Bayesian network are: discrete and continuous.

Each discrete node in BN represents an exhaustive set of mutually exclusive events,

often referred to as states or values. Mutually exclusive and exhaustive property means

that the variable must take on exactly one of the possible value. In contrast, continu-

ous variable has infinite number of states. In Table 3.2 few examples of variables are

presented.

Node name Type Values/States
Gender Discrete male, female
Height Discrete short, medium, tall
Weather Discrete sunny, cloudy
Temperature Continuous -∞,∞

Table 3.2: Examples of variables/nodes in Bayesian network

We define set of states a variable X can take by Val(X). Total number of states of a

variable X is denoted by |Val(X)|. For example, variable Gender defined in Table 3.2 has

|Val(Gender)| = 2. The notation X = x, denote the fact that variable X attains the value

x. We define probability of variable X in some state xi by P(X = xi). For convenience

we may refer P(X = xi) as P(X = x).

3.4.2 Taxonomy on Bayesian Networks

A Bayesian graph is a structure G consisting of set of nodes/vertices (X) and edges/arcs
(E). A node is a parent of a child, if there is an arc from the former to the latter. For

example in relational dependency X → Y, X is a parent whereas, Y is its child. In

very simple terms, parent nodes in Bayesian network accounts for trends in application

domain, and nodes which are influenced by these trends are child nodes. We use the

notation Pa(C) to represent set of its parent nodes for any child node C.

In a Bayesian graph G = (X, E), set of variables X = {X1, X2...., Xn} are said to form

a path if, for every i = 1,..., n-1, we have Xi → Xi+1. A trail in G is also collection of
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edges which is like a path, but unlike path trail may have edges in any direction. More

formally, set of variables X = {X1, X2...., Xn} forms a trail in G if, for every i = 1,...,

n-1, we have Xi 
 Xi+1.

In a directed chain of nodes, one node is a ancestor of another if it appears earlier

in the chain. Whereas, a node is a descendent of another node if it comes later in the

chain. Since BNs are directed acyclic graphs where loops are disallowed so, no child

node can be its own ancestor or descendent. We use the convention of representing set

of ancestor and descendant for node X as: Anc(X) and Dec(X) respectively.

Once graphical topology of the network is specified, next step is to quantify rela-

tionships. Quantification of relationships refers to mechanism of describing degree of

correlation that exists between two connected nodes in the graph . As discussed in Sec-

tion 3.4.1, variables in Bayesian network can be either discrete or continuous so, they

are treated in a different way in defining degree of correlation. In a discrete framework,

theory of probability is used whereas; concept of density functions using Gaussian dis-

tribution is used for continuous nodes in the model.

For each discrete node in the model, conditional probability distribution is speci-

fied which takes the form of conditional probability table (CPT). An unconditional

node, i.e., a node which is not child node in the network, entries in CPT is like a prior

or unconditional probabilities defining plausibility of being in a specified state. Equa-

tion 3.17 defines CPT entries for an unconditional node X in the Bayesian graph subject

to condition that ∑|Val(X)|
i=1 P(X = xi) = 1.

P(X) = (P(X = x1),P(X = x2), ....,P(X = x|Val(X)|) (3.17)

On the other hand, for every child/conditional node in BN, first all possible combina-

tions of values of parent nodes are specified. Then, for each combination which is also

called as instantiation, probability in each distinct value in child node is specified. For

a conditional probability we use to notation P(Y | X) where, Y is conditioned on X. For

CPT of a child node, we have a probability distribution P(Y = y |X = x) for each combi-

nation of y ∈ Val(Y) and x ∈ Val(X). Unlike parametrization in the discrete framework,

possible space in the continuous case is not bounded. In this case, multivariate Gaus-

sian is used to define parameters for interrelated variables. We discuss how continuous

variables are modelled in Section 3.6 of this chapter. For now we assume, Bayesian

network encodes only discrete variables.
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Definition: A discrete Bayesian network G = (X, E) consists of:

1. A DAG G = (X, E) with set of nodes X and directed links E.

2. A set of conditional probability distribution, P, containing one distribution, P(X |
Pa(X)), for each random variable X ∈ X.

3.4.3 Bayesian Network: Example

In Figure 3.3, we present a simple Bayesian network relating to a scenario of potential

fire diagnoses in a building taken from Netica network repository [23]. This Bayesian

network has six boolean variables as indicated by six circles with name of the vari-

ables written within respective circles. The five directed arrows in the model reveals

relational dependency between set of variables disseminating knowledge on how sys-

tem works. This simple model explains the fact that alarm (Alarm or A in BN) in the

building can be caused by the two factors namely, fire (Fire or F in BN) and tamper-

ing (Tampering or Ta in BN). That is, alarm in the building can be result of actual fire

or when someone intentionally plays with it. This fact is encoded by directed arrows

starting from variables Fire and Tampering and ending on Alarm. Fire in the building

can give rise to smoke, indicated by a directed arrow between fire (Fire or Fi in BN)

and smoke (Smoke or S in BN). The status of alarm may cause people staying in the

building leaving (Leaving or L in BN) their houses, directed arrow between these nodes

represent this fact. A report (Report or R in BN) is maintained on people leaving the

house, a direct dependency between leaving and report reveals this fact. For simplicity,

we restrict naming variables by their initials indicated in braces next to their names in

the model.

The BN encode several parent and child nodes. For example variables: Fi and Ta are

parents of A, and A is child of both Fi and Ta. In other words, Fi and Ta are “causes”

and, A is their “effect”. Ancestor nodes for L, i.e., Ans(L) = Fi, Ta, A, S whereas,

example of descendant of L represented by notation Dec(L) is R. Two examples of

directed path in this BN are: (1) Fi→ A→ L→ R and, (2) Fi→ S. Two examples of

trails are: (1) S← Fi→ A← Ta and, (2) S← Fi→ A→ L→ R.
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Figure 3.3: Bayesian network on a fire diagnose problem

As opposed to qualitative component of this BN discussed above, quantitative in-

formation is represented by a set of an unconditional and conditional probabilities as-

sociated with each node. Let each node is binary with possible states as True (T) and

False (F). Since Fi and Ta do not have any parent so, their respective table contains

unconditional probabilities stating chances of these variables in states T or F. For ex-

ample, probability of fire is 65% and chances of not seeing the fire is 35%. In contrast

to unconditional nodes, conditional node S is associated with the conditional probabil-

ity table indicating probability of smoke in presence and absence of fire. For example,

fire in the building causes smoke to rise in the building with 80% probability. Similar

information is encoded in CPTs of conditional variables A, L and R.
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3.4.4 Independence in Bayesian Networks

Bayesian networks provide a very intuitive language for representing dependence and

independence statements among problem-domain variables. An arc joining two vari-

ables in the BN represent direct dependency whereas, lack of arc represent conditional

independence assumptions [48; 56]. This Section is dedicated in describing indepen-

dence properties in BN and how they are useful.

Bayesian theory revolves around key concepts of dependency, independency and

conditionally independence among variables. In very general terms, two events are said

to be dependent if knowledge of one provides predictive value for of another. For ex-

ample, consider a simple BN in Figure 3.4 where, Rain is dependent on Sun. Knowing

its sunning or not, we can predict possibility of rain. However there are situations when

knowledge of one variable provides no predictive value for the knowledge of another.

For example, knowledge on number of people on the street provides no prediction on

probability of rain. More formally, independent events can be described using defini-

tion below.

Definition: A variable X is independent of another variable Y with respect to a

probability distribution P if Equation 3.18 holds.

P(X |Y ) = P(X),∀xi ∈Val(X),∀y j ∈Val(Y ) (3.18)

Conditional independence comes into play when we have multiple variables that can

all be correlated. Two events are said to be conditional independent when observations

on an additional event is given. Consider BN in Figure 3.5 which is extension of one

presented in Figure 3.4. In this case, while it is true that knowledge of sun provides

predictive value for carrying umbrella (variable Umbrella in BN) because no sun means

it is more likely to be raining, and thus more likely to carry an umbrella. Interestingly

enough, this predictive value is entirely mediated through Rain. If we already know

status of rain, knowing its sunny or not does not help further predict status of carrying

umbrella. Here, the two variables Umbrella and Sun are conditionally independent

given knowledge of Rain.
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The concept of conditional independence is central to the power of Bayesian net-

works. Conditional independence assumptions encoded in the Bayesian structure pro-

vides several benefits: (1) conditional independence property in BN provides key to

Bayesian inference through which complex probabilistic queries can be answered (2)

by exploiting conditional independence statements in BN, computational cost involve

in inference can be substantially reduced and, (3) this property can easily be inferred

through Bayesian graphical structure which can help users with key insights of domain

knowledge.

We describe formal definition of conditional independence in BN below [48].

Definition: Let a Bayesian network structure G consist of set of random variables

X = {X1, X2...., Xn}. Let Pa(Xi) denote the parents of Xi in G, and NonDes(Xi), denote

the variables in the graph that are not descendants of Xi. Then G encodes the following

set of conditional independence assumptions [48].

For each Xi ∈ X : (Xi ⊥ NonDes(X) | Pa(Xi)) (3.19)

Figure 3.4: Bayesian network showing relational dependency between variables Sun
and Rain

Figure 3.5: Bayesian network showing variable Umbrella is conditionally independent
of Sun, given Rain

3.4.5 Joint probability distribution in Bayesian networks

The chain rule in probability theory allows us to factorize joint probabilities as repre-

sented by Equation 3.20. However, graphical structure of BN gives advantage of rep-

resenting joint probability distributions concisely and compactly. Consider a Bayesian

network containing n nodes represented as X1,......, Xn. Recalling from Equation 3.19

that the structure of a BN implies the value of a particular node is conditioned only on
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the values of its parent nodes, this reduces Equation 3.20 to Equation 3.21.

P(X1 = x1,X2 = x2, ......,Xn = xn) = P(X1 = x1)×P(X2 = x2|X1 = x1)×

...× (Xn = |X1 = x1, ...,Xn−1 = xn−1) (3.20)

P(X1 = x1,X2 = x2, ......,Xn) =
n

∏
i=1

P(Xi = xi | Pa(Xi)) (3.21)

In general, joint distribution of a set of variables is an exponentially-sized object. If

all the variables are binary, the joint over n variables has 2n parameters. For example,

on ten binary variables using Equation 3.20 may require 210 = 1024 storage space. On

the other hand, memory space of (2p × |X| ) where, p implies maximum number of

parent nodes a variable in BN has is required in case of Bayesian networks. That is, if

maximum of three parent nodes are restricted in BN of total ten nodes then, (23 × 10)

= 80 values are required.

We now present example of joint probability calculation using BN in Figure 3.3.

Suppose we are interested in computation of situation, (Fi = T, Ta = F, S = T, A = T, L

= T, R = T). Equation 3.22 below explains how the said joint probability is calculated

using Equation 3.21. The computation yields probability of 16.7%.

P(Fi = T,Ta = F,S = T,A = T,L = T,R = T ) = P(R = T |L = T )×P(L = T |A = T )

× P(A = T |Fi = T,Ta = F)

× P(S = T |Fi = T ) × P(Fi = T )

× P(Ta = F) = 16.7% (3.22)

3.5 Flow of Information in Bayesian Networks

A key task in Bayesian network is the computation of new beliefs when new informa-

tion is available. In particular, observations which are known are said to be evidence in

Bayesian terminology. Let evidence ε , is the information received from external sources

about the possible states of the subset of the variables of the network. In presence of ε ,

posterior probabilities of the form P(Y | ε) are computed. We follow the notation of at-

taching the label ε to variables in the Bayesian network which are known observations.
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Figure 3.6: Bayesian network on a medical problem

Based on what evidence is given, there exist three types of connections through which

information flows in BN [44; 48]. We now present analysis on each these connections

using small fictitious BN represented in Figure 3.6 on a medical problem.

Example: 2.1 Medical knowledge encoded in the BN represented in Figure 3.6

states that people who recently visited Asia (Visit to Asia in BN) are more likely to suf-

fer from tuberculosis (Tuberculosis in BN) while, smoking (Smoking in BN) is a single

risk factor known for both lung cancer (Lung cancer in BN) and bronchitis (Bronchi-

tis in BN). Patient can have positive or negative x-ray (X-ray in BN) depending on

whether he suffers from tuberculosis or lung cancer (Tuberculosis or Lung cancer in

BN). That is, result of x-ray report does not discriminate between lung cancer and tu-

berculosis. Shortness of breath which is called as Dyspnea (Dyspnea in BN) in medical

terms could be caused if the person is suffering either from bronchitis (Bronchitis in

BN) or in the presence of tuberculosis/lung cancer.

1. Serial connections: These connections are often addressed as causal chains. In such

connections, two nodes are directly connected. Consider a subgraph of BN pre-

sented in Figure 3.6 on a medical diagnose problem in Figure 3.7a. A three node
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network shows nodes, Visit to Asia and Cancer are not directly connected, but

indirectly connected through a trail between them via node, Tuberculosis. Serial

connections like presented in Figure 3.7a also implies notion of indirect inter-

actions in BN. In such connection, if no evidence is available, information can

travel between the nodes in either direction as shown using dashed arrows in Fig-

ure 3.7a. However, when a state of the middle variable is known for sure, then

flow of information between the other two variables cannot take place through

this connection, refer Figure 3.7b. Given knowledge on middle node, Tuberculo-

sis blocks the flow of information over a serial connection. This suggest variable,

Visit to Asia cannot influence variable, Cancer when evidence on variable, Tu-

berculosis is given.

2. Diverging connections: Example of diversing connection from BN in Figure 3.6 is

presented in Figure 3.7c. As indicated, such connections have a common cause.

Like serial connections, information between nodes can flow in absence of ev-

idence. Information channel between nodes Lung cancer and Bronchitis gets

blocked with evidence on variable Smoking, refer Figure 3.7d. Thus conclusion

here is identical to the previous connection: Lung cancer can influence Bronchitis

via Smoking if and only if Smoking is not observed.

3. Converging connections: Contrary to serial and diverging connections, a converg-

ing connection does not transmit information between nodes if no evidence is

available for the middle node. Such connections have a common child node for

more than one parent node. They are often addressed as v-structure [48]. Ex-

ample of converging connection from BN in Figure 3.6 is shown in Figure 3.7e

where it is shown using dashed arrows that Dyspnea blocks information passage

between nodes Cancer and Bronchitis. In other words, if no evidence is avail-

able about the state of Dyspnea then information about the state of Bronchitis

will not provide any derived information about the state of Cancer. It explains

the fact that Cancer is not an indicator of Bronchitis. However, same channel is

unblocked with known observation on variable Dyspnea. This fact is illustrated

in Figure 3.7f. Given observation on a state of Dyspnea, information about the

state of Bronchitis will provide an explanation for the evidence that was received

about the state of Dyspnea. The opposite also holds true.
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(a) A serial connection in absence of evidence

(b) A serial connection in presence of evidence

(c) A diverging connection in
absence of evidence

(d) A diverging connection in
presence of evidence

(e) A converging connection in
absence of evidence

(f) A converging connection in
presence of evidence

Figure 3.7: Information flow in Bayesian networks

3.5.1 D-separation

Based on three types of connections discussed above, information flow in BN can be

summarized using definition below [48]

Definition: Let G be a BN structure, and X1 
...
 Xn, a trail in G. Let Z be a subset

of observed variables. The trail X1 
...
 Xn is active given Z if

• Whenever we have a v-structure Xi−1 → Xi → Xi+1, then Vi or none of its de-

scendants are in Z

• No other node along the trail is in Z

Given Bayesian graphical structure, there could be more than one trail between

two nodes. Like for an example BN in Figure 3.6, there are two trails between nodes,

Smoking and X-ray: (1) Smoking→ Lung cancer→ Cancer→X-ray and, (2) Smoking



CHAPTER 3. BAYESIAN NETWORK MODELS 46

→ Bronchitis → Dyspnea ← Cancer → X-ray. For any number of trials connecting

two nodes, one node can influence another if any trail consists of connections such that

information between them can flow. Intuitively, these connections joining variables in

BN help comprising general rules for reading relevant and irrelevant relations for two

variables, given set of other variables.

The concept of D-separation provides notion of interpreting conditional dependence

and independence properties in BN and is due to [57]. In other words, the D-separation

criteria can be used to answer queries of the kind “are X and Y independent given Z”?

or queries of the kind “is information about X irrelevant for our belief in Y given infor-

mation on Z”?. The formal definition of D-separation from [48] is defined below.

Definition: Let X, Y, Z be three sets of nodes in G. We say that X and Y are D-separated

given Z, denoted by d-sepG(X; Y | Z), if there is no active trail between any node X ∈ X

and Y ∈ Y given Z.

Following are few examples of d-separation from Bayesian network in Figure 3.6:

1. d-sepG(Smoking; Dyspnea |Bronchitis, Cancer): Observation on Bronchitis blocks

trail Smoking→ Bronchitis→ Dyspnea and, evidence on Cancer blocks the trail

Smoking→ Lung cancer→ Cancer→ Dyspnea

2. d-sepG(Tuberculosis; Bronchitis | Cancer, Smoking): The trail Tuberculosis →
Cancer → Dyspnea ← Bronchitis gets blocked by Cancer whereas, Smoking

blocks the chain Tuberculosis → Cancer ← Lung cancer ← Smoking → Bron-

chitis→ Dyspnea

3.6 Continuous Variables and Bayesian Networks

In this Section, we describe how continuous variables can be integrated into the Bayesian

network framework. The most commonly used distribution of representing continu-

ous variables in Bayesian framework is Gaussian. Multivariate Gaussian distributions

form the basis of describing continuous variables in the model. We first start with dis-

cussion on multivariate Gaussian distributions. Then, we describe two different kinds

of Bayesian networks which involve continuous variables namely, Gaussian Bayesian
networks and Hybrid Bayesian networks. Gaussian Bayesian networks entail a pure
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continuous case, where all variables are continuous in nature, both as parents and as

children. On the other hand, Hybrid Bayesian networks involve both discrete and con-

tinuous variables.

Density function for a multivariate Gaussian distribution over X1,...,Xn is charac-

terized by an n-dimensional mean vector µ , and a symmetric n × n covariance matrix

Σ defined in Equation 3.23. Where, |Σ| represents determinant of Σ. In Figure 3.8 and

Figure 3.9 shows two multivariate Gaussians, one where variables are independent, and

one where they are dependent respectively.

p(x) =
1

(2π)n/2|Σ|1/2 exp
[
−1

2
(x−µ)T Σ−1(x−µ)

]
(3.23)
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Figure 3.8: Gaussian over two independent variables

The joint normal distribution over X and Y where X ∈ ℜn and Y ∈ ℜm is defined in

Equation 3.24 [48]. Where µX ∈ ℜn, µY ∈ ℜm, ΣXX is a matrix of size n × n, ΣXY is a

matrix of size n × m, ΣXY = ΣT
Y X is a matrix of size n × m and ΣYY is a matrix of size m
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Figure 3.9: Gaussian over two dependent variables

× m.

p(X ,Y ) = N

((
µX

µY

)
;

(
ΣXX ΣXY

ΣY X ΣYY

))
(3.24)

Given joint normal distribution represented by Equation 3.24, marginal distribution

over some subset of the variables Y can be computed directly from entries in mean and

covariance matrix defined in the equation [48]. Consider joint normal distribution of

two variables X and Y defined in Equation 3.25. Then, variable Y is normally dis-

tributed with µ = 3 and Σ = 5

p(X ,Y ) = N

((
1
3

)
;

(
4 2

2 5

))
(3.25)

3.6.1 Gaussian Bayesian Networks

A Gaussian Bayesian network is a kind of Bayesian network all of whose variables are

continuous, and where all of the CPDs are linear Gaussians [48; 56; 38; 44]. The term



CHAPTER 3. BAYESIAN NETWORK MODELS 49

linear defines that if a continuous variable has one or more continuous variables as par-

ents, the mean may depend linearly on the state of the continuous parent variables. Con-

tinuous parent variables of discrete variables are disallowed in this framework. More

formally, let Y be a continuous variable with continuous parents X1, X2,...,Xn. Then, Y

has a linear Gaussian model if there are parameters β0,β1, ...,βn and σ2 such that [48]

P(Y | X1,X2...,Xn) = N(β0 +β1X1 + ....+βkxk;σ2) (3.26)

In vector notation, Equation 3.26 can be rewritten as Equation 3.27.

