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Abstract

The advances in the field of computer vision have shown great potential for
solving complex problems across a wide range of tasks, and the application
of such techniques could greatly benefit society at large. This thesis focuses
on research in the field of computer vision, particularly addressing the chal-
lenges of computer vision systems in real-world contexts. The research con-
tributions center around three key topics, namely: joint segmentation and
super-resolution, transformer-based models in the video domain, and the
impact of thermal concept drift on the performance of object-detection al-
gorithms. A key objective is to advance the performance and adaptability of
vision systems for real-world application. This work presents several notable
contributions. Firstly, novel frameworks like the Multi-Task Semantic Segmen-
tation and Super-Resolution (MT-SSSR) are introduced, enhancing segmen-
tation through joint optimization and achieving State-of-the-Art accuracy on
challenging datasets like Cityscapes and IDD-Lite. The Semantic Segmenta-
tion Guided Real-World Super-Resolution (SSG-RWSR) framework enhances
real-world super-resolution by incorporating semantic guidance, resulting in
improved perceptual quality and reduced noise, achieving State-of-the-Art re-
sults on real-world images. A comprehensive survey of Video Transformer
(VT) methods is conducted, investigating their potential and limitations in
video analysis, with an emphasis on addressing computational challenges and
high-dimensional redundancy inherent in video data. Additionally, the study
of thermal concept drift introduces the largest thermal dataset for Long-Term
Drift (LTD) analysis, shedding light on weather-related drift factors and their
impact on various vision tasks. A concept drift challenge is also organized,
enabling detailed analysis of object detection under thermal concept drift,
considering key weather conditions and object configurations. Lastly, the
exploration of weather-aware conditioning methods aims to enhance object
detection under thermal concept drift, revealing challenges in effectively mod-
eling weather-aware representations through auxiliary weather prediction.
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Abstract

In conclusion, this thesis makes substantial contributions to the field of
computer vision, advancing our capabilities in semantic segmentation, super-
resolution, transformer-based models for video, and analysis of thermal con-
cept drift. The research not only introduces innovative frameworks but also
provides comprehensive datasets and insightful analyses that collectively en-
rich our understanding and pave the way for more robust and adaptable visual
analysis for real-world applications.
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Resumé

Fremskridtene inden for computer vision-feltet har vist stort potentiale for at
løse komplekse problemer på tværs af en bred vifte af opgaver, og anven-
delsen af sådanne teknikker kunne i høj grad gavne samfundet som helhed.
Denne afhandling fokuserer på forskning inden for computer vision-feltet og
adresserer især udfordringerne ved computer vision-systemer i virkelighed-
snære kontekster. Forskningsbidragene drejer sig om tre centrale emner, nem-
lig: Fælles optimering segmentering og superopløsning, transformer-baserede
modeller i videodomænet og påvirkningen af termisk konceptdrift på ydeev-
nen af objekt-detektions-algoritmer. Et centralt mål er at forbedre ydeevnen og
tilpasningsevnen af visionsystemer til andvendelse i virkelighedsnære kontek-
ster. Denne afhandling præsenterer flere bemærkelsesværdige bidrag. For det
første introduceres nye teknikker som Multi-Task Semantic Segmentation and
Super-Resolution (MT-SSSR), der forbedrer segmenteringen gennem fælles
optimering af segmentering og superopløsning, og opnår State-of-the-Art nø-
jagtighed på de udfordrende datasæt Cityscapes og IDD-Lite. Semantic Seg-
mentation Guided Real-World Super-Resolution (SSG-RWSR) forbedrer virke-
lighedsnær superopløsning ved at inkorporere semantisk vejledning, hvilket
resulterer i forbedret billedkvalitet og reduceret støj, og opnår State-of-the-Art
resultater på virkelige billeder. En omfattende undersøgelse af Video Trans-
former (VT) metoder gennemføres, hvor der fokuseres på deres potentiale
og begrænsninger inden for videoanalyse, med vægt på at tackle beregn-
ingsmæssige udfordringer og redundanse, som er en almen del af videodata.
Derudover introducerer vi det største termiske datasæt til analyse af Langtids
Termisk Drift (LTD), der belyser vejrrelaterede driftsfaktorer og deres effekt på
forskellige computer vision relaterede opgaver. En konkurence inden for kon-
ceptdrift organiseres også, der muliggør detaljeret analyse af objektdetektion
under termisk konceptdrift og tager hensyn til relevante vejrforhold og objek-
tkonfigurationer. Til sidst undersøges vejrafhængige konditioneringsmetoder
for at forbedre objektdetektion under termisk konceptdrift, hvilket afslører
udfordringerne der opstår ved modellering af vejrafhængige repræsentationer
gennem ekstern vejrprædiktion.
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Resumé

I alt sin helhed bidrager denne afhandling betydeligt til computer vision-
feltet ved at udvide vores evner inden for semantisk segmentering, superopløs-
ning, transformer-baserede modeller til video og analyse af termisk koncept-
drift. Forskningen introducerer ikke kun innovative teknikker, men leverer
også omfattende datasæt og indsigtfulde analyser, der samlet set beriger vores
forståelse og baner vejen for mere robust og tilpasningsdygtig visuel analyse
til anvendelse i virkelighedsnære kontekster.
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Overview of work
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Chapter 1

Introduction

Perception of the environment we inhabit is a crucial skill we rely on in our
daily life. Through our senses, we absorb immense volumes of information at
any given moment, which our brains seamlessly process and act upon. Even
when information may be lacking, we are often able to draw on historical and
contextual experiences to make informed judgments, predictions, or decisions.
While we take advantage of all of our senses to understand the world around
us, our vision plays a crucial role in everyday tasks, such as driving a car,
watching a movie, or cooking a meal. For many of us, it is hard to comprehend
what the world would be like if we could not visually perceive it. As such, it
is natural that vision has become an important component when assessing the
quality and efficiency of our work and solutions. To this day, visual inspection
conducted manually by human observers remains a common way to perform
quality control in the industry or for surveillance applications. However, this
is an expensive and non-scalable solution, it typically involves tedious and
redundant work, and the outcome is subjective and reliant on the condition of
the observer.

In the past decades, cameras started to be installed in many different set-
tings, enabling an individual to monitor multiple streams of data thus optimiz-
ing the inspection process. However, this approach remained subjective and
costly while leading to the accumulation of a large amount of video and im-
age data. In essence, video streams provide a continuous flow of information
which by itself does not provide any inherent understanding. To perceive and
comprehend visual information, a vision system must be capable of identify-
ing patterns, textures, and connections, to construct a detailed and nuanced
comprehension of the context and content within a scene. Teaching computers
how to perceive and understand visual data has been a long-standing topic in
computer science, called computer vision. Initially, computer vision systems
relied on humans to manually design the means by which the vision system

3



Chapter 1. Introduction

Fig. 1.1: A schematic overview of the computer vision pipeline from start to end. Depicting image
capture, the resulting stream of information, pattern recognition, and finally object recognition
and contextual understanding.

could extract information. However, with the advent of Machine Learning
(ML), we have been able to design intelligent vision systems which can adjust
their internal parameters and learn directly from data instead of relying on
manually designed components. Modeled after our understanding of the hu-
man brain, Artificial Neural Networks (ANNs) allowed us to develop complex
vision systems capable of fine-grained understanding and reasoning of visual
data. ANNs have surpassed manually designed systems in terms of accuracy
and in some cases even outperformed human accuracy [12, 21]. With the com-
bination of cameras and ANNs, we have effectively created artificial eyes to
observe the world and artificial brains to understand it.

One of the fundamental concepts in the field of computer vision is object
recognition, which enables machines to comprehend and interact with the real
world. At its core, object recognition involves the identification and under-
standing of objects. Two pivotal tasks within the realm of object recognition
are object detection and segmentation. Object detection focuses on locating
instances of specific objects within an image and drawing bounding boxes
around them. This task is crucial for scenarios where precise localization of
objects is necessary, such as in autonomous driving, where detecting pedes-
trians, vehicles, and traffic signs is vital [4, 18]. Segmentation expands this
task, by not only identifying objects but also outlining their exact boundaries
at a pixel level. Thus allowing a more detailed understanding of object shapes
and spatial relationships. This level of granularity is essential in applications
such as medical imaging, where segmenting organs or anomalies aids in di-
agnosis [5, 19]. Object detection, and by extension segmentation, stands as a
cornerstone in the field of computer vision, exemplifying the convergence of
human-like perception. Applying these methods allow us to extract detailed
understanding from visual data streams, lightening the burden of manual hu-
man inspections and augmenting current inspection and analysis pipelines.
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1. Real-World Applications of Computer Vision

However, the transition from research to real-world deployment is far from
trivial, as the dynamic nature of an unconstrained environment poses several
unique challenges and limitations.

1 Real-World Applications of Computer Vision

The performance of computer vision systems is often evaluated on well-
established datasets to facilitate broad and detailed comparisons between
methods. Large-scale datasets such as ImageNet Large-Scale Visual Recog-
nition Challenge (ImageNet) [21], MicroSoft: Common Objects in Context (MS
COCO) [14], and Google Open Images (OpenImages) [13] contain thousands
of images captured with different cameras, under different conditions and are
as such considered a solid baseline benchmark for their respective tasks. These
large-scale datasets are typically scraped from the web, and thus algorithms
trained on this data could be expected to perform well on other web-scraped
datasets [3]. However, the images available on the web are still significantly
different from the images captured by cameras deployed in real-world con-
texts. Consequently, benchmarks on large-scale datasets cannot be expected
to translate to real-world data [3, 24]. That is not to say that performance on
benchmark datasets can be disregarded, they still provide insights into com-
parative performance between algorithms. Furthermore, algorithms trained
on large-scale datasets have been shown to improve performance when trans-
ferring to target domains with limited available training data, compared to
models trained solely on data from the target domain. However, this ben-
efit has shown to decrease as the number of examples in the target domain
increases [11].

Deploying a computer vision algorithm in a real-world environment presents
several challenges that can impact the algorithm’s robustness and accuracy.
Some of these challenges are a direct result of a dynamic environment that
varies widely in lighting conditions, weather conditions, and viewing angles.
The quality of the images also varies greatly depending on the camera used
to capture them. Even though two cameras can produce images that have
the same resolution, bit-depth, or file size, the quality of the resulting image
can vary dramatically due to sensor-induced noise and artifacts. Furthermore,
real-world scenarios can also introduce heavy occlusions and unexpected ob-
ject configurations, making tasks such as object detection and segmentation
increasingly challenging.
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2 Leveraging Continuous Data-streams

Traditional methods in computer vision often involve breaking down the con-
tinuous flow of data captured by visual sensors into individual frames, sub-
sequently processing these frames in a sequential manner [28, 29]. However,
the use of temporal cues from sequences of frames constitutes a transfor-
mative approach that can significantly improve the capabilities of computer
vision systems. The integration of motion cues, contextual cues, and long-
term relationships between objects within a scene introduces a new avenue
for understanding and interpretation [9, 22]. Motion cues inherently capture
the dynamic nature of real-world scenarios, enabling algorithms to discern
movement patterns, trajectories, and interactions. Whereas, contextual cues
offer a broader understanding of the context, enriching the interpretation of
object behaviors within the scene. Long-term relationships established across
the temporal dimension allow for the modeling of intricate dependencies, un-
veiling complex understanding that cannot be represented by a single image.
The introduction of fully attentional models, in particular transformers, has
expanded the capabilities of vision systems to effectively model long-range
relationships across any available dimension. Since their introduction to the
visual domain in 2020 [1, 2], they have shown impressive capabilities for most
vision tasks [7, 10, 15, 20, 23, 26].

3 Concept Drift and Contextual Awareness

Computer vision systems are deployed over longer periods in real-world envi-
ronments and are exposed to gradual and sudden changes in visual appearance
as a result of environmental conditions. As the appearance of objects changes
so does the visual concept that describes them, this is known as concept drift.
Concept drift poses a significant challenge as it can result in unpredictable
behavior of the vision system, which in turn would make it unreliable, and
would require ongoing quality assurance which can be costly [8, 16, 30]. In
tasks such as autonomous driving, medical image analysis, security, and food
inspection, vision systems need to be reliable as a mistake could result in seri-
ous harm. Concept drift induces a change in the underlying data distribution
which changes the statistical properties of the data distribution. This change
may lead to the algorithm’s learned patterns and assumptions becoming out-
dated and less effective [17, 25, 27]. Addressing concept drift is a challenging
problem as it is difficult to detect and estimate the magnitude of the drift,
to adapt to the changes in an informed way. Furthermore, to evaluate the
efficacy of a given adaptation method, labeled data is required to determine
the performance impact of the observed concept drift [17, 27, 30]. The impact
and type of concept drift observed are dependent on the context and sensor
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used to capture the data, making it difficult to directly compare methods.
Moreover, existing datasets also lack rich meta-data that could help identify
parameters that induce drift. Although it would be very difficult to identify
every drift-related parameter, having a contextual understanding might pro-
vide clues that can guide intelligent adaptation. Weather-related parameters
could be pulled from meteorological sensors and used in conjunction with a
vision system [6]. Such a weather-aware system could then learn to relate the
drift in visual appearance to specific weather conditions, effectively allowing
the system to anticipate drift and learn how to address it.

In summary, the synthesis of ANNs and camera technologies have provided
us with artificial eyes and brains that can mimic human perception to a re-
markable extent. These advancements have led to notable achievements in
various vision tasks. Ranging from understanding dynamic motion patterns
to capturing intricate spatial relationships, and detailed scene understanding.
However, the transition from controlled research settings to a dynamic and
unpredictable real-world setting introduces a wide array of unique challenges.
These challenges include the inherent limitations of available labeled data,
handling contextual variations, addressing concept drift, and ensuring robust-
ness in the face of occlusions, and diverse lighting conditions. Raising a crucial
question: how we can effectively train and adapt these systems to perform consistently
and reliably in the intricate and often unpredictable landscapes of the real world?

Fig. 1.2: In this figure an overview of the four main chapters of the thesis can be seen. Each chapter
and sub-topic is visualized as its own box. Arrows between boxes denote an extension of the prior
topic.
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4 Thesis Structure

This thesis is divided into four main chapters, followed by a collection of
papers. In the following chapters, we will discuss methods, datasets, and
evaluation of real-world applications of object detection and segmentation
algorithms.

Chapter 2 Seeing is Segmenting:
Joint Semantic Segmentation and Super-Resolution: Aims to investi-
gate the relationship between input resolution and performance of se-
mantic segmentation. Specifically, focusing on employing super-resolution
as a way to recover lost information from low-resolution images, investi-
gating the symbiotic relationship between super-resolution and seman-
tic segmentation. In this chapter we will discuss and detail how jointly
learning semantic segmentation and super-resolution can improve the
performance of either task and enable semantic segmentation systems to
be used on low-resolution camera feeds.
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Chapter 3 Paying Attention to Motion:
Advancements in Video Transformers: Aims to investigate the advent of
transformers for modeling video. Specifically, focusing on the challenges
posed when processing high-dimensional visual data, such as videos,
and the trends and techniques employed to reduce the computational
burden and handle the vast information redundancy introduced with
video data. We will provide an overview of architectural changes and
methods observed in the literature, and summarize key insights relating
to video transformers as a whole as well as insights directly related to
object-centric tasks.

Chapter 4 Rising Temperatures:
Exploring Thermal Concept Drift:
Aims to investigate the impact of thermal concept drift in long-term
deployments of computer vision systems. Specifically, analyzing the
correlation between performance and drift-inducing factors, evaluat-
ing the performance of thermal object detection under concept drift,
and weather-aware conditioning through a fine-grained auxiliary opti-
mization task impacts the performance of thermal object-detection algo-
rithms. This chapter will detail and discuss the impact of thermal concept
drift on vision tasks (namely, object detection and anomaly detection),
introduce a novel dataset created to facilitate further research into con-
cept drift in the thermal domain, and discuss methods for conditioning
object-detection algorithms to learn weather-aware representations.

Chapter 5 Conclusion: Summarizes and concludes the key findings of this PhD
thesis.
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Chapter 2

Seeing is Segmenting:
Joint Semantic Segmentation
and Super-Resolution

1 Introduction

In the field of computer vision, the acquisition and analysis of visual data form
the foundation for several critical applications, spanning from medical image
analysis [20, 36, 64] and satellite imagery [34, 37, 66] to autonomous vehicles [9,
19, 50, 54] and surveillance systems [4, 22, 39, 71, 83]. A key component of
these tasks is the ability to resolve intricate details from the captured images
which requires a certain level of image fidelity. Thus the resolution of a
given image plays a vital role in computer vision systems. Higher image
resolution translates to enhanced accuracy, finer granularity, and improved
perceptual quality of the visual content. However, this ideal scenario is often
hindered by practical limitations, such as hardware constraints. The size of
the camera sensor, communication bandwidth, compression, etc. all impact
the resolution of data that can be transmitted and/or stored. Low-Resolution
(LR) and compression artifacts tend to negatively impact the performance of
various vision tasks [23, 66], and thus become a restrictive factor deployment
of automated vision systems in real-world applications.

In the field of Super-Resolution (SR) the aim is to intelligently restore the
finer details of LR, thus obtaining a more detailed High-Resolution (HR) ver-
sion of the original image [5, 40, 42, 91]. The rationale underlying SR is
grounded in the belief that augmenting the fidelity of imagery can positively
benefit downstream vision tasks by recovering finer details, enhancing object
boundaries, and facilitating more accurate feature extraction. In simple terms,
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Joint Semantic Segmentation and Super-Resolution

SR can be seen as a reconstruction task where resolution is restored, and neigh-
boring information is employed to infer missing details. Prior research in SR
has shown that it greatly improves other vision tasks when used as a pre-
processing step [14]. However, these advantages are reliant on the assumption
that the HR representation preserves relevant contextual cues for scene in-
terpretation. This prompts an interesting question: can SR be leveraged in a
symbiotic partnership with other vision tasks, surpassing the individual task’s
limitations and amplifying the strengths of both?

To accurately reconstruct high-frequency details, a robust understanding of
the scene’s semantics is crucial to understand underlying patterns for a given
region. Granular scene understanding also plays a significant role in other
vision tasks, such as Semantic Segmentation (SS) [60]. At its core, SR aims
to recover the latent details hidden within low-resolution images, whereas SS
seeks to partition the image into coherent regions, associating each pixel with
a specific semantic label that reflects the underlying objects and structures.
Therefore, the joint learning of SS and SR presents a captivating area of re-
search, where the fusion of spatial precision and contextual semantics could
prove beneficial and present novel insights in the visual domain.

This chapter serves to provide insight into multi-task learning of Real-World
Super-Resolution (RWSR) and Semantic Segmentation (SS) by addressing ap-
proaches, namely:

Paper A Multi-task Learning via Single-task Optimization: Jointly-learning SR
directly from a SS training loop, without additional SR based optimiza-
tion. Allowing SR algorithms to train domain-specific knowledge fol-
lowing a Real-World Super-Resolution (RWSR) context.

Paper B Semantic Guidance of Super-Resolution for Real-World Applications:
Guiding SR to obtain semantically rich representations, through guided
learning of a parallel SS branch. Improving the perceptual quality of
super-resolved images without any additional computational cost at test-
time.

2 Background

Generally in computer vision, the ability to extract meaningful information
from images and video is a crucial step to obtain robust and accurate systems [7,
78]. To accurately extract fine-grained information resolution is often a key
factor [66, 71, 83]. This is particularly true for low-level tasks that make fine-
grained predictions [13, 14].
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2. Background

2.1 Single-Image Super-Resolution
SR can roughly be divided by approaches that use multiple images (i.e., multi-
view or temporally aligned) and single image SR. Both are viable solutions
for recovering detail in images. However, the work presented in Paper A and
Paper B focuses on joint learning of SR and SS. As such the scope is limited
to learning-based single-image SR. As such recovering those details can be
crucial for real-world applications with LR data streams.

SR is a well-researched topic in computer vision, and have been exten-
sively studied since 1974 [21]. Much like many other computer vision tasks,
the introduction of Deep Learning (DL) revolutionized the field [16]. In its
simplest form, single-image SR is a mapping between a LR domain, and
a HR domain. Following this intuition, traditional learning strategies in-
volve synthetically degrading and down-sampling HR images to create HR-
LR pairs [16, 42, 48, 75, 91]. The models are then trained to accurately recon-
struct the original HR image, typically by minimizing Mean Squared Error
(MSE). Similarly, the evaluation typically focuses on optimizing Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity index (SSIM), despite recent
research having shown that these metrics fundamentally disagree with human
observers [1, 40, 81]. The introduction of Generative Adversarial Networks
(GANs) in SR presented a perceptual component to SR, where a competing
discriminator network had to be unable to distinguish between the generated
HR and a real HR image [40]. This forces the network to reconstruct finer
details that mimicked real images, resulting in images of higher perceptual
quality [40, 81]. While this approach resulted in images that were more realis-
tic when inspected by humans, the reconstructed details weren’t accurate, and
often resulted in lower PSNR. To address this learned metric were proposed
to act as a proxy for human perceived perceptual quality [15, 17, 41, 90, 95].

Recent work has highlighted that traditional approaches essentially at-
tempt to create an inverse mapping of the degradation function rather than
the noise that would be observed in a real-world context [18, 33]. In a real-
world context, the degradation consists of an unknown set of degradations,
which are poorly represented by traditional synthetic pairs [5, 33]. The field
of Real-World Super-Resolution (RWSR), aims to reconstruct images without
a known HR ground-truth [33, 46, 48, 53, 67, 67, 70, 70]. RWSR is inherently
an ill-posed problem as there is no way to accurately assess how faithfully the
image was reconstructed. Thus the performance of these metrics is commonly
evaluated with qualitative comparison [33, 53, 79, 81], and in some cases re-
port traditional metrics (i.e., PSNR, SSIM and Learned Perceptual Image Patch
Similarity (LPIPS)) for prosperity. Initial methods of RWSR aimed at address-
ing this problem with a zero-shot approach, where degradation kernels are
estimated at test-time and then applied to reconstruct the high-resolution im-
age [5, 48, 67, 70]. Alternately, RealSR [33] proposed extracting blur kernels
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and noise patches from real images to synthetically create ’realistic’ LR im-
ages, then used a combination of adversarial-, distance-, and perceptual-losses
to approximate quality during training. RWSR models’ ability to reconstruct
details in real-world images presented an exciting avenue for supporting other
vision tasks [13, 14]. Notably SR models helped improve the performance of
optical character recognition by up to 15% [62] and object detection in satellite
images by up to 30% [66].

2.2 Semantic Segmentation
SS is a widely studied computer vision problem focused on dense scene under-
standing by assigning per-pixel labels. SS is commonly used in autonomous
driving [9, 19, 50, 54], medical image analysis [20, 36, 64], and robotic sens-
ing [6, 51, 68] where fine-grained scene-understanding is a crucial component
of the vision system. Early segmentation systems used contours, edges, and
hand-crafted texture descriptors to segment images [30, 82], and then clus-
tering to assign a class label. Similarly to SR and other vision tasks, the
introduction of DL in computer vision fundamentally changed SS. Convolu-
tional Neural Networks (CNNs) ability to extract semantic understanding for
image-classification [25, 38, 69, 72] showed the great potential of CNNs for vi-
sion tasks. However, CNNs tends to progressively increase the receptive field
to obtain semantic understanding from the entire image at the cost of spatial
resolution. To perform pixel-wise classification, recovering spatial resolution
is a crucial component.

U-Net [64] (visualized in Figure 2.1a), proposed an architectural scheme
that would progressively recover the spatial resolution from the encoding
CNN, while also leveraging skip-connections to propagate early representa-
tions retaining high spatial detail, which subsequently was combined with the
up-sampled representation through convolutional layers [64]. The U-Net style
of architecture has become the standard for many SS approahces [3, 20, 32, 43,
64, 87]. Regrettably, these architectures fail to capture semantically meaning-
ful representations at earlier layers [57, 77], thus relying on the up-sampling
step to learn a spatial re-mapping. By continuously fusing information from
earlier layers to recover spatial detail, U-net obtained an increase in perfor-
mance and notably became significantly more accurate at pixels bordering
two classes [57, 77]. HRNet (visualized in Figure 2.1b), further refined this
by leveraging multiple parallel branches which continuously share informa-
tion by progressively infusing higher branches with semantic information,
while infusing lower branches with spatial detail [77]. Variants of HRNet
also showed great performance in Pose-Estimation [11, 77], Optical Character
Recognition [73, 85] and Object-Detection [58].
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2. Background

(a) UNet [64]

(b) HRNet [77]

Fig. 2.1: Schematic overview of the UNet [64] and HRNet [77] architectures. Purple represents
the input tensor, orange represents the semantic predictions output of the system, and black lines
represent the general flow of data. Red lines represent a loss in spatial resolution, whereas blue
lines represent an increase in spatial resolution. the dotted lines represent residual connections.
For readability fusion connections spanning different branches in Figure 2.1b have had their arrows
removed, but follow the general dataflow, i.e., left → right
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2.3 Multi-Task Learning
Many computer vision tasks have shown to benefit initializing from models
pre-trained for other tasks, typically image classification [24, 28], implying the
existence of patterns and semantic understanding which are transversal across
tasks. Multi-task learning further extends on this by leveraging parts of a net-
work to perform multiple tasks simultaniously [32, 56, 65, 92, 93]. Not only is
it computationally efficient, it has also shown to improve performance of the
individual tasks [49, 65, 84]. Multi-task learning approaches generally tend to
employ a shared feature-extraction backbone or encoder network, which then
feeds task-specific branches [26, 56, 60, 74]. The intuition is that even when
optimized separately with task-specific losses, the combination of losses will
guide the network to reach a local minimum which is otherwise difficult to
reach when optimizing an individual task [60, 74]. As many tasks differ in
training data, i.e object-detection requiring instance annotation, while track-
ing additionally requires temporal correlation, a combination of tasks that can
leverage similar training data is often employed [26, 27, 32, 60]. While simul-
taneous optimization of these tasks is by far the most common, recent works
have also employed approaches that switch between data and task optimiza-
tion in a cyclical manner [29, 49, 74]. Typically the performance of each task is
evaluated on datasets that are common for their respective tasks providing a
general indication that multi-task learning is beneficial for many vision tasks.