P(Y | X) = N(β0 +β T X ;σ2) (3.27)

The distribution of Y is a normal distribution, p(Y) = N (µY ; σ2
Y ) where µY and σ2

Y

is defined as follows.

µY = β0 +β T µ (3.28)

σ2
Y = σ2 +β T Σβ (3.29)

Consider Bayesian network in Figure 3.10. Where associated with each independent

node X and Y normal distribution is defined whereas for dependent node Z, normal

distribution is defined using Equation 3.26. Using Equations 3.28 and 3.29 mean and

standard deviation on node Z is computed as below.

Figure 3.10: A Gaussian Bayesian network

µZ =−5+0.5×1+1×2 =−2.5 (3.30)

ΣZ = 2+(0.5)2 × 4+12 × 5 = 8 (3.31)
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3.6.2 Hybrid Bayesian Networks

Hybrid Bayesian networks incorporate both discrete and continuous variables. For clar-

ity, let variable set X is partitioned into the set of continuous variables, Xτ and, the set

of discrete variables, X⋄. In hybrid Bayesian networks there exist conditional proba-

bility distribution for each variable in X⋄ and one density function for each continuous

random variable in Xτ . We restrict discussion on hybrid Bayesian networks where there

exists condition on its graphical structure that any discrete variable in network cannot

have continuous parents. Hybrid network with this specific condition is called linear
conditional Gaussian networks (LCG for short) [48; 44]. In an LCG networks each

node is either a discrete random variable with a finite state of mutually exclusive and

exhaustive states or a continuous random variable with a linear conditional Gaussian

distribution conditional on the configuration of its discrete parent variables. If a contin-

uous variable has one or more continuous variables as parents, the mean may depend

linearly on the state of the continuous parent variables. More formally, a continuous

random variable X has a linear conditional Gaussian distribution conditional on the

configuration of parents variables (Z ⊆ Xτ , I ⊆ X⋄) if Equation 3.32 holds.

P(X | Z = z, I = i) = N(A(i)+B(i)T z,C(i)) (3.32)

In Equation 3.32, A stands for table of mean values (one value for each configu-

ration i of the discrete parent variable I), B is a table of regression coefficient vectors

(one vector for each configuration i of I with one regression coefficient for each con-

tinuous parent variable) and, C is the table of variances (one for each configuration i

of I). Equation 3.32 also states that mean at X depends linearly on the values of the

continuous parent variables Z, while the variance is independent of Z. The quantitative

part of an LCG Bayesian network consists of a conditional probability for each X ∈ X⋄
and a conditional Gaussian distribution for each X ∈ Xτ . For each X ∈ Xτ with discrete

parents, I, and continuous parents, Z, one dimensional Gaussian probability distribution

for each configuration of i of I is specified.

Definition: An LCG Bayesian network G = (X, E, P, F) consist of:

• A DAG G = (X, E) with sets of variables X and directed edges E.

• A set of conditional probability distribution, P, containing one distribution, P(X |
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Pa(X)), for each discrete random variable X.

• A set of conditional linear Gaussian probability density functions, F, containing

one density function, P(W | Pa(W)), for each continuous random variable W.

In Figure 3.11, a hypothetical Hybrid Bayesian network encoding a general knowl-

edge on persons choice of employment (Employment in BN), income (Income in BN),

expenditure (Expenditure in BN) he makes, lifestyle (Lifestyle) he follows and mort-

gage (Mortgage in BN) he can avail from bank. We consider variables, Income, Expen-

diture and Mortgage as of continuous nature whereas; Employment and Lifestyle are

taken as discrete. In order to distinguish discrete variables from continuous variables

in the model, we use rounded box for representing discrete variables while, square box

for continuous variables. Associated with variable Employment are the unconditional

probabilities in two of its mutually exhaustive states namely, business and private. For

variable Lifestyle, the conditional probability distribution in its states (high and low),

given configuration of parent variable Employment is defined by the table associated

with it. On the other hand, the parametric information for variable Income is repre-

sented with a pair (µ; σ2) where, µ represents the mean and σ2 the variance. For

variable Expenditure, parametric information is represented using Equation 3.32, i.e.,

for each exclusive state of employment, probability density function is specified where,

the mean depends on the parent node, Income. Similar information is enclosed for

variable Mortgage.

Figure 3.11: A Hybrid Bayesian network
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3.7 Inference in Bayesian Networks

They key property of Bayesian network is that it provides separation of knowledge about

domain and reasoning [48]. That is, once Bayesian network is encoded with domain

knowledge, task such as reasoning and decision making can be employed without up-

dating the Bayesian model. Reasoning in BN is done through inference which refers

to the task of solving probabilistic queries based on relationships encoded in the model

and evidence known about the situation at hand. In particular, on applying evidence

about observation, a Bayesian mathematical mechanics updates the probabilities of all

the other variables that are connected to the variable representing the new evidence. The

updated probabilities reflect the new levels of belief in all possible outcomes coded in

the model. The beliefs originally encoded in the model are known as prior probabilities,

because they are entered before any evidence is known about the situation. The beliefs

computed after evidence is entered are known as posterior probabilities, because they

reflect the levels of belief computed in light of the new evidence. This process is also

known as probability propagation or belief updating in Bayesian terminology. The key

to Belief updating in BN is “information flow mechanism” discussed in Section 3.5.

Bayesian inference is not limited to the directions of the arcs in the model, i.e., we can

reason either in top to bottom fashion or from bottom to top.

One particular type of probabilistic inference task in BN is the task of computing

the posterior marginal of an unobserved variable Y when there is no evidence available,

i.e., ε = /0. In a BN over n discrete variables X = {X1, X2...,Xn}, if we are to compute

marginal on any variable Y then, it can be computed by exploiting the chain rule in BN

(refer Equation 3.21). Equation 3.33 defines how P(Y) is calculated. Where notation \
stands for exclusion.

P(Y ) = ∑
Xi∈X\Y

∏P(Xi | Pa(Xi) (3.33)

Besides computing marginal distribution, inference in BN can be used for many

interesting reasoning. In this section, we discuss different types of reasoning supported

in BN.

3.7.1 Reasoning in Bayesian networks

Bayesian networks support three types of reasoning: causal, diagnostic and inter-
causal [48]. The main idea behind inference mechanism involved in these reasonings
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is, generation of joint distribution and exhaustively summing out observations nodes,

i.e., variables for which evidence are given and a query node which actually is the in-

terest node of which posterior is to be calculated. We follow notation of representing

query node as q. Below we discuss on each of the reasoning type with an example

illustration using Bayesian network on a fire diagnose problem taken previously.

1. Causal: It is reasoning about new information about causes to new beliefs in ef-

fects, following the direction of arrows in the network. Given knowledge of how

system works in case of fire in the form of Bayesian network represented in Fig-

ure 3.3, suppose we want to know probability of people leaving the building in

the presence of fire, i.e., P(L = T | Fi = T). Figure 3.12a explains the scenario of

causal reasoning for the said query. Here node, L is a query node indicated by

a dashed outline in the figure. The conditional probability, P(L = T | Fi = T) is

solved using Equation 3.34. Using joint probability in this BN as presented in

Equation 3.22, and concept of marginalization, Equation 3.34 can be rewritten as

Equation 3.35. Solving Equation 3.35 using CPTs associated with variables in

the network results in probability of 96.5%

P(L = T |Fi = T ) =
P(L = T,Fi = T )

P(Fi = T )
(3.34)

P(L = T | Fi = T ) =
∑S ∑Ta ∑A ∑R P(L = T,Fi = T,A,S,R,Ta)

P(Fi = T )
= 96.5%

(3.35)

2. Diagnostic: It operates from effects to a cause, i.e., in the reverse direction of arrow.

Consider a situation where people have left their houses because the alarm of

the building went on. And now, we want to know probability that alarm went

on because of tampering, i.e., P(Ta = T | L = T). BN in Figure 3.12b explains

this scenario. Where L is the evident node whereas, T is the query node. Using

Equation 3.36 the interested query is solved.

P(Ta = T | L = T ) =
∑S ∑Fi ∑A ∑R P(Ta = T,L = T,S,Fi,A,R)

P(L = T )
= 53.3%

(3.36)
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3. Intercausal This form of reasoning involves about the mutual causes of a common

effect, i.e., those which involves v-structure (refer Section 3.5) in BN. It is also

known as explaining away. Suppose we learn that alarm went on. This will give

rise to our probability in both of its cause, i.e., fire and tampering. Suppose later

we discover that alarm was caused because of tampering. This new information

explains the observed status of alarm, which in turn lowers our probability in

presence of fire. So, even though the two causes were initially independent, with

knowledge of the effect the presence of one explanatory cause renders an alter-

native cause less likely. In other words, the alternative cause has been explained

away. The situation is explained in Figure 3.12c.

(a) Example of Causal reasoning in

Bayesian networks

(b) Example of Diagnostic reasoning in

Bayesian networks

(c) Example of Intercausal reasoning in

Bayesian networks

Figure 3.12: Reasonings in Bayesian networks
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3.7.2 Variable Elimination in Discrete Bayesian Networks

The problem of inference in Bayesian networks is NP-hard and therefore it requires

exponential time in the worst case. However, in practice for real-world problems,

Bayesian inference can be tackled efficiently using exact and approximate inference al-

gorithms [48]. We now discuss an efficient variable elimination approach for Bayesian

inference.

We show using a very simple Bayesian network example, how a general probabilis-

tic query of computing marginal distribution is exponential in nature, refer Figure 3.13.

Suppose we are to compute P(K). In order to compute this, we have to calculate the joint

probability and sum out all variables leaving K. More precisely, Equation 3.37 solves

marginal on K.

Figure 3.13: A simple Bayesian network

P(K) = ∑
X

∑
Y

∑
Z

P(X ,Y,Z,K) = ∑
X

∑
Y

∑
Z

P(X)P(Y |X)P(Z|Y )P(K|Z) (3.37)

If each variable takes m values then, Equation 3.37 generates m4 probabilities in

the joint distribution that are summed over. So in general, for n nodes in BN taking

m values, we may require mn probabilities in order to compute marginal. Variable

elimination approach for Bayesian approach fundamentally contains two main ideas

that help address exponential blowup of the joint probabilities. And, these are:

• This approach exploits basic arithmetic properties. For example, expression, (aA1

+ aA2 + aA3 +aA4) can be rewritten as, a(A1 + A2 + A3 +A4) which reduces the

problem of four multiplications to one.

• By taking advantage of Bayesian graphical structure, many sub expressions in

the joint only depend on a small number of variables than on total number of

variables present in the network.

• While computation, intermediate results are cached in order to avoid recomputa-

tion.
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Consider again Bayesian network in Figure 3.13 and problem of computing P(K).

Using basic arithmetic and the structure of the network, we can rearrange Equation 3.37

using subexpression below.

P(Y ) = ∑
X

P(X)P(Y |X) (3.38)

P(Z) = ∑
Y

P(Z)P(Z|Y ) (3.39)

P(K) = ∑
Z

P(Z)P(K|Z) (3.40)

Putting above expressions back in Equation 3.37 we get Equation 3.41 below:

P(K) = ∑
Z

P(K|Z)

(
∑
Y

P(Z|Y )

(
∑
X

P(X)P(Y |X)

))
(3.41)

The inner expression (or P(Y)) is computed first for all values of Y and stored so that

they are computed once. Then, P(Z) is computed with the values of P(Y) and stored.

Finally, P(K) is computed with the stored values of P(Y).

In general terms, for a BN that has a structure of chain with n variables X1→ X2

→...→ Xn, where each variable has m possible values, computing P(Xi+1) can be

defined recursively as in Equation 3.42. Each recursive step is O(m2) and recursing

through all n variables in network yields computation of O(nm2) operations in the worst

case [48]. This is much smaller than generating the full mn probabilities to sum over in

the joint distribution.

P(Xi+1) = ∑
Xi

P(Xi+1|Xi)P(Xi) (3.42)

The basic idea in the algorithm is summing out variables one at a time. When any

variable is summed out, multiplication is performed on all the factors that mention that

variable, generating a product factor. Now, variable is summed out from the combined

factor, generating a new factor to deal with. Algorithm of variable elimination can be

found in [48].

We now present an example illustration on variable elimination algorithm using

Bayesian network presented in Figure 3.14. Suppose we are interested in probabilistic

query, P(U | X, Y). In order to solve this problem, we need to marginalise over W and
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Figure 3.14: A hypothetical Bayesian network

V. We are given states of variables X and Y while, U is the query node. Using joint

probability distribution in BN, intended query is solved using Equation 3.43.

P(U | X ,Y ) ∝ ∑
W

∑
V

P(X |W )P(Y |W )P(W |U,V )P(U)P(V ) (3.43)

Below we present step wise procedure of eliminating V and W from Equation 3.43

Step 1 : Eliminate V

τ1(U, W) = ∑V P(E)P(W | U, V)

Where τ1(U, W) is a vector of values for each combination of U and W defined be-

low:

τ1(U, W) = P(V)P(W |U, V) + P(V̄ )P(W |U, V̄ ) = 0.940

τ1(U, W̄ )= P(V)P(W̄ |U, V) + P(V̄ )P(W’ |U, V̄ ) = 0.059

τ1(Ū , W) = P(V)P(W |Ū , V) + P(V̄ )P(W |Ū ,V̄ ) = 0.015

τ1(Ū , W̄ ) = P(V)P(W̄ |Ū , V) + P(V̄ )P(W̄ |Ū , V̄ ) = 0.998

The left hand side of Equation 3.43 can be rewritten as P(U)τ1(U, W)P(X |W)P(Y |W)
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Step 2 : Eliminate W
τ2(U, X, Y) = ∑U τ1(U, W)P(X |W)P(Y |W)

Since X and Y are observed as true and so τ2(U, X, Y) is only a vector over the values

of U and we use notation τ ′2(U) instead of τ2(U, X, Y).

τ ′2(U) = τ1(U, W)P(Y |W)P(X |W) + τ1(U,W̄ )P(Y | W̄ )P(X | W̄ ) = 0.592

τ ′2(Ū) = τ1(Ū , W)P(Y |W)P(X |W) + τ1(Ū , W̄ )P(Y | W̄ )P(X | W̄ ) = 0.001

Using τ ′2(U) and P(U), P(U | X, Y) can be computed using Equation 3.44

P(U | X ,Y ) =
P(U)τ ′2(U)

P(U)τ ′2(U)+P(U ′)τ ′2(U ′)
= 0.284 (3.44)

The whole process took 19 multiplications, 7 additions and 1 division. However, same

query using full joint distribution would take 128 multiplications alone.

3.8 Learning Bayesian Networks

This section is focussed on methodologies of learning parameters for variables encoded

in the Bayesian model. In case where variables are discrete, parameters learned are

conditional probability distributions whereas, for continuous variables density functions

are learned. Broadly, there are two ways of learning parameters: (1) eliciting from

domain experts and, (2) using learning methods to extract parameters directly from

databases [48; 56]. Learning using domain experts could be problematic for several

reasons such as their limited availability or the knowledge required is too large for

expert’s to find out time from their schedule. Learning methods using databases could

provide a promising solution in this direction. In the information age, we get access to

huge amount of data which could serve as a base for learning parameters for the model.

For example, on a medical diagnose model, we may access to large amount of patient

records listing attributes such as the patient’s age, disease, symptoms, test results and

more. Assuming we are given Bayesian graphical structure on this problem and set of

records then, we may learn strength of relationship that exists among attributes using

the database. For example, if variables disease and test results are directly connected
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in the model then, using database we could define distribution such as probability of

positive test result given disease is present.

The goal of parameter estimation is to find parameters values of a model that best

fits the data. There are mainly two approaches to dealing with parameter-estimation

in Bayesian network: (1) maximum likelihood estimation (MLE for short) and, (2)

Bayesian approach. We discuss below general principles MLE approach in a discrete

Bayesian framework.

3.8.1 Maximum Likelihood Estimation

We explain MLE using a simple example consisting of one random variable X, where

X is the result of tossing a thumbtack. Let ΩX = (Head (h for short), Tail (t for short))

represent set of possibilities over this problem. Further, suppose data set on tosses rep-

resented by D = (h, t, h, t, t, h, t) is given and, the task is to estimate P(X = h) denoted

by θ . Considering tosses are independent, we may conclude that probability of the se-

quence is given by

P(h, t, h, t, t, h, t) = θ (1-θ )θ (1-θ )(1-θ )θ (1-θ ) = θ 3(1-θ )4

The probability of the sequence above depends on the particular value of θ . The

likelihood function examines how the probability of the data changes as a function of

θ . More precisely, the likelihood function is the probability of having observed the se-

quence given the parameter. We define likelihood function over given data set as below:

L(θ : (h, t, h, t, t, h, t)) = P((h, t, h, t, t, h, t) : θ ) = θ 3(1-θ )4

Let N0 and N1 denotes number of times H and T appears in the data set D respec-

tively. Then, likelihood function defined above can be rewritten as Equation 3.45

L(θ : D) = θ N0(1−θ)N1 (3.45)

N0 and N1 are called sufficient statistics [48] for the parameter θ as the likelihood

depends only of the data through these values. Likelihood function defined above can

be used a measure of quality for different parameters values to select the parameter

value that maximizes the likelihood; this values is called maximum likelihood estimator
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denoted by θ̂ . For the data set D defined above, θ̂ = 0.42 = 3/7. Equation 3.45 can

be rewritten in terms of logarithm called as log-likelihood for the ease of MLE com-

putation, refer Equation 3.46. Differentiating the log-likelihood, setting the derivative

to 0, and solving for θ we get the maximum likelihood parameter which is denoted in

Equation 3.48

ℓ(θ : D) = N0 logθ +N1 log(1−θ) (3.46)

θ̂ =
N0

N0 +N1
(3.47)

Formally, given data set D, MLE is a process of choosing parameter θ̂ which satis-

fies Equation 3.48.

L(θ̂ : D) = max
θ∈Ω

L(θ : D) (3.48)

3.8.2 MLE for Discrete Bayesian Networks

In MLE it is assumed that Bayesian structure and a data set consisting of fully observed

instances of the network variables are given in order to learn Bayesian parameters us-

ing MLE. Bayesian structure helps reducing task of parameter estimation into a set of

smaller and unrelated problems, each of which can be solved using MLE principle de-

scribed above. We present below using an example how Bayesian structure plays a key

role in learning parameters for the model.

Consider a Bayesian network over three binary variables, X, Y and Z defined over

relation structure, X→ Y→ Z. Let, Val(X) = (x0, x1), Val(Y) = (y0, y1) and Val(Z) =

(z0, z1). Our goal in this example is to maximize the log-likelihood function defined

over parameter θ , which defines the set of parameters for all CPDs in the network. That

is, parameters: θx0 , θx1 , θY0|X0 , θY1|X0 , θY0|X1 , θY1|X1 , θZ0|Y0 , θZ0|Y1 , θZ0|Y1 and θZ1|Y1 . For

simplicity, we use the notation, θY |x0 and θZ|y0 to refer to the sets {θy0|x0 ,θy1|x0} and

{θz0|y0 ,θz1|y0} respectively. Also, we use short notations for θY |X and θZ|Y to refer to

{θY |x0 ∪ θY |x1} and {θZ|y0 ∪ θZ|y1 } respectively. The likelihood function over data set

instance, {x[m], y[m], z[m]} on this example would be:

L(θ : D) = ∏M
m=1 P(x[m], y[m], z[m] : θ )
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Using Bayesian structure into account, P(x[m], y[m], z[m]) can be rewritten as a

product form, P(z[m]|y[m])P(y[m]|x[m])P(x[m]). Using product form and exchanging

the order of multiplication, likelihood can be decomposed as defined in Equation 3.49.

L(θ : D) =

(
∏
m

P(x[m] : θ)
)(

∏
m

P(y[m]|x[m]) : θ
)(

∏
m

P(z[m]|y[m]) : θ
)

(3.49)

As indicated in Equation 3.49, likelihood decomposes into three separate terms, one

for each variable. Each term is then maximized using Equation 3.48 independently and,

then all components are combined in order to get an MLE solution. For example, the

second component in Equation 3.49 can be further decomposed as shown by Equa-

tion 3.50 into two factors in order to calculate its local maxima. For every initiation of

X, θy1|x0 is further computed using Equation 3.51.

∏
m

P(y[m] | x[m] : θY |X) = ∏
m:x[m]=x0

P(y[m] | x[m] : θY |x0) ∏
m:x[m]=x1

P(y[m] | x[m] : θY |x1)

(3.50)

θy1|x0 =
M[x0,y1]

(M[x0,y1]+M[x0,y0])
(3.51)

Concluding the discussion above, for each variable Xi in Bayesian network, likeli-

hood is defined using Equation 3.52. This shows that the likelihood decomposes as a

product of independent terms, one for each CPD in the network . This property is called

the global decomposition of the likelihood function [48].

Li(θXi |Pa(Xi) : D) = ∏
m

P(Xi[m] | Pa(Xi)[m] : θXi |Pa(Xi) (3.52)

3.8.3 Learning Bayesian structure

There are two major approaches of existing structure learning methods: constraint

based approaches and score-based approaches.

Constraint-based approaches first attempt to identify a set of conditional indepen-

dence properties, and then attempt to identify the network structure that best satisfies
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these constraints. These approaches are quite intuitive in the sense that they decou-

ple the problem of finding structure from the notion of independence, following very

close to the definition of Bayesian network. The drawback with the constraints based

approaches is that it is difficult to reliably identify the conditional independence prop-

erties and to optimize the network structure [53]. Plus, these methods can be sensitive

to failures in individual independence tests. If any of the tests return a wrong answer

then it may mislead the network construction procedure [48]. The two most popu-

lar constraint-based algorithm are the SGS algorithm and PC algorithm proposed by

Spirtes et al. [67]. SGS algorithm determines the existence of an edge between every

two node variables by conducting a number of independence tests between them condi-

tioned on all the possible subsets of other node variables. The PC algorithm is a more

efficient constraint-based algorithm. It conducts independence tests between all the

variable pairs conditioned on the subsets of other node variables that are sorted by their

sizes, from small to large. The subsets whose sizes are larger than a given threshold are

not considered. More detail on SGS and PC algorithm can be found here [53] [67].

Score-based approaches first define a score function indicating how well the net-

work fits the data, then search through the space of all possible structures to find the

one that has the optimal value for the score function. Problem with this approach is

that it is intractable to evaluate the score for all structures, so usually heuristics, like

greedy search, are used to find the sub-optimal structures. Score-based approaches are

typically based on well established statistical principles such as minimum description

length (MDL) [49] or the Bayesian score [61]. The MDL criterion requires choosing

a network that minimizes the total description length of the network structure and the

encoded data, which implies that the learning procedure balances the complexity of the

induced network with the degree of accuracy with which the network represents the

data. The K2 algorithm [22] is an example of a score-based approach.

3.9 Causality and Bayesian Networks

Causality in simple terms defines relationship between causes and effects. So far in

this chapter, we have described Bayesian network in cause-effect framework which is

indicated by a directed arrow connecting two variables. However, being directed, does

not simply imply that there exists a causal relation. For example, Cold → Headache
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is a causal network whereas Headache → Cold is not, even though both networks are

equally capable of representing any joint distribution on the two variables. The graph-

ical structure of the Bayesian network can still induce concepts of joint probability,

conditional independence assumptions and probabilistic queries regardless of the fact

whether direction of arrows are meaningful or not. However, it is a common wisdom

that a good Bayesian structure corresponds to causality [48].

A causal model has the same form as probabilistic Bayesian network. It consists of a

directed acyclic graph over the random variables in the domain. The model asserts that

each variable X is governed by a causal mechanism that determines its value based on

the values of its parents. In other words, it is assumed in a causal model that causality

flows in the direction of the edges. However, unlike basic belief propagation for solv-

ing probabilistic queries in Bayesian networks, causal analysis goes one step further

by inducing reasoning about situations where we intervene in the world. The aim of

intervening is to infer not only beliefs or probabilities under static conditions, but also

the dynamics of beliefs under changing conditions, for example, changes induced by

treatments or external interventions like, planning everyday activity. The intervention

queries are of forms for example: P(Y | do(z)) or P(Y | do(z), X = x). Where do(Z = z)

corresponds to setting where an agent directly manipulated the world to set the variable

Z to take the value z with probability 1. We present below example from [58] to explain

concept of intervention queries.

Example: A simple BN in Figure 3.15a describes relationship between five vari-

ables. Each variable is binary in nature except the variable season which takes four

states. Suppose in this BN, we represent the action “turning the sprinkler on”. In or-

der to perform this action, we delete all incoming arcs in variable Sprinkler and, set its

value to “on”. The result of this action is the BN shown in Figure 3.15b. The dele-

tion of the arc Season→ Sprinkler gives the understanding that whatever relationship

existed between Season and Sprinkler prior to the action, that relationship no longer

in effect while the action is performed. There is a difference between setting observa-

tion, Sprinkler = on and do(Sprinkler = on). The effect of first observation is obtained

by Bayesian conditioning, P(Season, Rain, Wet, Slippery | Sprinkler = on) while, that

of later by conditioning a mutilated graph with the link Season → Sprinkler removed

(refer BN in Figure 3.15b).

A causal model follows following two key assumptions [48]:
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(a) Bayesian network with
five variables

(b) Representation of ac-
tion “turning the Sprinkler
on” on Bayesian network

Figure 3.15: Causality and Bayesian network

Causal Markov assumption: This assumption asserts that each variable is condition-

ally independent of its non-effects given its direct causes. Thus, each variable is

conditionally independent of its nondescendants given its parents.

Faithfulness assumption: It states that conditional independence assumptions are those

that arise from the d-separation in the corresponding Bayesian structure.

The intuition behind Causal Markov assumption is that if we ignore variable’s ef-

fects then, all the relevant probabilistic information about a variable is contained in its

direct causes. On the other hand, Faithfulness assumption asserts that all conditional in-

dependence conditions incurred in the causal model are consequences of Causal Markov

(or d-separation) condition. In other words, a causal model assumes that whatever inde-

pendencies arise are not due to coincidence but rather are induced because of structure.

In Bayesian network, Causal Markov assumption is same as one defined in defi-

nition 3.1 except that arcs are given a causal interpretation. The ability of Bayesian

network to encode directional relations which can represent cause-effect relationships

as compared to other graphical model for example, Markov models that cannot stands

for an important reason of considering Bayesian networks as a causal models. In addi-

tion to this, assumption of Faithfulness is reasonable and widely embraced in practice

for graphical model such as Bayesian networks [48; 58].
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3.10 Study on Bayesian Network Softwares and Pack-

ages

The rapid development of Bayesian network research over years has been accompanied

by a proliferation of Bayesian network software tools. These tools are built to ap-

ply capability of Bayesian knowledge representation scheme and reasoning over wide

range of application domains. This section presents a comprehensive study of ma-

jor software and packages dealing with Bayesian networks. We present discussion on

following Bayesian softwares and packages: Netica, Hugin, Bayes Server, GeNIe &

Smile, SamIam, B-Course, DEAL (package in R), Bnlearn (package in R) and Bayes

Net toolbox (package in Matlab). We endeavor to point out important features of these

softwares and packages such as: GUI and API, Bayesian learning, inference, whether

software is free or commercial and types of nodes supported (i.e., discrete and/or con-

tinuous).

Netica

Netica [24] is the most widely used commercial Bayesian development software from

Norsys software corp. This software provides an intuitive and smooth user interface for

drawing the networks. The GUI is available for Mac and Windows. The relationships

between variables may be entered as individual probabilities, in the form of equations,

or learned from data files. Netica supports text files, CSV formats or an ODBC connec-

tions in order to learn parameters for a defined structure using expectation-maximization

algorithm. The software version 5.0 and later introduced Bayesian structure learning

using Tree-augmented naive (TAN) Bayes approach. Netica can use the networks to

perform various kinds of inference (causal and diagnostic) using the fastest and most

modern algorithms. The change in probabilities corresponding to nodes can be dis-

played in a number of different ways, including bar graphs and meters. In addition to

basic inference tasks, Netica also supports probabilistic queries such as most probable

explanation and sensitivity analysis. This application also allows the import of Bayesian

network in the several formats for example, “DSC”, “XML”, “NET” and more. The

Netica API is available in several languages for example, C, Java, Matlab, C# to run on

Mac, Linux and Windows. The Bayesian network repository [23] containing examples
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of popular Bayesian networks is also maintained by Netica.

Hugin

Like Netica, Hugin [29] is also one of the popular commercial product for Bayesian

development and analysis. The original Hugin shell was initially developed by a group

at the Aalborg University in 1989, and now it is owned by Hugin Expert, Ltd. Hugin

provides an interactive tool for creating and manipulating Bayesian models. The Hugin

API is called “Hugen Decision Engine”. It is available for the languages C++, Java and

as an ActiveX-server and runs on the operating systems: Sun Solaris, Linux and Win-

dows. HUGIN Decision Engine implements state-of-the-art algorithms for Bayesian

networks and influence diagrams such as object-oriented modeling, learning from data

with both continuous and discrete variables, value of information analysis, sensitivity

analysis and data conflict analysis. The conditional probability tables (CPTs) can be

specified with expressions as well as manual entry. The CPTs do not have to sum to

one; entries that do not sum to one are normalized. The parameter learning in Hugin is

with the use of expectation-maximization algorithm while learning structure is ensured

with the use of two constraint-based algorithms PC and NPC.

Bayes Server

Bayes Server [51] owned by Bayes Server Ltd. made first public release in year 2008.

The software specializes intelligent systems, such as those found in machine learning

and artificial intelligence. Bayes Server can be used to build Bayesian networks and

Dynamic Bayesian networks to perform tasks such as Classification, Regression, Time

Series prediction, Segmentation/Clustering, Density estimation, anomaly detection, De-

cision Support, reasoning, multivariate data analysis and much more. It includes a user

interface and API for building and visualizing models, learning models from data, sam-

pling data, charting, and building complex probability queries, including time series

predictions. Bayes Server supports continuous variables using Conditional Gaussian

distributions. Support for continuous variables is also included for Dynamic Bayesian

networks (time series). Bayes Server supports parameter learning however, Bayesian

structure learning is in progress. The Bayes Server libraries are restricted for languages
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that can be interfaced with .NET platform. The software support several charts for visu-

alization. The lift chart can be used to measure the performance of a Bayesian network

when it is used for classification. Discrete and continuous histograms can be generated

based on given data.

SamIam

SamIam [3] was established in year 2004 by the Automated Reasoning group at univer-

sity of California Los Angeles. SamIam stands for Sensitivity, Analysis, Modeling, In-

ference And More. It is comprehensive tool for modeling and reasoning with Bayesian

networks developed in Java language. It supports a graphical user interface for drawing

and inferencing models. SamIam is free software which includes several algorithms

for Bayesian inference, maximum probable explanation and sensitivity analysis. The

parameter learning is supported by the software while, structure learning algorithms

are not included in the software yet. The software can be used for loading and saving

Bayesian network models in a variety of file formats. While modeling Bayesian net-

works, only discrete nodes can be used. The continuous data types are not supported by

SamIam.

B-Course

B-Course [6] is a free web based data analysis tool for Bayesian modeling, in particular

dependence and classification modeling. The software service is hosted by Complex

Systems Computation Group CoSCo, Helsinki Institute for Information Technology in

year 2002. The software offers two types of modeling: dependency and, classifica-

tion. In the dependency modeling, B-Course finds the model of the probabilistic de-

pendencies among variables given in the data set. Besides revealing the structure of the

domain from data, dependency models can be used to infer probabilities of any set of

variables given any (other) set of variables. On the other hand, classification modeling

demonstrate how to build a simple classification model out of a data set, and how to

use it for predicting the class membership of unclassified data. Once Bayesian model

is built by the software, the model can be saved and downloaded. In addition to stan-

dard Bayesian structure modeling, B-Course also offer two graphical representations

describing the possible causal relationships that may have caused the dependencies in
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the model. These causal graphs are based on the calculus introduced by Pearl [58]. To

best of knowledge, this feature is unique to B-Course.

Bayes Net Toolbox (BNT)

Bayes Net Toolbox [42] is an open source library for use with only Matlab, a widely

used and powerful mathematical software package. BNT was developed by Kevin

Murphy in 2001. The package includes several algorithms for inference and learn-

ing Bayesian networks. Package lack support of GUI however, few visualizations are

possible due to Matlab’s features. BNT supports both discrete and continuous variables.

The conditional probability tables are represented in a tabular format in case of discrete

nodes while, gaussian distribution is used to represent continuous variables. BNT of-

fers several inference algorithms for Bayesian networks including discrete, Gaussian

and mixed data types (conditional Gaussian). For learning parameters, BNT uses two

types of learning. First learning setting is based on maximum likelihood for complete

data, and second uses expectation maximization algorithm for incomplete data. This

package also supports Bayesian structure learning algorithms namely K2, MCMC and

PC. However, structure learning feature of this package is suitable only for low di-

mensional data set. BNT also support implementation of dynamic models such Hybrid

Markov Models, Dynamic Bayesian Models and Kalman Filters.

GeNIe & SMILE

GeNIe and SMILE [33] are developed by the Decision Systems Laboratory (DSL),

School of Information Sciences, University of Pittsburgh in 1998. The software consist

of two modules: GeNIe and, SMILE. GeNIe (graphical network interface) is an envi-

ronment for the decision and the construction of Bayesian networks characterized by

its inference engine SMILE (structured modeling reasoning and learning engine). The

inference engine SMILE, consist of a library of C++ classes compiled for Windows,

Solaris and Linux. This software does not support continuous variables hence, any con-

tinuous variable is discretized before modeling the network. The software support pa-

rameter and structure learning algorithms. It supports several backup formats “xDSL”,

“DSL”, “NET”, “DNE”, “DXP” and “DSC”. Bayesian network repository [34] is also

managed on the website of this software.
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Deal package in R

Deal [32], software package was developed by Bottcher and Dethlefsen for learning

Bayesian structure in R. It includes several methods for analysing data using Bayesian

networks with variables of discrete and/or continuous types but restricted to condition-

ally Gaussian networks. This package do not support Bayesian inference. However, it

provides interface to Hugin [29]. The GUI of Hugin can then be further used for in-

ference task. Deal supports visualization of learnt network. For this package, user can

define set of direct relationships which are not allowed.

Bnlearn package in R

Bnlearn [62] is an R package for learning the graphical structure of Bayesian networks,

estimate their parameters and perform some useful inference. The package was devel-

oped by Marco Scutari in 2009. The package supports several constraints and score

based Bayesian structure learning algorithms. The continuous data type variables are

not allowed by the package. This package does not support visualization of the learnt

Bayesian model. However, it generates a detail report on learnt model which includes

set of directed nodes, BIC score of the network and may more. The package includes

collection of popular Bayesian networks [63].
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Comparison of Bayesian network software and packages

In Table 3.3 we summarize technical comparison of softwares and packages manipu-

lating Bayesian networks discussed above. We discuss features: GUI (Yes if GUI is

supported; No otherwise), API (Yes if GUI is supported; No otherwise), whether soft-

ware supports continuous variables (Both if both discrete and Continuous variables are

supported; Discrete otherwise), whether inference is supported (Yes if inference is sup-

ported; No otherwise), whether software offers parameter learning (Yes if supported;

No otherwise), whether software offers structure learning (Yes if supported; No other-

wise) and whether the software is licensed (Free if software is free; Licensed otherwise).

Name GUI API Variables Inference Parameter Structure License
learning learning

Netica Yes Yes Discrete Yes Yes Yes Licenced

Hugin Yes Yes Both Yes Yes Yes Licenced

Bayes Yes No Both Yes Yes Yes Licenced
Server
SamIam Yes No Discrete Yes Yes No Free

B-Course Yes No Discrete No Yes Yes Free

BNT No Yes Both Yes Yes Yes Free

GeNIe & Yes No Discrete Yes Yes Yes Licenced
SMILE
Deal Yes Yes Both No Yes Yes Free

Bnlearn No Yes Discrete Yes Yes Yes Free

Table 3.3: Comparison of Bayesian network softwares and packages
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4.1 Introduction

An outlier is a data instance in a database which is significantly different from the

norm. The objective in outlier detection, is not only to identify outliers in large and

high dimensional databases but also to correlate them with actual anomalous events.

For example, if the outlier detection techniques are being used for finding anomalies in

network traffic, then outliers in network data should correspond to physical anomalies

- like denial of service attack or ping flood. Thus if O is a set of discovered outliers

from data and A is the set (unknown) anomalies, then an ideal good outlier detection

method will have high precision and recall, i.e., both P(A|O) and P(O|A) are high. The

challenge in outlier detection is that we rarely, if ever, have access to the anomalous set

A. Thus like clustering, outlier detection is an unsupervised learning method.

Current data mining methods identify sparse regions in point cloud data to search

for outliers. For example, in distance-based methods, a data point is an outlier if it

is effectively far away from its neighbors. Variations on distance-based approaches,

like those based on density, incorporate the local density of the region while reporting

outliers, though the principle remains the same. However, as we will demonstrate, such

approaches ignore valuable information that is available in the data.

Suppose we conceptually place a fine resolution grid on the point cloud space. For

example, in an N-dimensional data set we can identify the grid cells with the a lattice

Zn. Now, distance-based outliers are essentially data points which live in sparse cells.

In fact we can associate a probability with each cell, which is the percentage of data

points which lie in that cell. In the language of pattern mining, cells with low (but non-

zero) support contain the outliers. A major objective of this paper is to show that when

we want to search for outliers and then use them to identify anomalous events, then the

focus on confidence yields more meaningful results.

In this chapter, we propose a novel approach which combines the use of Bayesian

network (BN) and probabilistic association rules to discover and explain anomalies in

data. The Bayesian network allows us to organize information in order to capture both

correlation and causality in the feature space, while the probabilistic association rules

have a structure similar to association mining rules. In particular, we focus on two types

of rules: (i) low support & high confidence and, (ii) high support & low confidence.

The measures support and confidence can also be addressed as prior and conditional

probability respectively in BN. However, unlike traditional association rule mining we
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are not in pursuit of mining frequent patterns using these measures but instead, we

are interested in mining infrequent patterns whose occurrence suggests the presence of

uncommon and exceptional situations. We refer the discovered anomalous patterns as

Domain Specific Anomalous patterns (or DSAPs). In order to test if a particular test

case is an anomaly for a given domain, we check if it carries “any” pattern from the

discovered set of DSAPs. We address our method as a Causal Outlier Mining (COM)

approach.

In addition to proposing a new approach for anomaly detection, we also present crit-

ical analysis on: (1) the search methodology of distance based techniques (2) Bayesian

approach and, (3) why a data point discovered as an outlier by a distance based tech-

nique is not necessarily an outlier from the Bayesian perspective.

4.1.1 Problem Statement

The problems that we address in this chapter are as follows:

1. Given set of data points, report and explain those anomalous data points which

are both interesting and useful for domain.

2. Why traditional distance based techniques may not be an accurate and effective

technique to discover true anomalies?

4.1.2 Contributions

We describe our contributions are as follows:

1. We propose a novel approach that combines the use of Bayesian network and

probabilistic association rules to discover anomalies in data. We focus on the

causality effect that describes why an observation is anomalous.

2. Our proposed approach is designed specifically to give contextual information of

an anomaly, which could also be used to enrich our knowledge about anomalies.

3. We also present critical analysis of distance based techniques which highlights

why distance based criteria may not be an accurate and effective technique to

discover true outliers.
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4. We perform extensive experiments and show that our proposed approach gives

results in high precision and recall.

4.1.3 Notations and Basic Concepts

In this chapter all notations corresponding to Bayesian networks are followed from

Chapter 3. However, notations specific to this chapter are summarized in Table 4.1.

Notation Description
d A data point
DSAPs Domain specific anomalous patterns
|DSAPs| Total number of DSAPs extracted
τ Number of DSAPs selected
Z Topic assignment for a word
W Word
K* Number of topic
V Total number of vocabularies
β Word distributions for topics
α Hyperparameter
M Total number of documents
N Total number of words in document
θ Topic mixture of a document

Table 4.1: Notations and basic concepts

The remainder of the chapter is organised as follows: in Section 4.2, we present our

detailed methodology. Our experiments and analysis on results are explained in Section

4.3. Finally, in Section 4.4 we conclude the chapter.

4.2 COM Methodology

In this section, we explain two probabilistic rules which we address as R1 and R2 to

mine interesting low probable patterns from a given domain whose knowledge is cap-

tured by a Bayesian network. These rules are applied in each causal interaction of the

form P(X | Pa(X)) encoded in the model. We call these causal interactions as causal

subspaces. Studying each causal subspaces gives advantage of mining anomalies in a

subspace level through which reasons of anomalous nature can also be explained. Con-

sider Bayesian network in Figure 4.1. There exist two causal interactions, i.e., (X2 | X1,
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X3) and (X3 | X1). In general, we write these causal subspaces as (X1, X3 → X2) and

(X1→ X3).