3 Multi-task Learning via Single-task Optimiza-
tion

Generally in SS, the performance of the system is highly correlated with the
input resolution., particularly when segmenting small objects [79]. This is par-
ticularly troublesome in contexts where the vision system needs to accurately
perceive distant objects, as both camera quality and the size of objects degrade
the performance of the given system. This presents a restrictive problem where
information is inherently sparse, and lacks detailed information to accurately
obtain a semantic understanding of the scene. Thus, employing SR networks
to increase the resolution of the input and recover fine details poses an inter-
esting avenue for study. Furthermore, incorporating the SR network directly
into the pipeline could allow for context-specific semantic understanding as
well as refining underlying patterns that benefit the primary task.

3.1 Related Works
Previous work in joint learning of SR and SS tend to leverage either task as an
auxiliary optimization goal which is discarded at test time [60, 79]. Namely, [60]
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proposes leveraging an auxiliary prediction head to perform semantic segmen-
tation, thus the majority of the network is shared between the SR and SS heads.
Intuitively this approach enforces the network to include some level of seman-
tic understanding in intermediate representations [60]. Notably, segmentation
at the border of classes remains a challenge for the proposed method, leaving
them to employ a novel boundary mask to avoid forcing the SR head to focus on
class boundaries. Inversely, DSRL [79] proposes using SR as an auxiliary task
to improve SS. Namely, they propose to guide intermediate representations of
the SS module to generate high-resolution representations by minimizing the
SSIM between intermediate features of the SR module and SS module respec-
tively [79]. Notably, DSRL [79] saw improvement in semantic segmentation
across multiple architectures and particularly exhibited increased accuracy of
boundary pixels. Recent work performing joint SS and SR still rely on LR-HR
pairs for optimization of the SR module, which is ill-suited for contexts where
HR is unavailable.

3.2 Improving Semantic Segmentation using Super-Resolution
SS of LR input remains a challenge that could greatly benefit from joint multi-
task learning of SR and SS. This is further underlined by previous work that
shows SR- and SS-networks can effectively share intermediate representations
and excel in their respective tasks [26, 60]. In addition to the trend of SR guided
SS [79], the SS task could potentially be used as a viable proxy for SR. Thus,
jointly learning both tasks through the optimization of a single task should be
possible.

Multi-Task Semantic Segmentation and Super-Resolution

Following this intuition Multi-Task Semantic Segmentation and Super-Resolution
(MT-SSSR) was proposed as a way to jointly learn SR and SS in an end-to-end
manner. While existing methods focus on optimizing the respective tasks sep-
arately and guiding each prediction head towards its own global optimum, the
purpose of MT-SSSR is solely to improve the performance of the downstream
task (i.e., segmentation). Thus allowing the SR module to learn without any
LR-HR pairs, effectively adapting it to a RWSR approach. As shown in Fig-
ure 2.2, the construction of MT-SSSR is rather simple, and aimed to keep the SR
and SS modules interchangeable with other architectures from their respective
tasks. Architecturally the SR module is completely separated from the SS net-
work, thus as long as the output is a tensor of corresponding spatial resolution
to the input, the choice of SR module should be arbitrary. The generator mod-
ule of ESRGAN [81] was chosen for its ability to reconstruct high-frequency
details, and its impressive performance on various datasets [55, 61, 81]. Fur-
thermore, it is crucial to retain high-resolution representations throughout the
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Fig. 2.2: "Our proposed framework, Multi-Task Semantic Segmentation and Super-Resolution (MT-SSSR).
Dashed and full lines represent training and testing phases, respectively. The SR model learns to upsample
and enhance the input image based on the segmentation task loss. The segmentation model uses the same
loss to improve the accuracy of its prediction." [1]. This figure was adapted from [1], (Paper A)

network, especially for LR inputs [57, 77], thus HRNet [77] was selected as
the SS module, due to its ability to retain HR representations throughout the
network [73, 77].

Naturally one of the drawbacks of this style of multi-task learning is the
increase in computational cost, as a result of performing inference of two
DL. The resulting complexity could be computationally restrictive in certain
contexts.

Experiments

Training and evaluation of the proposed framework were conducted on Cityscapes [12]
as well as IDD20k-Lite [52] (a LR version of [76]). Cityscapes consists of driving
scenes in urban environments recorded in 50 different cities, whereas IDD20k-
lite consists of data ranging from urban areas to rural suburban areas of cities in
India. These datasets are both diverse in terms of classes, but also significantly
different in terms of textures. This configuration made it ideal for inspecting
if the framework would generalize to distinct types of data.

As leveraging pre-trained models trained on large-scale datasets has shown
consistently beneficial, even for training in distinctly different domains [24, 28],
both the SR and SS modules were initialized from pre-trained models. The
SS module was initialized from a model pre-trained on COCO [44], whereas
the SR module was initialized from a model pre-trained on DF2K [2, 81] (a
combination of DIV2k and Flickr2K).
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Furthermore, an ablation study was conducted to evaluate the performance
of MT-SSSR in the traditional synthetic LR-HR setting. Additionally, compar-
isons with bicubic interpolation and single-task optimization of the SR module
were also included in the ablation study. Note that single-task refers to the
SR module being trained in a traditional fashion described in the original pa-
per [81], as opposed to the proposed MT-SSSR framework. Additionally, the
baseline HRNet was extended, by leveraging a State-of-the-Art (SotA) alterna-
tive to cross-entropy loss, namely Region Mutual Information (RMI) loss. RMI
loss aims to use the statistical properties of the nearby region to dynamically
adjust the loss based on how difficult the given pixel is to predict, given its
neighbors.

Due to memory constraints imposed by such a large model, training adopted
a cyclical approach where batches alternated between cropped patches of
128 × 128 patches and full images. During the patch phase, both SR and SS
module was updated, however, during full-image phases only the SS module
was updated.

3.3 Results and Insights
To evaluate the performance of the system, the SS network is evaluated using
the common mean Average Precission (mAP) metric. mAP in semantic seg-
mentation measures the mean of the Average Precission (AP) of each class. As
shown in Table 2.1, the performance of the proposed method beats SotA by
a significant margin on both Cityscapes (i.e., 3.6%) and IDD-Lite (i.e., 2.5%).
Additionally, a significant improvement over the stand-alone HRNet is also
observed across both datasets.

Cityscapes (Real LR images)
Valid. Test

Method Size mAP mAP

DeepLabV3+ [8] ×1 0.700 0.671
PSPNet [86] ×1 0.715 0.691
HRNet [77] ×1 0.773 0.754
DSRL [79] ×2 0.757 0.748
MT-SSSR (ours) ×2 0.803 0.790

(a)

IDD (Real LR images)
Valid.

Method Size mAP

DeepLabV3+ [8] ×1 0.643
ERFNet [63] ×1 0.661
HRNet [77] ×1 0.694
Eff-UNet [3] ×1 0.738
MT-SSSR (ours) ×2 0.741
MT-SSSR (ours) ×4 0.763

(b)

Table 2.1: Performance of the SS module on the Cityscapes validation and test sets (table 2.1a) as
well as the IDD validation set (Table 2.1b). Best performing models are highlighted in bold. This
table is adapted from [1], (Paper A).
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Cityscapes (Real LR images))
Method Size mAP

HRNet [77] ×1 0.773
HRNet + RMI ×1 0.774
HRNet + RMI ×2 Bicubic 0.780
HRNet + RMI ×2 SR𝑆𝑇 0.781
MT-SSSR (ours) ×2 SR𝑀𝑇 0.803

(a)

IDD (Real LR images)
Method Size mAP

HRNet [77] Native 0.694
HRNet + RMI Native 69.9
HRNet + RMI ×2 Bicubic 0.709
HRNet + RMI ×4 Bicubic 0.671
HRNet + RMI ×2 SR𝑆𝑇 0.712
MT-SSSR (ours) ×2 SR𝑀𝑇 0.741
MT-SSSR (ours) ×4 SR𝑀𝑇 76.3

(b)

Table 2.2: This table shows the ablation study of each module included in the MT-SSSR framework
on the Cityscapes (Table 2.2a) and IDD (Table 2.2b) datasets. This figure compares the impact
of bicubic interpolation, traditional SR (i.e., SR𝑆𝑇 ) and the complete MT-SSSR framework (i.e
SR𝑀𝑇 ).Best performing models are highlighted in bold. This table is adapted from [1], (Paper A)

Furthermore, as shown in Table 2.2, simply interpolating the input provides
an increase in segmentation accuracy, leveraging a SR module will further
improve the performance. Additionally leveraging a multi-task scheme like
MT-SSSR can further increase the performance of the SS module. In Table 2.2
it is further outlined that this trend persists for up-sampling by a factor of two
and four.

In
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t
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SR

Fig. 2.3: Examples of LR input images (top row) and the corresponding super-resolved HR
counterparts (bottom row), produced by MT-SSSR. This figure is adapted from [1], (Paper A)

A concern with the MT-SSSR framework, is that solely leveraging the SS
task for optimization could force the SR module to act as a traditional encoder
network, which provides semantically meaningful representations, without
guaranteeing the ’super-resolved’ image retaining the visual information of
the input. In Figure 2.3 it is shown that the super-resolved solved image
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Fig. 2.4: Examples of ground-truth segmentation maps (top row), baseline HRNet semantic
predictions (middle row), and MT-SSSR semantic predictions (bottom row). This figure is adapted
from [1], (Paper A)

still retains the visual appearance of the input, recovers fine-grained details
and increases the subjective perceptual quality of the image. Interestingly all
images, images produced by this MT-SSSR framework tend to have a slight
blue hue and sharper borders at objects. The borders can be explained by
the nature of SS benefiting from clearer delineations between objects, while
the shift in hue is an unexpected change. Intuitively this can be assumed to
be the SR network trying to shift all images toward a distinct color palette,
simplifying the work for the SS module

When inspecting the segmentation masks (as shown in Figure 2.4), it can
further be observed that MT-SSSR more faithfully reconstructs the fine detail
of small and thin objects, such as legs, traffic lights, and in some cases entire
people. The increased performance and accuracy can thus be observed to
recover fine-grained information that could be vital for interacting with the real
world. In some cases, the resulting increase in computational complexity could
be restrictive, which potentially could be addressed by leveraging lightweight
SR and SS modules.

3.4 Summary and Contributions
Input resolution remains a vital component for the segmentation task, and
while increasing resolution via interpolation is present as an easy improve-
ment, the improvement is insignificant. In this section, a novel multitask
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framework was presented which addresses join learning of SS and SR. The
proposed method jointly optimizes both tasks solely from the SS loss and sur-
passes separately training a SR module in terms of mAP on both Cityscapes
and IDD-Lite. Furthermore, the proposed MT-SSSR framework allows the SR
module to be trained on real-world LR data.

In this section, the work conducted in Paper A was discussed. In large
parts, the work focused on joint-multitask learning of semantic segmentation
and super-resolution, for the purpose of increased performance of semantic
segmentation models. As well as the impact on fine-grained segmentation
masks as well as the changes observed within the SR network. The contribution
of the work described herein can be summarized as follows:

• The novel Multi-Task Semantic Segmentation and Super-Resolution (MT-
SSSR) framework was proposed, which significantly improves the per-
formance of existing segmentation models, by jointly learning super-
resolution and semantic segmentation with interchangeable super-resolution
and segmentation networks.

• The proposed MT-SSSR network only requires segmentation labels, thus
making it applicable in RWSR contexts where LR-HR pairs aren’t avail-
able.

• The proposed method achieved SotA semantic segmentation perfor-
mance on challenging LR variants of Cityscapes and IDD20K datasets.

4 Semantic Guidance of Super-Resolution for Real-
World Applications

Real-world applications of super-resolution rely on the reconstruction of lost
detail, which is an inherently ill-posed problem. Particularly as the LR input
could be generated from any number of HR ground truths due to the highly
complex degradation undergone during capture. Recent work attempts to
address this through domain adaptation of pre-trained models [33, 46, 94] or
zero-shot models that approximated degradations at test-time [5, 70]. Which
relies on accurately estimating degradations from the target domain, which is
challenging to do in a generalizable manner, and cumbersome if done at test
time.

Inspired by the observations in Paper A [1] and other works [60, 79], indi-
cating that guidance from a SS network can be beneficial for obtaining sharper
object boundaries and reduced noise. Thus the task of SS could be used as an
optimization proxy that does not require known HR ground truths. However,
the resulting images shown in Figure 2.3 and described in Paper A contain
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undesirable color changes, which potentially also affect learned textures [29].
Thus additional methods must be employed to color-correct reconstruction.

4.1 Related Work
RWSR approaches assume LR image is a product of blur kernel 𝑘, scaling -
factor 𝑠 with an added noise pattern applied to its corresponding HR coun-
terpart, i.e 𝐼𝐿𝑅 = (𝐼𝐻𝑅 ∗ 𝑘) ↓𝑠 +𝑛. Thus to effectively reverse the degradation,
blur-kernel, and noise needs to be estimated [5, 67, 70]. However, despite
showing great performance on RWSR benchmarks, this simplifies the problem
to an extent that fails to approximate the complex degradation process [5]. To
combat this KernelGAN [5] proposed additionally incorporating a perceptual
loss to guide the network toward generating more realistic-looking images,
underlining that using auxiliary losses can help guide RWSR models.

This extends to previous work on the guidance of image-generation tasks.
Where it has been shown that including semantic understanding can greatly
impact the type of textures generated [10, 31, 97]. A trend which translates
to the image-reconstruction domain [45, 59, 60, 80, 89]. Particularly semantic
conditioning at the feature level has been shown to help with generating more
realistic and semantically appropriate textures [59, 80] for SR tasks. However,
generating semantic labels to condition the network at test time can be very
computationally prohibitive, to address this existing work adapt guidance
approaches that can be entirely discarded at test-time [60, 79, 89]. Typically
these approaches share the encoder part of the network so that intermediate
representations can be guided by the auxiliary task. Notably [89] proposes
enforcing structural similarity at the last decoder level of the different tasks,
which helps sharpen the borders and recover small objects, and the nature of
the separated decoders enable interchangeable SotA CNN models for either
task. Furthermore, the model shares a decoder network but employs task-
specific decoders for the shared representation. Consequently, the guidance of
the SR module to learn semantically meaningful representations is not ensured.
While these approaches allow each task to extract task-specific features from
a shared backbone network, the performance of the system is very sensitive
to the weighting of the auxiliary heads [89]. Furthermore, recent works still
leverage synthetic LR-HR pairs for training the super-resolution model, which
fails to fully capture the degradation observed in RWSR.

4.2 Semantic Segmentation Guided Real-World Super-Resolution
To address the shortcomings of recent work and enable learning semantically
meaningful representations without sacrificing the accurate reconstruction
of the input image the SSG-RWSR framework was proposed. SSG-RWSR
aims to enable the training of RWSR models through semantic guidance and
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domain adaptation to produce more accurate and noise-free HR images. SSG-

Fig. 2.5: "Schematic overview of our proposed SSG-RWSR. To learn to perform RWSR we leverage both
guiding from an auxiliary semantic segmentation task and domain adaptation. At test time, the semantic
segmentation network is de-coupled, and as such no semantic labels are required to super-resolve the LR test
images." [29]. This figure is adapted from [29], (Paper B).

RWSR achieves this through a cyclical training loop (visualized in Figure 2.5),
extending on the work detailed in Section 3 with a domain-adaptation branch.
As outlined in Section 3, SS models benefit from inputs with low levels of noise
and fine details, and thus can serve as a proxy for optimizing image quality.
Contrary to related work [60, 79, 89], the work conducted in Paper A indicated
that directly linking the two networks is more beneficial than treating them as
parallel tasks To ensure LR-HR image consistency and high-frequency detail,
a domain-adaption method [33] was included to learn real-world degradation
on large-scale HR data. The SR model is thus cyclically trained, by alternating
between semantic guidance and domain-adaption.

Semantic Guidance

The semantic guidance originally proposed in Paper A, is directly applied in
the semantic guidance cycle. During this phase the SR network and SS network
sequentially process the input LR image. The segmentation loss is then back-
propagated to update both SR and SS modules. If the SS module remained
frozen, the resulting semantic guidance would likely reinforce patterns and
biases, from its original training data. Thus the discovery of new patterns as
a result of improved SR would be suppressed. During semantic guidance, the
training data consists of data from the desired source domain.
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Domain Adaptation

As observed in Paper A, SR networks guided purely by SS result in changes to
the image which are undesirable for image-reconstruction tasks. Thus to pre-
vent such influence traditional synthetic LR-HR training pairs are employed.
However, blindly using these pairs for training would result in the model try-
ing to model two domains at once (i.e., source 𝑑𝑜𝑚𝑎𝑖𝑛 ⇌ 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 domain)
potentially preventing accurate generalization in either domain [96]. To ad-
dress this, blur kernels and noise patches are extracted from the source domain,
creating a pool of realistic blur kernels and noise patches. During training a
random blur-kernel and noise patch is selected to degrade a given HR sample,
thus creating synthetic LR-HR pairs that exhibit similar degradation to that of
the source domain, thus reducing the 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 → 𝑠𝑜𝑢𝑟𝑐𝑒 domain gap.

The combination of semantic guidance and domain adaptation facilitates
training of RWSR in a target source domain that lacks HR ground truths.
Furthermore, at test time the auxiliary tasks can be entirely discarded, meaning
the proposed SSG-RWSR framework has no impact on inference at test time.

Experiments

The experiments conducted to evaluate the performance of the proposed
framework were twofold: Firstly, focusing on the evaluation of ’real’ images,
i.e., images where the HR ground-truth is unknown, and secondly, focusing on
the reconstruction of synthetically degraded images following traditional SR
evaluation protocol. Evaluation of real images was done on Cityscapes [12] and
IDD20K [76], as both contained semantic labels, allowing for semantic guid-
ance. As there exist no HR ground-truths for these datasets, it is impossible to
employ traditional metrics such as PSNR, SSIM. To get a notion of performance
two perceptually focused metrics which show a good correlation with human
judgment. Namely, Neural Image Assessment (NIMA) [17] and Meta Image-
Quality-Assesment (Meta-IQA) [95]. Additionally Mean Opinion Rank (MOR)
is measured as a direct measure of human perceived perceptual quality [47].To
make the framework comparable with traditional SR metrics, additional LR-
HR pairs are generated from the cityscapes dataset. Thus enabling direct
SR quality metrics (i.e., PSNR and SSIM). Furthermore, the performance is
also measured using MOR and perceptually focused metrics LPIPS [90], and
Deep Image Structure and Texture Similarity (DISTS) [15] Meta-IQA [95], and
NIMA [17]

The proposed method is compared to four SotA methods designed for
SR of real-world images. Namely, MZSR [70], DPSR [88], RealSR [33], and
DAN [48]. As most of competing models require configuration towards the
target domain, adjustments were made for each model following the protocol
outlined in their respective papers [5, 48, 70, 88].
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4.3 Results and Insights

Bicubic RealSR [33] DPSR [88] DAN [48] Ours [29]

Fig. 2.6: "Comparison with SotA methods for ×4 of synthetically degraded images from the Cityscapes
dataset. As visible, our method reconstructs sharp images with low noise compared to the existing meth-
ods." [29], This figure is adapted from [29], (Paper B).

Bicubic RealSR [33] DPSR [88] DAN [48] Ours [29]

Fig. 2.7: "Comparison with SotA methods for ×4 SR of real images from the Cityscapes dataset. As
visible, our method reconstructs sharper and more visually appealing results compared to the existing
methods." [29]. This figure is adapted from [29], (Paper B).

As can be observed in Tables 2.3 and 2.4 the proposed framework (i.e., SSG-
RWSR) produces images that surpass the perceptual quality of SotA models ac-
cording to MOR, NIMA and Meta-IQA. This is further underlined by the NIMA
and Meta-IQA scores, where the proposed method is only slightly surpassed
by DAN on the IDD Dataset. Evaluating perceptual quality, particularly one
correlated with human quality assessment, is difficult to relate to from num-
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Cityscapes (Real LR images)
Method NIMA↑ Meta-IQA↑ MOR↓

Bicubic [35] 4.62 0.245 -
ESRGAN [81] 4.95 0.247 -
MZSR [70] 4.88 0.231 3.33
DPSR [88] 4.83 0.240 4.41
RealSR [33] 4.87 0.236 2.75
DAN [48] 4.65 0.246 3.47
Ours 5.04 0.254 1.21

Table 2.3: "Quantitative results on the Cityscapes
validation set. ↑ and ↓ indicate whether higher or
lower values are desired, respectively. As seen, our
method obtains both the best MOR and NIMA and
Meta-IQA results." [29]. This table is adapted
from [29], (Paper B).

IDD (Real LR images)
Method NIMA↑ Meta-IQA↑ MOR↓

Bicubic [35] 4.73 0.330 -
ESRGAN [81] 4.94 0.325 -
MZSR [70] 5.00 0.330 2.96
DPSR [88] 4.92 0.330 3.16
RealSR [33] 4.83 0.296 4.88
DAN [48] 4.77 0.330 2.48
Ours 5.03 0.323 1.45

Table 2.4: "Quantitative results on the IDD validation
sets. ↑ and ↓ indicate whether higher or lower values
are desired, respectively. As seen, our method obtains
both the best MOR and NIMA results, and the second
best Meta-IQA results." [29]. This table is adapted
from [29], (Paper B).

bers alone. Thus a visual comparison is also provided in Figures 2.7 and 2.8. As
shown in Figure 2.7, SSG-RWSR produces a much cleaner image than the three
models with the closest performance. While RealSR manages to recover a simi-
lar amount of detail the lines around the pharmacy cross are less sharp, and the
texture is much less discernable. A similar trend is observed in Table 2.4 where
the texture and sharpness produced by SSG-RWSR are much clearer com-
pared to the competition. Noticeably, SSG-RWSR is also more robust to noise.

Cityscapes (Synthesized LR images)
Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓

Bicubic [35] 27.51 0.62 0.64 0.19
ESRGAN [81] 18.17 0.12 1.29 0.20
MZSR [70] 26.68 0.55 0.73 0.16
DPSR [88] 33.11 0.90 0.42 0.13
RealSR [33] 25.88 0.77 0.26 0.10
DAN [48] 27.16 0.58 0.60 0.20
Ours 29.08 0.83 0.19 0.07

Table 2.5: "Quantitative results on the artificially de-
graded Cityscapes validation set. ↑ and ↓ indicate whether
higher or lower values are desired, respectively. Our method
achieves a good trade-off between low distortion and high
perceptual quality with the second best PSNR and SSIM
results, and the best perceptual quality as measured by the
LPIPS and DISTS metrics." [29]. This table is adapted
from [29], (Paper B).

On Synthetic data, it can be
observed that SSG-RWSR pro-
duces that are closest to the
ground truth in terms of per-
ceptual quality (i.e., LPIPS and
DISTS) while achieving compet-
itive performance according to
traditional metrics (i.e., PSNR,
and SSIM). When observing the
examples shown in Figure 2.6
it can be seen that images pro-
duced by RealSR, and SSG-
RWSR are sharper and can have
higher frequency detail on tex-
tures. Whereas DPSR which
scored the highest PSNR and SSIM is much similar to the HR ground-truth,
it exhibits the characteristics of a blurry image, when compared to SSG-RWSR
and RealSR.
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Furthermore, to see the impact of domain adaptation and semantic guid-
ance, separate models were trained for each configuration. Shown in Table 2.5,
the traditional domain adaptation approach in isolation performs significantly
worse than semantic guidance in terms of perceptual quality, with SSG-RWSR
further improving the performance. In the examples shown in Figure 2.9 it can
be seen that the domain adaptation approach drives the model to reconstruct
fine details, whereas the semantic guidance approach creates smoother and
less noisy images. Finally, the combined approach manages to reconstruct
finer detail while also producing a clearer image, effectively leveraging the
benefits of both approaches.

Bicubic RealSR [33] DPSR [88] DAN [48] Ours [29]

Fig. 2.8: "Comparison with SotA methods for ×4 SR of real images from the IDD dataset. As visible, our
method reconstructs more detailed images with less artifacts compared to the existing methods." [29]. This
figure is adapted from [29], (Paper B).