Figure 4.1: Bayesian network encoding two causal subspaces: (X1, X2 → X3) and (X1
→ X3)

Before proceeding, we make following clarification on theory of causal subspaces

and rules.

• Rules are applied on each causal subspace encoded in the Bayesian network in

order to reveal low probable patterns residing in subspaces.

• A parent node in one causal subspace could appear as a child node in another

causal subspace and vice-versa. For example BN in Figure 4.1, X3 is a parent

node in causal subspace (X1, X2, X3) while, child node in causal subspace (X1,

X3).

• In any causal subspace there could exist more than one parent of a child node but,

child node more than one is not possible.

With this clarification, we now define R1 and R2 as follows:

1. R1: In every causal subspace, select that state in child node which has a high

confidence conditioned on all its parents in low support.

2. R2: In every causal subspace, select those state(s) in child node which have a low

confidence conditioned on all its parents in high support.

Both of the these rules work on principle of two measures namely support and

confidence. The definitions of support and confidence of a variable in BN is defined

using Equation 4.1 and 4.2. Support of a variable X is like a prior probability in some
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state of xi. In contrast, confidence is a conditional probability of a variable X in some

state xi given set of observations on its parent nodes.

support(X = xi) = P(X = xi) (4.1)

con f idence(X = xi) = P(X = xi | Pa(X)) (4.2)

For an example illustration on definition of support and confidence defined by Equa-

tions 4.1 and 4.2 respectively, consider BN in Figure 4.2. Based on unconditional and

conditional probabilities associated with variables, example of support in variable Sun

are support(Sun = T) = 65% and support(Sun = F) = 35%. Whereas, few examples of

confidence on conditional variable Rain are: confidence(Rain = T | Sun = T ) = 90%

and confidence(Rain = F | Sun = F ) = 80%.

Figure 4.2: A three-node Bayesian network. One example of measure support in parent
node Sun is: support(Sun = T) = 65% whereas, example of measure confidence in child
node Rain is: confidence(Rain = T | Sun = T ) = 90%

In our work, we use concept of support for all parent nodes in each causal subspace

structured in the Bayesian network whereas, confidence is computed for each child

node encoded in the causal subspace. This implies, Equation 4.1 and Equation 4.2 can

be rewritten as Equation 4.3 and Equation 4.4 respectively for each causal subspace

encoded in the Bayesian model.

support(X = xi)X ∈ CS j = P(X = xi)X ∈ CS j (4.3)

con f idence(X = xi)X ∈ CS j = P(X = xi | Pa(X))X , Pa(X) ∈ CS j (4.4)

Intuitively, rules R1 and R2 mine those suspicious patterns which do not provide

enough evidence to accept them as an usual theory of the domain but, actually are

indicator of an alternative theory not favored by the domain. The R1 focuses on the

extraction of the “low support & high confidence” patterns, which refers to the patterns
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whose “cause” appears with low probability, but interestingly the impact on the “effect”

is strong. On the other hand, the rule R2 aims for the “high support & low confidence”

patterns, which means that R2 mines those patterns whose “cause” appears with high

probability, but has low impact on the respective “effect”. We exclude “low support &

low confidence” patterns because the causal relationship that showing low conditional

probability conditioned on low prior is more likes a noise rather than an anomaly.

We refer the low support, high support, low confidence, and high confidence as min-

supp, maxsupp, minconf, and maxconf respectively. The first two are Bayesian specific,

while the last two are parameters defined by a user. Equation 4.5 and Equation 4.6

defines the mathematical definitions for minsupp and maxsupp respectively.

minsupp(X = xi)X ∈ CS j = xi s.t. min
i
(P(X = xi))X ∈ CS j

holds for xi (4.5)

maxsupp(X = xi)X ∈ CS j = xi s.t. max
i

(P(X = xi))X ∈ CS j
holds for xi (4.6)

Application of these rules in each causal subspace of BN results in mining DSAPs

which has an implication expression of the form:

X [xi]→C[c j] (4.7)

where the left hand side of the arrow represents parent nodes and the right hand side of

the arrow is their respective child node. Information enclosed in the angular braces rep-

resents states satisfying rules taken by parent and child nodes respectively. Equation 4.8

and Equation 4.9 present the formal definitions of these rules.

R1 : ∀X ∈ Pa(C) ∈CS j s.t. (P(X = xi) = minsupp ) ∧ (P(C = ck |X)> maxconf )

(4.8)

R2 : ∀X ∈ Pa(C) ∈ CS j s.t. (P(X = xi) = maxsupp ) ∧ (P(C = ck |X)< minconf )

(4.9)

We present a small hypothetical Bayesian network in Figure 4.3 to give more un-

derstanding on how anomalous patterns are extracted in practice using rules R1 and R2.
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Figure 4.3: Hypothetical Bayesian network showing unconditional and conditional
probabilities associated with each node

Figure 4.3 shows a BN with four nodes namely, X1, X2, X3 and X4. Let each of these

nodes takes two distinct states say, True (T) and False (F). Associated with each node

is unconditional probability table for parent nodes (X1, X2) and conditional probability

table for child nodes (X3, X4). Following Equation 4.5 and 4.6, minsupp and maxsupp

for parent nodes X1 and X2 are set to:

minsupp(X1) = F, minsupp(X2) = T, maxsupp(X1) = T and maxsupp(X2) = F

Suppose the parameters minconf and maxconf are set to 10% and 80% respectively.

We apply rules on two causal subspaces, (X2, X4) and (X1, X2, X3) encoded in this

BN. In the first causal subspace application of R1 and R2 results in mining two DSAPs

namely, X2[T]→ X4[T] (example of R1) and X2[F]→ X4[F] (example of R2); while in

the second causal subspace only one DSAP, X1[T], X2[F]→ X3[T] is present (example

of R2). The rule R1 is not applicable in this specific causal subspace since it does not

qualify condition stated by Equation 4.8. Using these rules we discovered in total three

DSAPs for this BN.

Assume that the test data is given for the domain on which this BN is formed and

the objective is to discover the anomalous test cases. For this task we simply check if

a test case carries any of the discovered DSAP. A simple and straight forward approach

we followed is by forming a SQL SELECT query of extracted DSAPs. Each DSAP can
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be thought as an individual component in WHERE clause of SQL SELECT query sep-

arated by an OR operator and within DSAP each item separated by an AND operator.

For example, SQL SELECT query for DSAPs discovered on example above would be:

SELECT * from test set where ( X1=’T’ AND X2=’F’ AND X3=’T’ ) OR (X2=’T’ AND

X4=’T’) OR (X2=’F’ AND X4=’F’)

We now take income-expenditure example discussed in Chapter 1 to show how data

points in clusters C5 and C6 can be mined using rules. Suppose we form a Bayesian

network on this problem, refer Figure 4.4. Let each variable take up two states namely,

high (H) and low (L). Associated with variables are unconditional and conditional prob-

abilities representing a rough scenario of data points presented in Figure 1.1 of Chap-

ter 1. If minconf = 10% and maxconf = 80%, then based on Equations 4.8 and 4.9, an

interesting DSAP would be: Income[L]→ Expenditure[H] (R2). The scenario of low

income and high expenditure is represented by clusters C5 and C6, and hence all data

points forming these clusters will be identified as outliers using COM approach.

Figure 4.4: Bayesian network on income-expenditure example in a discrete framework

Our assumption that considers each DSAP as an indicator of anomalous event may

lead to high false positive rate because of multiple hypothesis testing problem especially

in the case when total number of DSAPs (denoted by notation |DSAPs|) from a BN is

large. In order to control false positive rate, we propose to rank extracted DSAPs on

how interesting they are from the Bayesian perspective only if condition: |DSAPs| >
2 * |X| is satisfied. We apply the concept of sensitivity analysis [40] in Bayesian net-

works, which is a measure of how sensitive is the conclusion to the findings for ranking

discovered DSAPs. Sensitivity analysis in BN is performed by entering the known ob-

servations and studying sensitivity incurred in variable of interest. If the findings give

negligible impact on a node under study, then the findings are considered sufficiently

influential. On the other hand, if the impact on a node under study is significant, then

those observations are considered least interesting for the investigated node. To score
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every extracted DSAP on a sensitivity measure, observations in variables present on the

left hand side of the arrow in the DSAP are entered in the model and sensitivity for

the variable on the right side of arrow is computed. We then sort DSAPs in an ascend-

ing order and consider the top τ patterns with the lowest scores as the most interesting

unlikely patterns.

4.2.1 Algorithm

We present the causal outlier mining in Bayesian network (COMBN) algorithm in Al-

gorithm 1.

Algorithm 1 COMBN
Input: BN, parameters minconf, maxconf, |X|, τ and a test set
Output: DSAPs, anomalies
1. Compute minsupp and maxsupp for every parent node in BN using Equations 4.5 and 4.6
2. For all causal subspace in BN, repeat:

2.1. Apply R1 and R2 using Equations 4.8 and 4.9 to discover DSAP
2.2. Compute sensitivity of discovered DSAP in BN

3. If (|DSAPs| > 2 × |X| ) then,
3.1 Sort DSAPs
3.2 Output top (τ * |DSAPs|) low scored DSAPs

else
Output all DSAPs extracted

4. Output test cases with DSAPs within as anomalies

We explain algorithm COMBN with the help of Bayesian network presented in

Figure 4.3. This BN can be considered as a model for the domain where objective is

to identify outliers from given test set based on knowledge captured by the model. As

an input we are given Bayesian network, parameters minconf, maxconf, τ and a test

set. Let parameters minsupp, maxsupp and τ are set to 10%, 80% and 50% respectively.

Algorithm starts with computing minsupp and maxsupp for all parent nodes in the model

using Equations 4.5 and 4.6 as indicated by the step 1 in COMBN. Thereafter, rules R1

and R2 are applied over two causal subspaces present in this BN to discover DSAP. For

every DSAP extracted using rules, its sensitivity score is computed. The total number

of DSAPs extracted from this BN is three (it is discussed before). Since |DSAPs| is

less than |X| present in the BN so condition specified in step 3 of the algorithm is not

satisfied and hence all three DSAPs extracted are given as output. Further, test cases

with the presence of any of the three DSAP within are identified as outliers.
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The computational complexity of the algorithm COMBN is governed by two key

components in BN, i.e., (1) qualitative component, which specifies the number of nodes

and directed links that present in the model and, (2) quantitative component, which in-

dicates the total number of unconditional and conditional probability entries in the BN.

Major computation involved are in Step 1 & 2 of the algorithm COMBN. In Step 1 of

the algorithm, for every parent node, minsupp and maxsupp are maintained. However,

to compute the state for which probability of occurrence is minimum and maximum for

each parent node, we are not inferencing in Bayesian network which is known to be a

NP-hard problem [48]. These parameters are like prior probabilities, i.e., P(X = xi), ei-

ther provided by a domain expert or is learnt using EM algorithms from a given data set.

Bayesian network development software like Netica [24] maintains this information for

every node in the Bayesian network. Assuming this information is given, we only need

to sort P(X = xi). Later minsupp and maxsupp are set using Equations 4.5 and 4.6 for

every parent node in the BN.

In Step 2.1 of the algorithm, we use rules R1 and R2 in every causal subspace of

a given Bayesian network to mine anomalous patterns. Intuitively, these rules are like

finding conditional probability in some state of child node, given observations on par-

ent nodes, i.e., P(C = ci | Pa(C)). Interestingly, for queries like P(C = ci | Pa(C)), again,

we do not need any complex inference in Bayesian network. Rather information on

such query is already pre-computed in BN in the form of conditional probability table

associated with every child node. Query such as, P(C = ci | W) where, W belongs

to set of descendent nodes of C in BN may require operations such as, marginaliza-

tion over irrelevant variables for computing such probability of interest. Computing for

such queries can go intractable if there are a large number of nodes in the Bayesian

network. In comparison, query P(C = ci | Pa(C)) is always tractable. However, a large

conditional probability table could be a time consuming job in finding conditional prob-

ability of interest. In order to avoid such circumstances, we designed pruning strategy

especially for rule R1. In rule R1, we are in pursuit of finding that entry in the condi-

tional probability table where confidence is greater than or equal to maxconf threshold.

For example, consider variable X with |Val(X)| = 3. On setting maxconf to 70%, we can

find only one conditional probability in X greater than 70%. This condition holds true

for all child nodes in BN. As soon as we find that entry, we break the scanning process

in conditional probability table associated with child node since there would be only

one entry greater than maxconf threshold. For rule R2, we need to scan probabilities
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in all possible states of child node for given observations for entries less than minconf

threshold since there could be more than one value satisfying minconf threshold. It can

be imagined as scanning matrix of size (1 x |Val(C)|) where, |Val(C)| represents number

of states of child node C.

In Step 2.2, the interestingness of a DSAP is computed using a sensitivity analysis

in BN. Sensitivity analysis, again is a NP-hard problem in the worst case. However,

in our work we use this measure for variables which are causally related, i.e., in every

causal subspace rather than using this measure where known observations are sparsely

located from the node on which sensitivity has to be analysed. Thus, sensitivity analysis

is not NP-hard in our case.

4.3 Experiments, Results and Discussion

In this section we report on experiments that we carried out in order to mine anomalies

present in the data set using Bayesian networks.

4.3.1 Baseline methods for anomaly detection

We performed experiments over three alternatives for anomaly detection besides COM

approach.

1. We used extension of Latent Dirichlet Allocation (LDA) as a baseline method

in mining anomalies against our Bayesian approach since both are causal ap-

proaches. In Figure 4.5 shows the graphical model for LDA, where plate repre-

sents a replication, unshaded circles represent latent variable, shaded circle repre-

sents observation, and arrows represent dependency among the variables. LDA is

a generative probabilistic model proposed by [14] for modeling text corpora. In

LDA, the text corpus is modeled as a collection of M documents, where each doc-

ument is a set of Nm words. LDA uses a bag-of-word assumption, which means

the order of words is not important for LDA. Each document is represented by

a finite random mixture over latent topics and each latent topic is represented by

a distribution over words. The generative process of LDA is described as fol-

lows. Let D ir(α) denotes the Dirichlet distribution with parameter α . Let M (θ)
denotes the multinomial distribution with parameter θ . The topic proportion of

each document, θm, is generated from the D ir(α) (θm ∼ D ir(α)). Then LDA
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generates Zmn ∼ M (θm) to determine which topic is active out of K topics to

later generate the word Wmn (P(Wmn|Zmn,β )). For each document, the joint distri-

bution of a topic proportion θ , a set of topic assignments for N words z, given the

parameters α and β is as follows:

Figure 4.5: Graphical model of LDA

P(θ ,z,w|α ,β ) = P(θ |α)
N

∏
n=1

P(zn|θ)P(wn|zn,β ) (4.10)

We use several analogies to fit the LDA model: (1) a set of unique feature values

as a set of vocabularies, (2) each feature value that exists in a domain as word,

and (3) a category (e.g. normal, abnormal) as a topic. With these assumptions,

we aim mainly to find the words (features/attributes) that have low probability

to appear in a specific topic (category/class), which then we refer as “patterns”.

Once such patterns are mined, test cases are checked for anomalies as done in

COM approach.

There are several work on outlier detection using the extension of Latent Dirichlet

Allocation. Xiong et al. [76] proposed models that extend LDA to mine group

outliers from astronomical data set. Ferragut et al. [30] proposed a probabilistic

model based on LDA to detect anomalies in data network traffic. For the data sets,

they used Internet Protocol (IP) addresses and port information. These data sets

were collected for all connections crossing the Oak Ridge National Laboratory

network perimeter. Our work is different from theirs as we do not focus on the

generative model to detect outliers, but we use the Bayesian network to extract

the causal anomalies.

2. kth-NN (kth nearest neighbour) [60] outlier detection technique. In order to make

it applicable for a training/testing setting, we changed the method sightly. Instead
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of scorning a test point on the basis of its deviation from all other data points

belonging to the test data, we scored a data point to extent of which it deviates

from the training set. Given a training data set, in order to use the 5th to determine

the degree to which a test point is anomalous, we simply use the distance from the

point to its 5th in the training set. A larger distance indicates a more anomalous

point.

3. Local outlier Factor (LOF) anomaly detection [17]. LOF was also modified in

the similar way as kth-NN. The LOF of each test point is computed with respect

to the training data set in order to score the point.

4.3.2 Experimental setup

For the COMBN algorithm to work, Bayesian network was needed to disseminate

knowledge of the domain from which DSAPs can be mined. For this task, we used

web based Bayesian modeling software called B-Course [6] to reveal causal relation-

ships among attributes using a data set. Later, the trained Bayesian networks were used

in Netica [24] and the COMBN algorithm was developed using Netica Java API.

The procedure to designing the training & testing sets are as follows:

• Based on the class labels given in the data set, we grouped the instances. Instances

belonging to one class were grouped under G1 whereas, all other instances were

assembled under group name G2.

• We randomly took 80% instances each from groups G1 and G2 to form trainingSetG1

and trainingSetG2
1 respectively. The rest 20% instances left in groups G1 and G2

formed testSetG1 and testSetG2.

• Bayesian network was trained using trainingSetG1.

• As an input for LDA training, both trainingSetG1 and trainingSetG2 were given.

This implies LDA model was given instances belonging to two different classes

where true class labels were hidden from LDA. We set parameter K* = 2 for

LDA learning. The goal of LDA was to learn distribution of features for each

group name. After we get the features distribution for each group, we name the

1We keep a record of the class label of each instance, but do not include them in trainingSetG1 and
trainingSetG2
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respective group as same with the class label which has the most frequent features

appear in that topic by consulting original data set2.

• We define anomalies are those test cases which belong to the group G2, i.e., class

on which Bayesian network was not trained. Therefore, ideally, for high accuracy

and recall, anomaly detection techniques should discover those test cases which

belong to the class other than one used to train Bayesian network.

• For evaluating COMBN and LDA approaches, we used test set = testSetG1 ∪
testSetG2.

• For evaluating kth-NN and LOF, we used test set* = trainingSetG1 ∪ testSetG1 ∪
testSetG2.

The above mentioned steps are also summarized in Figure 4.6.

One reason of designing such training/testing environment was to show that causal-

ity matters in mining true outliers. Data points belonging to distinct classes may encode

different causal semantic among attributes. For example, a causal dependency, X1 →
X2, in the certain class may appear as X2 → X1 in some another class with different

probabilistic arrangement. From now onwards, we use the term training set for the data

on which models were learnt and, test set as one used for evaluation.

4.3.3 Bayesian networks and data sets

We performed experiments on six real data sets taken from UCI repository [4] to show

the credibility of our approach. Besides evaluating our approach on real data sets,

we also experimented on well-known Bayesian models taken from network reposi-

tory maintained by Netica [24] and GeNIe & Smile [33]. For the six real data sets,

we designed the training and testing framework as discussed previously. However, the

Bayesian models which were taken from the network repository were not learnt since

they were pre-defined available on repositories. Also, for these BNs test data were

not available to test the accuracy of our algorithm. However, we mined DSAPs from

these given Bayesian models in order to show performance of our algorithm on higher

dimensions.
2By taking this step we found low probable patterns for each class labels
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Figure 4.6: Experimental setup

We present the information on pre-defined Bayesian networks and Bayesian net-

works learnt over six different real life data sets in Table 4.2. The learnt BNs were

given same names as the name of data sets available on respective websites to avoid

confusion. Column 1 of the table list names of the pre-defined Bayesian networks and

number of nodes present in these networks are presented in column 2 of the same table.

Column 3 of the table list names of six real data sets for which Bayesian networks were

learnt. For these data sets, the classes on which BNs were learnt are presented under the

column Class (column 4). Next to this column presents information on total number of

attributes originally exists in the data set.

4.3.4 Results

We first present Bayesian networks learnt over few data sets, and few pre-defined

Bayesian models. Then, results achieved on various data sets are reported. We also
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Pre-defined BN BN learnt
BN Nodes Data set Class Features
ChestClinic 8 Zoo Mammal 18
Diabetes learned 9 Mushroom Eatable 22
Alarm 37 Lymphography Metastases 18
Win95pts 76 Statlog Good 20
Pathfinder 135 Congressional Voting Record Democrat 16
Munin1 189 KDD Cup Normal 41
Diabetes 413 - - -

Table 4.2: Summary of Bayesian networks and data sets

present few subspaces discovered from KDD Cup data set by our algorithm COMBN

which explains why the discovered data point is anomaly. Thereafter, we present a de-

tailed analysis on a distance based technique and LDA approach to show their search

methodology for mining anomalies and how they are different from COM.