Input ESRGan [81] Ours𝐷𝐴 [29] Ours𝐺𝑢𝑖𝑑𝑒𝑑 [29] Ours𝐶𝑜𝑚𝑏. [29]

Fig. 2.9: "Comparison with Bicubic interpolation, ESRGan [81] and various configurations of SSG-RWSR.
Showing the impact of each module in the proposed SSG-RWSR framework. Ours𝐷𝐴 denotes SSG-RWSR
using only domain adaption, Ours𝐺𝑢𝑖𝑑𝑒𝑑 denotes SSG-RWSR using only semantic guidance, and finally
Ours𝐶𝑜𝑚𝑏. denotes the combination of domain adaptation and semantic guidance." [29]. This figure is
adapted from [29], (Paper B).
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4.4 Summary and Contributions
In this section, the work conducted in Paper B was discussed. In large parts,
the work addresses the problem of RWSR where ground truth LR-HR pairs
are not available. To address this issue a novel framework (SSG-RWSR) was
proposed, which leverages an auxiliary semantic segmentation network to
guide the SR learning process. By doing so, the SR model can effectively adapt
to the specific degradations present in real-world LR images, resulting in the
reconstruction of images with sharp object boundaries and reduced noise. The
contribution of the work described herein can be summarized as follows:

• The novel Semantic Segmentation Guided Real-World Super-Resolution
(SSG-RWSR) framework was proposed, which facilitates RWSR with
guidance from an auxiliary SS task. With a focus on increasing per-
ceptual consistency and removing noise.

• The proposed SSG-RWSR framework achieves superior results in terms
of perceptual quality compared to SotA based on human evaluation.

• Domain adaptation and segmentation guidance are complimentary and
help reconstruct textures and fine details, compared to domain-adaptation
or segmentation guidance alone.
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Chapter 3

Paying Attention to Motion:
Advancements in Video
Transformers

1 Introduction

In the current landscape of computer vision, the proliferation of devices with
cameras has enabled an unprecedented influx of visual data. From surveil-
lance cameras capturing busy scenes of urban life to autonomous vehicles
meticulously analyzing their surroundings to plan their next move. These
camera sources yield continuous streams of visual data at an ever-increasing
rate. When leveraging these continuous sources for inspection or observation,
humans typically leverage temporal information to understand behavior, pre-
dict events, and provide context which can be employed to make informed
decisions for a given point in time [47]. On the contrary, computer vision
systems often process video streams one frame at a time [10, 27, 28, 77], which
severely limits contextual information and forming temporal relationships,
ultimately limiting understanding [13, 106]. Traditionally computer vision al-
gorithms have relied on sequential processing techniques such as Recurrent
Neural Networks (RNNs) and Long-Short-Term-Memorys (LSTMs) to capture
temporal patterns and dependencies across frames [4, 47, 51]. Regrettably,
these methods have been shown to struggle with modeling long-range depen-
dencies [59], which is crucial for properly understanding intricate and complex
relationships between distant frames.

Recent advancements in computer vision include the introduction of an
attention-based architecture inspired by a recent advancement in Natural Lan-
guage Processing (NLP), called transformers, or Vision Transformer (ViT) in
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the computer vision domain. Transformers were initially introduced to ad-
dress the challenge of modeling long-range dependencies, which can be crucial
language tasks [12, 43, 94]. Their unique ability to process distant elements at
the same time has shown promising results in traditional single-image com-
puter vision tasks [30, 44, 61, 110], and have started to increase interest in the
video domain [81].

The ability to leverage information across time to provide a contextual un-
derstanding of a given image could prove a crucial tool for accurate video
understanding. From real-time action recognition and anomaly detection in
surveillance videos to scene understanding and tracking in dynamic environ-
ments, the applications of Video Transformers (VTs) span a broad spectrum
of real-world applications. Consequently, the combination of video data and
transformers is interesting from an academic point of view but also presents
novel methods that can be applied to industrial computer vision systems that
process continuous streams of video data.

The rapid growth and popularity of Vision Transformers (ViTs) has prolif-
erated across various computer vision tasks and has quickly taken the field by
storm. Combined with their impressive ability to excel at various vision tasks,
has made ViTs a promising avenue for real-world computer vision systems.

This chapter serves to provide insight into key components and challenges
posed when applying transformers on video data, as well as discussion about
current trends, methods and shortcomings commonly observed with Video
Transformer (VT) namely:

Paper C Key Challenges: An overview of key challenges that transformers face
when applied to video data. Particularly an overvew of challenges that
persist from traditional transformers, as well as those unique to video.

Paper C Trends of Video Transformers: A broad overview of common trends
adapted by VTs when handling video data. Particularly key trends re-
garding video transformers as a whole as well as those particularly aimed
at object-centric tasks (i.e. Object detection, tracking, segmentation, etc.).

Paper C Discussion and Implications: Discussion addressing the efficacy and
maturity of key trends as well as their implication for real-world deploy-
ment of computer vision system.

2 Background

In 2020, transformers were introduced to the visual domain, beating the per-
formance of their CNN counterparts on fundamental vision tasks [7, 15]. How-
ever, requiring significantly more data to perform the pre-training step to beat
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SotA by a significant margin. Albeit a data-hungry architecture, transform-
ers quickly grew in popularity and in a short time have become a significant
portion of publications in the academic field of computer vision [30, 44]. The
exponential growth in publications has merited multiple surveys to establish
an overview of ViTs [30, 44, 58, 61, 110, 113] and their ability to perform multi-
modal reasoning [84, 108], particularly language-vision learning [17, 66, 79].

Transformers’ ability to learn long-range global relationships lends itself
very well to data that contains a temporal component, such as video. However,
the added dimension introduces computational cost due to the Self-Attention
(SA) mechanism [94] as well as an abundance of redundant information [113].

To properly understand the impacts and methods employed to address the
temporal dimension of video, the fundamentals of the original transformer
must be understood. In this section, a brief overview of the original transformer
[94] is provided, with an accompanying description of its core component, i.e.
SA. Subsequently, techniques necessary to adapt transformers from language
to images are discussed.

2.1 The original transformer
Many NLP tasks are posed as a sequence-to-sequence problem, where a se-
quence of elements (i.e. sentence) is inputted and an output sequence is re-
turned. Depending on the task the output would be different, e.g., In language
translation; the equivalent sentence in the target language, in summarization; a
sentence summarizing the input, etc. Traditional sequence-to-sequence mod-
els, such as LSTMs and RNNs, process information sequentially and capture
dependencies between elements of an input sequence using a hidden state or
memory.

In NLP, the input is typically a sequence of "tokens" (e.g., words). These
tokens are an encoded representation of the word and typically correspond
to a one-hot encoding of the word and its respective vocabulary [100]. While
these encodings can be used directly, an embedding layer is typically used
to project the vector to a continuous space, as it has been shown to improve
the performance of some tasks [69]. The result is a sequence of continuous
vector representations of the original input sequence. Finally, each token is
augmented with a positional encoding which allows the network to discern
the locality of a given token in the input sequence. The result is a sequence of
token embeddings that can be processed by the transformer.

Similar to other SotA methods, transformers follow an encoder-decoder
structure [116], where one module encodes information from the input se-
quence, which the decoder then employs to generate the appropriate output.
Where the encoder only processes the input sequence once, the decoder works
in an autoregressive manner, generating one output at a time and subsequently
consuming the generated output, using it as an additional input. Both encoder
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(a) Self-Attention (b) Multi-Head Self-Attention

Fig. 3.1: Visualization self-attention and multi-head self-attention proposed in [94]. This figure is
adapted from [94]

and decoder modules consist of𝑁 transformer layers (visualized in Figure 3.2),
with layers in the decoder, having an additional component allowing for cross-
attending the representation generated by the encoder. Each transformer layer
is composed of two components, namely a self-attention layer, and a position-
wise feed-forward network. Additionally, each layer is wrapped with a resid-
ual connection and layer normalization [94]. To prevent the decoder module
from attending beyond the token at the current position, a mask is applied so
that the SA operation only attends to known outputs preceding the current
position.

With an understanding of the input and the structure of the transformer,
key elements of the transformer can be described. At a high level the SA
mechanism (visualized in Figure 3.1a) can be broken into 5 steps:

𝑂1 𝑄uery, 𝐾ey & 𝑉alue Pairs: For each token in the input sequence three
vectors are generated: a 𝑄uery vector, a 𝐾ey vector, and a 𝑉alue vector.
These vectors are obtained through a linear transformation and are used
to learn the relationships between the input tokens.

𝑂2 Similarity Scoring: For each token in the input sequence a similarity
score is calculated by computing the dot-product between 𝑄 at the cur-
rent position, and 𝐾 at all positions in the input sequence.
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𝑂3 Scaling: To prevent the dot-products of 𝑂2 from growing too large, they
are counteracted with a scaling factor: 1√

𝑑𝑖𝑚𝑘
, where 𝑑𝑖𝑚𝑘 denotes the

dimension of the 𝐾 vectors.

𝑂4 Attention Weighting: The similarity scores are passed to a softmax
function to obtain attention weights. These weights describe how much
each token in the input sequence contributes to the output of the token
at the current position.

𝑂5 Weighted Summation: the weighted sum of the 𝑉 vectors and their
attention weights results in a context vector for the current token. This
context vector in essence contains information from all other tokens in
the input sequence and emphasizes tokens wither more relevance (i.e.
higher attention) to the current token.

Fig. 3.2: Visualization of the original transformer proposed in [94]. This figure is adapted from [94]
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In their experiments, they found that instead of performing a single pass
of self-attention, projecting the input sequence to several SA was beneficial.
Each of these parallel heads has its own separate projection function (𝑂1),
effectively allowing each pass of the SA step to attend to several things [94].
The implementation of this type of parallel SA is referred to as a Multi-Head
Self-Attention (MHSA) layer.

Despite the improvements which are introduced with the attention style
approach, it can be noted that the self-attention operation, particularly the
pair-wise affinity calculation (𝑂2), scales quadratically with sequence length.
Even though the self-attention operation is highly parallelizable, it can become
computationally expensive for long input sequences.

2.2 Vision Transformers
When transitioning to the visual medium, the difference in the data structure
is significant. Where natural language is structured as 𝐾×𝑇𝑜𝑘𝑒𝑛𝑠 (𝐾 denoting
the length of input tokens), images are typically structured as large tensors of
shape: 𝐻 ×𝑊 ×𝐶 (denoting image 𝐻eight,𝑊 idth, and color 𝐶hannels). Even
images that otherwise are considered low-resolution would result in large
sequences when un-rolled to fit the sequence structure expected by the trans-
former [15]. Early work addressed this by combining SA with CNNs to reduce
the spatial dimensionality, and thus the sequence length [7, 97]. These archi-
tectures benefitted from the inductive neighborhood biases provided by the
CNN and could leverage the global reasoning of transformers. Furthermore,
it allowed large-scale unsupervised pre-training methods to be employed for
training, reducing the reliance on annotated data [97].

However, in [78] they proposed that the SA style of attention could be used
to replace traditional spatial convolutions, to achieve an attention-based model.
Similarly to how the original transformer [94] allowed for more effective mod-
eling of the global context, a fully-attention-based model could achieve the
same for vision tasks. Extending on this work, [11] showed that full attention-
based models like that proposed in [78], typically learned attention patterns
similar to neighborhoods of convolutions and proved that theoretically, a sin-
gle MHSA could express any convolution. These findings indicated that pure
transformers could work for vision tasks, albeit restrictive due to the com-
putational complexity of SA. With inspiration from these advances, a fully
transformer-based approach was proposed, named ViT [15]. They proposed
extracting 𝑆 × 𝑆 Non-overlapping patches from the image and using them as
tokens. In accordance with the original transformer, these were then passed to
a linear embedding function. Coincidentally, the embedding functions learned
to extract patterns similarly to early filters in CNNs. ViT showed comparative
performance with existing SotA methods and even surpassing SotA on certain
tasks [15].
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(a) Visualization of kernel weights of a con-
volution operation

(b) Visualization of attention weights of a SA
operation

Fig. 3.3: Comparison between kernel weights and SA attention weights, showing the similarity
between the receptive field of both operations. The blue square denotes the center of the kernel
for convolutions and the queried token for SA. The intensity of the red color denotes the weight of
the given pixel, higher saturation equates to a higher weight. On Figure 3.3a the limited window
of the kernel is visualized as a black outline. Notably Figure 3.3a shows the inherent limitations
of a convolutional operation, whereas Figure 3.3b shows that despite its global nature, the SA
attention, can mimic that of a convolutional kernel.

2.3 Challenges for transformers in vision
In this section prominent challenges that apply to transformers in the vision
domain are outlined, as VTs extend on the ideas and methods of ViTs, many
challenges faced by ViTs also apply to VTs.

Explainibility: ViTs are still very young, and despite their popularity many,
the explainability of the learned representations lacks detailed study. Most
attempts to explain what elements in particular ViTs pay attention to too often
revolve around visualizing the attention matrices of early transformer layers [7,
15, 31, 40]. Nonetheless, this could be a result of inspecting layers until an
intuitive one is located. A deeper inspection of many architectures shows
that you can obtain very similar attention maps from drastically different
images [24, 76]. Recent work [24] has fed handcrafted images to ViTs to identify
the types of patterns and relationships they learn. The study found that ViTs
exhibits feature progression similar to that of CNNs, i.e. the level of abstraction
increases with the depth of the model; from edges to object representations
as progress is made towards the deeper layers [24, 40]. Furthermore, early
embedding layers have been known to exhibit properties similar to early CNN
filters, i.e. gradients and edges [15].

Fixed Sequence Length: Despite the SA working on arbitrary sequence
length, the positional embedding layer does not allow for varied lengths of
input sequences. Some works address this by interpolating between existing
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positional embeddings [63, 109]. One of the solutions which have started
to catch on is relative positional embeddings which could enable the use of
variable length inputs [57, 65, 103]. However, most approaches that leverage
relative positional encodings do not investigate this aspect

Data Consumption: Since ViTs do not inherently encode inductive biases
(i.e. prior knowledge), they typically require a large corpus of data to identify
fundamental patterns [11, 15, 44]. This is a potentially restrictive factor when
adapting transformers to a new domain with little data. Research indicates that
ViTs that have learned these patterns in one domain, translate very effectively
to other similar domains [33, 67]. Recent ViTs have employed un-supervised
pretext tasks to learn fundamental relationships in a domain thus the restrictive
factor lies with the computational burden and data amount, as opposed to
manual annotation [20, 32, 87]. Furthermore, There exists a distinct lack of
research on the impact degraded, altered, or corrupted image data has on ViTs.
As transformers rely on inter-token relationships, erroneous tokens could have
unforeseen consequences for the SA operation.

Computational Complexity: As high fidelity cameras have become in-
creasingly common [38], computer vision algorithms are expected to process
larger HR images. With ViTs becoming a prominent architecture, their in-
ability to scale effectively with larger inputs [121] stifles the adaptation of
these algorithms. Additionally, research has shown that SA maps for a given
token tend to favor specific neighbourhoods [11, 15, 64, 76], indicating that
global-reasoning at all stages, might not be the ideal approach. Hierarchi-
cal approaches which progressively condense information display promis-
ing middle-ground [31, 64], by progressively expanding the receptive field
of the SA follows the progressive modeling trend observed with the original
ViT [24, 40]. Notably window-based attention approaches have linear com-
plexity (with respect to window size) of the SA mechanism. Additionally,
progressively condensing representations through repeated overlapping tok-
enization can facilitate a reduction in network depth and allow for larger input
patches thus reducing input length [118].

Using a similar intuition, employing sparsity in the of the SA mechanism
has also shown great promise [45, 102, 107, 125]. Using dynamically adjusted
attention patterns [102, 107, 125] and dynamically masking SA to obtain a
sparse attention mapping, can achieve comparative performance while reduc-
ing the computational burden. Alternatively, the length of the input sequence
can be reduced by using a CNN as an embedding layer [50, 95, 125]. CNNs
further allows the transformer to leverage the inductive biases of the CNN’,
which can facilitate the use of a shallow ViTs, further reducing cost [95].
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3 Related Work

Transformers’ popularity has only grown and proliferated throughout the NLP
and computer vision fields since their inception. With the rapid advances in
this field, a detailed overview is necessary to make informed decisions when
aiming to employ transformers. Noting that at its core, VTs are adapted from
ViTs, thus most challenges facing ViTs are transversal to VTs.

Existing surveys on transformers already cover: transformers in general [58],
NLP [43], transformers in vision [61, 110], efficient designs [21, 90, 91], ViTs [30,
44, 113]„ and multi-modality [79, 84, 108]. All though some surveys [30, 44,
79, 84, 108, 113] cover VTs, they do so superficially and contain insufficient
detail regarding the challenges of modeling image sequences or the highly
redundant spatiotemporal visuals present in videos.

3.1 Identifying Key Papers
To address the gap in the literature, a comprehensive analysis of works that
leverage transformers to model video data, and their unique approaches and
potentials was conducted in Paper C. To establish a structured overview of
key insights an overview was established. The various trends and design
choices observed in the VT pipeline, including input processing, architecture
variations, and training methodologies were described in detail. Additionally,
a detailed discussion of trends in object-centric and multimodal approaches
is included. In this section the key insights as they relate to the thesis topic
are outlined, for a detailed discussion and outline of other tasks as well as
a comprehensive comparison of the self-reported performance of the video
classification task see Paper C.

The timeframe for gathering papers started on the day the original trans-
former [94] was uploaded to arXiv.org and ended the window with the publi-
cation of CVPR2022 papers, marking the last set of publications from relevant
venues prior to the submission of the survey, Paper C. This establishes the
survey window as 12.06.2017 - 21.03.2022 (date format: DD.MM.YYYY).

To gather the relevant papers key terms were identified. These terms were
aimed at identifying papers that leveraged transformer models and any other
forms of self-attention (including non-local operations. The SA mechanism
was considered to be the key element that defined transformers. However, the
terminology had not fully solidified across topics, thus key search terms had
to describe attention as a whole. Consequently, this resulted in an increase in
false positives but also it likely prevented us from missing relevant papers.

For paper gathering the following high-impact venues were targeted:
NeurIPS, TPAMI, CVPR, ICCV, ICLR, ICML, AIII, and ECCV. Papers contain-
ing a combination of ’Video’ or ’Temporal’ combined with any of the following
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terms: transformer, attention, self-attention, non-local, and multi-head atten-
tion, were selected. Additionally, a manual search was conducted to identify
key papers that were not published in high-impact venues. This resulted in 282
relevant papers, which were reviewed in detail. During the detailed review, a
further 182 papers were excluded due to them not employing transformers to
model video data, resulting in a collection of 100 key VT papers.

4 Insights and Trends of Video Transformers

Most advancements in VTs aim to handle the computational burden, often
using frozen embedding networks (i.e., a pre-trained CNN) to reduce input
dimensionality [29, 34, 42, 46, 49, 56, 60, 75]. However, this approach might
limit transformers’ ability to learn non-local low-level motion cues, which
can be vital for a fine-grained understanding of dynamic scenes. Model-
ing temporal interactions in videos requires special considerations. Videos
have highly redundant appearance information, which makes it challeng-
ing to create information-rich representations without repeating similar sub-
representations [92, 122]. It has been shown that pure attentional models tend
to lose expressiveness and exhibit uniform attention at deeper layers [14, 16, 39].
Many current VT designs and self-supervised learning approaches inherit from
image approaches without considering temporal nuances, making them biased
towards learning appearance features. Allowing temporal features to form at
both low- and high-level while maintaining temporal fidelity is crucial. Thus,
efforts to reduce redundancy in videos should primarily focus on appearance
features. The introduction of novel VTs like MVITv2 [55] and SWINv2 [63]
effectively address this with a progressive hierarchical approach that attends
the temporal context prior to spatial aggregation. By favoring temporal atten-
tion prior to spatial attention, the architectures are able to better capture the
fine-grained motion features.

4.1 Input-preprocessing Trends and Insights
While employing CNNs as an embedding network could limit the capabilities
of transformers, inductive biases have proven to be hugely beneficial with re-
gard to performance [26, 35, 63, 72]. However, there is a distinct lack of novel
VT designs, like MViT [19] which leverage inductive biases embedded directly
into the transformer, despite being able to achieve SotA performance while
retaining comparable complexity to CNNs counterparts. Alternatively, Some
approaches attempt to infuse inductive biases into the transformer through
external networks, such as object detectors [26, 35], 3D action features [124],
or localized spatial features [22], essentially providing the transformer with
task-specific priors. A few novel approaches [35, 72] employ motion-informed
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tokens to induce motion-specific biases. Combined with the novel architec-
tures such as MVIT [36] and SWINv2 [63], motion biases could be leveraged to
refine predictions in challenging scenarios with low-confidence appearance-
based features (e.g., visibility is severely reduced or obscured).

4.2 Architectural Trends and Insights
Attempts at reducing the computational burden of pure transformer models
typically leverage approaches that restrict or limit the self-attention mechanism
to a specific neighborhood [3, 6, 29, 63, 65, 70, 103, 112], axis [2, 3, 18, 53, 93, 119]
or pattern [3, 53, 72, 120]. Limiting the scope of the SA mechanism conse-
quently reduces the type of relationships that can be modeled. Particularly
self-attention targeted towards a specific neighborhood will enforce CNN like
patterns of attention, thus requiring an additional mechanism to obtain infor-
mation from the global context. To address this some works [36, 55, 64, 65]
leverage a progressive refinement where the receptive field of the restricted
attention is over-lapped or shifted progressively to obtain a global context at
deeper layers. This enforces a similar pattern to those observed in CNNs and
large-scale ViTs, i.e., increasingly higher levels of abstraction and receptive field
of the attention mechanism with each layer [11]. This would indicate that early
layers of transformers could be limited to a local neighborhood (like convolu-
tions) to reduce computational complexity at earlier layers, however, it could
be argued that this restriction would be somewhat equivalent to leveraging
CNN backbones.

Similar to ViTs, research on VTs struggles with the explainability of the
produced representations. While there is a high level of understanding that
later layers target broader concepts rather than local patterns, the understand-
ing of why certain local and non-local patterns are preferred at different stages
is still not fully understood. Current approaches tend to overlay heatmaps
of specific attention heads as an ad-hoc explanation to the learned relation-
ships [5, 26, 39, 41, 52, 70, 71, 73, 74, 82, 105], commonly highlighting heatmaps
that are perceptually intuitive to a human observer [105]. Attempts at pro-
viding explainability through visualizing attention typically also only address
spatial attention. Visualizing attention further is very unintuitive when ap-
plied to video sequences, as it would require per-frame inspection of attention
from a specific token of a specific frame. Even then it does not provide much
insight into the spatio-temporal attention patterns. Understanding these at-
tention patterns could provide invaluable insights into relevant design choices,
but is currently severely understudied.
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4.3 Training Methodology Trends and Insights
Similar to the use of pre-trained CNN backbone networks, many VT ap-
proaches directly adopt ViT architectures, and thus are able to initialize from
their ViT counterpart [2, 6, 26, 70, 111, 114]. While initializing from a pre-
trained transformer typically reduces the required training time significantly,
it initiates the VT in a state heavily favoring spatial relationships, which might
result in a reliance on appearance-based features rather than motion-based
features. Some VTs [96, 101], attempt to avoid this by initializing from a model
pretrained on video classification.

While transformers can be trained end-to-end on down-stream tasks [2, 3,
19, 39, 103, 120] like traditional CNNs, a large component of what makes trans-
formers unique, is their reliance on inter-token relationships. In combination
with the input inherently being separated into segments (i.e. tokens) lends it-
self well to self-supervised pre-training, particularly Masked-Token-Modeling
(MTM). MTM takes inspiration from BERT [12], where a subset of tokens are
randomly replaced by a learnable [𝑀𝑆𝐾] token which the network is tasked
with predicting. Due to the continuous nature of images, it would require map-
ping to 2553 distinct elements. To address this, common MTM approaches
leverage feature-level regression [8, 52, 54, 101] or contrastive [9, 48, 52, 85]
approaches to guide the network reconstruction. While uncommon, some
work has managed to regress pixel-level tokens directly [63, 92]. Notably,
VMAE [32, 92] have shown that it is possible to reconstruct complete frames
and partial video sequences with remarkable fidelity, even with large masking
ratios (e.g., 90%). This further underlines the redundancy present in the video
domain. Self-supervised pretraining generally shows great promise for gener-
alization, as it provides a strong avenue for learning from very large corpora of
data, thus learning robust relationships that generalize well. While only a few
have studied out-of-distribution data [60, 62, 73, 83, 104, 124] or cross-domain
evaluation [25, 86, 89, 117], performance of VTs remains rather consistent when
tested. Thus, VTs are potentially strong candidates for real-world vision ap-
plications. Real-world camera systems could introduce different or varied
sampling rates than that present in the training data. The impact of changing
temporal resolution in such a manner is still not investigated and remains an
open-ended question.