4.3.4.1 Bayesian networks learnt

In Figures 4.7, 4.8, 4.9 and 4.10 we show Bayesian networks learnt using B-course

software [6] over four data sets namely, Zoo, Lymphography, Statlog and KDD Cup.

In addition to this, two pre-defined Bayesian networks named Chestclinic and Diabetes

learned are shown in Figure 4.11 and Figure 4.12 respectively. Names given to nodes

encoded in all Bayesian networks which were learnt are same as defined in respective

data sets. In Appendix A, we give description on these variables.

4.3.4.2 Experimental evaluation

Table 4.3 summarizes information of all Bayesian networks (learnt and pre-defined)

such as number of connected nodes in the model (column 2), total number of links

(column 3), conditional probability tables (CPTs) (column 4), total number of DSAPs

extracted (column 5) and time taken by COMBN in mining anomalous patterns (col-

umn 6). For Bayesian networks which were pre-defined, we deleted function and utility

nodes present in the model before using them in the COMBN algorithm. The resulted

number of nodes after this operation is shown in column 2 of the table. All continuous

variables present in the data sets were categorized to five discrete levels. As discussed

before, the computational complexity of our algorithm depends on factors such as num-

ber of nodes, links and conditional probability entries present in the Bayesian network.
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Figure 4.7: Bayesian network on Zoo data set
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Figure 4.8: Bayesian network on Lymphography data set
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Figure 4.9: Bayesian network on Statlog data set
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Figure 4.10: Bayesian network on KDD Cup data set
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Figure 4.11: Bayesian network: ChestClinic
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Figure 4.12: Bayesian network: Diabetes learned
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BNs Nodes Links CPTs |DSAPs| Time
in secs.

Zoo 11 11 74 5 1
Mushroom 20 66 20155 71 2
Lymphography 18 16 144 156 1
Statlog 17 17 315 37 1
Congressional Voting Record 16 15 62 7 1
KDD Cup 32 45 29786 277 4
ChestClinic 8 8 36 4 1
Diabetes learned 9 11 159 6 1
Alarm 37 45 752 50 1
Win95pts 75 110 1144 44 3
Pathfinder 100 172 94134 237 16
Munin 156 128 12348 128 26
Diabetes 294 314 312756 1518 210

Table 4.3: Summary: number of nodes, links, CPT entries, number of DSAPs extracted
and time taken by COMBN in seconds

Considering these parameters, our algorithm performed well on all data sets. For exam-

ple, Bayesian network on KDD cup data set of 32 nodes, 45 link and 29786 conditional

probability entries, took 4 seconds in mining 277 patterns. Whereas, BN named Dia-

betes, having huge conditional probability entries of 312,756 took reasonable time of

210 seconds. Table 4.4 summarizes information on data sets used in experiments and

compares the quality of precision/recall obtained using COMBN, LDA, kth-NN and

LOF anomaly detection techniques. Column 1 of the table lists data set names. Preci-

sion and recall on four outlier detection approaches are presented in columns 2 and 3

respectively.

We set parameter τ = 50%, minconf = 10% and maxconf = 90% in the algorithm

COMBN. For a reasonable comparison between our approach and LDA, we took the

top n low probability patterns mined by LDA where, n was equal to (τ × |DSAPs|)
set in algorithm COMBN. In kth-NN approach, we set k = 5 for experiments. We

obtained encouraging results by our algorithm with precision and recall more than 70%

for almost every data set. Our approach performed very well on a real life network

intrusion data set (KDD CUP) giving precision of 96% and recall of 99%. There were

22 different attack types present in this data set grouped under four categories namely,

Denial Of Service (DOS), User to Root (U2R), Probe and Remote to Local (R2L). Out
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Data set Precision Recall
(COMBN, LDA, kth-NN, LOF) (COMBN , LDA, kth-NN, LOF)

Zoo (.91, .69, .62, .56) (.99, 1, .62, .52)
Mushroom (.62, .56, .52, .66) (.71, 1, .62, .61)
Lymp. (.72, .50, .69, .57) (.83, 1, .69, .66)
Statlog (.86, .49, .52 .49) (.77, .49, .49, .45)
Cong. V. R. (.91, .59, .54, .45) (.95, .94, .64, .48)
KDD Cup (.96, -, .72, .41) (.99, -, .66, .44)

Table 4.4: Summary: precision and recall achieved using COMBN, LDA, kth-NN and
LOF algorithms

of 22 attacks present in the data set, our technique, failed only in discovering two attacks

namely, Buffer overflow, Guess pwd (there were zero samples for attacks Warezmaster

and Imap in the data set).

The LDA result for KDD Cup is not shown because this data set contained imbal-

ance proportion of instances belonging to each class (normal and 22 different attack

types). In order to mine the patterns of low probability for each class type, it was im-

portant to train LDA model on these classes. However, we formed a ten randomized

data set from original KDD Cup data set addressed as KDD Cup* especially for LDA

in order to see its performance on a real network intrusion detection data set. Each

randomized KDD Cup* data set was formed by taking three steps. In step 1, we chose

instances belonging to class labels: normal and, six distinct attacks namely Neptune,

Smurf, Satan, Back, Warezclient and Teardrop. In step 2, out of chosen seven classes

we randomly chose m number of instances from each group. We took equal number of

instances so as to provide LDA with a fair learning environment. Finally in step 3, 80%

of m instances under each class were randomly selected to form a training set and rest

20% formed the test set. Each random sample of data set KDD Cup* contained 320

anomalies (or attacks) and 32 normal instances.

Results achieved on KDD Cup* using LDA were not encouraging. The average true

positive rate achieved was 320.0 and false positive rate of 32.0. The result implies that,

LDA approach was not able to distinguish between anomalies and normal instances.

However, in comparison COM achieved average true positive rate of 290.6 and false

positive rate of 3.8. Interestingly, being trained on same training set of normal instances

and using similar methodology of testing test sets for anomalous patterns, our approach

worked reasonably good as compared to LDA. We found this result very interesting and
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investigated further on why false positives were so high for LDA in comparison to our

approach in order reveal discrepancy in the results. We discuss this in Section 4.3.7.

We mentioned previously that one of the key advantage of our technique is that

it can both identify anomalies and explain the reason of their anomalous nature. In

Table 4.5 we show the subspaces which were targeted by various attack types present

in KDD Cup data set. For example Table 4.5 reveals the fact that Smurf (attack type)

aim for subspace,(Di f f srv rate[0-0.1]→ Same srv rate[>0.9]).

We discussed in Section 4.2 that if the number of DSAPs extracted is large for

a data set of low dimensionality then, it may lead to high false positive rate because

of multiple hypothesis problem. In order to show the relation among the number of

attributes, numbers of DSAPs extracted and false positive rate, first refer Fig. 4.13a. It

shows an increase in TP and FP with an increase in percentage of number of DSAPs

extracted for Statog data set. We set the parameter τ from 10% to 100% and calculated

TP and FP at every scale of parameter τ . The number of normal and anomalous data

points was 140 and 300 respectively in the test set of this data set. TP is represented by

a thick line, whereas FP is shown by a dashed line. The graph clearly shows an increase

in TP with an increase in percentage of total DSAPs until τ = 70%. After this point,

there is not much change in TP. However, there is always a constant increase in FP till

τ = 100%. This explains the fact that if we consider all DSAPs extracted to discover

anomalies then, we may end up having good recall but poor precision. On the other

hand, if we consider only top few low scored interesting DSAPs then; we can get both

good precision and recall.

We also show in Figure 4.13b that the patterns of TP and FP for the same data set

on similar scale of τ , but this time DSAPs were ranked in a descending order. Here

the trend of TP until τ = 50% is increasing at a very low pace. This indicates that

top high scored DSAPs were least interesting from the anomaly discovery perspective.

Interestingly, TP grows right after τ = 50% which clearly shows the contribution of low

scored DSAPs in mining true anomalies. On the similar bases, we present in Fig. 4.14a

and 4.18b the trend of TP and FP on τ parameter achieved on KDD Cup data set, where

sensitivity score was sorted in ascending and descending orders respectively.

As discussed in Section 4.2, mining of DSAPs from the given data set is depen-

dent on two parameters namely, minconf and maxconf. Both of these parameters are

independent of each other. Parameter maxconf is used by R1 while, R2 depends on

minconf. In Figure 4.15a, we show, if only R1 is applied on Mushroom data set, then
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Attack DSAPs

Neptune
1. Num f ile creations[0-2.8]→ Dst host srv serror rate[0-0.1]
2. Duration[0-5832.9]→ Dst host di f f srv rate[0-0.1]

Back
1. Flag[SF]→ Dst host rerror rate[0.1-0.2]
2. Dst host same srv rate[>0.9]→ Dst host srv count[178.5-204]

Warezclient
1. Rootshell[0-0.1]→ Hot[3-6]
2. Dst host srv serror rate[0.4-0.5]→ Dst host serror rate[0.3-0.4]

Pod
1. Num f ile creations[0-2.8]→ Dst host srv serror rate[0-0.1]
2. Duration[0-5832.9]→ Dst host di f f srv rate[0.2-0.3]

Teardrop
1. Duration[0-5832.9]→ Dst host di f f srv rate[0.6-0.7]
2. Duration[0-5832.9]→ Dst host di f f srv rate[0.5-0.6]

Portsweep
1. Srv count[0-51]→ Count[0-51.1]
2. Protocol type[tcp], Dst host same src port rate[>0.9]
→ Dst host count[51-76.5]

nmap
1. Num f ile creations[0-2.8]→ Dst host srv serror rate[0-0.1]
2. Dst host srv rerror rate[0.2-0.3]→ Dst host srv di f f host rate[0.8-0.9]

Ipsweep
1. Protocol type[tcp], Dst host same src port rate[>0.9]
→ Dst host count[51-76.5]
2. Dst host di f f srv rate[0.7-0.8]→ Service[ecri]

Satan
1. Dst host srv serror rate[0.4-0.5]→ Dst host serror rate[0.7-0.8]
2. Protocol type[tcp]→ Di f f srv rate[0.4-0.5]

Smurf
1. Di f f srv rate[0-0.1]→ Same srv rate[>0.9]
2. Duration[0-5832.9]→ Dst host di f f srv rate[0-0.1]

Land
1. Service[http], Loggedin[0]→ Srv di f f host rate[0-0.1]
2. Protocol type[tcp]→ Srv count[0-51]

Spy
1. Dst host count[204-229]→ Flag[SF]
2. Flag[SF]→ Rerror rate[0-0.1]

Perl
1. Service[http], Loggedin[0]→ Srv di f f host rate[0.3-0.4]
2. Srv count[0-51]→ Count[408-459]

Phf
1. Dst host count[0-25.5]→ Flag[RSTR]
2. Protocol type[tcp]→ Srv count[0-51]

Multihop
1. Service[http], Loggedin[0]→ Srv di f f host rate[0.3-0.4]
2. Srv count[0-51]→ Count[408-459]

Ftp write
1. Rootshell[0-0.1]→ Hot[3-6]
2. Flag[SF]→ Rerror rate[0-0.1]

Rootkit
1. Flag[SF]→ Rerror rate[0.2-0.3]
2. Flag[SF]→ Rerror rate[0-0.1]

Loadmodule
1. Di f f srv rate[0-0.1]→ Same srv rate[0.4-0.5]
2. Protocol type[tcp]→ Srv count[0-51]

Table 4.5: Domain specific anomalous causal subspaces discovered using COMBN
algorithm for various attacks present in KDD Cup data set
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how number of DSAPs decreases on increase of maxconf parameter. Similarly, in Fig-

ure 4.15b, we show application of R2 on the same data set using parameter minconf.

Results show that a small variation in minconf and maxconf did not effect discovery of

DSAPs.

4.3.5 Robustness of Rules R1 and R2

We performed a test in order to evaluate robustness of rules R1 and R2. Our goal

through these tests is to show that rules we propose helps mining “interestingly rare

patterns” than mining “irrelevant patterns or noise”.

The test we used is based on concept of joint probability distribution (JPD), refer

Equation 4.11 in BN. Joint probability distribution in BN is a product of priors and

conditional probability across each of the variable in a BN.

P(X1,X2....,X|X |) =
|X|

∏
i=1

P(Xi|Pa(Xi)) (4.11)

An important observation here is, product of priors and conditional probabilities, which

constitute a score of a given test case, can give rise to four different situations namely,

1. low prior and high conditional probability

2. high prior and low conditional probability

3. low prior and low conditional probability

4. high prior and high conditional probability

A joint probability actually is a product of the above four factors or we can say

joint probability is formed by the combination of above listed situations. However,

it is always possible that any situation occur any number of times, while at the same

time it is not also necessary that every situation will be present in the product. This

depends upon values taken by attributes and their structure of relationship. Of the four

situations, the situations listed at one and two are the only case where there is a conflict

between the evidence and event conditional probability provides for a theory and our

prior belief about the plausibility of that theory and hence an indication of potential

outlying situations. Griffiths and Tenenbaum [35] defines situations one and two above
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(a) For Statlog data set pattern of TP and FP achieved on parameter τ scaled from
10% to 100% when DSAPs sorted in ascending order

(b) For Statlog data set pattern of TP and FP achieved on parameter τ scaled from
10% to 100% when DSAPs sorted in descending order

Figure 4.13: Performance of COMBN on τ parameter in Statlog data set
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(a) For KDD Cup data set pattern of TP and FP achieved on parameter τ scaled from
10% to 100% when DSAPs sorted in ascending order

(b) For KDD Cup data set pattern of TP and FP achieved on parameter τ scaled from
10% to 100% when DSAPs sorted in descending order

Figure 4.14: Performance of COMBN on τ parameter in KDD Cup data set
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(a) Impact of parameter maxconf on discovery of domain specific anomalous pat-
terns (DSAPs)

(b) Impact of parameter minconf on discovery of domain specific anomalous pat-
terns (DSAPs)

Figure 4.15: Impact of parameters maxconf and minconf on discovery of domain spe-
cific anomalous patterns (DSAPs)
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as mere and suspicious coincidence respectively. From outlier mining point of view, low

unconditional probability is most likely a “noise event” unless there exists a variable

for which there is high conditional probability. Situation three is example of noise.

High support and high confidence is example of high correlation and association among

attributes. The focus of association rule mining is to discover such patterns from data.

Logically a joint probability of a test case will be high which has maximum number

of fourth situation listed above. Contrary to this, joint probability of test case will be

low which has maximum number of first three situations listed above. This implies,

if we are to test a number of data points with the objective of mining top n anomalies

from it then, JPD in BN can be used to score each instance. However, interestingly

enough, the independent factors forming JPD in BN, i.e., P(X | Pa(X)) are effectively

the patterns which rules R1 (situation one) and R2 (situation two) aim for subject to two

conditions mentioned in Equations 4.8 and 4.9 respectively.

To test if the above discussed theory exists and our rules are genuine, top n data

points with low JPD computed using BN should carry patterns mined using our prob-

abilistic rules R1 and R2. We perform extensive experiments on data sets to confirm

this. As a result we found that for each data set, patterns discovered using R1 and R2

appeared with more than average of 90% probability in every top n low scored data

point in terms of JPD. An obvious question here is: why do we need approach of prob-

abilistic rules when concept of JPD can give us equally good results? It is because of

two reasons: (1) application of rules are not only useful in mining outliers, but they also

eventually help provide justification on why the data point is discovered as anomaly.

Using JPD concept, we can only find top n outliers. Additional contextual knowledge

on discovered anomalies cannot be provided using JPD theory and, (2) Using JPD the-

ory, we are first dependent in finding joint probability of each data point and later sorting

them in ascending order to reveal top n outliers. However, probabilistic rules gives us

freedom from such dependency and sorting. A test point satisfying either rule R1 or R2

will be identified as an anomaly.

4.3.6 Relevance of COM Methodology

Our emphasis in this section is on the usefulness and relevance of our approach in dis-

covering genuinely anomalous patterns. Any outlier detection technique is novel if it

can validate anomalous behavior of the observations and can provide insights into the
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fact as to why these observations are suspicious. Such insights not only give under-

standing on data but helps in improving knowledge of the domain. The most authentic

way to validate outliers discovered by any outlier detection technique is by evaluating

observations using domain knowledge. However, as expertise of the particular domain

is not always readily available to disseminate knowledge about the domain and validate

outliers; so we restrict explaining relevance of our approach using a simple yet mean-

ingful Bayesian network on a medical diagnose problem represented in Figure 4.11.

We present relevance and quality of our approach by mining DSAPs from this BN.

The idea is, if an explanation of DSAPs discovered by our approach on BN in Fig-

ure 4.11 could be justified by the domain and common sense knowledge as an unseen

yet interesting knowledge then it could give a strong indication of relevance of our

approach. We chose BN named ChestClinic from several available because the rela-

tionship among attributes and the general knowledge of the domain is very easy to

understand and hence explaining anomalous patterns our approach will mine. Follow-

ing are the four DSAPs extracted using rules R1 or R2 with parameters minconf and

maxconf set to 10% and 80% respectively.

1. Visit to Asia[visit](1%)→ Tuberculosis[absent](95%)

2. Smoke[smoker](20%)→ Lung cancer[absent](90%)

3. Cancer[false](92.6%)→ X-ray[abnormal](5%)

4. Cancer[false](92.6%), Bronchitis[absent](75%)→ Dyspnea[present](10%)

We amended the notation of causal subspace defined in Equation 4.7 with additional

information which is represented in angular braces. Information in angular braces rep-

resents state of the variable. With respect to BN in Figure 4.11, we explain four outlier

subspaces identified as follows:

1. Percentage of people who makes visit to Asia(1%) is unlikely to have tuberculosis

(95%). This is a suspicious event because we do not have enough evidence(1%,

which is very small) to this fact.

2. Referring to second subspace, there is one cause of lung cancer, i.e., smoking. A

lay mans opinion says, a person who smokes is mostly likely to get affected by

lung cancer. For the given instance, value of the variable smoker is “smoker” and
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value of lung cancer is “absent”. This obviously indicates a new dimension to

knowledge that there could be other causes leading to lung cancer. The support

of smoke is 20%, which is considered as minsupp because smoke has only states

with same probabilities.

3. In the third subspace, intuitively, a person suffering for cancer should have abnor-

mal x-ray. Whereas, for this observation, cancer is absent but still x-ray report is

abnormal. It raises question as to why x-ray is abnormal when cancer is absent.

This lead us to a new knowledge that abnormal x-ray is not only affected by the

presence of cancer but there could exist other factors causing abnormal x-ray.

4. Similarly, for the fourth subspace, two causes of disease dyspnea namely, cancer

and bronchitis are absent but still disease dyspnea is present.

4.3.7 Discussion

The performed experiments were designed to answer the following research question:

Is an approach that treats the features: (a) in an independent fashion or, (b) based on

the causal semantic, can perform better in discovering the true anomalies? Based on

the results presented in Table 4.4, we may conclude that by considering the causality can

lead to substantially good results. However, it was interesting to see why kthNN, LOF

and LDA techniques performed poorly in almost all data sets over Bayesian approach.

In this section, we present critical analysis on search methodologies of all the outlier

detection techniques followed in this chapter to reveal the mismatch in their results.

What COM approach follows?

Our proposed approach based on Bayesian network tightly integrates relationships among

features of the domain and plausibility of an event in probabilistic terms. By exploit-

ing relationships, low and high likely events can be interpreted. As discussed in Sec-

tion 4.3.5, DSAPs extracted by rules R1 and R2 also appears in top n low probability

data points if we compute JPD of every test case. So, in order to show insights of

COM methodology we use concept of JPD in BNs. We explain COM approach inline

with theory of JPD using two pre-defined Bayesian models namely ChestClinic (refer

Figure 4.11) and Diabetes learned (refer Figure 4.12). For analysis, we simulated data

sets using Netica software [24] for these BNs so that top n outliers using JPD can be
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computed. We chose Bayesian networks with minimum number of attributes so that

analysis through graph can easily be explained. For easy reference we address variable

names modeled in these networks by their initials as represented within angular braces

next to their names. The JPD for ChestClinic and Diabetes learned Bayesian networks

is represented by Equations 4.12 and 4.13.