4.4 Multi-Modal Insights
Video is inherently multi-modal in that it contains both visual and auditory
information. Previous work has shown that the high-level semantic represen-
tations learned by transformers transfer well to other modalities [67, 88]. In
combination with transformers’ lack of inductive biases, transformers may en-
able them to learn shared multi-modal representation spaces, leading to better
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generalization capabilities. A few works have shown to align representations
from multiple modalities via instance-based modeling [25, 48, 52, 85]. For ex-
ample, VATT [1] is able to perform heavy downsampling of video by aligning it
with audio and textual modalities. STiCA [74] learn to attend to spatial sources
of audio within the video by aligning audio with visual crops. In some cases, it
has even been shown that sharing weights between transformers can improve
alignment as well as the performance of downstream tasks [1, 48]. This kind
of alignment has previously been shown to be useful for video classification
with CNNs [80].

4.5 Object-Centric Insights
Advances regarding object-centric tasks like object detection, tracking, and
segmentation are particularly interesting. As they are typically focused on
per-object outputs, redundant information is present both temporally, as well
as within a given frame. As such, recent works [35, 37, 68, 112, 123] have
adopted producing object-centric tokens which can be used to correlate spe-
cific object instances temporally. Notably, some approaches [35, 68] leverage
a memory buffer of object representations which can then auto-regressively
aggregate information between frames. These ’messenger’ tokens can be used
to distill relevant information between frames, effectively reducing the num-
ber of tokens attended by the transformer, making it more computationally
effective. The IFC-transformer [37], in particular, processes these object tokens
in an isolated encoder, thus learning inter-object relationships completely sep-
arated from the context. To obtain contextually appropriate relationships, the
transformer has to encode the relevant information from the entire image in
the object token. GroupFormer [53] leverages this principle to perform action
classification of individuals in a scene through an auxiliary branch. These
refined object representations can then be leveraged to reason group behav-
ior, thus allowing for scene understanding of individual objects and emergent
group behavior simultaneously. Alternatively, TeViT [112] progressively shifts
these object tokens to adjacent frames and encodes information from multiple
frames at a time. The benefit of this progressive encoding is that the object
representation is an aggregate from multiple frames rather than a gradual
refinement of a specific frame. Another method [114] leverages both short-
term and long-term information sharing by leveraging object representations
from distant and close frames in parallel and shows that these methods can
help produce smooth and continuous object detections and tracking, even of
heavily occluded objects.

Similarly for the segmentation task, recent work [98, 99, 115, 117] leverage
temporal representations to refine intermediate representations steps. No-
tably, [99] leverages an auxiliary matching loss, which temporally matches
representations to implicitly learn to track. This allows the model to poten-
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tially draw information about texture from multiple time steps and could
potentially help discern motion-induced degradation such as motion blur.

4.6 Implications for Real-World Applications
The field of VTs is still rapidly evolving and trends have emerged, both for
general applications as well as task-specific applications. The choice of VT
for real-world applications will depend strongly on the available compute
and the granularity of the downstream tasks. One of the troublesome trends
is the widespread use of CNNs as embedding networks [29, 34, 42, 46, 49,
56, 60, 75], as it relies on the chosen networks’ ability to effectively extract
patterns. Intuitively this would mean that challenges such as concept drift
and out-of-distribution data, would be difficult to overcome when relying
on an embedding network that is ill-suited for the task. Novel architectures
such as SWIN and MVIT [36] seem more promising methods due to inducing
neighborhood inductive biases through a hierarchical approach which learn
representations similar to that of fully-attentional models but with much lower
computational complexity [55, 63, 64].

One of the more novel avenues that transformers enable is the ability to
encode multi-modal representations and object-/context-specific information
across time [68, 98, 99, 114]. While they have typically employed represen-
tations adjacent to their specific task (e.g., bounding boxes and visual fea-
tures for object detection), it could be generalized to leverage contextual clues
from auxiliary systems or sensors which can guide/assist the primary modal-
ity. Consequently, VTs display traits which could have promising impacts on
multi-sensory video systems.

Coupled with the advances in efficient design, the field is rapidly ap-
proaching a state where the widespread use of transformer-style models can
be applied in real-world applications. Their ability to employ non-local rea-
soning (both temporally and across modalities) makes them very interesting
candidates for fine-grained analysis of video data. However, to see deploy-
ments of such systems outside of specialized use cases is still limited by the
computational complexity of these large models. While they are approach-
ing comparable computational complexity with SotA CNNs, most real-world
deployments still leverage very light-weight CNNs [10, 23, 38].

5 Summary and Contributions

The introduction of transformers in NLP and their subsequent adaptation to
the visual domain brought significant advancements in both fields. transform-
ers’ attention-based architecture allowed for global context understanding,
outperforming traditional recurrent networks in language tasks and CNNs in
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computer vision tasks. However, applying transformers to video data intro-
duced challenges such as computational cost, redundant information, and the
need for effective temporal modeling. Despite some existing surveys, a com-
prehensive analysis of how to effectively employ transformers on video data
was lacking. Therefore, in Paper C we conducted a literature review on video
transformers and found 282 relevant papers from which 100 key papers were
identified and analyzed. The main contributions within the field of Video
Transformer (VT) are thus:

• A systematic review of the field of VTs, documenting trends and patterns
of existing work. Identifying key papers and novel architectures which
show great promise for adapting transformers to video.

• A detailed review of existing methods and approaches to deal with the
large dimensionality of videos. Providing insights into the trends and
patterns related to the adaptation of ViTs to video data.

• Highlighted the need for future research on the explainability and con-
sequences of certain design choices, to achieve a more detailed under-
standing of the spatial and temporal relationships that are modeled by
the transformer.

• A discussion of the potential impact of video-specific design choices
in terms of the learning capabilities of the transformer and potential
implications for deployment on real-world data.

Overall, this section provides a comprehensive overview of the main challenges
and advancements in adapting transformers to video data, offering valuable
insights and directions for future research.
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Chapter 4

Rising Temperatures:
Exploring Thermal Concept
Drift

1 Introduction

In recent years, the increased use of computer vision in deployed systems has
helped transform numerous industries and domains, offering unprecedented
capabilities and opportunities in terms of automated image analysis [61]. Sup-
ported by the advancements of specialized processors and GPUs, powerful
deep-learning models trained on large-scale annotated datasets, have become
increasingly common. With this, computer vision has become an integral
component in many vision applications [21, 46, 49]. For autonomous vehi-
cles, computer vision enables real-time detection, recognition, and tracking,
allowing vehicles to perceive their surroundings and make informed deci-
sions [42, 98]. In retail, vision-based systems have facilitated the implemen-
tation of automated checkout processes, inventory monitoring, and behavior
analysis, leading to improved efficiency, reduced waste, and an improved
customer experience. Moreover, computer vision has become an invaluable
tool in detecting and analyzing various security scenarios. In surveillance
this has allowed for automated monitoring and analysis of video footage, al-
leviating the burden of human operators and enhancing overall efficiency.
Overall, the increased utilization of vision algorithms in deployed systems is
opening up new possibilities and driving innovation across numerous indus-
tries [21, 42, 46, 49, 116, 132, 145].

For contexts involving adverse weather conditions, the integration of ther-
mography becomes ideal, due to its inherent advantages over traditional image
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cameras. Thermography, also known as thermal imaging, excels at image ac-
quisition with minimal impact from adverse weather and lighting conditions,
due to capturing Infrared Radiation (IR) instead of visible light. Consequently,
this makes thermal cameras an ideal deployment of computer vision algo-
rithms in contexts where continuous operation is expected [36, 41, 55, 131].
There exist various types of thermal cameras aimed at solving a range of differ-
ent problems. Within thermography, there are two distinct types of cameras.
The first employs qualitative thermography, also known as relative thermal
imaging, which seeks to portray the relative differences in IR throughout the
camera’s Field-of-View (FoV). Primarily employed for inspection and security
applications, qualitative thermography excels at providing discernible con-
trasts between colder and hotter elements within the scene, irrespective of
absolute temperature values. The second employs quantitative thermography,
or absolute thermal imaging, which meticulously maps each sampling point in
the camera’s field of view to an absolute temperature measurement, enabling a
precise assessment of thermal discrepancies between distinct elements present
in the scene. The benefit of quantitative thermography lies in its consistent
visual response to any thermal signature encountered, facilitating accurate
temperature assessments with superior resolution and reliability [131]. Ab-
solute thermal cameras have all the capabilities of relative thermal cameras
with a precise mapping between response and absolute temperature, which
is a compelling argument to leverage this technology. However, the construc-
tion of absolute thermal cameras is significantly more intricate compared to
relative thermal cameras, thus making it more costly to produce [40]. Con-
sequently, most consumer applications leverage qualitative thermography to
reduce costs [61].

Deploying algorithms to real-world contexts further present several chal-
lenges such as domain shifts, perspectives, and object configurations which
are typically not observed in the training data [5]. To alleviate some of these
problems large-scale datasets with a lot of diversity and variation are often
used for training or pretraining, to allow the algorithm to generalize bet-
ter. Nonetheless, the algorithm cannot be expected to have seen the diversity
and variability that will be observed during deployment. Furthermore, in a
real-world context, these challenges are further exacerbated by the algorithm
potentially being deployed on several different input sources [61]. Having
varying input sources potentially introduces visual changes, in terms of image
resolution, image quality, compression artifacts, etc. Consequently, degrada-
tion of performance is often expected during deployment.

In academia, the validation of a computer vision system is traditionally fo-
cused on training and evaluating the system on public large-scale datasets [24,
48, 59]. Following this methodology allows for benchmarking and compar-
ing algorithms with existing methods, providing insights into their efficacy.
Large-scale datasets are typically used to enable a thorough evaluation of the
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algorithm’s ability to generalize as well as performance on unseen data. How-
ever, it is important to acknowledge that this type of algorithm validation does
not necessarily translate to real-world performance. Notably, public large-scale
thermal datasets commonly used in academia are captured using expensive
absolute thermal cameras [24, 59] making them ill-suited for evaluation and
training of models deployed on relative-thermal camera systems [131].

Consequently, evaluating the impact of concept drift during the long-term
deployment of computer vision algorithms poses a uniquely difficult challenge.
To bridge the gap between research and the real-world application of generic
object-detection models, identifying parameters that induce concept drift and
evaluating with respect to the identified parameters is a crucial step [5, 89].

This chapter serves to provide insight into three problems related to the
long-term deployment of thermal computer vision systems, namely:

Paper D Thermal Concept Drift during Long-term Deployment: An examina-
tion of techniques to identify concept drift specifically in thermal imagery
with associated weather data, aiming to capture the evolving nature of
thermal object detection over extended periods. In addition to provid-
ing a large-scale dataset for comparison and evaluation with extensive
metadata.

Paper E Evaluating Long-term Robustness under Concept Drift: An investi-
gation and challenge posed at ECCV2023 for evaluating algorithm re-
silience when trained on limited data and evaluated on long-term data.

Paper F Training Weather-aware Detection Algorithms: A study of different
conditioning methods for CNNs and Transformers, using weather-related
data to guide optimization.

2 Background

The core objective of computer vision algorithms is to solve tasks based on
visual input, which requires identifying and recognizing patterns, structures,
and relationships from visual inputs. These patterns can range from simple
geometric shapes to complex objects. These patterns can be tied to an opti-
mization goal, such as object detection, image classification, action recognition,
scene understanding, etc. To achieve this goal, the network must gain an un-
derstanding of the patterns and relationships that make up a certain concept.
When the system is exposed to an unseen data distribution due to changes
in the observed context, these concepts can change resulting in undesired
performance impacts.
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2.1 Concept Drift
The term concept drift describes the underlying shift in data distribution and
thereby the recognized patterns associated with a given context. However, the
pattern in which it manifests can vary greatly depending on the origin of the
induced drift. Despite real-world concept drift often being a combination of
multiple drift types, drift is typically categorized into one of four categories:

(a) Sudden Drift (b) Reoccurring Drift

(c) Gradual Drift (d) Periodic Drift

Fig. 4.1: A visualization of the characterization of the four primary types of concept drift.

• Sudden Drift occurs when the underlying data distribution suddenly
and drastically changes. It leads to an abrupt shift in the relationship
between input features and the target variable. Models that cannot adapt
quickly might experience a significant drop in performance after such a
drift event (Shown in Figure 4.1a). An example could be a sudden onset
of heavy fog or a snowstorm, which can drastically reduce visibility as
well as alter the appearance of people and objects in the scene.

• Recurring Drift involves the periodic occurrence of concept changes.
The underlying data distribution may switch between multiple stable
states over time, making it challenging for a model to settle on a single
representation. This type of drift often requires continuous monitor-
ing and adaptation to changing patterns (Shown in Figure 4.1b). The
day/night cycle is an example of recurring drift, where there is a distinct
recurring appearance change between day-time and night-time.

• Gradual Drift involves a slow and continuous change in the underlying
data distribution over time. The target variable’s statistical properties
evolve gradually, leading to a gradual drift in the model’s performance.
Adaptation in this scenario requires methods that can slowly adjust to the
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gradual shift in the underlying data distribution (Shown in Figure 4.1c).
Surveillance systems observe evolving contexts such as construction sites
would exhibit gradual drift as the surroundings gradually change and
new structures are introduced and old ones are removed.

• Periodic Drift occurs when there is a recurring pattern in the drift events.
It involves the repetition of concept changes at fixed intervals or time pe-
riods. Models that can detect and adapt to these regular patterns are bet-
ter equipped to handle this type of concept drift (Shown in Figure 4.1d).
Examples could include short-term periodic changes in the density of
people due to sporting events or concerts.

Consequently, concept drift is a challenging aspect to handle as a combina-
tion of drift types can be present at any given time. Thus addressing concept
drift encompasses two essential phases: Firstly, detection and assessment of
the presence and magnitude of drift present. Secondly, adapting the system
to address the observed drift.

Detecting Concept Drift

The first phase of addressing concept drift is to detect the occurrence of concept
drift. The concept drift needs to be measurable which is challenging due to
its contextual nature and because it is typically induced by unknown external
factors [5, 43, 47]. Proxy’s and approximations for quantifying concept drift
often fall into one of three categories: error-rate-, distribution- and multiple
hypothesis-based [43, 47, 77, 89, 90, 117].

Error-Rate approaches employ metrics similar or identical to those used
to evaluate the system’s primary task, to evaluate if a change in performance
has occurred [30, 32, 76, 124]. Using the downstream task as the primary
drift expectation metric lends itself to incorporating the performance tolerance
expected during final deployment, however, it will require evaluation data to
be annotated with the same granularity as the primary task. For fine-grained
tasks, this can be particularly costly [43].

Distribution-based methods compare a given sample or window of sam-
ples of new data, with the known distribution. Concept drift is then present
when a given sample falls outside of the known distribution [43, 50, 89]. Vision
systems typically leverage encoder networks to condense a given sample into
a dense vector representation for visual clustering [149, 152]. These methods
additionally allow for the use of statistical- and distribution-based methods
from other domains.

Multiple Hypothesis-based often employs a combination of external, Error-
Rate- and/or Distribution-based methods [43, 89]. Employing multiple hy-
potheses instead of relying on a single drift detection model allows for drift
detection along several parameters and across multiple windows. Ideally,
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these approaches are leveraged when there is a need for very fine-grained de-
tection. These are typically employed when there is a detailed understanding
of the context and the types of drifts that can be expected [89].

Adapting to concept drift

When concept drift has been detected and has exceeded the maximum allowed
tolerance, changes to the system must be made to adjust performance. Methods
for adapting to visual concept-drift can be grouped into two methodologies:
learning- and model-based Methods [43, 47].

Learning-based methods focus on integrating new knowledge through it-
erative updates to a given model, often manifesting as partial [38, 125, 133, 148]
or complete [9, 38, 125, 133, 143, 148] retraining of the network. Which, depend-
ing on the chosen architecture, can quickly become a resource-intensive task.
This is especially true for supervised methods, which would require annotated
ground truths. In the adjacent field of domain-adaptation, self-supervised ap-
proaches [27, 98, 113, 119, 129, 137, 146] have become quite popular to refine an
existing model on unlabeled data. Commonly, the effectiveness of these meth-
ods is evaluated based on the model’s accuracy on other datasets, which share
some commonalities with the chosen down-stream task [27, 98, 113, 146]. The
effectiveness of these methods could serve as reliable methods to address the
adapt to the challenges posed by concept drift. Model-based methods focus
on training or inference of several specialized models, often in an ensemble
setup [17, 90, 94, 142] where the contribution of a given model is controlled
through handcrafted rules or fully learned [96, 125, 142, 148]. Ensemble ap-
proaches rely on being able to accurately detect the magnitude and type of
drift to effectively adjust the model, or models, used for inference. Having a
set of specialized models could provide increased performance by narrowing
the required level of generalization, however often results in large levels of
redundancy between models [142].

Thermal Object Detection in a Real-World context

Thermal-only object detection algorithms are woefully understudied, and
models from the RGB domain are typically adapted directly to the thermal
domain without architectural changes [2, 4, 62, 67, 76, 78, 104, 144, 153]. His-
torically, research has often applied YOLO variants [8, 36, 72, 76, 86, 140],
Faster R-CNN variants [2, 65, 67, 104, 151] or SSD variants [2, 62, 153] to
train thermal-specific models from scratch. Unlike in the RGB domain, large-
scale thermal datasets are sparse, have very limited variation, or span very
few days [6, 59, 109], which limits general evaluation of object-detection al-
gorithms in the thermal domain. Thus it is very common that models train
exclusively on data from the target domain [29, 75, 76, 104] making it difficult
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to compare performance between proposed methods. Intuitively, the end-to-
end learning scheme employed in training such algorithms should ensure the
models learn domain-specific patterns [2, 76]. However, this assumption lim-
its research on thermal-specific architectures, despite recent work indicating
that thermal-specific architectures can be more computationally effective while
displaying comparative performance [28]. Most research on thermal object de-
tection involves leveraging multiple modalities [8, 17, 20, 136], and learning
fusion methods that allow complimentary processing of said modalities. Com-
monly, this is achieved by having separate modality-specific feature-extraction
networks and then fusing the latent representation [66, 73, 101, 154, 156, 157].

2.2 Thermal Object Detection in the Presence of Visual Con-
cept Drift

The intersection between concept drift and thermal object detection presents
interesting and unique challenges. This is particularly true in environments
with high thermal variation. In these environments, it is difficult to learn a
singular representation of the object, as not only does the visual appearance
of objects change, but the environment also changes [6, 25, 59, 72, 76]. Existing
object recognition datasets in the thermal domain span very short periods
(typically short clips from a few select days) and have fairly uniform thermal
conditions [6, 59, 109]. With the scope of these datasets it can be assumed
that thermally, the sample typically falls within one of two distributions: day-
time or night-time samples [72]. While this provides insight into performance
across these assumed distributions, it fails to correctly address the gradual
impact of concept drift that would be observed in a real-world context [89].
This is further exacerbated by datasets being captured by quantitative thermal
cameras as opposed to qualitative thermal cameras, which are significantly
more common in current real-world systems [41, 61].

Reducing the impact of concept drift on detection algorithms

Training on diverse thermal samples might serve to establish a good baseline
for the performance of a given architecture in the thermal domain [76, 98, 136],
but it does not facilitate modeling of the transitive states of concepts as they
experience thermal concept drift. Some approaches attempt to capture repre-
sentations between distribution by learning an ensemble of specialized mod-
els [17, 35, 90, 96]. Ensemble approaches tend to improve accuracy and
reduce Miss-Rate (MR) but they also require significantly more resources
to be run [141]. Using ensembles to reduce the impact of concept drift
could be seen as a viable choice for deployment when a resource-efficient
implementation and infrastructure surrounding a given model exist. Fur-
thermore, deployments in resource-constrained environments could employ
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model-selection methods to dynamically execute the ensemble at a lower re-
source cost [74, 99, 141]. Alternately some approaches address concept drift by
incrementally improving the model, progressively integrating the drifting con-
cepts in the training loop [98, 113, 126, 129]. While this serves quite efficiently
at addressing the impact of incremental concept drift [126], it becomes quite
problematic with reoccurring- or periodic- concept drift. With the continuous
refinement of latent representations, it is prone to experiencing catastrophic
forgetting, which is detrimental for long-term deployments [47].

The impact of long-term concept drift on the task of object detection is a
niche topic, with thermal object detection further narrowing this field. The
nature of thermal cameras lends itself as an ideal sensor type for outdoor en-
vironments. However, the current lack of research in addressing concept drift
and the resulting performance degradation limits the possibility of widespread
adoption.

3 Thermal Concept Drift during Long-term Deploy-
ment

In this section, the contributions and insights presented in Paper D are pre-
sented. Namely, this work proposed a novel real-world thermal dataset span-
ning 8 months (January to August), containing diverse weather conditions, hu-
man activities, and recurring cycles (weekdays, weekends, mornings, evenings,
and seasonal changes). The presented dataset contains thermal video clips
with associated meta-data (timestamp, temperature, humidity, precipitation,
etc.) and serves as a platform for the evaluation of concept drift impact on
various vision tasks. The dataset addresses a gap in the literature that could
facilitate research into the understanding of concept drift-related challenges
imposed during long-term deployments of computer vision algorithms, in the
thermal domain.

3.1 Related Work
Studying the effects of concept drift in vision tasks often focus on a specific
real-world use case or simulates drift by synthetically augmenting existing
datasets [94, 100]. However, many large-scale datasets often span short peri-
ods [11, 48, 85, 88, 92, 111] or lack rich meta-data [1, 11, 25, 59, 85, 91, 92, 127],
this is particularly true for thermal datasets [6, 59, 109]. Consequently, the
evaluation of long-term thermal concept drift is not properly facilitated by
existing datasets, leaving a critical gap in the literature. This also impacts the
associated meta-data and the ability to identify contextual factors that could
potentially be leveraged to identify concept drift factors. Urban environments
play a pivotal role in the study of concept drift due to their high population
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Name Year Type Duration Period Metadata

UCSD [92] 2010 RGB 3.1 - -
Caltech Pedestrian [33] 2011 RGB 10 - -
VIRAT [105] 2011 RGB 29 - -
Avenue [88] 2013 RGB 0.5 - -
ShanghaiTech [85] 2018 RGB 3.6 - -
Surveillance Videos [127] 2018 RGB 128 - -
Street Scene [111] 2020 RGB 4 2 summers -
ADOC [110] 2020 RGB 24 1 day -
AU-AIR [11] 2020 RGB 2 - Time, Positions
MEVA [24] 2021 RGB/Thermal 144 3 weeks GPS, Time
LTD [102](Paper D) 2021 Thermal 298 8 months GPS, Day/Night, Weather, Time

C
ha

ng
in

g

KAIST [59] 2015 RGB/Thermal 43.41 - -
CVC-14 [48] 2016 RGB/Thermal 11.8 - -
Oxford RobotCar [91] 2017 RGB/LiDAR - 1 year GPS, IMU, Day/Night, Weather
Aachen Day-Night [118] 2018 RGB - - GPS, Day/Night, Weather
Gated2Depth [51] 2019 RGB/LiDAR - - GPS, IMU, Day/Night, Weather
Dark Zurich [114] 2019 RGB - - GPS, Day/Night
ACDC [115] 2020 RGB - several days GPS, Weather
Ford AV [1] 2020 RGB/LiDAR - 1 year GPS, IMU Day/Night, Weather, Time
Bdd100k [150] 2020 RGB - - Weather, Time

Table 4.1: "Existing urban computer vision stationary and changing datasets. In the Location column
’changing’ denotes a moving camera, like the ones on self-driving cars, whereas ’stationary’ denotes static
cameras, like the ones found in surveillance contexts. Type denotes the modality of the dataset (i.e., RGB,
thermal, or LiDAR). Duration denotes the size of the dataset in hours. Whereas Period denotes the time
span the data was captured in. Finally, Metadata denotes any additional information." [102]. This table
is adapted from [102], (Paper D)

density, primarily consisting of humans. Given that numerous systems are
designed to enhance human security and well-being within urban settings, it
becomes imperative that these systems operate with utmost efficiency.

"Notably, previous work in the field can be categorized into two primary
types of datasets, wherein urban environments play a prominent role. The first
type comprises datasets that feature scenes captured from stationary locations,
such as those obtained from CCTV and surveillance cameras. These datasets
are utilized for tasks like vehicle, pedestrian, and environmental detection
and segmentation [24, 85, 111]. The second type consists of datasets where
locations are constantly changing and are primarily designed for autonomous
cars, robots, human egocentric footage, and anomaly detection [1, 59, 150].

As can be observed in Table 4.1, datasets used for autonomous driving
typically feature changing locations and diverse modalities like LiDAR-, RGB-,
depth-, GPS-, and IMU-data [1, 51, 118, 150]. They encompass longer-duration
data, ranging from days to years, and focus on adverse weather conditions
to enhance domain adaptation and robustness in autonomous driving and
robotics applications. While thermal datasets are less common but still widely
used, existing thermal datasets lack long-term data and rich meta-data which
could be leveraged to identify impactful concept drift parameters.

Stationary datasets also lack duration information, and their relatively short
duration limits their applicability in studying long-term effects on deployed
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(a) Location of camera (b) Camera FoV

Fig. 4.2: Illustrations showing the location and viewing direction of the camera setup used to
gather the data for the LTD dataset. satellite images captured using Google Maps. Location:
Aalborg, Denmark. Map data ©2023 Google. Imagery: ©2023 Aerodata International Surveys,
Airbus, Maxar Technologies, CNES / Airbus, Landsat / Copernicus.

machine learning solutions [33, 84, 85, 92]. With the absence of metadata, the
study of concept drift is limited further. Most investigated datasets primarily
concentrate on RGB data [11, 33, 85, 88, 91, 92, 105, 110, 111, 115, 118, 127,
150], with only a few containing both RGB and thermal data [24, 48, 59].
In compliance with the General Data Protection Regulation (GDPR), thermal
imaging is preferable to preserve people’s anonymity. This further eliminates
the need for post-processing to protect personal data.

Furthermore, with the growing thermal imaging market [36], there is a
pressing need for accessible long-term public thermal datasets.

3.2 The Long-term Thermal Drift (LTD) Dataset
Paper D introduced the LTD dataset. The dataset was collected using a station-
ary setup, observing the harbor front of Aalborg (as shown in Figure 4.2). The
duration of the dataset spans two periods, with the first spanning May 2020 to
September 2020, and the second spanning January 2021 to May 2021. In these
periods a total of 298 hours were recorded on a Hikvision DS-2TD2235D-25/50
long-wavelength relative thermal camera [56]. Throughout the two periods
clips of 2-minutes were recorded every 30 minutes, capturing activity at all
hours of the day, as well as the gradual short-term changes (i.e., day/night),
long-term changes (i.e., days, weeks, and months) as well as environmental
changes (i.e., people, vehicles, rain, snow, fog, etc.). Examples of the visual
variation can be seen in Figure 4.3.

With each clip the timestamp was stored, enabling pairing with external
meta-data as well as identifying the time of day and season of the given
clip. The Danish Meteorological Institute (DMI) provides an open-source
weather API [60], which was used to extract weather-related meta-data. For
each clip the following weather-related meta-data was obtained: Temperature
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Fig. 4.3: "Examples of extreme changes in the image data contained in the LTD dataset. The top half of
the figure shows examples from February, March, April, June, and August respectively. These examples
show the visual change which can be observed over time. The lower half shows examples of the drastic
environmental changes that also appear in the dataset, in addition to the gradual change." [102]. This
figure is adapted from [102], (Paper D).

[°𝐶], humidity [%], precipitation [𝑘𝑔/𝑚2], dew point [°𝐶], temperature [°𝐶],
wind speed [𝑚/𝑠], sun radiance [𝑊/𝑚2] and duration of sunshine [𝑚𝑖𝑛]. An
overview of average values can be seen in Table 4.2 and a detailed explanation
of each meta-variable can be found on the API website 1.

Per month average for metadata

Month Temp.
[°𝐶]

Hum.
[%]

Precip.
[𝑘𝑔/𝑚2]

Dew P.
[°𝐶]

Wind Dir.
[𝑑𝑒𝑔𝑟𝑒𝑒𝑠]

Wind Sp.
[𝑚/𝑠]

Sun Rad.
[𝑊/𝑚2]

Sun
[𝑚𝑖𝑛]

Jan. -0.48 90.10 0.01 -1.96 161.91 2.58 23.97 0.90
Feb. -0.54 85.15 0.01 -2.83 131.00 2.95 51.12 1.42
Mar. 3.75 83.61 0.01 0.93 218.80 3.58 99.35 1.85
Apr. 4.47 97.25 0.13 4.10 126.50 2.97 67.31 2.23
May 10.74 75.46 0.01 6.07 217.32 3.04 256.76 3.66
June 16.36 71.46 0.01 10.57 151.27 2.37 256.46 3.63
July 12.91 75.32 0.01 8.46 268.15 3.97 270.17 3.62
Aug. 16.93 79.17 0.02 12.69 163.18 2.08 197.86 3.15

Table 4.2: "Average metadata for each month. From left - temperature, humidity, precipitation, dew point,
wind direction, wind speed, sun radiation, and minutes of sunshine in a 10-minute interval." [102]. This
table is adapted from [102], (Paper D).

1https://confluence.govcloud.dk/display/FDAPI
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3.3 Investigating impact on vision tasks
The meta-data contains parameters that have previously been shown to have
an impact on thermal cameras or directly affect the amount of IR radiation
present. Existing research has shown that temperature and relative humidity
impact various vision tasks such as concrete defect detection [134], temperature
measurements [3, 63], and food inspection [49]. Precipitation and dewpoint
temperature can be used to indicate the presence of, rain, fog, or condensation.
These can directly increase the attenuation of the IR radiation [7, 23] and
potentially indicate a build-up of moisture. Wet surfaces and buddles alter the
reflectivity of the scene, which changes the amount of IR radiation reflected
from heat sources [12]. Sun radiance and sunshine duration can cause rapid
changes in the intensity of IR light, which in turn impacts the captured thermal
images. Finally, wind speed and direction can introduce movement in the
background elements of the scene, such as water ripples or ropes, as well as
affect the camera’s stability and position.

Experiments

Experiments were designed to investigate the impact of the aforementioned
factors during long-term deployment as well as how they affect the amount
of data required to achieve stable performance. Based on the temperature
meta-data four months were selected for annotation. The coldest month (i.e.,
February) was selected as the training data, the test data would then include
a similarly cold month (i.e., January), the median month (i.e., April), and
finally the warmest month (i.e., August). Every clip was sampled at 1 fps,
resulting in 120 frames per clip. The training set was further sub-sampled into
three subsets containing data from the coldest day, the coldest week, and the
entire month. For each of the subsets, 5000 and 100 frames were selected for
anomaly detection and object detection respectively, using a greedy farthest
point sampling method. Each frame was given a position in a 2D feature space
based on its frame number and the associated temperature. These precautions
were taken to ensure that each subset contained a fair and varied distribution
of samples.

Anomaly detection was selected as the first task due to the use of auto-
encoders. Inherently the performance of autoencoders is tightly related to the
training set, as they are trained to reconstruct a given input image. Concept
drift would shift the data away from the training distribution thus limiting its
ability to accurately reconstruct the image. A simple convolutional autoen-
coder, CAE, and two SotA autoencoders, VQVAE2 [93] and MNAD [106] were
employed to provide a baseline. MNAD contains two variations, the first per-
forms reconstruction of a given image, whereas the second takes a sequence
of images and attempts to predict the subsequent frame.
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Object detection was selected as the second task as it represents a funda-
mental vision problem that other tasks (such as tracking and re-identification)
rely on. For this task, YOLOv5 and Faster R-CNN were chosen as benchmark-
ing architectures. YOLOv5 was the latest iteration of YOLO at the time, and
Faster R-CNN was a common baseline algorithm for object detection. Addi-
tionally, these two architectures have previously been successfully applied to
outdoor thermal data [18, 45, 58, 76].

The resulting setup required each model to be trained on three separate
subsets and all variations of each model would then be evaluated on the three
test sets. The expected performance loss between the training data and the
cold month would be expected to be low as their content is thermally similar,
thus the cold month effectively serves as a measure of performance on unseen
data and minimal if any thermal concept drift. However, the median and
warm test sets would contain thermally distant samples and thus serve as two
steps of increasing thermal concept drift.

3.4 Results and Insights
The impact of concept drift was quantified by the change in performance ob-
served for the trained models. However, the evaluation is two-fold. Firstly the
performance degradation is outlined. Secondly, the associated meta-data was
used to identify weather parameters that displayed a significant correlation
with the observed performance degradation.

Performance impact

As can be observed in Table 4.3, all tasks suffer a significant performance hit
when testing on thermally distant samples. Regardless of the training data,
all models exhibit a significant loss in performance when exposed to thermal
drift. Notably, autoencoder performance increases significantly when a wider
temporal span of data is provided for training.

This however is not observed for object detectors, who perform very sim-
ilarly regardless of data on thermally similar months. which could indicate
that that object detectors are fairly efficient at disentangling the objects from
the background. Overall these results indicate that the performance of the
models suffers significantly when exposed to thermal concept drift. However,
it does not properly outline how the individual weather parameters contribute
to the observed loss in performance.

Correlating Meta-Data and Concept Drift

When observing the examples presented in Figure 4.3, two primary causes
for visual change can be identified. Namely, seasonal and day/night changes.
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Model Performance Results
Train Test set

Methods Feb. Jan. Apr. Aug.

A
no

m
al

y
D

et
ec

tio
n

CAE
Day 5k 0.0096 0.0202 0.0242

Week 5k 0.0061 0.0167 0.0212
Month 5k 0.0042 0.0109 0.0147

VQVAE2
Day 5k 0.0051 0.0072 0.0068

Week 5k 0.0039 0.0066 0.0061
Month 5k 0.0021 0.0039 0.0035

MNAD
Recon.

Day 5k 0.0028 0.0057 0.0069
Week 5k 0.0065 0.0066 0.0062
Month 5k 0.0015 0.0041 0.0048

MNAD
Pred.

Day 5k 0.0008 0.0007 0.0009
Week 5k 0.0007 0.0006 0.0007
Month 5k 0.0007 0.0006 0.0007

O
bj

ec
tD

et
ec

t.

YOLOv5
Day 100 0.8010 0.5390 0.5240

Week 100 0.7940 0.4540 0.4860
Month 100 0.7930 0.4860 0.4830

Faster
R-
CNN

Day 100 0.6760 0.3230 0.3370
Week 100 0.6740 0.2790 0.3060
Month 100 0.6400 0.2560 0.3180

Table 4.3: Results from performance study showing anomaly detection and object detection
models. Results for anomaly detection are reported as average MSE, whereas object detection is
reported as mAP0 .5. This table is adapted from [102], (Paper D).

Additionally, human activity can also play a significant role in visual changes.
Thus, it can be inferred that the performance impact can be caused by either the
weather conditions, human activity, or a combination of these two. Therefore,
the density of people was included as a meta-parameter.

To identify whether parameters exhibit a correlation with performance, a
basic Pearson’s Correlation (PC) [128] and Distance Correlation (DC) [39] was
calculated and the statistical significance was calculated with a p-value of 0.05.
The F1 score was used to evaluate the object detection models as opposed
to the more frequently used mAP [37, 82], as the F1 score provides a better
measure of incorrectly classified cases. As can be observed in Table 4.4, the
greatest correlation between meta-data and model performance is displayed by
temperature and humidity, closely followed by time of day (i.e., day/night) and
density of people in the scene. To discern whether the observed correlation is
a sign of a causal relationship between the meta-data and model performance
a Granger causality test was done to identify if there is a predictive causality
between variables. Furthermore, to provide a more robust view of predictive
causality two non-linear Neural Granger [130] tests were conducted in parallel
with the normal Granger test [120].
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Performance / Meta-Data Correlation
Measure Temp. Hum. Wind Dir. Wind Sp. Precip. Activ. D./N. Hour

CAE P. C. 0.679 0.636 0.018 0.157 0.109 0.270 0.545 0.166
D. C. 0.682 0.588 0.158 0.170 0.126 0.291 0.538 0.287

VQVAE2 P. C. 0.381 0.690 0.001 0.194 0.172 0.217 0.403 0.124
D. C. 0.347 0.639 0.174 0.201 0.224 0.217 0.382 0.213

MNAD Recon. P. C. 0.607 0.672 0.016 0.173 0.126 0.220 0.509 0.156
D. C. 0.617 0.629 0.188 0.177 0.155 0.252 0.501 0.273

MNAD Pred. P. C. 0.107 0.277 0.064 0.152 0.072 0.677 0.369 0.137
D. C. 0.231 0.348 0.154 0.172 0.086✗ 0.665 0.462 0.312

YOLOv5 P. C. 0.261 0.258 0.102 0.011 0.096 0.124 0.047 0.009
D. C. 0.293 0.283 0.146 0.094 0.135 0.255 0.113 0.174

Faster R-CNN P. C. 0.354 0.456 0.115 0.135 0.0124✗ 0.199 0.147 0.001
D. C. 0.334 0.460 0.228 0.149 0.065 0.231 0.163 0.118

Table 4.4: "Correlation between the model’s measured performance values MSE and F1-score and the
weather, time, and scene activity features. Two correlation measures are used - Pearson’s (P.C.) and
Distance (D.C.) correlation. Measures that do not meet the statistical significance threshold of their p-
values are shown in red. The Day/Night features are specified as D./N." [102]. Autoencoders (i.e CAE,
VQVEA2, and MNAD variants) have their correlation calculated based on MSE, whereas object
detectors (i.e., Faster R-CNN and YOLOv5) have their correlation calculated based on F1-Score.
This table is adapted from [102], (Paper D).

Interestingly the results of the Granger tests (shown in Table 4.5), show that
people density in the scenes displays no predictive causality with performance,
despite showing a correlation. This would hint at the correlation being the
result of a second-hand relationship. Intuitively, this makes sense as people
typically move outside in higher densities in the daytime, particularly in ’good’
weather. Additionally, it can be seen that changes in temperature and humidity
display high predictive causality for the autoencoder models. In contrast, the
object detection models seem to display a correlation between similar meta-
data variables and performance as autoencoders, however, they do not share
the same predictive causality. Finally, the time of day (i.e., day/night) indicator
shows strong predictive causality with model performance across the board
(with the exception of Faster R-CNN).

3.5 Summary and Contributions
During the long-term deployment of thermal vision systems, it is almost cer-
tain that visual concept drift will be observed. Changes in environmental
conditions can be correlated with a degradation in the performance of the de-
ployed system, making it a particularly vital challenge to overcome. While only
a few weather parameters (i.e., temperature, humidity, and day/night) have
predictive causality with the performance of anomaly detection and object
detection on this particular dataset. It highlights the need for more research
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Predictive Causaility of Meta-Data
Temp. Hum. Activ. D./N.

Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP
CAE ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

VQVAE2 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

MNAD Recon. ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

MNAD Pred. ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

YOLOv5 ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Faster R-CNN ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Table 4.5: Results from calculating linear and non-linear (LSTM and MLP) Granger causality tests.
The cells marked with ✓ show positive predictive causality, while cells marked with ✗ show no significant
causality. [102], Autoencoders (i.e CAE, VQVEA2, and MNAD variants) have their predictive
causality calculated based on MSE, whereas Object Detectors (i.e., Faster R-CNN and YOLOv5)
have their predictive causality calculated based on F1-Score. This table is adapted from [102],
(Paper D).

and development of methods resistant to the impact of concept drift. The
introduction of the LTD dataset and the experiments conducted herein serves
to establish a benchmark and facilitate the study of thermal concept drift in
future research.

In this section, the work conducted in Paper D was presented. In large
parts, the work focused on addressing the impact of concept drift in the thermal
domain, identifying weather-related components which directly influence the
performance of thermal vision systems during long-term deployment. The
contributions of the work described herein can be summarized as follows:

• The introduction of a novel large-scale thermal dataset spanning eight
months containing over 298 hours of video, with rich meta-data provid-
ing information about the time, weather, and thermal conditions present
in each clip. This is currently the largest publicly available thermal
dataset for concept drift analysis.

• Established baselines for evaluation of thermal concept drift with diverse
meta-data, allowing for highly granular studies and analysis of the long-
term deployment of thermal vision systems.

• Experiments investigating the impact of weather-related factors during
long-term deployment, by analyzing the performance impact of anomaly
detection and object detection models. Highlighting that models which
produce fine-grained predictions are especially sensitive to thermal con-
cept drift.

• In-depth analysis of correlation and predictive causality between avail-
able meta-data and model performance. Identifying key conditions
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which impact the performance of vision tasks and contribute to ther-
mal concept drift.

4 Evaluating Long-term Robustness under Concept
Drift

In this section, the contributions and insights presented in Paper E are pre-
sented. Namely, the extension of the LTD dataset, the results of the "Seasons in
Drift" challenge, and the extended insights into the impact of weather factors
on object-detection algorithms.

At the 2022 ECCV Workshop "Real-World Surveillance: Applications and
Challenges (RWS@ECCV)" an extension to the LTD dataset was introduced
paired with a fine-grained object-detection challenge2. The goal of the chal-
lenge was to invite the research community to test their approaches with
known concept drift, and present novel approaches to combat the impact of
concept drift. In this section we will outline the contents of the dataset exten-
sion, the experiment setup and evaluation method, results, and trends.

4.1 Related Work
The impact of long-term concept drift has been a prominent topic for assessing
the potential for real-world performance of computer vision algorithms [54,
64, 147, 159]. However, in the field of object detection, there is a distinct
lack of datasets spanning long-term deployments. On this topic, the closest
related work (excluding Paper D [102]) which span long periods of time and
contain known concept drift are ACDC [115] and Ford AV [1] which both
are dynamic autonomous driving datasets. Furthermore, while they span
great periods the duration of data and sample rate of those durations are short
and infrequent, making it difficult to assess the impact of gradual concept drift.
With the introduction of the LTD dataset [102] (Paper D) a benchmark had been
established for evaluating and analyzing the impact of thermal concept drift
on object detection algorithms. The prior experiments only featured two object
detectors (i.e., YOLOv5 and Faster R-CNN), and 4 months’ worth of data with
limited object annotations. While the experiments showed the drastic impact
thermal drift could have on these tasks, there was a lack of granularity when
trying to evaluate long-term performance. Rather than proposing a novel
dataset, extending an existing one, in particular one with long-term consistent
data will serve to further provide avenues of comparisons and study. Notably,
expanding the LTD dataset with rich annotations would serve to facilitate more

2https://chalearnlap.cvc.uab.cat/challenge/51/description/
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detailed studies on thermal concept drift, and provide existing work avenues
for more detailed analysis.

4.2 Extended Object Annotations
To allow for granular analysis of thermal object detectors under thermal drift
on the LTD dataset, it was clear that the dataset needed to be extended signif-
icantly. Instead of a specific number of annotated for each subset, the entire
dataset was sampled at 1 Frames Per Second (FPS), resulting in 1.069.247 frames
in need of annotation.

New Annotations

Fr
am

es Total 1.069.247
w/ objects 224.609
w/o objects 844.638

O
bj

ec
ts

Total 6.868.067
Unique Objects 143.294
Person 584.139
Bicycle 293.280
Motorcycle 32.393
Vehicle 701.255

Table 4.6: Overview of annotations added
to the LTD dataset. This table is adapted
from [102], (Paper D)

A total of 6.868.067 objects were anno-
tated, extending the LTD dataset ob-
ject annotations by an order of magni-
tudes (an overview of annotations can be
seen in Table 4.6). As the images were
annotated with no discrepancy the ex-
tended dataset naturally display similar
object activity, density, and conditions as
would be expected in a real-world sce-
nario.

Notably, this means that the vast ma-
jority of frames contain no objects of in-
terest. While the empty frames were not
leveraged for evaluation they were pro-
vided they could potentially be lever-
aged for some approaches that leverage scene-priors [70]. The surveillance
context and point-of-view of the camera also ensured that the size of objects
was quite small due to their distance from the camera. Following the MS COCO
classification of object sizes, i.e., 𝑎𝑟𝑒𝑎 < 322, 322 < 𝑎𝑟𝑒𝑎 < 962, 𝑎𝑟𝑒𝑎 > 962 for
small, medium and large objects respectively, the vast majority of all but ve-
hicle objects would be classified as small objects (a detailed overview can be
seen in Table 4.7 and visualized in Figure 4.4). The distribution predominantly
consisting of small objects further adds to the challenge of the dataset, as small
objects are notoriously difficult for object detectors [19, 71, 103, 160].

4.3 Experiment Setup
Following the protocol established in Section 3.3, the challenge was separated
into three different tracks, i.e., the Day-, Week-, and Month-track. Each track
employed the same evaluation protocol, test data, and performance metrics,
however, they differed in the amount of training data. For evaluation, the data
from January, March, April, May, June, July, August, and September, was split
into equal parts validation- and test subsets.
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Class-wise Object Frequency (Area)
Person Bicycle Motorcycle Vehicle

Small 5.663.804 288.081 27.153 113.552
Medium 454 7 0 37.007

Large 176.881 5.192 5.240 550.696
Total 5.841.139 293.280 32.393 701.255

Table 4.7: This table summarizes observed object frequency with respect to the total area of objects.
Categorization follows the MS COCO size classification scheme, i.e., 𝑎𝑟𝑒𝑎 < 322, 322 < 𝑎𝑟𝑒𝑎 < 962,
𝑎𝑟𝑒𝑎 > 962. This table adapted from [68] (Paper E)

Fig. 4.4: Visualization of class-wise object-size frequency. The illustrations in this figure break
down the general distribution of objects in terms of their height (Y-axis) and width (X-Axis). This
figure is adapted from [69], Paper F
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The experiment would then be executed in two phases: the development
phase, and the test phase. During the development phase, the training data
and annotations were made available to the participants, who were required
to submit their predictions based on a validation set. Subsequently, during the
test phase, participants were tasked with submitting their results for the test
data. The test data was made available only a few days before the challenge’s
conclusion to prevent manual annotation or similar attempts at over-fitting
the test set. At the conclusion of the challenge, participant rankings were
determined using the test data. Primarily the competition centered on the
submission of results, but to be eligible to win the participants were obliged
to share their codes and trained models after the challenge’s conclusion to
facilitate result replication. After the deadline and submission of the training
code as well as pre-trained models, the submissions were manually verified.
Following the challenge, submissions were considered valid if their top-ranked
methodologies successfully passed the code verification stage.

Due to the significant increase in annotations, the existing object detectors
would not compete on equal footing with the newly extended data, thus the
best-performing model (i.e., YOLOv5) was retrained from scratch on the new
data. In addition to serving as a baseline performance, it was used to produce
an approximation of difficulty for each month. The difficulty of each month
was based on the degradation in performance exhibited by the baseline model.

Evaluation Method

The performance of the baseline model on the January subset (𝑏𝑎𝑠𝑒𝐽𝑎𝑛) was
given the initial weight of 1.0. The weight of subsequent subsets was calculated
as 𝑤 = 𝑏𝑎𝑠𝑒𝑖/𝑏𝑎𝑠𝑒𝐽𝑎𝑛 where 𝑖 refers to a given subset. The resulting weights
ranged from 1.0 − 1.93. To avoid accuracy exceeding 100% the weighting
was further remapped to 0.75 − 1.0. When submitting results the evaluation
script separated samples into their respective subsets and calculated a subset
specific mAP. The final performance metric was then calculated as a weighted
average of the subset-specific performance and their respective weighting.
The performance for each month was measured in mAP across all classes at
.50 : .05 : .95 Intersection over Union (IoU), following the evaluation metric
used for other large-scale object-detection datasets [82] and extending the
evaluation criteria of [102] (Paper D).

Intuitively, models who performed better on more difficult months (i.e.,
samples that experienced more drift) would be worth more in the combined
score. The aim was to incentives methods that generalized well or employed
some mechanism to combat concept drift.
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4.4 Results and Insights
To obtain performance insights for each model and identify potential advances
or methods that display great promise at combating thermal concept drift anal-
ysis was conducted as a two-step process. The initial step is the performance
measurement used to evaluate participant performance (as seen in Table 4.8),
i.e., per subset performance as well as a weighted performance score. Sec-
ondly, the performance of the model that passed the code verification stage
was computed with respect to temperature, humidity, object size, and object
density (shown in Figures 4.5a to 4.5c).

Leaderboard

As can be observed in Table 4.8, top participants across all tracks managed
to obtain significant increases in performance across all months when com-
pared to the baseline model. Notably the winning submission also used a
YOLOv5 variant, whereas the runner-up employed a cascaded transformer
model. Unfortunately, very few non-winning participants refused to submit

Participant 𝑚𝐴𝑃𝑤 𝑚𝐴𝑃 Jan Mar Apr May Jun Jul Aug Sep
Track 1 (day level)

Team GroundTruth∗ .2798 .2832 .3048 .3021 .3073 .2674 .2748 .2306 .2829 .2955
Team heboyong∗ .2400 .2434 .3063 .2952 .2905 .2295 .2318 .1901 .2615 .1419
Team BDD .2386 .2417 .2611 .2775 .2744 .2383 .2371 .1961 .2365 .2122
Team Charles .2382 .2404 .2676 .2848 .2794 .2388 .2416 .2035 .2446 .1630
Team Relax .2279 .2311 .2510 .2642 .2556 .2138 .2336 .1856 .2214 .2235
Baseline∗ .0870 .0911 .1552 .1432 .1150 .0669 .0563 .0641 .0835 .0442

Track 2 (week level)
Team GroundTruth∗ .3236 .3305 .3708 .3502 .3323 .2774 .2924 .2506 .3162 .4542
Team heboyong∗ .3226 .3301 .3691 .3548 .3279 .2827 .2856 .2435 .3112 .4662
Team Hby .3218 .3296 .3722 .3556 .3256 .2806 .2818 .2432 .3067 .4714
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BDD .3007 .3072 .3557 .3367 .3141 .2562 .2735 .2338 .2936 .3942
Baseline∗ .1585 .1669 .2960 .2554 .2014 .1228 .0982 .1043 .1454 .1118

Track 3 (month level)
Team GroundTruth∗ .3376 .3464 .4142 .3729 .3414 .3032 .2933 .2567 .3112 .4779
Team heboyong∗ .3241 .3316 .3671 .3538 .3289 .2838 .2864 .2458 .3132 .4735
Team BDD .3121 .3186 .3681 .3445 .3248 .2680 .2843 .2450 .3062 .4076
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BingDwenDwen .2986 .3054 .3565 .3477 .3241 .2702 .2707 .2337 .2808 .3598
Baseline∗ .1964 .2033 .3068 .2849 .2044 .1559 .1535 .1441 .1944 .1827

Table 4.8: "In this table the leaderboard of the ECCV - ChaLearn Seasons in Drift Challenge are shown.
Top solutions are highlighted in bold, and participants that passed the code-verification stage are marked
with a ’*’." [68]. This table is adapted from [68] (Paper E)
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code for verification thus preventing a broad in-depth benchmark and analysis
of the various models. Contrary to initial benchmarks on the LTD dataset, the
difference in training data provides a significant increase from day- to week-,
and further a slight increase with the month-subset. While this trend is consis-
tent across all subsets, the change relative to the original benchmark implies
that intelligent sampling a diverse training set, is especially important when
the annotation budget is restricted.