P(A,S,T,L,B,C,X ,D) = P(X |C)×P(D|C,B)× (C|T,L)×P(T |A)×P(L|S)

×P(B|S)×P(S) (4.12)

P(B,Pr,D,T,Dia,A,P,Db, I) = P(T |B,Pr)×P(Dia|B,Pr,D,A)× (P|Dia,Db)

×P(Db|Dia)×P(I|Dia,Db)×P(B)×P(Pr)×P(D)×P(A) (4.13)

Using simulated data sets from these networks, we computed JPD for every instance

and took top n low scored instances to explored inner structure of the data points. It is

important to mention here, top n observations were scored low in the Bayesian network

because they were having maximum patterns of two qualitative rules. However, by

structuring these anomalous instances in individual probabilistic terms we can observe

these anomalous patterns and can explain COM approach. Such representation not only

indicates search methodology of our technique but also gives understanding on data in

general.

Figures 4.16a and 4.16b represents pattern of top outlier in terms of conditional

probabilities (confidence) and prior (support) which together constitutes joint proba-

bility in the Bayesian network. Figures 4.16a and 4.16b belong to ChestClinic and

Diabetes learned named Bayesian models respectively. The X-axis of the graph repre-

sents attributes and Y-axis represents support of parent node in bars and confidence in

child node through trend line. Here, support of the parent node is defined using Equa-

tion 4.1. For graph in Figure 4.16a, first six attributes are child node whereas, rest two

are independent nodes. Referring to Bayesian model named ChestClinic in Figure 4.11

and first bar in graph of the Figure 4.16a indicates, support in parent node Visit to Asia

is nearly zero, but confidence in direct child (Tuberculosis) of this parent node (Visit to

Asia) is above 95% which is quite high as represented by the point on the trend line just

above the bar.

More than one bar at the same position represents number of parents linked with
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that child. For example, child node Cancer has two parents (Tuberculosis and Lung

cancer) and hence shown by two different support bars in fourth term. Trend shown in

Figure 4.16a specifies subspaces which define outlier. Terms first, second, fifth and sixth

were uncovered by the qualitative rules. Not only outlying subspaces are visible but

normal subspaces can also be interpreted by the observing the graph. Causal subspace,

(Tuberculosis, Lung cancer→ Cancer) is example of high support and high confidence

and hence is normal. Similar explanation can be followed for the graph in Figure 4.16b.
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(a) Pattern of top COMBN outlier discovered in ChestClinic data set. The bars rep-
resent support of the parent attribute(s) and conditional probability in a child node
is represented by the trend line. Terms first, second, fifth and sixth were uncovered
by the qualitative rules

(b) Pattern of top COMBN outlier discovered in Diabetes learned data set. The bars
represent support of the parent attribute(s) and conditional probability in a child
node is represented by the trend line. Terms first, second and fifth were uncovered
by the qualitative rules

Figure 4.16: Pattern of top COMBN outlier: (a) discovered in ChestClinic data set (b)
discovered in Diabetes learned data set
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What Nearest neighbor technique follows?

In this section, we address on why there is a mismatch between outliers as observa-

tions “which are far away from their neighbors” and “real” outliers as identified using

Bayesian approach. The major difference between nearest neighbor and Bayesian ap-

proach can be summarized as follows: distance based technique treats every attribute of

the domain uniformly whereas, for the Bayesian approach, treatment with attributes de-

pends upon relationship among attributes. Any distance based approach will find a pair

wise distance between two objects and will declare an object to an outlier which is far

away from k nearest neighbors. Intuitively, it implies that an object declared as an out-

lier does not have enough support by the nearest neighbors, so, is isolated and far away

from the dense area. Contrary to this, a dense cluster is formed by those data points

which has similar support from the nearest neighbors which is the reason they satisfy

condition of k nearest neighbor and hence are normal. Thus distance based approaches

look for those data points where maximum number of attributes have low support. On

the other hand, Bayesian approach considers both conditional probability (confidence)

and unconditional probability (support) in order to discern between abnormality and

normality.

For analysis on nearest neighbor approach, we used simulated data sets from Chest-

Clinic and Diabetes learned BNs to kth-NN approach in order to find top n distance

based outliers. The analysis on top and nth outlier discovered on mentioned BNs are

shown in Figures 4.17a and Figure 4.17b respectively. In the figures, X-axis represents

attributes of the domain and Y-axis represents support of the attributes. Two bars on

every attribute of X-axis represents minimum and maximum support attribute has in the

Bayesian network. Minimum support of the attribute follows Equation 4.5 and maxi-

mum support of an attribute in the Bayesian network is represented by Equation 4.6.

In addition, two trend lines reveal the pattern of top and nth outlier discovered by

distance based technique. Interestingly, top outlier has six attributes with low support

(indicated by yellow trend line) whereas, for nth outlier, five attributes have low sup-

port (indicated by a line) for the ChestClinic data set as represented by the graph in

Figure 4.17a. Similar pattern is observed in Figure 4.17b. For few data sets we found,

distance based outliers chose those data points as outliers where support of few attribute

is near to minimum support if not minimum support exactly.
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(a) Pattern of top and nth kth-NN outlier in the ChestClinic data set. The bars rep-
resents minimum and maximum support of the attribute in the Bayesian network
and two trend lines represents kth-NN top and nth outliers respectively. Top outlier
(yellow line) has six attributes with low support whereas, nth outlier (red line) has
five attributes with low support

(b) Pattern of top and nth kth-NN outlier in the Diabetes learned data set. Top outlier
(yellow line) has five attributes with low support whereas, nth outlier (red line) has
three attributes with low support

Figure 4.17: Pattern of top and nth kth-NN outlier: (a) discovered in ChestClinic data
set (b) discovered in Diabetes learned data set
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Why LDA performed poorly?

In the LDA framework designed for anomaly detection, from a given number of docu-

ments and number of topics, the goal was to assign words appearing in the documents

to one of the topic with high probability; where words were considered as values of

the features and topic as classes, for example normal and abnormal. This means, LDA

model looked for relationship between values of the features and class labels, rather

than discovering relationship among values of distinct features appearing in the doc-

ument. Intuitively, this implies that the features were considered independent of each

other. In LDA analogy, topic was constructed by a distribution of words and since topic

was also drawn from a Dirichlet distribution so, it was obvious that some words get

assigned to have high probability, while others assigned to have low probability. Or in

the other words, LDA discovered probability of a word in a topic.

In contrast to LDA, our approach worked in a cause-effect framework captured by

the Bayesian model trained on some particular class. This suggests that by using this

approach, we can infer those causally dependent features with their respective values

which are high or even low probable for a class to appear. In BN approach, the extracted

DSAP was a combination of two or more features conditioned on each other which

come from causal semantic described in the model. Such correlation among features

helped in narrowing down the search process for test cases satisfying presence of DSAP

which thereby resulted in a good precision and recall. However in LDA, definition of

low probable pattern was a single variable in some value. In other words, discovered set

of low probable patterns by LDA were all independent of each other. Intuitively with

this approach, probability of seeing test cases with the presence of any of these patterns

would be large in number and therefore we obtained higher FP for LDA. More precisely,

test cases satisfying conditional probability P(X = xi | Y = y j) (Bayesian approach) will

be much lesser than unconditional probability P(X = x j) or P(Y = yi) (LDA approach).

Below, we present several experiments in order to elaborate on why LDA approach

resulted in poor precision in almost all data sets whereas, Bayesian approach performed

reasonably well. To show this, we took few patterns resulted from LDA and Bayesian

approaches on Lymphography data set. For deep insights, we preferred taking those

patterns from these approaches in which features and their corresponding states were

common. For example, two patterns mined using LDA technique on this data set was:

(1) Block of affere[yes] and, (2) Regeneration of[yes] respectively. Same features with
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corresponding same values appeared in one of the DSAP extracted by the COM tech-

nique and the DSAP was : Block of affere[yes]→ Regeneration of[yes]. Though fea-

tures and their respective values were same in the results, but, for LDA both features

were considered independent while, second feature was conditioned on the first feature

in the Bayesian approach. The bar graph in Figure 4.18a explains why the precision

of LDA was poor but, better for BN on Lymphography data set. The X-axis of the

graph shows the patterns extracted for this data set by both the techniques. The Y-

axis shows the number of test cases satisfying presence of these patterns in individual

classes, i.e., class for which BN and LDA were trained (addressed as “Normal”) in

the graph and the Anomaly class. For example, the number of instances that belongs

to the “Normal” and “Anomaly” classes in the test set of this data set for the pattern:

Block of affere[yes] were 11 and 5 respectively (the first bar). Similarly for the pat-

tern: Regeneration of[yes] distribution per class was 0 and 4 (the second bar). Based

on two patterns mined by LDA on this data set, LDA will result in FP = 11. However

for Bayesian approach it will be FP = 0.

On similar lines as described for Figure 4.18a, in Figure 4.18b we present common

patterns appearing in both COM and LDA approaches on KDD Cup* data set (a small

randomized data set formed original KDD Cup data set discussed in Section 4.3.4.2).

The graph in Fig. 4.18c shows the relationship between TP and FP with an increase

in the number of patterns discovered from both BN and LDA techniques. The Top-6

low probable patterns were taken from the respective approaches and were tested on

KDD Cup* . The graph shows the (TP, FP) achieved on each pattern when applied

on test data for both LDA (indicated by blue dashed line) and BN (indicated by red

line). Figure 4.18c shows that there was an increase in FP for LDA, which means that

LDA marked all the normal instances as anomalies. On the other hand, BN performed

reasonably well.
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(a) Shows how relational dependency between variables helped reducing FP (third

bar) as compared to when features were treated independently (first and second bar)

(b) Shows how relational dependency between variables helped reducing FP (third

bar) as compared to when features were treated independently (first and second bar)

(c) Comparison of LDA and COM approach

Figure 4.18: Analysis and on COM and LDA approaches for outlier mining
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4.4 Summary and Conclusion

In this chapter we proposed two robust probabilistic association rules which are based

on causal knowledge captured by a Bayesian network (BN) to mine anomalous patterns

for the domain. We extracted patterns which are examples of either low support & high

confidence or high support & low confidence events. Extracted patterns were then tested

on new data points to discover anomalies. We prove the credibility of our approach over

existing well known outlier detection techniques by taking well known benchmark data

sets and demonstrate that our approach is able to identify anomalies in high precision

and recall. In addition, our approach can be used to discover contextual information

from the mined anomalies, which other techniques often fail to do so.



Chapter 5

Mining Anomalies Using Hybrid
Bayesian Networks

This chapter is based on following publication:

1. Mining Causal Outliers Using Gaussian Bayesian Networks

Sakshi Babbar and Sanjay Chawla

In Proceedings of the IEEE 24th International Conference on Tools

with Artificial Intelligence,

Athens, Greece, 2012, pp. 97-104
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5.1 Introduction

Outliers are often characterized as entities which are “rare”, “isolated,” “distant from

their nearest neighbors,” or “low probability events.” We first address to the questions:

“how fair is to label every rare, isolated observation as an outlier?” and, “what are the

signatures of outliers which makes them different from norm?”. We start by giving a

few examples which highlight the limitation of the standard orthodoxy in outlier detec-

tion.

Example 1: The following example is inspired from Griffith and Tennenbaum [35].

Suppose a fair coin is flipped four times. There are sixteen different equally likely pos-

sibilities. However the following two events: HHHH and TTTT, appear more surprising

than the rest, even though each is equally like to appear as any other combination. Per-

haps, implicitly, we were conditioned to expect an event with at least one head and one

tail in the sequence. In which case the probability of observing such an event is 7
8 vis-a-

vis 1
8 for a pure sequence. Thus an event being classified as an outlier is often dependent

on our implicit conditioning about the event rather than just low probabilities.

Example 2: Now consider another synthetic example which highlights the pos-

sible relationship between peoples income and their expenditure for a certain region

introduced in Chapter 1. This small but intuitive example elaborate on why few, iso-

lated observations may not be anomalies whereas, few observations lying near a dense

cluster may be interesting anomalies. In Figure 5.1, we present the two dimensional

sample data explaining this scenario. For the discussion on this example, we assume

variables income and expenditure are real valued. The X-axis in the figure represents

income while, Y-axis expenditure. As observed, data points are roughly clustered. We

name these clusters as C1, C2, C3, C4 and C5. Dense cluster C1 indicates that in a

given region, high percentage of people spends in limit of what they earn. Unlike C1,

small probability of people spends as much as they earn, cluster C2. Contrary to this,

there are people who have high income but they choose to spend low, cluster C3 indi-

cates such situation. Finally, cluster C4 and C5 indicate situation where expenditure is

higher than that of income. If objective is find outliers from sample data represented

in Figure 5.1 using outlier detection techniques such as, distance [47] and density[17]

based, then most probably these techniques may discover data points from clusters C2
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Figure 5.1: A synthetic example where X-axis represent income while Y-axis expendi-
ture

and C3 as potential outliers. Since data points forming these clusters are isolated and far

away from their k nearest neighbors and so are easily detectable as candidate outliers.

Discovering outliers from clusters C2 and C3 may be of least interest. Since these data

points indicate common knowledge that people spending is bounded by their income.

However, data points in clusters C4 and C5 are possibly more interesting as they repre-

sent situation where expenditure is higher income. This small example motivates us to

consider criteria other than for mining real outliers.

The discussion above using examples suggests that outliers are not just unlikely

events; perhaps they have some additional characteristics which make them different

from the norm but also from the potentially false outliers. An important characteristic

which makes an observation a real outlier is its nature of violating common knowledge

of the domain under investigation. In Example 2, by common knowledge we know there

is a relational dependency between income and expenditure. Usually it is uncommon

to spend more than one earns. Therefore, labelling a high income and high expenditure

event as an outlier is not interesting whereas a low income and high expenditure event

is more interesting. Hence in order to discover true anomalies, causal semantic knowl-

edge underlying the domain is important in the discovery process. Causal semantic

knowledge refers to understanding the dependencies that exist between features of the
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domain under examination.

In this chapter, we propose two techniques for mining interesting anomalies for

application domains containing either set of all continuous variables or variables of

different data types, i.e., combination of discrete and numerical variables on grounds

of domain knowledge captured by a Gaussian Bayesian network (GBN for short) and

Hybrid Bayesian network (HBN for short) respectively. Recall from Chapter 3, Gaus-

sian Bayesian network is a kind of Bayesian network over continuous variables and

whose parameters are defined using a probability density function. In contrast, Hybrid

Bayesian network is a kind of BN which provide an ideal representation for captur-

ing knowledge of the problem domain consisting of variables of different nature. The

advantage of using Gaussian and Hybrid Bayesian networks over a standard Bayesian

networks are two-fold. First, they provide capability of being useful in wider applica-

tions in comparison to a standard Bayesian network which may need discretization of

continuous variables in order to use it. Second, by avoiding discretization, we could

model domain knowledge using its true distribution of data.

In order to mine anomalies using Gaussian or Hybrid Bayesian framework, we ex-

ploited each independent factor induced by conditional independence property in BN

defined by Equation 3.21 defined in Chapter 3 of this thesis. That is, we treated ev-

ery factor, P(X | Pa(X)) captured by the Bayesian graph for revealing those data points

which violate the cause-effect relation between parents and its child. In Figure 5.2 we

present a revised version of Hybrid Bayesian network discussed in of Chapter 3 where

three independent sets of parent(s)-child relationships are highlighted using a dotted,

thick and a dashed arrows. We call these independent factors as “causal subspaces” (

CS for short). To represent a causal subspace, we use the notation, (X→ C ) where the

left hand side of arrow are the parents nodes of child node C presented on right hand

side of arrow (similar concept of causal subspace was also introduced in Chapter 4).

For example, three causal subspaces encoded in the model represented in Figure 5.2

are: (Employment→ Lifestyle), (Employment, Income→ Expenditure) and (Income,

Expenditure → Mortgage). The reasons of exploiting each causal subspace for min-

ing anomalies are multiple. First, every independent causal relationship can provide

insights on meaning and degree of correlation among variables by which at a micro

level, high and low probable events can easily be detected. Second, by studying each

independent causal relationship, we can causally explain what makes an event nor-

mal/anomalous. Below we highlight two important characteristics of our definition of a
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Figure 5.2: A synthetic Hybrid Bayesian network showing three causal subspaces high-
lighted by a dotted, thick and a dashed directed arrows

causal subspaces that will help understanding our methodology.

1. A child node in some causal subspace can be a parent node in another causal

subspace. Similarly, a parent node in some causal subspace could be a child node

in another causal subspace. For example in Figure 5.2, Expenditure is the child

node in causal subspace (Employment, Income→ Expenditure) while it becomes

parent node in causal subspace (Income, Expenditure→Mortgage).

2. In any causal subspace there could exist more than one parent node while, there

can be only one child node.

For now we assume that we are given graphical layout of Bayesian network and

set of parameters associated with each node. Based on this framework, we propose to

apply causal reasoning in each CS for every test case in order to check if it violates

the encoded causal semantic knowledge. And if causal knowledge is violated then, data

point is considered outlier where concerned causal subspace explains the reason of out-

lierness. We explain using a small example how causal reasoning can help evaluating a

data point, refer BN in Figure 5.3. Two nodes represent Income and Expenditure, and

direction of arrow indicates that expenditure is causally dependent on income. Here

we assume that parameters, mean and standard deviation associated with these nodes

capture trend of relationship of data samples clustered in C1, C2 and C3 of Figure 5.3.

Given this information, graph in Figure 5.4 shows pattern of mean in expenditure given

Income Expenditure

Figure 5.3: Bayesian network on a income-expenditure example

income using causal inference in Bayesian network shown in Fig. 5.3. The X-axis
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Figure 5.4: Shows pattern of mean in expenditure (Y-axis) given income (X-axis) using
causal inference in Bayesian network

of the graph represents income in thousands whereas; change in mean of expenditure

given income is reflected by the Y-axis. A trend line clearly shows how mean at ex-

penditure grows with increase in income. However, more interesting is by making use

of using causal inference we can clearly infer expected mean on expenditure, given in-

come through this graph. For example if income is around 80K, mean on expenditure

is expected to center around 45K. In order to decide if a test case t = {Income = i,

Expenditure = e} is anomaly, we propose to apply causal inference by entering known

value in income (i.e., i in the testcase t) and measure how far given value of expenditure

(i.e., e in the testcase) is from the change in mean at expenditure. Higher the deviation,

higher the chances of a test case to be an anomaly.

5.1.1 Problem Statement

The problems that we address in this chapter are as follows:

1. What makes an outlier really interesting? What are the key characteristics of an

interesting anomaly which differentiate it from the false outlier?

2. Given a data set, find those data points which under domain knowledge are low

probable to occur.
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3. From set of discovered data points as anomalies, explain why they are unusual.

To solve the above problems, we propose integration of domain knowledge in the

discovering process. We show that outliers that those events which violate common

knowledge of the domain. Using an appropriate Bayesian network to capture domain

knowledge, we present an algorithm which not only identify outliers, but also explain

their anomalous nature.

5.1.2 Contributions

In this chapter we make following contributions:

1. We present a measure to discover outliers in numerical data sets and data sets

containing mixture of data types on the grounds of domain knowledge captured

by a Bayesian framework. Our technique not only identifies real outliers, but also

presents subset of attributes that explains what makes an event suspicious. Such

explanation contributes to a vital knowledge for the domain by which domain can

learn and establish more improved system against anomalies.

2. By exploiting parametric information encoded with every node in the Bayesian

framework and causal inference, we propose approaches which can mine anoma-

lies from given data sets with high accuracy.

5.1.3 Notations and Basic Concepts

In this chapter all notations corresponding to Bayesian networks are followed from

Chapter 3. However, notations specific to this chapter are summarized in Table 5.1.
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Notation Description
d A data point
Xτ Set of discrete nodes in BN
X⋄ Set of continuous nodes in BN
CS Causal subspaces in BN
|CS| Total number of causal subspaces in BN
CS⋄ Causal subspaces involving only discrete nodes
CSτ Causal subspaces involving discrete and continuous nodes

Table 5.1: Notations and basic concepts

The chapter is organised as follows. In Section 5.2, we present our detailed method-

ology. Our experiments and analysis on results are explained in Section 5.3. Finally, in

Section 5.4 we conclude the chapter. Table 5.1 lists all notations used in this chapter.