Interestingly, the performance on subsets at either end of the extremes
also displayed the best performance, where it would be expected to gradually
degrade. This could indicate that during long-term deployments the contents
of the thermal scene could be grouped into two distinct distributions. This
is further supported in Table 4.4, where day/night is shown to be a highly
correlated aspect. Whether this is in optimal solution or just a product of
generalization or model-capacity of the object detectors would need to be
further investigated.

Weather Analysis

The intuition that there is a correlation between changes in temperature and
performance (as detailed in Section 3.4) is further supported by the degradation
observed in the Figures 4.5a to 4.5c. Where it can be observed that the top two
models experienced consistent degradation with respect to temperature across
all three tracks.

Interestingly, humidity partially follows a similar trend, when looking at
Table 4.2 it can be observed that the average humidity drops when progressing
from the colder to the warmer months. However, the observed performance
impact is much more inconsistent, particularly with very low humidity not
presenting a significant performance impact. This could further be a sign of
models generalizing to a set of representations, favoring extreme conditions
rather than modeling a smooth transition.

The impact of object sizes became very unpredictable at larger object sizes,
most likely as a result of the low sample size both during training and evalua-
tion. However, it can be observed that the baseline model in particular heavily
degrades as it is exposed to larger objects. Intuitively, the model’s reliance on
anchor points results in the models fitting their reference anchor points to the
most common object size and shape.

Similar to humidity performance of models remains fairly consistent at
intermediate densities, and drops significantly at the extremes of each distri-
bution. Notably, there is a consistent increase in performance slightly prior to
the extremes. It is unclear what caused this, however, intuition would indicate
that it is a product of "easy" samples in a sparse segment of the distribution.
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(a) Day Track (b) Week Track (c) Month Track

Fig. 4.5: Visualization of model performance with respect to temperature, humidity, and object
sizes, for day (Figure 4.5a), week (Figure 4.5b), and month (Figure 4.5c) tracks. This figure was
adapted from [68], (Paper E).

Notable Participant Architectures

The winning participant and runner-up both employed significant methods for
achieving their respective performances. Particularly the winning participant
is worth highlighting as they employed methods surrounding the baseline
model [53, 139, 142] to improve its performance in general as well as robustness
to concept drift. During the training they sparsely sampled the training set into
several subsets, these subsets were employed to train several models which
each overfitted to their respective data distribution. With these specialized
models, they employed a "model soup" [142] to merge the weights into a
singular model. The key behind model soups is that the specialized models are
able to learn filters that are otherwise suppressed during generalization, and by
combining the weights of the specialized models a more robust general model
can be obtained [142]. They further employed the unlabeled video frames prior
to predicting sequences of bounding boxes, this sequence of predictions was
then refined by a learned sequential Non-Maximum Suppression module [53].
This allowed the model to leverage temporal data to relate objects temporally
and predict classes of detected objects based on temporal consistency.

The runner-up in large parts addressed the problem with compute and
expansive data augmentation [10, 13, 44, 122, 155]. Notably they employed a
SotA SWIN-Transformer [87] in a cascaded backbone configuration [80], with
cascaded detection-heads [14]. several backbone networks were leveraged
to progressively refine the input of the network and produce semantically

83



Chapter 4. Rising Temperatures:
Exploring Thermal Concept Drift

meaningful features [80]. However, due to the sheer scale of the resulting
backbone, they potentially contain a lot of redundant information. To combat
this the auxiliary detection heads were used to assist the backbone in learning
meaningful representations at every level.

4.5 Summary and Contributions
The impact of concept drift on thermal object detection still remains a sig-
nificant challenge for the viability of automated vision systems, the exten-
sion of the LTD dataset can help facilitate further research and development
of object-detection algorithms that are able to adapt to the thermal concept
drift observed during long-term deployment. To encourage research into this
topic a public challenge was issued for the "Real-World Surveillance: Appli-
cations and Challenges" Workshop at ECCV2022. Participants took various
approaches to address the challenge of concept drift and succeeded in im-
proving performance over baseline. Notably, it is possible to outperform large
compute-heavy SotA transformers by employing intelligent design surround-
ing the training and prediction of lightweight models.

In this section, the work conducted in Paper E was discussed. In large parts,
the work focused on an extension of the object annotations of the LTD dataset,
inviting the research community to develop object-detection algorithms robust
to concept drift and analyzing trends. The contributions of the work described
herein can be summarized as follows:

• An extension to the novel LTD data, expanding the object notation by an
order of several magnitudes, making it not only the largest single-scene
dataset for the study of concept-drift but also the largest single-scene
thermal person detection dataset with over 6.8 million annotated objects.

• Conducted a public challenge, inviting the research community to partic-
ipate in developing object-detection algorithms with the aim to combat
the impact of thermal concept drift on object detectors. Establishing base-
lines for complex SotA thermal object-detectors under long-term concept
drift.

• Analyzed the impact of model performance with respect to various
weather, seasonal and object-centric parameters, providing insights into
methods aimed at robust object detection under thermal concept drift.
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5 Training Weather-aware Detection Algorithms

In this section, the contributions and insights presented in Paper F are Dis-
cussed. The dynamic challenge of concept drift further finds a compelling
connection with contextual awareness. As the world evolves and changes
over time necessitating adaptation of concepts and pattern recognition, con-
textual clues could help guide algorithms towards informed adaptation to
the observed drift [16, 72]. Contextual awareness in that sense could empower
computer vision systems to become more resilient to concept drift. Particularly
by understanding the context the system would be able to discern if the visual
change is a result of concept drift or contextual variation [16, 123]. Particularly
for long-term deployment in outdoor environments, adverse weather is an es-
pecially challenging topic as it potentially obscures vision in conjunction with
inducing sudden concept drift [47].

5.1 Related Work
Contextual awareness has been shown to improve the performance of object
detection systems [16, 57, 72, 86, 86, 95, 97, 107, 108, 123, 138], and while re-
search has been sparse in the thermal domain, the general improvement they
pose could potentially be transversal between RGB and the thermal domain.
As shown in [102] (ThesisPaper D), changes in weather conditions can in some
cases be strongly correlated with concept drift for thermal videos. While the
literature on context-aware object detection has primarily focused on context-
awareness in the spatial sense [83, 86, 97, 108, 123, 138], weather-aware ap-
proaches have seen increasing interest in recent years [8, 16, 57, 72, 86, 95, 107].
Methods that leverage spatial context-awareness have shown great promise
by leveraging global information to make informed local decisions, and accu-
rately improve detection of heavily occluded objects [97, 123, 138]. Similarly,
resilience towards adverse weather conditions can be achieved by leveraging
global information to inform an understanding of image degradation induced
by the weather [16, 57, 72]. Weather-aware methods can be roughly grouped
into two groups of approaches: firstly, approaches that leverage awareness of
contextual information (e.g. weather conditions) to learn robust representa-
tions that are agnostic to adverse weather conditions [57, 72] and thus do not
impact the performance of the chosen network at inference time. Secondly, ap-
proaches that directly leverage mechanisms to adjust the weighting of internal
computations based on weather features [8, 16].

Some approaches aim to refine the representations learned by the network
to be robust to different perturbations [57, 72, 76]. Typically, done by employ-
ing an additional optimization goal [57] or auxiliary task [72] which can be
removed during inference. By including weather awareness in the training
loop, the algorithm can effectively be guided toward stronger representations.
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In cases where exact knowledge is vital, the model can be made aware by
predicting the weather in addition to its primary task. Effectively infusing
intermediate representation with weather information [57, 72]. Employing
these methods previous work has shown significant performance increases in
adverse weather conditions [57, 72, 76].

Lastly, while not addressing concept drift or weather awareness directly,
the "translation" approaches proposed in [86] and [140] could also potentially
alleviate the impact of concept drift while being contextually aware of the
contents. They do this by essentially including a "translation" layer that en-
codes and decodes the input image into a representation where the adverse
weather is removed. Essentially, by synthetically adding simulated adverse
weather to your training sample, you can teach a smaller "translation" network
to reconstruct the image without the synthetic degradation [140].

5.2 Weather Aware Conditioning
Weather-aware conditioning of object detectors is a novel approach to improv-
ing the prediction accuracy of object detection systems, through leveraging
contextual information to alter the behavior of the network. Traditional ap-
proaches often leverage a binary classification of contextual clues as a method
to induce weather-aware knowledge into the model [57, 72]. This might be
ideal for synthetic datasets and real datasets captured with absolute-thermal
cameras

This approach relies on assumptions about the underlying data distribution
or distributions, that may not hold in real-world scenarios. In an uncontrolled
environment, there are likely various unknown variables that could introduce
noise to the signal, making it challenging to accurately distinguish ground
truth close to the bin edges [52, 81]. Posing the problem as a continuous pre-
diction problem rather than a discrete one could allow the network to model
representations that better fit the gradual nature of concept drift. However,
as discussed previously in Section 3.1 and shown in Section 3.2, very few sta-
tionary datasets have meta-data with the level of granularity that would allow
continuous prediction. The LTD dataset favorably contains such a level of reso-
lution with its metadata, making it an ideal dataset for studying context-aware
conditioning of thermal-object detection algorithms. As the thermal images in
the LTD dataset are recorded with a relative thermal camera, even scenes with
similar meta-conditions may exhibit slight visual differences. Consequently,
predicting exact values from visual data becomes an ill-posed problem due to
the inherent noise induced in the signal. To address this issue a predefined
degree of deviation is baked into the optimization of the weather prediction
component.
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Conditioning Methods

Fig. 4.6: Visualization of the
conditioning layer proposed
in [72]. This figure was
adapted from [69] (Paper F)

Two distinct approaches for incorporating weather-
conditioning into object detection models were ex-
plored. The first method, referred to as ’Direct Con-
ditioning’, involves directly integrating weather in-
formation into the latent representation of predic-
tive branches through a conditioning layer proposed
by [72]. Originally, the weather-conditioning ele-
ment, derived from an auxiliary classification net-
work, aimed to discern day-time and night-time dis-
tributions, making the network "aware" of weather
variations. In contrast, the second approach referred to as ’Indirect Condi-
tioning’, leverages vision-transformers and their self-attention mechanism to
encode information from the input image into a weather token. By utiliz-
ing its transformers’ global reasoning this method allowed the network to
dynamically disregard weather-related relationships that do not contribute
meaningfully.

YOLOv5: Direct Conditioning

Fig. 4.7: "YOLO-styled direct-conditioning network. Red, blue, green, and yellow denote the auxiliary
branch-, conditioning layer-, conditioning layer, feed-forward network, and pooling layers respectively." [69].
Blue boxes represent conditioning layers, This figure was adapted from [69] (Paper F)

The direct conditioning variant expanded on the initial configuration pro-
posed in [72]. By leveraging the intermediate representation of the auxil-
iary branch the detector’s intermediate representation is directly conditioned
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thereby incorporating weather information into its semantically rich repre-
sentation. The task of the auxiliary branch is to predict the current weather
condition and thus would inform the detection branches’ predictions. The
YOLOv5 model [135] served as the original implementation. An auxiliary
branch was extended from one of the early stages of the feature extractor,
with fully connected layers condensing the representation. This condensed
representation was then fed to a prediction head, generating a single value
regressed using a novel L1 loss. Individual fully connected layers conveyed
the representation to the conditioning layer in different stages of the network,
before each stage’s prediction head. The conditioning layer, shown in Fig-
ure 4.6, consisted of an element-wise multiplication and summation with the
auxiliary representations.

Deformable DETR: Indirect Conditioning

Fig. 4.8: "DETR-style transformer network with indirect conditioning. Red, light-red, blue, green, and
yellow denote the weather-token, auxiliary branch-, feed-forward network, and embedding layers respec-
tively." [69]. This figure was adapted from [69], (Paper F).

The in-direct conditioning variant extends deformable-DETR [158] with
a learnable classification token, utilizing its encoding to predict the auxiliary
task of weather condition prediction. Despite the possibility of the transformer
learning embeddings optimized for affinity with the classification token, the
network is designed to disregard weather-related embeddings when they do
not significantly benefit optimization. Unlike the directly-imposed approach,
this network can dynamically ignore image regions that do not provide relevant
contextual information. Drawing inspiration from the use of a [CLS] token in
the original BERT paper [31] and aggregation trends presented in [121], an
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additional learned token was added to the input to progressively aggregate
global weather-related information. This enables continuous aggregation of
global information from the input to a single representation (i.e., token). Before
the decoder, the [CLS] token was separated and directed to an auxiliary branch,
consisting of fully connected layers, to map the weather token to a single value
for regression.

Training Setup
Histogram: Humidity

Histogram: Temperature

Histogram: Time-of-Day

Fig. 4.9: Histograms of meta-data vari-
ables. This figure is adapted from [69],
Paper F

The auxiliary prediction head in both the di-
rect and indirect variants was trained in a su-
pervised manner to guide them to accurately
predict observed weather phenomena. This
meant that the original data split used in Pa-
per D [102] and Paper E [68] contained insuf-
ficient variation in the targeted weather con-
ditions. As such the data was split into three
equally sized train-, validation- and test- sub-
sets, spanning the entire dataset. With the
training set now containing a large amount
of variation both in terms of meta-data and
visual appearance the previous benchmarks
would not reflect the performance that could
be expected by the baseline models given the
more diverse subsets. Thus each variant had
a baseline model trained from scratch fol-
lowing the methodology described in their
respective implementation/paper [135, 158].

Due to the inconsistent ranges of the
meta-data (i.e., [−13, . . . , 28], [0, . . . , 100],
[0, . . . , 24]= for temperature, humidity, and
time of day respectively), the impact of the
absolute distance based loss would also be
inconsistent and thus could cause unstable
variances [15, 34, 112]. To address this the
ranges were all remapped to [−2, . . . , 2] dur-
ing internal computations, and then sub-
sequently remapped back to their original
value for later analysis.

For each type of conditioning scheme,
several models were trained and conditioned
on a set of meta-data. Each variant thus
resulted in 4 models: a baseline and three
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models conditioned on temperature, humidity, and time of day respectively.
During training, the losses were exponentially reduced within, ±5°𝐶, 10%, and
1ℎ𝑜𝑢𝑟 deviation from the ground truth. Thus the accuracy of the prediction
head could be expected to display a similar level of mean Average Error (mAE),
whereas the Standard Deviation (St.Dev.) can be used to assess the consistency
of the deviation.

5.3 Results and Insights

Model 𝑚𝐴𝑃𝑣𝑜𝑐 𝑚𝐴𝑃𝑐𝑜𝑐𝑜 𝑚𝐴𝑃𝐿 𝑚𝐴𝑃𝑀 𝑚𝐴𝑃𝑆 MR
YOLOv5 (Baseline) 0.604 0.465 0.825 0.640 0.491 0.342
YOLOv5 (Pretrain) 0.600 0.454 0.831 0.621 0.489 0.324
YOLOv5 (Temp.) 0.584 0.410 0.796 0.590 0.468 0.322
YOLOv5 (Hum.) 0.493 0.293 0.675 0.560 0.268 0.357
YOLOv5 (ToD) 0.549 0.439 0.805 0.566 0.431 0.356
DN-DETR Baseline 0.378 0.348 0.123 0.344 0.563 0.421
DN-DETR (Temp.) 0.225 0.148 0.100 0.190 0.682 0.389
DN-DETR (Hum.) 0.191 0.132 0.100 0.160 0.671 0.415
DN-DETR (ToD) 0.219 0.142 0.00 0.169 0.661 0.410
Def. DETR Baseline 0.332 0.202 0.005 0.051 0.637 0.383
Def. DETR (Temp.) 0.297 0.184 0.001 0.045 0.620 0.351
Def. DETR (Hum.) 0.213 0.114 0.000 0.020 0.517 0.416
Def. DETR (ToD) 0.289 0.178 0.001 0.040 0.619 0.395

Table 4.9: "In this table the mean Average Precission (mAP), and Miss-Rate (MR) of direct- (YOLOv5) and
indirect-conditioning (DETR) variants are detailed. Highlighted with bold is the best performing across
all models and highlighted with underline is the best performing model for a given architecture. 𝑚𝐴𝑃𝑉𝑂𝐶
denotes mAP where IoU is atleast 0.5, 𝑚𝐴𝑃𝐶𝑂𝐶𝑂 denotes mAP at varying IoUs (i.e., {0.50, 0.55, 0.60,
. . . , 0.95}). 𝑚𝐴𝑃𝐿, 𝑚𝐴𝑃𝑀 and 𝑚𝐴𝑃𝑆 denote mAP of objects with 𝑎𝑟𝑒𝑎 < 322, 𝑎𝑟𝑒𝑎 > 322 < 962 and
𝑎𝑟𝑒𝑎 > 962 respectively." [69]. This table is adapted from [69], Paper F

The evaluation of the proposed method is two-fold: Firstly the overall per-
formance in mAP is calculated across the entire dataset (shown in Table 4.9)
as well as the mAE and St.Dev. of the prediction head (shown in Table 4.10).
Secondly, the performance is also calculated with respect to object size, to in-
vestigate if any categories are neglected to reach a more generalized solution.
Any correlations between object size and weather might be a result of the
latent representation inadvertently favoring denser parts of the size distribu-
tion, particularly small objects. Additionally due to the performance observed
in [72], MR is also reported, as context awareness might allow the models to
recognize objects missed by the baseline.

As can be seen in Table 4.9, the conditioned models generally underper-
form their respective baselines. Notably, the performance of temperature and
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Deformable DETR YOLOv5

Fig. 4.10: This figure visualizes mAP0.5 with respect to temperature (top row), humidity (middle
row), and time of day (bottom row). This figure was adapted from [69] (Paper F)

time-of-day variants are only slightly lower than baselines, whereas humidity-
conditioned approaches are significantly lower than baselines for the direct
conditioning models. In Table 4.10 it can be seen that the accuracy of the
weather-predictive branches also follows a similar pattern, and generally dis-
play difficulty in correctly predicting their respective weather conditions. In-
terestingly predicting temperature displays an average error slightly higher
than the allowed deviance the St.Dev. is rather low, indicating that it is gener-
ally quite accurate at predicting close to the right temperature, however when
it fails, it fails quite drastically.

While it has been shown that these weather signals can be extracted in
traditional weather classification [22, 26, 81], it seems that extracting such a
signal is exceedingly difficult in the thermal domain. W Notably the only
improvement is seen with temperature-conditioned models, which display an
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improvement in terms of MR. Intuitively, during concept drift, artifacts may
appear suitable for an object in one distribution but undesired in another.
During training, the model may adjust to either over-predict (increased false
positives) or under-predict (increased false negatives) when concept drift oc-
curs. Intuitively, conditioning on underlying drift components should have
allowed the network to reason about the underlying data distribution and
thus learn robust patterns.

Auxiliary Prediction Accuracy
Model mAE St.Dev.

𝐷
𝑖𝑟
. Temperature 7.1 3.7

Humidity 18.9 9.4
Time of Day 7.3 7.1

𝐼𝑛
𝑑
𝑖𝑟
. Temperature 5.1 2.9

Humidity 15.3 8.9
Time of Day 8.3 7.9

Table 4.10: "Accuracy of the predicted auxiliary
prediction value, 𝐷𝑖𝑟. and 𝐼𝑛𝑑𝑖𝑟. denotes the
direct- and indirect-conditioning models respec-
tively, while the model row denotes the variant
used." [69]. This table is adapted from [69]
Paper F

While the mAP scores in Table 4.9 do
not improve over the baseline when con-
ditioned with the auxiliary branch, there
is an indication that the auxiliary branch
enforces a signal related to the auxil-
iary task. Particularly, the temperature-
conditioned variant successfully detects
objects that the baseline fails to de-
tect but in turn, leads to an increase
in False Positive (FP). Furthermore, the
transformer-based model exhibits more
uniform performance across tempera-
tures, which may be due to the auxiliary
predictive branch or the nature of trans-
former input-dependent attention. Surprisingly, DETR-variants perform well
on small objects, contrary to previous observations [15, 79, 158].

Perhaps extracting weather conditions from a relative-thermal camera is
ill-suited for precise regression. As day/night binary classification has been
proven effective, future work could attempt varying granularities of binning
to identify the ideal with accuracy that can be accurately modeled.

5.4 Summary and Contributions
Thermal concept drift poses a challenging hurdle to overcome during the de-
ployment of thermal object detection tasks. Taking inspiration from related
work [97, 108, 123, 138] on context awareness a study into leveraging granular
meta-data to infuse weather awareness into models was conducted. Lever-
aging both direct and indirect conditioning methods an attempt to accurately
predict weather conditions as an auxiliary task was employed to condition in-
termediate representations. Regrettably, extracting an accurate weather signal
from relative-thermal cameras as an auxiliary optimization goal proves inef-
fective. Guiding the model to directly infer granular predictions from relative
thermal images could prove unnecessarily noisy.

In this section, the work conducted in Paper F was discussed. In large parts,
the work focused on infusing intermediate representations with weather-
related information through two conditioning methods, guided by an auxiliary
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classification head. With the aim to obtain more robust features, the impact is
measured with respect to known concept drift indicators The contributions of
the work described herein can be summarized as follows:

• An analysis of direct- and indirect-conditioning of weather-related data
for auxiliary guidance of Transformer and CNN-style object detectors.

• A detailed performance comparison of conditioning methods with re-
spect to relevant concept drift indicators. Showing that while the im-
pact is measurable in terms of performance, guidance with a granular
weather prediction does not provide a clear enough signal to improve
performance.
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Chapter 5

Conclusion

This PhD Thesis was conducted in collaboration with Milestone Systems A/S
as a part of the Milestone Research Programme at Aalborg University in the
period from 2020 to 2023. The thesis focused on investigating generic object
detection and segmentation methods for image understanding in real-world
contexts. Encompassing frameworks for joint learning of semantic segmenta-
tion and super-resolution, an extensive study on the use of transformers in the
video domain, and an in-depth analysis of the impact of concept drift on ther-
mal object detection as well as introducing a novel dataset for future research
on the topic of thermal concept drift.

The main contributions of this PhD can be summarized as follows:

• Introduction of novel multi-task frameworks and techniques which im-
prove the performance of semantic segmentation and super-resolution
algorithms for real-world applications.

• State-of-the-art accuracy on the challenging Cityscapes dataset with
80.3% and 79.0% on the validation- and test-set respectively.

• State-of-the-art accuracy on the challenging IDD-Lite dataset with 76.3%
on the validation set.

• A detailed survey of trends, techniques, and challenges faced when em-
ploying transformers to model video data. Notably, identifying current
shortcomings, pitfalls, and promising techniques for designing efficient
video transformers.

• The development of the Long-Term Drift (LTD) dataset, introducing the
largest public dataset for studying thermal concept drift in stationary
setups. Consisting of more than 298 hours of video with rich meta-data
for both weather conditions and temporal notation.
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Chapter 5. Conclusion

• An in-depth analysis of the performance impact induced by thermal
concept drift, identifying correlated weather conditions and conducting
a fine-grained performance analysis with respect to said conditions.

• Investigated multiple conditioning methods and architectures for learn-
ing weather-aware latent representations for robust object detection dur-
ing long-term deployment and underlining the difficulty of extracting a
weather signal from relative thermal cameras.

In conclusion, we explored various novel approaches and frameworks
aimed at enhancing the capabilities of computer vision systems for real-world
applications. Development of novel frameworks such as Multi-Task Semantic
Segmentation and Super-Resolution (MT-SSSR) demonstrated the remarkable
improvements to segmentation models that can be obtained by jointly learning
super-resolution and semantic segmentation. Additionally, the integration of
semantic guidance into real-world super-resolution, as shown with Semantic
Segmentation Guided Real-World Super-Resolution (SSG-RWSR), exemplifies
that semantic guidance can further provide superior perceptual consistency
and noisy reduction for the super-resolution task.

Furthermore, we explored the challenges and trends that present them-
selves for transformers stepping beyond single-frame analysis and into the
video domain. Notably, the computational burden that comes with global
reasoning and high-dimensional data. Reducing input size, restricting the
receptive field, or aggregating information through highly refined representa-
tions proves to be efficient methods for addressing the computational burden,
while also exhibiting strong capabilities for object-centric tasks.

Lastly, the introduction of the Long-Term Drift (LTD) dataset has enabled
a fine-grained study of the impact of thermal concept drift on vision tasks.
Further underlining the importance of considering external factors, such as
weather, for long-term deployments of vision systems. The subsequent ex-
tension, of the LTD dataset, and public challenge fostered advancements in
robust object-detection algorithms, through fine-grained analysis of the im-
pact of weather conditions on object detectors. Lastly, efforts to infuse weather
awareness into models to counter concept drift provided insights into condi-
tioning methods, emphasizing the need for effective guidance mechanisms.