5.2 Anomaly Detection Using Gaussian & Hybrid Bayesian

Networks

Recall from Chapter 3 that in Gaussian Bayesian framework, each independent variable

is represented by a pair (µ , σ ), where µ and σ represents variables mean and standard

deviation. Whereas, mean of a dependent variable depends linearly on its parents and

is represented by the Equation 3.27 defined in Chapter 3. On Bayesian inference, each

node is parameterized with a new information in the form a pair (µ ′, σ ′) where, µ ′

and σ ′ represents mean and standard deviation indicating how nodes are influenced by

each other in the network. Likewise in Hybrid Bayesian networks, after inference each

node is represented by a mean and standard deviation. However, the methodology of

computing mean and standard deviation on a node is computed in different ways for

two different setting of Bayesian framework (refer Chapter 3).

We assume throughout this section that Bayesian graphical structure1 and associated

parameters are given. In practice, to find if a data point d is anomalous, we adopted the

following strategy: in every causal subspace, we apply causal inference by entering

known observations in parent nodes which in result reveals expected mean and variance

at the child node.

In other words, if we wish to know whether the causal relationship, (X = xi → C

1we refer Gaussian and Hybrid Bayesian models as Bayesian networks unless not stated explicitly in
this chapter
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= c j) holds for the data point d then, c j should center around µC (mean at C) after

entering the evidence X = xi. In order to compute deviation between expectation and

mean computed after inference, we propose to use Z-score test. A Z-score is a statistical

measure to compute how far a data point is from the mean. Higher the Z-score, more

likely are the chances for a data point to be generated by a different mechanism and

hence, high probability of being an outlier. Equation 5.1 explains how Z-score for a

child node C at every causal subspace i is computed.

Zscore(CCSi) = (Cd
CSi
−µCCSi

)/σCCSi
(5.1)

Where notation :

Cd
CSi

: refers to value of child node C of ith causal subspace in data point d

µCCSi
: mean at child node C of ith causal subspace after inference

σCCSi
: standard deviation at child node C of ith causal subspace

Since our aim is to discover causal outliers, so we investigated every ith causal

subspace and entered as evidence known values in the parent nodes which on principle

of causal inference resulted in an expected mean at child node, represented by µCcsi
in

Equation 5.1. Based on causal semantics of ith causal subspace, value of child node in

the data point represented by Cd
CSi

in Equation 5.1 should center around mean computed

after inference which is µCCSi
.

We now explain our methodology on income-expenditure example. Using Fig-

ure 5.5 we show how causal inference in BN represented by Figure 5.3 together with

Equation 5.1 be used in order to discover those data points which violate causal seman-

tic. For this purpose, we created two sample data sets for this example, i.e., sample data

set 1 and sample data set 2. Value of income in both these data sets is same while, few

abnormal values for feature expenditure were created against income in the sample data

2. The X-axis of the graph in Figure 5.5 represents mean on expenditure calculated af-

ter entering known value in income given by the sample data set using causal inference.

On the other hand, Y-axis indicates Z-score computed using Equation 5.1 on values of

expenditure present in the given sample data sets. Pattern of Z-scores achieved on two

sample data sets are shown by a dashed and a thick line.

Clearly for sample data set 1 (thick line), Z-score computed on expenditure is very

low for every test case belonging to this data set. Whereas, for sample data set 2,



CHAPTER 5. MINING ANOMALIES USING HYBRID BAYESIAN NETWORKS123

1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

Mean on expenditure

Z−
sc

or
e

 

 

sample data set 1 sample data set 2

Figure 5.5: In comparison to sample data set 1, sample data set 2 carries two anomalies
indicated by 4th and 6th data points.

indicated by a dashed line, Z-score computed for two test points namely, fourth and

sixth is quite high which shows these data points do not capture intended pattern of

relationship between income and expenditure. Perhaps these data points violate causal

relationship and hence are outliers. Since the actual value corresponding to a Z-score

signifies how far a data point is from mean regardless of whether value is below or above

mean, i.e., negative or positive so, we used absolute value of Z-score in Equation 5.1.

After computing Z-score at every ith causal subspace, we added all Z-scores to form a

score for the data point d, refer Equation 5.2. Where |CS| is the total number of causal

subspaces present in the BN. And, later these scores are sorted. Top n high scored

test cases are treated as potential causal outliers. To investigate on domain specific

anomalous causal subspaces for discovered top n outliers, we simply study their Z-

score on every causal subspace. A substantially higher Z-score explains the source of

anomaly.

score(d) =
|CS|

∑
i=1

Zscore(CCSi) (5.2)

This simple example is a case of pure Gaussian setting. However, in Hybrid Bayesian

networks, there can exist any number of discrete and continuous variables connected in
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an arbitrary way. Such an environment results in a complex setting where variables

in each causal subspaces needs to be analysed for their data types before applying the

process of anomaly detection. Consider a HBN and let it consist of set of variables X

= {X1, X2,..., Xn} be partition into set of discrete node (represented by X⋄) and, the

set of continuous nodes ( represented by Xτ ). Then for each Xi ∈ X⋄ in the model

there exist a conditional probability distribution whereas, each X j ∈ Xτ is defined using

probability density function. Like in the case of Gaussian BNs, we exploited paramet-

ric information associated with each CS in the HBN model to reveal data points which

violates causal relationship using causal inference. Interestingly, in HBN there could

exist following three types of relationships among variables depending upon their data

types.

1. A pure discrete case: An environment where discrete parent nodes are connected

to a discrete child node. We use notation X⋄ to represent set of discrete nodes

involved in a pure discrete causal subspaces. Total number of pure discrete causal

subspaces is denoted by |CS⋄|. An example of CS⋄ in Figure 5.2 is, (Employment

→ Lifestyle).

2. A mixture of discrete and continuous case: A case where number of discrete and

continuous parents are linked to a continuous child node. Such causal subspaces

are defined using notation CSτ , and |CSτ | is used to represent total number of

causal spaces involving mixture of variables. Causal subspace, (Employment,

Income → Expenditure) in Figure 5.2 contains a one discrete variables while,

there are two continuous variables.

3. A pure continuous case: Where a child node is conditioned on one or more

continuous parents. We use common notation of CSτ to represent causal spaces

involving continuous case. One example of this case is, (Income, Expenditure→
Mortgage).

For a causal subspace containing all discrete variables, we used methodology based

on two probabilistic rules (R1 and R2) presented in Chapter 4. However, there exist

few limitations in the parameter minsupp (minimum support) used in definition of R1.

Below we present several improvements over definition of minsupp parameter.

1. There exist a limitation in situation when for all xi ∈ Val(X), the P(X = xi) is

equal. That is, the case where for all xi ∈ Val(X), P(X = xi) = 1
|Val(X)| . It would
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be unfair to treat maxsupp with the same probability and as minsupp. We propose

that in such cases minsupp parameter should be treated as null.

2. Based on definition of minsupp parameter, there can always be only one such state

xi for which minsupp(X = xi) exist. However, in case of high entropy, there could

exist more than one state with equally low probability of occurrence. In order

to consider more than one low probable state, we propose use of a common low

support threshold for all the parent nodes in the network. For example, minsupp

set to 10% will consider all states of a variable occurring with less than 10%

probability.

Based on the definition of rules R1 and R2 described in Chapter 4 of this thesis and

modifications made in minsupp parameter defined above, we exploited each discrete

causal subspace using rules. Let in any CSi ∈ CS⋄ there exist r anomalous patterns, then

score of r patterns in CSi is formed using Equation 5.3. The score (Score⋄ in equation) is

computed by multiplying conditional probability (confidence) with the prior probability

(support). Reason of using logarithm is discussed shortly. After computing score at

each causal subspace, all scores are added to form a combine score for all discrete

causal subspaces encoded in the model for a test point d, refer Equation 5.4.

Score⋄(CSi)(i ∈ CS⋄) = log
r

∑
k = 1

P(C|Pa(C))P(Pa(C)) (5.3)

where C and Pa(C) ∈ X⋄

Score⋄(dCS⋄) =
|CS|⋄
∑
l=1

Score⋄(CSl) (5.4)

For causal subspace with mixture of data types, we resort to concept of Z-sore.

However, Z-score at every child node C ∈ Xτ in each CSτ of HBN is computed using

Equation 5.5 instead of Equation 5.1.

Zscoreτ(CS j)( j ∈ CSτ ) =


log(1−

Cd
CSτ j
−µCCSτ j

σCCSτ j

) if
Cd

CSτ j
−µCCSτ j

σCCSτ j

< 0

log
Cd

CSτ j
−µCCSτ j

σCCSτ j

if
Cd

CSτ j
−µCCSτ j

σCCSτ j

> 0

(5.5)
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Scoreτ(dCSτ ) =
|CSτ |

∑
o=1

Zscoreτ(CSo) (5.6)

After computing Zscoreτ at every continuous child node in CSτ appearing in test point

d, all scores are added to form a combine score, refer Equation 5.6. The overall score

of a test point d is computed by adding scores from Equation 5.4 and Equation 5.6 as

represented by Equation 5.7. The logarithm function is used in Equations 5.3 and 5.5

so as to bring the combined score in one scale. In a discrete framework, Equation 5.4

will yield result in the range of [0-1] if logarithm function is not used. Similarly, scale

of Z-score (Equation 5.5) will range between [-3σ , +3σ ] in the absence of logarithm

function. Hence to normalize the score, we used logarithmic function. For a given test

data, scores of each test point is computed using Equation 5.7. Later, scores obtained

are sorted. Top n high scored test cases are treated as anomalies. To investigate on

explanation of discovered top n anomalies, we simply study their score computed by

Equations 5.3 and 5.5. A positive score computed in Equations 5.3 explains presence

of anomalous pattern existing among discrete variables of the test case whereas, a sub-

stantially higher Z-score computed using Equation 5.5 describe the source of anomaly

in a continuous framework.

Score(d) = Score⋄(dCS⋄)+Scoreτ(dCSτ ) (5.7)

5.2.1 Algorithm

Algorithm 2 describes procedure of mining anomalies in Gaussian and Hybrid Bayesian

setting. We call our algorithm COMGN which stands for causal outlier mining in Gaus-

sian networks.

The computational complexity of our algorithm COMGN is governed by two main

factors: (1) Size of the test data and, (2) Inference in GBN or HBN. The problem of

inference in BN is NP-hard [48], and therefore it probably requires exponential time

in the worst case. However, in practice strategies such as variable elimination method

implemented via message passing technique can tackle real-world applications very ef-

fectively. In particular, for efficient inference process, intermediate factors in a Gaussian

networks can be described compactly using a simple parametric representation called

the canonical form which is closed under basic inference operations allowing inference
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process to be define using simple data structures [48]. Intuitively, in our approach, we

are not performing very complex inference of the form P(C | Z) where, Z represents set

of variables other than parent variables of C which may require complex marginaliza-

tion operations. Instead, we are using very simple inference of the form P(C | Pa(C))

where, Pa(C) define parents of child node C.

Algorithm 2 COMGN
Input: BN, Bayesian network (GBN or HBN);
minsupp, minimum support threshold;
minconf, minimum confidence;
maxconf, maximum confidence;
n, number of outliers;
D, test data;

1: for (each d in D) do
2: while (i < |CS|) do
3: if (CSi ∈CS⋄) then
4: Compute Score⋄(CSi) using Equation 5.4
5: else
6: if (CSi ∈CSτ) then
7: Compute Scoreτ(CSi) using Equation 5.6
8: end if
9: end if

10: i = i+1
11: end while
12: Compute Score(d) using Equation 5.7
13: end for
14: Out put top n outliers

5.3 Experiments, Results and Discussion

In this section we report on experiments that we carried out in order to mine anomalies

present in the data set using Gaussian and Hybrid Bayesian framework.

5.3.1 Experimental Setup and Data sets

The prerequisite for our approach is the need of Bayesian models which can reveal

causation that exist in a domain. Recall from Chapter 3 that Bayesian modeling can be
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achieved by either consulting domain experts or using learning algorithms. In our work,

we used learning algorithms in order to learn Bayesian networks. We used two structure

learning packages in R namely Deal [32] and Bnlearn [62]. Deal package can learn

structure from data set containing mixture of data types whereas; Bnlearn offers several

algorithms for learning structure from a pure numerical data set. We also used Bayes

Net Toolbox [42] in Matlab for the purpose of coding. For every data set we used for

experiments, training and testing framework was designed where, the training set was

used for learning Bayesian models, and test set for evaluation. The following protocol

was adopted for designing such setting for each data set used in our experiments five

times. The process is also summarized in Figure 5.6.

1. Given data set was divided into 80% training set and 20% test set.

2. Bayesian model was learnt using training set.

3. Test data was pre-processed to create anomalies artificially by taking following

steps:

• The test set was randomly partitioned into two sets: setCreateAnomalies,

which contained 5% of records from the test set and rest of the records

where grouped in a set called setNormal.

• Further, for each data point in setCreateAnomalies, we randomly chose m

child nodes. For a every discrete child node selected, we replaced its current

state with its randomly chosen state. However, for a continuous child node,

we added to it, its mean computed from the test set. The converted data

points were grouped under a set called setAnomalies.

• The test data was recreated by the union of sets: setAnomalies and setNor-

mal.

5.3.1.1 Data sets

Table 5.2 summarizes list of data sets used in our experiments. The Column 1 of the

table presents data set names. To distinguish between a numerical data sets and data

sets containing mixture of data types (discrete and continuous variables), we lists real

valued data set names using a simple text whereas, names of other set of data sets are
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Figure 5.6: Experimental setup
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Data set (R x D)
Body fat (253 x 15)
Ecoli (153 x 7)
Breast cancer (356 x 32)
Sonar (208 x 60)
Slump (103 x 10)
Musk (6598 x 169)
Spectometer (531 x 103)
Boston (506 x 13)
Waveform (5000 x 40)
Heart-C (274 x 12)
Hypothyroid (3774 x 28)
NHL basket ball (548 x 8)
KDD Cup (141480 x 41)

Table 5.2: Description of data sets

represented using an italic notation. The notation (R x D) in Column 2 of the table

states that there were R number of instances and D number of features present in the

data set. All data sets except NHL basket ball, Body fat and Boston were taken from

UCI repository [4]. NHL basket ball was taken from [1]. And data sets, Body fat and

Boston from CMU Statlib repository [2].

For KDD Cup data set in particular, we did not create anomalies artificially because

for this data set we knew if particular instance is anomaly. We trained Bayesian model

on 80% normal instances and rest 20% normal records were integrated with attacks to

form a test set. This data set contains 22 different attack types. In Appendix A we

present list of these attack.

5.3.2 Results

We first present Bayesian networks learnt over few data sets. Then, results achieved

on various data sets are reported. We also present few subspaces discovered by algo-

rithm COMGN on KDD Cup data set which explains why the discovered data point is

anomaly. Thereafter, we present a detailed examination of 22 attack types present in

KDD Cup data set to show how our technique responded on individual attack type.



CHAPTER 5. MINING ANOMALIES USING HYBRID BAYESIAN NETWORKS131

5.3.2.1 Bayesian networks learnt

In Figures 5.7, 5.8, 5.9 and 5.10 we show Bayesian networks learnt over four data sets

namely, Ecoli, Boston, NHL basket ball and KDD Cup. Names given to nodes encoded

in all Bayesian networks are same as defined in respective data sets. In Appendix A,

description on these variables are given. In order to distinguish discrete variables from

continuous variables in the model, we followed the convention of representing a discrete

variable using a rounded box while, continuous variable using a square box. For few

data sets, for example, KDD Cup out of total 41 attributes (refer Table 5.2) 33 attributes

were found connected in its Bayesian structure. This implies, there was no relation

among remaining 8 attributes with those 33 attributes modeled in the network.

5.3.2.2 Experimental evaluation

We compared performance of our technique with following two classical outlier detec-

tion techniques.

1. kth-NN (kth nearest neighbour) [47] outlier detection technique with parameter k

set to 5. In order to make it applicable for a training/testing setting, we changed

the method sightly. Instead of scorning a test point on the basis of its deviation

from all other data points belonging to the test data, we scored a data point to

extent of which it deviates from the training set. Given a training data set, in

order to use the 5th to determine the degree to which a test point is anomalous,

we simply use the distance from the point to its 5th in the training set. A larger

distance indicates a more anomalous point

2. Local outlier Factor (LOF) [17] anomaly detection. LOF was also modified in

the similar way as kth-NN. The LOF of each test point is computed with respect

to the training data set in order to score the point.

Table 5.3 summarizes result we achieved on thirteen data sets using COMGN, kth-

NN and LOF techniques. Column 1 lists name of the data sets. In column 2 of the

table we present, average precision/recall achieved by COMGN. Following columns

list results obtained using kth-NN and LOF approaches over same data sets respectively.

As indicated by results, LOF did not perform well on almost all data sets. The kth-

NN results especially for Ecoli and Breast cancer data sets were not encouraging. In

comparison to these techniques our approach worked reasonably well on almost all
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data sets giving accuracy of more than 75%. We further investigated on why kth-NN

and LOF performed so poorly on few data sets in comparison to COMGN which we

will discuss in the next section.

Alm1

Gvh

McgAlm2

Figure 5.7: Bayesian network on Ecoli data set
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Figure 5.8: Bayesian network on Boston data set
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Reb-p-g

Position

Pts-p-g Blk-p-g Stl-p-g

Asts-p-g

Figure 5.9: Bayesian network on NHL basket ball data set
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Figure 5.10: Bayesian network on KDD Cup data set
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Data sets Avg. precision/recall
COMGN kth-NN LOF

Body fat .76 .72 .56
Ecoli .93 .38 .38
Breast cancer .79 .47 0
Sonar .90 1 .82
Slump .86 .86 .72
Musk .77 .66 .61
Spectometer .82 .60 .61
Boston .67 .82 .56
Waveform .77 .71 .64
Heart-C .82 .69 .52
Hypothyroid .87 .61 .31
NHL basket ball .86 .73 .51
KDD Cup .98 .71 .68

Table 5.3: Result on different data sets achieved using COMGN, kth-NN
and LOF algorithms

5.3.2.3 Analysis on KDD Cup intrusion detection data set

We studied in detail results we achieved on KDD Cup data set to know how our tech-

nique performed on 22 different attack types. The list of 22 attack types and their

quantity in data set is presented in the Appendix A for reference. The configuration of

22 attacks contained in this data set is very imbalanced. For example, 82% of attack

samples belong to attack type Neptune whereas, there are few attacks such as Spy, Perl,

Phf which has less than 5 samples. So, if an anomaly detection technique gives recall

of more than 75% then it would be hard to say about robustness of the approach since

detection of Neptune alone can give high recall. In our work, we studied each attack

type individually to see how our technique performed in detecting them, and to mine

reasons of their anomalous nature.

In Figures 5.11a, 5.11b and 5.12a we present, 13 attacks types for which our tech-

nique succeeded. The X-axis represent attacks while, Y-axis are their number of sam-

ples present in the test set and those discovered by our technique. Each lower bar on

the top of each attack is the total number of samples present in the data set whereas,

upper bar is the discovered number of samples using our approach. In addition to this,

we present insights on false positive, i.e., number of normal instances discovered as

attacks by our technique in Figure 5.12a. Out of 22 attacks, COMGN succeeded on

13 attacks. There were few attack types for example, Teardrop, Warezclient, Nmap and
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Buffer overflow for which recall of our approach was less than 50%, refer Figure 5.12b.

However, for five attacks namely Portsweep, Warezmaster, Pod, Loadmodule and Imap

our technique failed to detect them.