The contributions presented in this PhD thesis collectively furthered the un-
derstanding of the impact and methods employed for real-world applications
of object detection and segmentation algorithms. Despite these advances, real-
world applications of computer vision continue to prove a challenging topic,
with many challenges to solve. While the contributions presented in this thesis
have provided some techniques to alleviate this problem, there is still a long
way to go before we can transition object detection and segmentation algo-
rithms to real-world deployments without considering the impact of concept
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drift. Frameworks such as MT-SSSR and SSG-RWSR indicate the potential of
jointly learning complex visual tasks. Combined with a similar observation
within transformer architectures hints at multi-task learning as a promising
tool to obtain a more efficient and holistic understanding of visual data. Further
incentivizing the development of multifunctional models capable of address-
ing multiple challenges simultaneously and laying the foundation for more
versatile and adaptable computer vision systems. Moreover, the exploration
of transformers for video analysis highlights the importance of leveraging
the temporal cues, providing a foundation for future research to unlock the
full potential of these architectures in understanding dynamic visual scenes.
Finally, addressing the challenges of thermal concept drift demonstrates the
need to integrate external contextual cues into computer vision systems. Par-
ticularly understanding the nature of drift factors to properly identify them,
and developing methods that allow for the application of this knowledge via
architectural changes or augmenting the training phase to effectively create
robust computer vision algorithms.

Overall, these findings collectively emphasize the importance of holistic,
adaptable, and contextually aware computer vision systems, offering a glimpse
into the potential transformative directions that the field may take in the pursuit
of more intelligent and reliable visual understanding.

In case you have questions, comments, or suggestions, please do not hesitate
to contact me. You can find my contact details below.

Anders Skaarup Johansen
asjo@create.aau.dk
Rendsburggade 14

9000 Aalborg
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1. Introduction

Abstract

We propose a novel means to improve the accuracy of semantic segmentation
based on multi-task learning. More specifically, in our Multi-Task Semantic
Segmentation and Super-Resolution (MT-SSSR) framework, we jointly train a
super-resolution and semantic segmentation model in an end-to-end manner
using the same task loss for both models. This allows us to optimize the
super-resolution model towards producing images that are optimal for the
segmentation task, rather than ones that are of high-fidelity. Simultaneously
we adapt the segmentation model to better utilize the improved images and
thereby improve the segmentation accuracy. We evaluate our approach on
multiple public benchmark datasets, and our extensive experimental results
show that our novel MT-SSSR framework outperforms other state-of-the-art
approaches.

1 Introduction

Semantic Segmentation (SS) is a widely studied computer vision problem that
helps scene understanding by assigning dense labels to all pixels in an image.
SS has several applications in fields such as autonomous driving, robot sens-
ing, and similar tasks that require a semantic understanding with pixel-level
localization. The accuracy of SS is highly correlated with the spatial resolution
of the input images [23]. This is particularly prominent for segmentation of
small objects, where High-Resolution (HR) is essential to obtain a high accu-
racy [10]. However, obtaining HR image data is not always possible. One
possible solution is therefore to upsample Low-Resolution (LR) images as a
pre-processing step. This can be done with classical interpolation-based meth-
ods, such as bicubic interpolation, or with the more recent deep-learning based
Super-Resolution (SR) methods. The latter has shown to be the most effective
in terms of restoring HR details from LR images [8, 24]. Deep-learning based
SR models are trained by minimizing the loss, typically Mean Squared Error
(MSE) loss, between the reconstructed HR image and the Ground-Truth (GT).
Hence, these methods require paired LR/HR images for training. However, in
the case of improving another computer vision task, such as SS, the objective
and subjective quality of the super-resolved image is not necessarily the best
metrics. Therefore, we hypothesize that by only using the segmentation loss, it
is possible to optimize the SR model jointly, to produce super-resolved images
that result in improved segmentation accuracy.

In this paper, we therefore propose a novel framework named Multi-Task
Semantic Segmentation and Super-Resolution (MT-SSSR), for joint learning
of SS and super-resolution as seen in Fig. A.1. We use ESRGAN [24] and
HRNet [22] respectively as SR and SS backbones, in our joint framework, and
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rely on a single loss for learning both models, namely the loss of the SS task. We
evaluate our method on two different publicly available datasets, and present
new State-of-the-Art (SotA) results on both. In summary, the contributions of
this paper are:

• A novel multi-task learning framework, which uses a single loss to im-
prove the segmentation performance together with SR.

• Our method does not require LR/HR training image pairs for the SR
model when jointly learning in the multi-task learning framework.

• We outperform SotA SS methods on the challenging CityScapes and
IDD-Lite datasets by respectively 4.2% and 2.2%, compared to the best
existing published results.

2 Related Work

Super-resolution: Dong et al. [8] proposed the first deep-learning-based method
for SR, which successfully learned to perform non-linear mapping from LR to
HR images. Since then, most successful SR methods have been based on convo-
lutional neural networks. One of the SotA SR methods is ESRGAN [24], which
uses a relativistic Generative Adversarial Network (GAN) with Residual-in-
Residual Dense Blocks (RRDBs). Besides improving Signal-to-Noise Ratio
(SNR), or the perceptual quality of images, SR can also be used to assist other
computer vision tasks to achieve better accuracy [7, 14]. Recently, it has been
shown that SR can improve optical character recognition accuracy by up to
15% [15] and object detection in satellite imagery by up to 30% [18].
Semantic Segmentation: A popular method to achieve SS is to use an encoder-
decoder architecture [2, 4, 17] which encodes the input image to dense rep-
resentational feature-maps and then decodes to regain spatial information
[12, 27]. Eff-UNet [3] utilizes Efficientnet [20] as an encoder and UNet [17] as a
decoder, to achieve SotA performance the IDD-Lite dataset [13]. DeeplabV3 [5]
uses atrous convolutions and skip-connections for decoding. ERFNet [16] uses
deconvolutional layers, combined with a non-bottleneck-1d layer to reduce
computational cost. PSPNet [26] proposes a spatial pyramid pooling layer
that gathers information by pooling over an increasingly smaller region of the
image, then fusing those feature-maps with the original feature-map. Unlike
the previously mentioned methods, HRNet [22], aims to retain as much of
the resolution of the input image, by combining a HR branch with parallel
LR branches to achieve representational information, and subsequently fusing
the information from all branches before the final layer. Segmentation models
are often optimized using cross-entropy loss, which is a per-pixel evaluation.
In [28], Region Mutual Information (RMI) loss is proposed, which utilizes
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neighboring pixels in a statistical approach, allowing the model to adjust the
loss based on how difficult the prediction is, resulting in an overall improve-
ment in accuracy [28].
Multi-Task Learning: Multi-task learning has proven to be effective for differ-
ent computer vision problems, when multiple tasks need to be solved at once.
By jointly learning multiple related tasks, the performance of the individual
tasks can be further improved, compared to learning them separately. In [9],
multi-task learning is used to jointly learn image segmentation and depth es-
timation. In [25] it is proposed to use two GANs for joint de-noising and SR.
In [11] a network that can perform a selection of tasks with the same weights
is proposed. This is done with task-specific feature modulation, and residual
adapters to adjust the forward pass. The work most closely related to ours is
DSRL proposed in [23], where multi-task learning is used to jointly learn SR
and SS. As the main purpose of multi-task learning in [23] is to improve the
encoder of the segmentation model, the SR is considered an auxiliary task that
is removed at test time. A key difference in our approach is that we use our SR
model to upsample the input images during both training and testing. Addi-
tionally, we use the segmentation loss for optimizing our SR model, while [23]
uses MSE, which requires a HR ground truth version of the input images for
supervised learning.

3 The Proposed Framework

While the use of SR has shown to improve the performance of other vision
tasks, experiments show that traditional SR metrics cannot be used as full
proxies to recover all the lost details [7]. We postulate that using traditional
SR metrics as auxiliary loss for multi-task learning, serves to optimize the
model on some implicit assumptions rather than a global optimum for the
entire system. We therefore propose using the segmentation task’s loss for
improving the performance of the SR task as well.

The block diagram of our proposed method, MT-SSSR, is shown in Fig. A.1.
By jointly training both models using the segmentation loss, we remove the
need for LR/HR image pairs during training. This makes our method ap-
plicable to real-world applications where such data are not available. The
SR backbone in our framework is built upon the RRDB generator from ESR-
GAN [24]. Hence, we do not perform traditional GAN training with ESRGAN,
and instead replace all pixel and feature-based loss functions with our task loss.
For SS it is vital to have a high spatial resolution to accurately segment the con-
tents of an image. Hence, we chose HRNet [22] as the backbone architecture.
Other than replacing the Online Hard Example Mining (OHEM) cross-entropy
loss [19] with RMI loss, we do not modify the HRNet architecture further.
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Fig. A.1: Our proposed framework, MT-SSSR. Dashed and full lines represent training and testing
phases, respectively. The SR model learns to upsample and enhance the input image based on the
segmentation task loss. The segmentation model uses the same loss to improve the accuracy of its
prediction.

4 Experiments and Results

4.1 Datasets
The IDD dataset [21] contains driving scenes in unstructured environments,
including both urban and rural scenes. In our experiments we use the IDD-Lite
dataset [13] which is a sub-sampled version of the IDD dataset. The IDD-Lite
dataset contains pixel annotations for 1404 training, 204 validation, and 408
test images, respectively. The dataset has a resolution of 320 × 227 pixels and
contains 7 classes. Ground truth labels are only publicly available for the
training and validation images.

The CityScapes dataset [6] contains driving scenes from 50 different cities
recorded across several months. The dataset contains finely annotated seman-
tic maps for 2975 training, 500 validation, and 1525 test images, respectively,
which have a resolution of 2048 × 1024 pixels. Following [23], we sub-sample
the CityScapes dataset to 1024 × 512 pixels. There are 19 classes to be seg-
mented. We report our results on the test set, based on submission to the
CityScapes Online Server.

4.2 Implementation Details
For both our experiments on CityScapes and IDD-Lite, we initialize the seg-
mentation backbone with weights pre-trained on CityScapes training data. For
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the SR backbone, we use transfer-learning by pre-training the model on generic
LR/HR image pairs before the model is used in the multi-task framework. For
this, we use the DF2K dataset, which is a merge of DIV2K [1] and Flickr2K [24],
and use bicubic interpolation to downsample the HR images. We denote the
pre-trained SR model as SR𝑆𝑇 (Super-Resolution𝑆𝑖𝑛𝑔𝑙𝑒−𝑇𝑎𝑠𝑘).

For our experiments on CityScapes, we use the sub-sampled images, but
test against the full-resolution labels by upsampling our predictions with bi-
linear interpolation. For our experiments on IDD-Lite we train at the native
resolution training images and labels, and test against 256 × 128 pixel labels
according to [13]. We experiment with both ×2 and ×4 upsampling in our
MT-SSSR framework.

Training Setup: Due to memory constraints, we use a cyclic approach for
training our MT-SSSR framework, where we alternate between training on
patches and the full image. For patch training, we randomly crop 128 × 128
pixel LR patches from the training images and update both the weights of the
SR and the SS model. When training on the full image, we only update the
weights of the SS model.

We train all our models using gradient-descent with a mini-batch size of
12 on four V100 GPUs using a learning rate of 0.001 with an exponential decay
(𝑙𝑟 × 𝑖𝑡𝑒𝑟𝑐𝑢𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

0.9) trained until convergence. For the segmentation models we
additionally use momentum (0.9) and weight decay (0.0005).

4.3 Results
Results on CityScapes: Table A.1 shows the segmentation accuracy on
CityScapes. We include results for experiments with 1024 × 512 resolution
input images and ×2 upsampling of these. Most noticeably, our MT-SSSR
framework provides 4.2% improvement over the current SotA [23] and 3.6%
improvement over the HRNet baseline [22] on the test set. As seen in the quali-
tative comparison in Fig. A.2, our jointly trained SR model enhances sharpness
and details of the input images, which in turn helps the segmentation model
to better segment smaller distant objects, compared to the baseline.
Results on IDD-Lite: The segmentation accuracy on IDD-Lite reported in
Table A.3 shows that the performance increases with the upsampling factor in
our MT-SSSR. In particular, our method with ×4 upsampling provides 2.5%
improvement compared to the current SotA [3] and 6.9% improvement over the
baseline HRNet [22]. In the qualitative segmentation results in Fig. A.2, it can
be seen that our method more accurately segments fine details in the image,
compared to the baseline. This is also reflected in the per-class performance
in Table A.2. An interesting example can be seen for the triangular part of the
pole in the upper left corner (row three), where our method can label the sky
correctly, even though this is mislabeled in the GT.
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Method Scale Factor Val. (%) Test (%)

DeepLabV3+ [5] Native 70.0 67.1
PSPNet [26] Native 71.5 69.1
HRNet [22] Native 77.3 75.4
DSRL [23] ×2 SR𝑀𝑇 75.7 74.8
MT-SSSR (ours) ×2 SR𝑀𝑇 80.3 79.0

Table A.1: Quantitative segmentation results on CityScapes.

Method Drivable Non Drivable Living Things Vehicles Roadside Objects Far Objects Sky

HRNet + RMI 94.78 43.16 51.10 77.80 51.93 75.97 94.72
Eff-UNet [3] 94.86 50.12 61.96 81.31 54.99 77.54 95.55
MT-SSSR (ours best) 95.07 47.69 68.50 85.97 59.01 80.91 96.66

Table A.2: Per-class accuracy on IDD-Lite. Compared to the baseline and Eff-UNet our method
improves significantly on small objects such as living things and roadside objects.

4.4 Ablation Study
Effect of Upsampling and RMI-loss: We investigate the effect of SR and
RMI-loss on the CityScapes and IDD-Lite datasets. As seen in Table A.4 and
A.5, RMI-loss improves slightly over using OHEM-loss in the baseline HR-
Net on both datasets. Furthermore, naively upsampling the input images
with ×2 bicubic interpolation also improves the performance slightly. How-
ever, when using ×4 upsampling with bicubic interpolation on the IDD-Lite
dataset, the accuracy drops 2.3% below baseline. Using images upsampled in a
pre-processing step with the pre-trained single-task SR model, SR𝑆𝑅, together
with HRNet + RMI, provides 0.7 and 1.3% improvement over the baseline on
CityScapes and IDD-Lite, respectively. When combining RMI-loss and SR in
our multi-task framework we improve the performance by 3.6% and 6.9% for
the CityScapes and IDD-Lite datasets, respectively.

Inference Time: We compare our method in terms of inference time against
the baseline model on the CityScapes dataset, on a V100 GPU. The inference
time is 101ms and 1888ms per image for the baseline HRNet and MT-SSSR,
respectively. The inference time of HRNet at the increased resolution alone
is 592ms per image. This means that the increased performance comes at a
significant computational cost. However, no particular efforts has been made
in order to optimize the inference time.
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Method Scale Factor Val. (%)

DeepLabV3+ [5] Native 64.3
ERFNet [16] Native 66.1
HRNet [22] Native 69.4
Eff-UNet [3] Native 73.8
MT-SSSR (ours) ×2 SR𝑀𝑇 74.1
MT-SSSR (ours) ×4 SR𝑀𝑇 76.3

Table A.3: Quantitative segmentation results on IDD-Lite.

Method Scale Factor Val. (%)

HRNet [22] Native 77.3
HRNet + RMI Native 77.4
HRNet + RMI ×2 Bicubic 78.0
HRNet + RMI ×2 SR𝑆𝑇 78.1
MT-SSSR (ours) ×2 SR𝑀𝑇 80.3

Table A.4: The effect of RMI-loss and SR on segmentation accuracy on the CityScapes dataset. 𝑀𝑇
and 𝑆𝑇 denote multi-task and single-task, respectively.

Method Scale Factor Val. (%)

HRNet [22] Native 69.4
HRNet + RMI Native 69.9
HRNet + RMI ×2 Bicubic 70.9
HRNet + RMI ×4 Bicubic 67.1
HRNet + RMI ×2 SR𝑆𝑇 71.2
MT-SSSR (ours) ×2 SR𝑀𝑇 74.1
MT-SSSR (ours) ×4 SR𝑀𝑇 76.3

Table A.5: The effect of RMI-loss and SR on segmentation accuracy on the IDD-Lite dataset. 𝑀𝑇
and 𝑆𝑇 denote multi-task and single-task, respectively.
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Input Zoomed Input ×2 SR𝑀𝑇

Ground truth HRNet [22] Ours

Fig. A.2: Comparison of segmentation results on CityScapes (rows 1,2) and IDD-Lite (row 3). The
three first columns show the input image together with a zoomed-in crop of the input and super-
resolved image respectively. The last three columns show the differences between the ground
truth, HRNet [22] (baseline), and our best performing model respectively. Noticeable differences
include; distant streetlights, poles and signs in row 1, traffic poles, and people in row 2, and distant
poles and people in row 3.
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5 Conclusion

In this paper, we propose a novel framework for SS based on multi-task learn-
ing with super-resolution. The super-resolution model learns to enhance the
input images such that they become more suitable for the SS model, while
the segmentation model jointly learns to predict more accurate segmentation
maps. Our experimental results show that our proposed system outperforms
existing SotA SS methods significantly on the challenging CityScapes and
IDD-Lite datasets.
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1. Introduction

Abstract

Real-world single image Super-Resolution (SR) aims to enhance the resolution and
reconstruct High-Resolution (HR) details of real Low-Resolution (LR) images. This is
different from the traditional SR setting, where the LR images are synthetically created,
typically with bicubic downsampling. As the degradation process for real-world LR
images are highly complex, SR of such images is much more challenging. Recent
promising approaches to solve the Real-World Super-Resolution (RWSR) problem
include the use of domain adaptation to create realistic training-pairs, and self-learning
based methods which learn an image specific SR model at test time. However, as domain
adaptation is an inherently challenging problem in itself, SR models based solely on
this approach are limited by the domain gap. In contrast, while self-learning based
methods remove the need for paired-training data by utilizing internal information
in the LR image, these methods come with the cost of slow prediction times. This
paper proposes a novel framework, Semantic Segmentation Guided Real-World Super-
Resolution (SSG-RWSR), which uses an auxiliary semantic segmentation network to
guide the SR learning. This results in noise-free reconstructions with accurate object
boundaries, and enables training on real LR images. The latter allows our SR network
to adapt to the image specific degradations, without Ground-Truth (GT) reference
images. We support the guidance with domain adaptation to faithfully reconstruct
realistic textures, and ensure color consistency. We evaluate our proposed method on
two public available datasets, and present State-of-the-Art results in terms of perceptual
image quality on both real and synthesized LR images.

1 Introduction

Single image Super-Resolution (SR) aims to upsample a Low-Resolution (LR)
image and reconstruct the missing high-frequency details. SR has been a
widely studied problem for decades, due to its vast number of applications
in fields such as medical imaging, remote sensing, and surveillance. In latter,
SR are often used to improve the performance of down-stream vision tasks,
such as object detection and tracking, by improving the visibility of the im-
ages which often suffer from low-resolution due to the wide field-of-view and
large object to camera distance. Traditionally, most work has been focusing on
improving the fidelity of the images by minimizing the Mean Squared Error
(MSE). However, recently more focus has been put into generating realistic
High-Resolution (HR) images as perceived by humans [20]. Current State-
of-the-Art (SotA) deep learning-based SR methods most often require paired
LR/HR images to be trained by supervised learning. Commonly, researchers
have been using artificial LR images created by downsampling HR images, typ-
ically using bicubic interpolation. However, this strategy changes the natural
image characteristics, such as sensor noise and other corruptions, which limits
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Original Zoomed ESRGAN

Ours DA Ours guided Ours combined

Fig. B.1: Super-resolution (×4) of a real image from the Cityscapes dataset [11]. By combining
domain adaptation (DA) and guidance by semantic segmentation, our proposed method recon-
structs visually pleasing images. In contrast, ESRGAN fails to handle the corruptions in the real
image, resulting in many artifacts.

a SR model trained on such data to perform well on real LR images. Blind
SR tries to address this problem by assuming an unknown downsampling
kernel, but it still relies on Ground-Truth (GT) reference images for supervised
learning.

Recent promising approaches to solve the Real-World Super-Resolution
(RWSR) problem, where there aren’t any LR/HR pairs for training, includes
methods based on domain adaptation [17, 23, 43], where [17] was the winner of
the NTIRE 2020 Challenge on RWSR [25]. These methods aim at creating syn-
thetic LR images with similar characteristics as the real LR images. However,
SR models relying solely on this approach are limited by the domain gap, due
to the inherently challenging domain adaptation process. Self-learning based
methods [3, 30] removes the need for paired training images, by learning an
image specific SR model at test time, using only internal information available
in the input image. However, this comes with a significant cost in terms of
increased inference time [37].

In this work, we propose a novel framework, Semantic Segmentation Guided
Real-World Super-Resolution (SSG-RWSR), to handle SR of real LR images
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without GT references or prior knowledge about the image formation model.
We address the lack of training data by a combination of domain adaptation
and guiding the SR learning by the loss of an auxiliary semantic segmenta-
tion network. Semantic Segmentation (SS) is a computer vision technique that
provides scene understanding by dense labeling of pixels in an image. We
argue that the loss of the SS task provides strong cues about the fidelity of the
images, which can be used to jointly optimize the SR model towards producing
more accurate, and noise-free HR images. The loss of the SS task also enables
training on real LR images, without the need for GT reference image, which
we argue can help the SR model adapt to the image-specific degradations. To
reconstruct realistic textures, and ensure color consistency with the LR images,
we propose to simultaneously train on synthetically generated LR/HR image
pairs. To this end, we leverage domain adaptation to obtain LR images, with
similar characteristics and corruptions as the real images. At test time, we
decouple the SS network, which allows for faster inference times. To the best
of our knowledge, we are the first to propose a framework for RWSR guided by
the loss of a semantic segmentation network. We demonstrate the effectiveness
of our proposed Semantic Segmentation Guided Real-World Super-Resolution
(SSG-RWSR) on two publicly available datasets, using both real and synthe-
sized LR images, and show that our method outperforms the existing SotA
approaches. Visual results of our method can be seen in Figure B.1. In sum-
mary, the contributions of our work are as follows:

• We propose a novel framework for RWSR which allows learning from
real LR images without requiring the corresponding GT images.

• We propose to guide the learning of the RWSR task with the loss of a
semantic segmentation network, which helps to reconstruct sharp and
noise-free HR images.

• We show that domain adaptation and guidance by the segmentation
loss is complementary to each other, and improves the texture and fine
details of the reconstructed images, compared to using guidance by the
segmentation loss alone.

• Our method is trained end-to-end without any manual parameter tweak-
ing.

• We show SotA results for RWSR on two publicly available datasets of
both real and synthesized LR images.
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2 Related work

2.1 Single image super-resolution
Current SotA methods for single image SR most often rely on deep Convolu-
tional Neural Network (CNN) based SR architectures, which achieve impres-
sive performance on artificially created LR images. Some of the most recent
work includes EDSR [21], which is based on a deep residual CNN, the ResNet
based SRResNet proposed by [20], and RCAN [42], which employs channel
attention to re-scale features and recover HR details. These networks are opti-
mized with MSE loss, which leads to good Peak Signal-to-Noise Ratio (PSNR)
values, but fail to preserve the natural appearance of the images [41]. This
problem is addressed in [20], which presents an SR model based on Gener-
ative Adversarial Networks (GANs), optimized with a combination of MSE,
GAN, and VGG loss [18]. This approach leads to more photo-realistic im-
ages with better correlation to human perception of good image quality. In
ESRGAN [36] this idea is further developed, mainly by improving the gen-
erator and adopting a relativistic discriminator. However, the performance
of the aforementioned methods degrade significantly when used on real LR
images [24]. This is mainly due to the domain gap between the real and syn-
thetic LR images. To overcome this issue, ZSSR [29] introduced a zero-shot
approach which learns an image specific SR model at test time. In MSZR [30]
this concept is extended to exploit information from an external dataset as
well. In KernelGAN [3], ZSSR is used together with a GAN based network for
estimation of image-specific blur kernels. DAN [26] proposed to address both
steps in a single model using an alternating optimization algorithm that jointly
estimates blur kernels and performs SR. However, these image-specific learn-
ing methods come with the cost of extremely slow prediction times compared
to other SR methods [37]. In contrast, the prediction times of our method
are similar to [36]. In [17], a domain adaptation based approach to RWSR is
presented. First, a pool of realistic blur-kernels and noise patches is collected.
These are then used to transform clean HR images into realistic LR images
with similar appearance as real LR images. Next, a SR model is trained on the
constructed data. However, since the domain adaptation is a challenging task
in itself, the SR model is limited by the domain gap between the synthesized
and real LR images. In DPSR [39], de-blurring and de-noising are combined
with SR to deal with blurry and noisy LR images. However, without sufficient
prior information about the image-specific degradations, the effectiveness of
the method is limited.
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2.2 Guided super-resolution
Lutio et al. [12], proposed a method for super-resolution of depth images
guided by RGB images. By considering it a pixel-to-pixel transformation prob-
lem, they learn a mapping between the LR and HR images that are also appli-
cable to the depth image. Inversely [10] proposed a zero-shot approach that
extracts LR and HR patches using corresponding depth maps. Subsequently
they train a GAN that employs SR- and Degredation Simulation Network
(DSN)-modules in a cyclical manner that alternates between 𝐿𝑅 → 𝐻𝑅 → 𝐿𝑅

and𝐻𝑅 → 𝐿𝑅 → 𝐻𝑅mapping. In image generation tasks, such as [9, 16, 45] it
has been shown that semantic information can be utilized to generate detailed
textures and realistic looking images. In [27], semantic information is used
to guide a SR network towards creating textures in areas where this is im-
portant, and creating sharper lines at object boundaries. Condition networks
that employ SS probability maps to actively guide the SR network at a feature-
map level is proposed in [35] and [22]. It is shown in [35] that the conditions
can strongly influence the textures generated and result in much more realis-
tic looking textures that are more semantically appropriate. While [27] shows
that CNNs learn some categorical information, [28] propose that more categor-
ical information can be learned by treating SR as a multi-task problem where a
parallel network head that predicts a semantic map is added. The shared back-
bone is then forced to learn the categorical information necessary for accurate
segmentation, which benefits the SR head. The work most closely related to
ours is [40], which use multi-task learning to jointly perform SS and SR, and
control the balance between SS and SR performance by adaptive weighting.
However, when the SR task is given the highest weight, the performance does
not benefit much from the semantic information, and drops further as more
priority is given to the SS task. Furthermore, a key difference from this, and
all of the existing methods utilizing semantic information for SR, is that they
require paired LR and HR images for training, which makes them unsuitable
for the RWSR problem. On the contrary, we show that semantic information
can be leveraged to solve the RWSR problem where no GT reference images
are available, making our method applicable to scenarios where real-world
images, such as the ones from surveillance cameras, need to be improved by
super-resolution.