(a) Number of samples of attacks: Back, Satan, Ipsweep and Smurf discovered by
COMGN

(b) Number of samples of attacks: Guesspwd, Rootkit, Land, Ftpwrite, Multihop,
Phf, Spy, Perl discovered by COMGN

Figure 5.11: Performance of COMGN on DOS, U2R, R2L and Probe attack types
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(a) Number of samples of attack: Neptune and normal instances discovered by
COMGN

(b) Number of samples of attacks Teardrop, Warezclient, Nmap and Bufferflow dis-
covered by COMGN

Figure 5.12: Performance of COMGN on DOS, U2R, R2L and Probe attack types and
false positives

5.3.2.4 Anomalous patterns discovered

In Table 5.4 we present two anomalous causal subspaces each for few attack types dis-

covered by our technique. The discovered subspaces explain set of attributes which are

targeted by attacks. For example Table 5.4 reveals the fact that Smurf (attack type) aim
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Attack Anomalous causal subspaces

Neptune
1. Num f ile creations→ Dst host srv serror rate
2. Duration→ Dst host di f f srv rate

Back
1. Flag→ Serror rate
2. Protocol type, Dst host same srv rate→ Di f f srv rate

Satan
1. Dst host srv serror rate, Srv di f f host rate→ Dst host serror rate
2. Protocol type, Dst host same srv rate→ Di f f srv rate

Smurf
1. Di f f srv rate, Dst host same srv rate→ Same srv rate
2. Duration→ Dst host di f f srv rate

Ipsweep
1. Duration→ Hot
2. Loggedin, Src bytes→ Dst bytes

Guesspwd
1. Rerror rate, Dst host serror rate→ Dst host srv rerror rate
2. Protocol type→ Srv count

Rootkit
1. Loggedin, Src bytes→ Dst bytes
2. Flag→ Serror rate

Land
1. Service, Loggedin→ Srv di f f host rate
2. Num f ailed logins→ Num compromised

Ftpwrite
1. Srv count → Dst host srv count
2. Dst host count → Duration

Multihop
1. Num f ile creations→ Num access f iles
2. Protocol type, Dst host same srv rate→ Di f f srv rate

Phf
1. Land, Num f ile creations→ Dst host srv di f f host rate
2. Flag→ Serror rate

Spy
1. Dst host count → Dst host rerror rate
2. Protocol type, Service, Flag→ Loggedin

Perl
1. Flag→ Serror rate
2. Protocol type, Dst host same srv rate→ Di f f srv rate

Table 5.4: Domain specific anomalous causal subspaces discovered for various attacks
in KDD Cup data set

for attributes, Numshell and Hot. Interestingly, few anomalous causal subspaces for at-

tacks Neptune, Smurf and Satan were same as discovered by COM approach discussed

in Chapter 4.
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5.3.3 Discussion

Our experiments were designed to answer the following questions: (1) what are the

key characteristics of an outlier which makes it really interesting? (2) is there any way

which can ascertain quality of the reported outlier? and, (3) can we explain anomalies?.

The first question is addressed by the discussion we carried in the Introduction sec-

tion and by the results given in Table 5.3. We discussed that outliers are not only “rare”,

“isolated” data points in the feature space, but are data points which violates the causal

relationships. Distance (for example kth-NN) and density (for example LOF) based

approaches failed to give good accuracy in discovering anomalies. These approaches

assume that outliers are isolated entities residing far away from their nearest neighbors

or from a dense cluster. Such techniques consider each feature of the problem domain

independent of each other. However, we claim that outliers are not just arbitrary “rare”,

“isolated” and low probable events, but are data points that suggest existence of unex-

pected causal structure which under domain knowledge is unlikely to appear.

In Figures 5.13 and 5.14 we present visualization of data points in training set, test

and outlier set created for data sets Ecoli and Breast Cancer. We used PCA to re-

duce dimensionality of these data sets for the graphical representation. Figures strongly

demonstrate the fact why kth-NN and LOF techniques did not perform well on these

data sets. Outliers for these data sets are present in the dense cluster of training set

by which kth-NN technique and LOF approaches failed to discover them. However,

our algorithm worked well on these data sets since our approach works on the bases of

relationship among attributes rather than treating them independent of each other. To

prove this we show, example of outlier points in Ecoli data set which violated the causal

semantic and was discovered successfully by our technique. In Figure 5.15, two dimen-

sional visualization is shown for one causal subspace (Gvh → Mcg), refer Bayesian

network on this data set in Figure 5.16. The figure explains the fact that outlier data

points do not follow the trend of causal semantic between variables Gvh and Mcg and

hence were detectable using our approach. Similar scenario is presented in Figure 5.16

where outlier data points in causal subspace (Gvh, Alm2→ Alm1) are shown. This im-

plies for mining interesting anomalies it is important to consider the causal knowledge

that exist among variables.

We addressed to the second question by proposing integration of domain knowledge

using Bayesian networks in the discovering process. Domain knowledge helps quantify
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Figure 5.13: 2D visualization of Ecoli data set. Data points indicated by symbols +, .
and * represents training data, test data and outliers respectively
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Figure 5.14: 2D visualization of Breast cancer data set. Data points indicated by sym-
bols +, . and * represents training data, test data and outliers respectively
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Figure 5.15: 2D visualization of Ecoli data set in causal subspace (Gvh→Mcg). Data
points indicated by symbols +, . and * represents training data, test data and outliers
respectively
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Figure 5.16: 3D visualization of Ecoli data set in causal subspace (Gvh, Alm2 →
Alm1). Data points indicated by symbols +, . and * represents training data, test data
and outliers respectively
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the quality of the reported outlier. The results from Table 5.3 do not imply that our

method can do best on an arbitrary data set. What the results do imply is that if the goal

is to choose to the method which can claim mining of useful and interesting anomalies

for the users then, most likely our approach is the best choice. Reason being that our ap-

proach mines anomalies based on the ground knowledge through which interestingness

of the outlier can be reasoned.

Discovering anomalies from data is not itself a critical task. Rather more challeng-

ing is to provide insights on why discovered data point is an anomaly. An explanation

capability is important to be integrated within discovery process for several reasons.

First, explanations are needed to justify the recommendation. It increases the con-

fidence and chances of acceptability of the technique in question. Second, through

explanation facility, limitation of technique can be recognized. Third, an explanation

provides insights of domain knowledge which can help develop and maintain a better

environment. The explanation capability of our approach is addressed by the Table 5.4

where we show the important patterns of different attack types. Knowing these patterns,

domain can help designing more robust environment against such malicious activities.

5.4 Summary and Conclusion

We proposed a measure to mine anomalies from data sets containing numerical or com-

bination of discrete and numerical variables based on Gaussian and Hybrid Bayesian

network respectively. Major objective of this work was to show that in order to mine in-

teresting outliers, it is important to consider causality and correlation among attributes

rather than treating them independently in the discovering process. Using causal reason-

ing, we exploited Bayesian structure and parametric information encoded in variables

to uncover potentially strange and suspicions events. We have compared our approach

with two classical outlier detection techniques, and have shown that our approach has

both higher precision and recall. Another novel feature of our approach is that related

to explanation of outliers. Through our approach, reported outlier can be explained on

its anomalous nature which other outlier detection techniques may not.



Chapter 6

Conclusion and Future Work

6.1 Summary of The Research

Han and Kamber [36] defines outlier detection problem as follows: given a set of data

points or objects, find a specific number of objects that are considerably dissimilar,

exceptional and inconsistent with respect to the remaining data. Outliers are often in-

teresting patterns that if found can raise alarms indicating that something unexpected

is occurring in the process which has generated the data. As a consequence, outlier

detection is one of the categories of knowledge discovery and an important research di-

rection. In Chapter 2 we presented an overview of anomaly detection techniques which

are related to or formed foundation of this thesis. We identified that existing studies on

data mining has largely focused on the design of measures and algorithms to identify

outliers in large and high dimensional categorical and numeric databases. However, not

much stress has been given on the interestingness of the reported outlier.

We proposed, in order to discover “real” and “interesting” anomalies, integration of

domain knowledge into discovery process is required. In this thesis, use of Bayesian

networks is proposed to capture domain knowledge. Bayesian networks provided vi-

sualization of causal interactions among attributes that exist in the domain. And by

exploiting these causal interactions, we were able to discover and explain anomalies.

Under Bayesian setting, we defined interesting anomaly as those “data points which

violate the the causal semantic captured via a Bayesian network”.

We proposed solution techniques for anomaly detection in categorical, numerical or

data sets containing mixture of categorical and numeric data values. These techniques

144
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aimed for both identification and explanatory aspect of anomaly discovery.

In Chapter 4 we proposed a novel algorithm which combines the use of Bayesian

network and probabilistic association rules to discover and explain anomalies in cat-

egorical data. The Bayesian network allowed us to organize information in order to

capture both correlation and causality in the feature space, while the probabilistic as-

sociation rules have a structure similar to association mining rules. In particular, we

focused on two types of rules: (i) low support & high confidence and, (ii) high support

& low confidence. New data points which satisfy either one of the two rules condi-

tioned on the Bayesian network were the candidate anomalies. Extensive experiments

performed on well-known benchmark data sets and demonstrated that our approach is

able to identify anomalies in high precision and recall over existing traditional outlier

detection techniques. Moreover, our approach can be used to discover contextual infor-

mation from the mined anomalies, which other techniques often fail to do so.

In Chapter 5 we presented a measure to discover outliers in numerical data sets and

data sets containing mixture of data types on the grounds of domain knowledge captured

by a Gaussian Bayesian network and Hybrid Bayesian network respectively. We first

built a Bayesian network depending upon type of data set given which encoded causal

relationships between attributes and then identified those points as outliers which vio-

late these causal relationships. Several experiments performed confirmed that outliers

identified in this fashion are in some sense “genuine” as they reveal new information

about the underlying data generating process.

In literature of outlier mining, outliers are often identified as data points which are

“rare”, “isolated”, or “far away from their nearest neighbours”. We demonstrated in

Chapter 4 and 5 that meaningful outliers, i.e., outliers which perhaps encode important

or new information are those which violate causal relationships. A critical analysis on

distance based techniques was presented which highlights why distance based criteria

may not be an accurate and effective technique to discover true outliers using real life

examples and data sets. Also, we show why Bayesian approach could discover real

outliers.
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6.2 Future Work

This thesis has proposed a number of powerful techniques of mining interesting anoma-

lies using domain knowledge captured by a Bayesian network. However, there are sev-

eral promising research directions that can be extended from the work presented in this

thesis.

• The suggested approaches for anomaly detection using Bayesian networks in this

thesis are in particular designed for categorical, numerical and data sets con-

taining mixture of data types. However, we can extend application of Bayesian

networks for anomaly detection in temporal data. Murphy [55] defines a tool

for modelling time-series data as Dynamic Bayesian Networks (DBNs). Using

DBNs, inline with current research presented in this thesis, we see potential of

exploring mining and explaining interesting anomalies in time series data.

• Techniques we proposed in this thesis were not applied on very high dimensional

data sets. The maximum dimension we tried was 262. However, approaches

we proposed in Chapter 4 and Chapter 5 can be extended for high dimensions.

Recall from Chapter 4 and Chapter 5 that we considered each causal interaction

independently in Bayesian networks which helped breaking the large, sparse net-

work in small modules. Each module was then exploited using a simple form of

causal inference, P(X | Pa(X)) where Pa(X) is set of parents of variable X which

is always tractable. However, Bayesian structure and parameter learning for high

dimensional data sets may be challenging. To overcome this problem, we suggest

use of dimensionality reduction techniques such as Principal Component Anal-

ysis (PCA) [41] to retain meaningful features and then apply Bayesian structure

learning algorithms [71; 70; 72; 77] to reveal Bayesian modelling.



Appendix A

Description of Bayesian networks

This appendix provides a comprehensive detail about the attributes used in Bayesian

models shown in Chapter 4 and Chapter 5 of this thesis. The description of seven

Bayesian networks namely: Zoo, Statlog, ChestClinic, Ecoli, Boston, NHL basket ball

and KDD Cup intrusion detection are detailed in eight different sections below.
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A.1 Description of Bayesian network built on Zoo Data

set

Zoo data set from [4] contains 17 attributes describing different characteristics of ani-

mals such as number of fins and presence of hair on body. Bayesian structure learnt on

this data set shown in Figure 4.7 of Chapter 4 revealed causal relationship among 11

attributes. Table A.1 describes these 11 feature names, meaning and their data type.

Feature Description Data type
Eggs if animal lays egg nominal
Fins if animal has fins nominal
Legs number of legs nominal
Hair if animal has hair nominal
Tail if animal has tail nominal
Aquatic if its a aquatic animal nominal
Domestic if its a domestic animal nominal
Predator if animal naturally preys nominal
Airborne if animal can be transported nominal
Toothed if animal is flesh eater nominal
Catsize if animal belongs to a cat family nominal

Table A.1: Summary of Zoo data set features
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A.2 Description of Bayesian network built on Statlog

Data set

It is a finical data set from [4] which describes important attributes which are assessed

before granting credit to a person. It contains 21 attributes in total. Bayesian structure

learnt on this data set shown in Figure 4.9 of Chapter 4 revealed causal relationship

among 17 attributes. Table A.2 describes these 4 feature names, meaning and their data

types.

Feature Description Data type
Employment if person is employed nominal
Job Job type of the person nominal
Credit history credit history of the person nominal
Credit amount amount of credit asked nominal
Own telephone if person owns telephone nominal
Property magnitude property owned by the person nominal
Residence since present property since nominal
Other parties other debtors/ guarantors nominal
Housing if person has own or rented house nominal
Foreign worker if person works in foreign nominal
Duration duration in month nominal
Checking status status of existing checking account nominal
Num dependents number of dependents nominal
Age age in years nominal
Existing credits number of existing credits in bank nominal
Personal status if person is married or single nominal
Personal status if person is married or single nominal

Table A.2: Summary of Statlog data set features
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A.3 Description of Nodes in ChestClinic Bayesian net-

work

A simple Bayesian network proposed by [50] is available on Netica Bayesian reposi-

tory [23]. It is useful in diagnosing patients arriving at a clinic. The Bayesian network

is shown in Figure 4.11 of Chapter 4 of this thesis. Table A.3 describes 8 feature names,

meaning and their data types.

Feature Description Data type
Visit to Asia if patient has recently visited Asia nominal
Smoking if person smokes nominal
Tuberculosis if person suffers from tuberculosis nominal
Lung cancer if person suffers from lung cancer nominal
Cancer if person has cancer nominal
Bronchitis if person suffers from Bronchitis nominal
Dyspnea if person has Dyspnea nominal
X-ray X ray report of the person nominal

Table A.3: Summary of nodes in Chestclinic Bayesian network
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A.4 Description of Bayesian network built on Ecoli Data

set

Ecoli data set from [4] contains 8 attributes describing protein localization sites. Bayesian

structure learnt on this data set shown in Figure 5.7 of Chapter 5 revealed causal rela-

tionship among 4 attributes. Table A.4 describes these 4 feature names, meaning and

their data types.

Feature Description Data type
Gvh Von Heijne’s method for signal sequence recogni-

tion
real

Mcg McGeoch’s method for signal sequence recogni-
tion

real

Alm1 score of ALOM membrane spanning region pre-
diction recognition

real

Alm2 score of ALOM program after excluding putative
cleavable signal regions from the sequence

real

Table A.4: Summary of Ecoli data set features
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A.5 Description of Bayesian network built on Boston

Data set

This data set concerns housing values in suburbs of Boston taken from [4]. It contains

14 features. The Bayesian network shown in Figure 5.8 of Chapter 5 on this data set

resulted in a model containing 12 attributes. Table A.5 describes these 12 feature names,

meaning and their data types.

Feature Description Data type
CRIM per captia crime rate by town real

ZN proportion of residential land zoned for lots over real
25,000 sq.ft.

INDUS proportion of non-retail business acres per town real

NOX nitric oxides concentration (parts per 10 million) real

RM average number of rooms per dwelling real

AGE proportion of owner-occupied units built real
prior 1940

DIS weighted distances to five Boston employment real
centres

RAD index of accessibility to radial highways real

TAX full-value property-tax rate per $10,000 real

PTRATIO pupil-teacher ratio by town real

B 1000(Bk -0.63)2 where Bk is the proportion of real
blacks by town

LSTAT percentage of lower status population real

Table A.5: Summary of Boston data set features
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A.6 Description of Bayesian network built on NHL bas-

ket ball Data set

This data set contains information of all the players in the famous basketball league in

the US in year 1997-1998. The Bayesian model on this data set is show in Figure 5.9

of Chapter 5 of this thesis. Table A.6 describes 6 feature names, meaning and their data

types.

Feature Description Data type
Position position of the player nominal

Reb-p-g rebounds per game (usually an indicator of real
defensive ability)

Asts-p-g assists per game real

Pts-p-g points per game real

Blk-p-g blocks per game real

Stl-p-g steals per game real

Table A.6: Summary of NHL basket ball data set features
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A.7 Description of Bayesian network built on KDD Cup

Intrusion Detection Data set

KDD data set from [4] is one of the few publicly available data sets for network-

based anomaly detection systems. It contains 42 (including class label) attributes. The

Bayesian network is shown in Figure 4.10 and Figure 5.10 of Chapter 4 and Chapter 5

respectively of this thesis. Table A.7 describes these features, meaning and their data

types.

Feature Description Data type

Duration duration of the connection continuous

Protocol type type of protocol, e.g., tcp, udp etc. nominal

Service network service on destination nominal

Src bytes number of data bytes from sent continuous

Dst bytes number of data bytes received continuous

Flag normal or error status of the connection nominal

Land 1 if connection is from/to the same nominal

host/port;0 otherwise
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Wrong fragment number of wrong fragments continuous

Urgent number of urgent packets continuous

Count number of connections to the continuous

same host as the current connections

in the past two seconds

Serror rate % of same host connections that have continuous

“SYN” errors

Rerror rate % of same host connections that have continuous

“REJ” errors

Same srv rate % of same host connections to the same continuous

services

Diff srv rate % of same host connections to different continuous

services

Srv count number of connections to the same continuous

service as the current connection

in the past two seconds

Srv serror rate % of same service connections that continuous

have “SYN” errors
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Srv rerror rate % of same service connections that continuous

have “REJ” errors

Srv diff host rate % of same service connections to continuous

different hosts

Hot hot indicators continuous

Num failed logins number of failed login attempts continuous

Loggedin 1 if successful logged in;0 otherwise nominal

Num compromised number of the compromised states continuous

on the destination host

Root shell 1 if root shell is obtained;0 otherwise nominal

Su attempted 1 if “su root” command attempted; nominal

0 otherwise

Num root number of “root” accesses continuous

Num file creations number of file creations continuous
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Num access files number of operations on access control continuous

files

Num outbound cmds number of outbound commands in continuous

an ftp session

Is guest login 1 if the login belongs to the “guest” nominal

list; 0 otherwise an ftp session

Is host login 1 if the login belongs to the “host” nominal

list; 0 otherwise

Same srv rate % of same host connections to continuous

the same services

Diff srv rate % of same host connections to continuous

different services

Srv count number of connections to the same continuous

service as the current connection in the

past two seconds

Srv serror rate % of same service connections that continuous

have “SYN” errors

Srv rerror rate % of same service connections that continuous

have “REJ” errors

Srv diff host rate % of same service connections to continuous

different hosts
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Dst host count number of connections to the same continuous

host in the past 100 connections

Dst host serror rate % of connections that have continuous

“SYN” errors

Dst host rerror rate % of connections that have continuous

“REJ” errors

Dst host same srv rate % of connections to same service continuous

Dst host diff srv rate % of same host connections to continuous

different services

Dst host srv count number of connections to the same continuous

service in the past 100 connections

Dst host srv serror rate % of same service connections that continuous

have “SYN” errors

Dst host srv rerror rate % of same service connections that continuous

have “REJ” errors

Dst host srv diff host rate % of same service connections continuous

to different hosts

Dst host same src port rate % of connections from the same continuous

source port

Table A.7: Summary of KDD Cup intrusion detection data set features
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A.8 Summary of Attacks in KDD Cup Intrusion Detec-

tion Data set

Each record in the data set is labeled either as normal or as an attack. There are 22

different attacks present in this data set. All these types are classified into four major

categories described below.

Probe: The probe attacks are carried out usually for reconnaissance purposes. For in-

stance, a network can be probed to gather information about the types and number

of computers connected to a network, a host can be probed to find out the types

of installed services or the types of user accounts configured on it.

User to Root (U2R): In these types of attacks the aim of the attacker is to gain illegal

access to the super-user or administrative account privileges to abuse resources

or to get access to classified documents.

Denial Of Service (DOS): DOS attacks are targeted at disrupting a normal service or

completely making it unavailable for normal usage.

Remote to Local (R2L): These attacks provide illegal access to an attacker, who has

access to send packets to a remote network, to the local users accounts.

Table A.8 lists attack types in KDD Cup intrusion detection data set, their categorisation

and number of samples present in data set.
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Attack type Category Samples

Satan Probe 906

Ipsweep Probe 651

Portsweep Probe 416

Nmap Probe 158

Buffer overflow U2R 30

Rootkit U2R 10

Loadmodule U2R 9

Perl U2R 3

Neptune DOS 51820

Back DOS 968

Teardrop DOS 918

Smurf DOS 641

Pod DOS 206

Land DOS 19

Warezclient R2L 893

Guess pwd R2L 52

Ftp write R2L 8

Multihop R2L 7

Phy R2L 4

Spy R2L 2

Imap R2L 0

Warezmaster R2L 0

Table A.8: Categories of attacks and their samples present in KDD Cup intrusion de-
tection data set
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