2.3 Semantic segmentation
Much like in SR, SS architectures tends to follow an encoder-decoder architec-
ture, that first encodes information with feature extraction network, typically
a ResNet variant, and then decodes it again to recover spatial information and
resolution. Learning to recover spatial information is difficult [7, 38], and as
such SotA SS methods have tended towards architectures that retain spatial
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resolution to some extent. PSPNet [38] proposed using a pyramid pooling
module where the input feature-map would be pooled across different regions
varying from 1 × 1 to 6 × 6 sub-regions, to get varying degrees of detail in
the pooled feature-maps. They further employ 1 × 1 convolution to reduce
the channel depth before concatenation. To recover the initial resolution lost
from repeated convolution, the feature-maps are upsampled with bilinear in-
terpolation to match the original input size. DeepLabv3 [7] proposed using
atrous-convolution in the encoder to create coarse feature-representations be-
fore employing a spatial pooling pyramid to recover information at different
scales. This was further expanded in [8] with depth-wise-separable convolu-
tions resulting in the network being able to learn more fine-grained control of
the details in each layer. HRNet [33] proposed an architecture that retains the
spatial resolution of one branch, and parallel branches that perform further
convolutions, rather than sequential repeated convolutions. Retaining the res-
olution with further convolutions in a parallel branch allows for the retention
of fine-grained detail, while still obtaining deep representational information.
However while HRNet attempts to keep a higher resolution, the initial con-
volutions result in an output prediction which is one-fourth of the size of the
input image, which means that the prediction has to be up-sampled to com-
pute the prediction accuracy. By super-resolving the input image, the need for
up-sampling of the prediction is avoided, which leads to more accurate predic-
tions [1], which in turn improves the guiding of a SR network by the semantic
loss. In [34], an auxiliary super-resolution branch is used to improve the per-
formance on a semantic segmentation model. The SS model shares encoder
weights with the SR model, which are optimized during training with MSE
loss, before being removed at test time. The training process requires paired
LR and HR images, and the method is therefore not applicable to real-world
applications.
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Fig. B.2: Schematic overview of our proposed SSG-RWSR. To learn to perform RWSR we leverage
both guiding from an auxiliary semantic segmentation task and domain adaptation. At test time,
the semantic segmentation network is de-coupled, and as such no semantic labels are required to
super-resolve the LR test images.

3 The proposed method

The fundamental challenge in RWSR is the lack of real natural LR/HR image
pairs which can be used to learn a SR network with supervised learning.
Current RWSR methods often constrain the SR problem by assuming that the
LR image is the result of an imaging model described as:

𝐼𝐿𝑅 = (𝐼𝐻𝑅 ∗ 𝑘) ↓𝑠 +𝑛 (B.1)

where 𝑘, 𝑠, and 𝑛 denotes blur kernel, scaling factor, and noise, respectively.
However, in reality, the image formation of real images is much more compli-
cated.

A block diagram of our proposed SSG-RWSR framework can be seen in
Figure B.2. We propose to combine domain adaptation and guiding of the
SR learning by the loss of an auxiliary semantic segmentation network. The
benefit of guiding the SR learning by the segmentation loss is two-fold. First,
this helps our SR network to adapt to the natural image characteristics of the
LR images in the source domain, without the need for GT reference images.
This is important as these can be cumbersome, and sometimes even impossible
to obtain. Conversely, LR images can always be annotated with semantic la-
bels. Secondly, the loss of the segmentation task can provide strong cues about
the level of noise in the images, and the quality of object boundaries that can
help guide the SR network towards producing more accurate reconstructions.
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We support the SR learning by training on image pairs created with domain
adaptation. This helps our model to reconstruct realistic textures and accurate
colors. During training, we alternate between training on real LR images in the
source domain 𝑋, guided by SS, and LR images created by our domain adap-
tation approach, to leverage information from both domains. Both concepts
are elaborated in the following subsections.

3.1 Guiding with semantic segmentation
We argue that a SS model can benefit from input images with low noise and
high levels of detail, which can be provided by a carefully trained SR model.
Hence the accuracy of a SS model can be used to guide the SR network towards
producing better image quality. Based on this assumption, we structure our
SSG-RWSR such that the SS network is fully dependant on the SR output.
This is different from [28], where a separate semantic head is used, as we
argue that for optimal guidance, the two networks should be directly linked.
During training on real images, the input LR image is sequentially processed
by the SR and SS networks. The SS loss is then used to optimize both the SR
and SS models. This means that the SR model is getting increasingly better
at producing HR images that are optimal for the segmentation task, and in
addition, the SS model continuously adapts to the improved input images to
further optimize the segmentation accuracy.

3.2 Domain adaptation
To ensure that our SR network learns to reconstruct HR images with realistic
textures and maintain consistency with the LR input images in terms of color,
we also train our SR model on paired LR/HR images. To obtain LR images
with similar image characteristic as the real LR images in the source domain
𝑋, we utilize domain adaptation [15]. The procedure is elaborated in the
following.
Estimation of degradation parameters We map clean HR images from the
target domain 𝑌 to the real LR source domain 𝑋 to minimize the domain gap
between real and synthesized LR images. Our approach is based on kernel
estimation and sampling of realistic noise patches [17]. For estimation of
realistic blur kernels, we use KernelGAN [3], on real LR images in 𝑋 to build
a pool of image-specific blur kernels that can be used to degrade the clean HR
images in 𝑌.

To generate artificial LR images which are more similar to the real LR
images we employ the method from [6] to sample noise from the real LR
images in 𝑋. This approach assumes that realistic noise can be obtained from
an image by extracting patches from uniform areas, and then subtracting the
mean. To this end, we define two patches 𝑝𝑖 and 𝑞 𝑖

𝑗
. 𝑝𝑖 is obtained by a sliding
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window approach across images in 𝑋. Similarly 𝑞 𝑖
𝑗
is obtained by scanning 𝑝𝑖 .

We consider 𝑝𝑖 a uniform patch if the following constraints are met:

|𝑀𝑒𝑎𝑛(𝑞 𝑖𝑗) −𝑀𝑒𝑎𝑛(𝑝𝑖)| ≤ � ·𝑀𝑒𝑎𝑛(𝑝𝑖) (B.2)

and
|𝑉𝑎𝑟(𝑞 𝑖𝑗) −𝑉𝑎𝑟(𝑝𝑖)| ≤ 𝛾 ·𝑉𝑎𝑟(𝑝𝑖) (B.3)

where 𝑀𝑒𝑎𝑛 and 𝑉𝑎𝑟 denote the mean and variance, respectively, and � and
𝛾 are scaling factors. Different from [6] we add an additional constraint to
ensure that saturated patches are not extracted:

𝑉𝑎𝑟(𝑝𝑖) ≥ 𝜙 (B.4)

where 𝜙 denotes a minimum variance threshold. If all constraints are satisfied
𝑝𝑖 is considered a valid noise patch, from which we subtract the mean value
and then add to a pool of noise patches 𝑛𝑖 .

Realistic image degradation We degrade clean HR images from the target do-
main 𝑌 with the estimated blur kernels and noise patches following the image
formation model described in Equation 3. More specifically, we create artificial
LR images 𝐼𝐷 , by first convolving a HR image in 𝑌 with a randomly selected
kernel 𝑘𝑖 from the pool of estimated blur kernels, followed by a downsampling
operation. The process can formally be described as:

𝐼𝐷 = (𝑌𝑛 ∗ 𝑘𝑖) ↓𝑠 , 𝑖 ∈ {1, 2 · · · 𝑚} (B.5)

where 𝐼𝐷 is the downscaled image, 𝑌𝑛 is a HR image, 𝑘𝑖 refers to a kernel from
the degradation pool {𝑘1 , 𝑘2 , · · ·𝑘𝑚} and 𝑠 is the scaling factor.

During training of our SR network, we inject noise to the synthesized LR
images by applying a randomly selected noise patch from the pool of noise
patches 𝑛𝑖 . The processes can be described as:

𝐼𝑁 = 𝐼𝐷 + 𝑛𝑖 , 𝑖 ∈ {1, 2 · · · 𝑙} (B.6)

where 𝐼𝐷 is a downscaled image, and 𝑛𝑖 is a noise patch from the noise pool
{𝑛1 , 𝑛2 , · · ·𝑛𝑙}.

3.3 Backbone networks
Super-resolution Our SR network consist of 23 Residual-in-Residual Dense
Blocks (RRDBs) [36]. To better utilize the semantic information we use a LR
patch size of 128× 128 pixels. We use a combination of L1 pixel loss, ℒ𝑝𝑖𝑥 , and
Learned Perceptual Image Patch Similarity (LPIPS) loss, ℒ𝑙𝑝𝑖𝑝𝑠 , to optimize the
network when training on the domain adapted images. The L1 loss ensures
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color consistency between the prediction and the GT image, while LPIPS loss
helps to improve the perceptual quality with strong correlation to human
perception [41]. The total loss for learning the SR model from the domain
adapted images is defined as:

ℒ𝑑𝑜𝑚𝑎𝑖𝑛−𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = �𝑝𝑖𝑥 · ℒ𝑝𝑖𝑥 + �𝑙𝑝𝑖𝑝𝑠 · ℒ𝑙𝑝𝑖𝑝𝑠 (B.7)

where �𝑝𝑖𝑥 , and �𝑙𝑝𝑖𝑝𝑠 are scaling parameters.
Semantic segmentation To maintain a high spatial resolution throughout the
segmentation network we use an architecture with multiple parallel high-to-
low resolution subnetworks with information exchange [33] as our SS back-
bone. We optimize the segmentation model with cross-entropy loss, ℒ𝑐𝑒 ,
which is also used for guiding the SR model. The loss for guiding the SR
learning is defined as:

ℒ𝑔𝑢𝑖𝑑𝑒𝑑 = �𝑐𝑒 · ℒ𝑐𝑒 (B.8)

where �𝑐𝑒 is a scaling parameter.
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Original Bicubic ESRGAN [36] MZSR [30]

DPSR [39] RealSR [17] DAN [26] Ours

Fig. B.3: Comparison with SotA methods for ×4 SR of real images from the Cityscapes dataset.
As visible, our method reconstructs sharper and more visually appealing results compared to the
existing methods.
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Original Bicubic ESRGAN [36] MZSR [30] DPSR [39]

RealSR [17] DAN [26] Ours GT

Fig. B.4: Comparison with SotA methods for ×4 of synthetically degraded images from the
Cityscapes dataset. As visible, our method reconstructs sharp images with low noise compared
to the existing methods.
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Original Bicubic ESRGAN [36] MZSR [30]

DPSR [39] RealSR [17] DAN [26] Ours

Fig. B.5: Comparison with SotA methods for ×4 SR of real images from the IDD dataset. As
visible, our method reconstructs more detailed images with less artifacts compared to the existing
methods.
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4 Implementation details

Similar to recent RWSR literature [5, 24, 25] we perform our experiments with
×4 scaling factor. For the creation of realistic training image pairs, as described
in Section 3.2, we use the DF2K dataset as target domain𝑌 of clean HR images.
The DF2K is a merge of 800 and 2650 images from DIV2K [2] and Flickr2K [31],
respectively.
Training details To train our SR and SS backbones, we initialize from models
pre-trained on DF2K and Cityscapes, respectively. We jointly train both mod-
els, alternating between updating both models based on the cross-entropy loss,
and updating only the SR model based on pixel and LPIPS loss. We denote
the two update cycles as 𝑇𝑟𝑎𝑖𝑛𝑂𝑑𝑑 and 𝑇𝑟𝑎𝑖𝑛𝐸𝑣𝑒𝑛 respectively. We use a batch
size of 12 and train for 100000 iterations on randomly cropped LR patches and
semantic labels using four V100 GPUs. We use the ADAM optimizer with an
initial learning rate of 1× 10−4 for both models. Through experimentation, we
find suitable weights for the loss functions and set �𝑝𝑖𝑥 , �𝑙𝑝𝑖𝑝𝑠 , �𝑐𝑒 to 0.01, 0.1,
and 0.01 respectively. For extraction of realistic noise patches from 𝑋, we set
𝑝𝑖 to match the LR patch size and set 𝑞 𝑖

𝑗
to 32, � to 0.1, 𝛾 to 0.3, and 𝜙 to 0.5

which we find appropriate for real images.
Inference At test time, we de-couple the segmentation network, and as such,
semantic labels are no longer required. We obtain super-resolved images by
running our trained SR on the full LR input image. Hence the inference time
of our SSG-RWSR is similar to [36].

5 Experiments and results

We compare our proposed method to four recent SotA methods for SR of real
images, namely MZSR [30], DPSR [39], RealSR [17], and DAN [26]. We adjust
the competing models for optimal performance for a fair comparison. We use
KernelGAN [3] to estimate blur kernels for use with MZSR [30]. For DPSR [39]
and DAN [26], we set noise levels as recommended by the authors. With
RealSR [17] we use the degradation framework provided by the authors, and
re-train the model to the respective datasets. We also include the ESRGAN [36]
in our comparison, to highlight the effect of applying a SR model trained on
bicubically downsampled LR images on real LR images. For this, we use the
pre-trained weights provided by the authors.

5.1 Datasets
Evaluation on real images For evaluation on real images we use the Cityscapes
[11] and IDD [32] datasets, which both contain images and appertaining se-
mantic labels. The Cityscapes dataset has 19 different classes and is divided
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into 2975 training, 500 validation, and 1525 test images, respectively, which
have a resolution of 2048 × 1024 pixels. We use the validation set to evaluate
the performance of our method. The IDD dataset has 30 different classes and
contains both images of 1920×1080 and 1280×720 pixels. For our experiments,
we use the 1280×720 pixels images from the training and validation set which
amount to 1876 and 442 images respectively.
Evaluation on synthesized images To validate the performance of the pro-
posed SSG-RWSR on images with known GTs, we conduct experiments on syn-
thetically degraded LR images. This allows for evaluation with Full-Reference
Image Quality Assessment (FR-IQA) metrics. To simulate realistic LR images
we first degrade the images by convolving an 11 × 11 Gaussian blur kernel
with a standard deviation of 1.5 before downsampling. Following the protocol
from [24], we model sensor noise by adding Gaussian noise, with zero mean
and a standard deviation of 8 pixels. This simulates real-world LR images ac-
quired with a low-quality camera, in poor lighting conditions. For consistency,
we also downsample the appertaining semantic labels. During training, only
the degraded LR images and labels are available, and the degradation process
and GTs are kept hidden. We perform our experiments with synthesized LR
images on the Cityscapes dataset.

5.2 Quantitative Evaluation metrics
Due to the lack of GT reference images, it impossible to compare the recon-
struction performance on real images with traditional SR FR-IQA metrics. As
such we mainly rely on Mean Opinion Rank (MOR), which is a direct measure
of human perceived perceptual quality [25]. We ask the participants to rank the
super-resolved images based on overall image quality. We randomly shuffle the
presented images to avoid bias. Readers can refer to our supplementary ma-
terial for more details about our evaluation with MOR. Furthermore, we also
evaluate the performance using two SotA learning based No-Reference Image
Quality Assessment (NR-IQA) methods, namely, NIMA [14] and MetaIQA [44]
as these show a good correlation to human judgement. For both methods, we
use the pre-trained weights for evaluation of the technical image quality.

For our experiments on synthesized LR images, we use two traditional SR
metrics, PSNR and SSIM, and two perceptually oriented metrics, LPIPS [41],
and DISTS [13]. Out of these, we mainly consider the LPIPS and DISTS metrics
as indicators of the image quality due to their high correlation with human
judgement [41]. Note that low distortion and high perceptual quality are at
odds with each other, making it impossible to two obtain both [4]. With the
use of GAN training and perceptual loss, our method is optimized to obtain a
good trade-off with a slight bias towards perceptual quality.
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Cityscapes (Real LR images)
Method NIMA ↑ Meta-IQA ↑ MOR ↓
Bicubic [19] 4.62 0.245 -
ESRGAN [36] 4.95 0.247 -
MZSR [30] 4.88 0.231 3.33
DPSR [39] 4.83 0.240 4.41
RealSR [17] 4.87 0.236 2.75
DAN [26] 4.65 0.246 3.47
Ours 5.04 0.254 1.21

Table B.1: Quantitative results on the Cityscapes validation sets. ↑ and ↓ indicate whether higher
or lower values are desired, respectively. As seen, our method obtains both the best MOR and
NIMA and Meta-IQA results.

IDD (Real LR images)
Method NIMA ↑ Meta-IQA ↑ MOR ↓
Bicubic [19] 4.73 0.330 -
ESRGAN [36] 4.94 0.325 -
MZSR [30] 5.00 0.330 2.96
DPSR [39] 4.92 0.330 3.16
RealSR [17] 4.83 0.296 4.88
DAN [26] 4.77 0.330 2.48
Ours 5.03 0.323 1.45

Table B.2: Quantitative results on the IDD validation sets. ↑ and ↓ indicate whether higher or
lower values are desired, respectively. As seen, our method obtains both the best MOR and NIMA
results, and the second best Meta-IQA results.

5.3 Quantitative results
Real images As show in Table B.1 and B.2 our method results in the most
visually pleasing reconstructions of both real images from the CityScapes and
IDD datasets according to the MOR. This is also supported by the NIMA and
Meta-IQA scores, where only the DAN [26] is slightly better according to the
Meta-IQA scores on the IDD dataset. However, this is in contrast to the visual
appearance of the images, as the digits on the licence plates shown in Figure B.5
are more well defined in the image produced by our method, compared to the
ones produced by DAN.
Synthesized images As shown in Table B.3 our method achieves a good
compromise between fidelity and perceptual quality, by obtaining the best
LPIPS and DISTS scores, which indicate that our super-resolved images are
closer to the GT in terms of visual quality, and the second best results on the
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Cityscapes (Synthesized LR images)
Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓
Bicubic [19] 27.51 0.62 0.64 0.19
ESRGAN [36] 18.17 0.12 1.29 0.20
MZSR [30] 26.68 0.55 0.73 0.16
DPSR [39] 33.11 0.90 0.42 0.13
RealSR [17] 25.88 0.77 0.26 0.10
DAN [26] 27.16 0.58 0.60 0.20
Ours 29.08 0.83 0.19 0.07

Table B.3: Quantitative results on the artificially degraded Cityscapes validation set. ↑ and ↓
indicate whether higher or lower values are desired, respectively. Our method achieves a good
trade-off between low distortion and high perceptual quality with the second best PSNR and SSIM
results, and the best perceptual quality as measured by the LPIPS and DISTS metrics.

hand-crafted metrics (PSNR, SSIM). The latter is expected, as our method is
optimized towards perceptual image quality, which are at odds with a low
reconstruction error [4].

5.4 Qualitative results
Real images In Figure B.3 and B.5 we visualize super-resolution results of
real LR images. We see that most methods fail to handle the highly complex
degradation process present in the real images, which results in many artifacts
(ESRGAN, MZSR, RealSR) or blurry images (DPSR, DAN). In comparison, our
method generates sharper images with better visual quality and less noise.
Synthesized images In Figure B.4 we see that ESRGAN, MZSR and DAN
cannot properly handle the noisy LR image which causes a high degree of
artifacts to be present in the super-resolved images. DPSR performs better
in that regard, but the images appear blurry and lack high-frequency details.
In contrast, both RealSR and our method produces artifact-free, sharp, and
natural appearing images.

5.5 Ablation study
To study the effect of the individual components in our proposed SSG-RWSR
framework we compare ablations of the framework to the full system. Figure
B.1 and Table B.4 shows the visual difference, and quantitative results for the
different settings, respectively. As seen, training only on the synthetically
created LR/HR pairs results in HR images with more high-frequency details
than the LR image. However in some areas, the hallucinated details appear to
be incorrect or missing. On the contrary, training only on the real LR images
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guided by the SS loss, produces less detailed images, but the reconstructions
are more consistent with the objects and shapes present in the LR image. In
comparison, our combined SSG-RWSR produces images that are both sharp,
detail rich, and with a photo-realistic appearance.

Method NIMA ↑ Meta-IQA ↑
Ours (DA) 4.33 0.206
Ours (Guided only) 5.00 0.251
Ours 5.04 0.254

Table B.4: The effect of the different components in our proposed method on the Cityscapes
validation set. ↑ and ↓ indicate whether higher or lower values are desired, respectively.

6 Conclusion

In this paper, we address the RWSR problem where no ground truth data are
available. To this end, we introduce a novel framework, SSG-RWSR, where the
SR learning is guided by an auxiliary semantic segmentation network. This
enables our SR model to adapt to the image specific degradations present in real
LR images, and enables reconstruction of sharp object boundaries and noise-
free images. We combine guidance by the segmentation loss with domain
adaptation, to reconstruct realistic textures and ensure color consistency. Our
experimental results on both real and synthesized LR images demonstrate
a significant improvement over the SotA methods, resulting in less noise and
better visual quality. This is supported by human ranking of the super-resolved
images, where our method outperforms other methods by large margins.

Disclosure of Funding This research was funded by Milestone Systems A/S,
Brøndby Denmark and the Independent Research Fund Denmark, under grant
number 8022-00360B.
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1. Introduction

Abstract

Transformer models have shown great success handling long-range interac-
tions, making them a promising tool for modeling video. However, they
lack inductive biases and scale quadratically with input length. These lim-
itations are further exacerbated when dealing with the high dimensionality
introduced by the temporal dimension. While there are surveys analyzing
the advances of Transformers for vision, none focus on an in-depth analysis
of video-specific designs. In this survey, we analyze the main contributions
and trends of works leveraging Transformers to model video. Specifically, we
delve into how videos are handled at the input level first. Then, we study the
architectural changes made to deal with video more efficiently, reduce redun-
dancy, re-introduce useful inductive biases, and capture long-term temporal
dynamics. In addition, we provide an overview of different training regimes
and explore effective self-supervised learning strategies for video. Finally,
we conduct a performance comparison on the most common benchmark for
Video Transformers (i.e., action classification), finding them to outperform 3D
ConvNets even with less computational complexity.

1 Introduction

Video is increasingly becoming a popular medium to convey audio-visual
information. Video provides the visual appeal of images while introducing
motion and deformations through the additional time dimension. As such,
processing video data is partially akin to both images (continuous visual sig-
nals) and natural language processing (structured as a sequence). The video
domain further introduces its own challenges, namely a large increase in di-
mensionality linked with a high level of information redundancy and the need
to model motion dynamics.

Transformers [183] are a recent family of models, originally designed to
replace recurrent layers in a machine translation setting. Its purpose was to
remedy limitations of sequence modeling architectures by handling whole se-
quences at once (as opposed to RNNs, which are sequential in nature), allowing
further parallelization. Besides, it removes the locality bias of traditional archi-
tectures, such as CNNs, and instead learns interactions of non-local contexts of
the input. This lack of inductive biases makes Transformers very versatile, as
seen by the quick adoption for modeling many data types [12, 32, 34, 52, 132],
including videos [2, 5, 49, 94, 109, 239]. The Transformer evolves input rep-
resentations based on interactions among all sequence elements. These inter-
actions are modulated through a pair-wise affinity function that weighs the
contribution that every element should have on any other. The ability to model
all-to-all relationships can be especially beneficial to understand motion cues,
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long-range temporal interactions, and dynamic appearance changes in video
data. However, Transformers scale quadratically with sequence length 𝑇 (i.e.,
𝒪(𝑇2), due to the pair-wise affinity computation) which is exacerbated by the
high dimensionality of video. Furthermore, the lack of inductive biases makes
Transformers require large amounts of data or several modifications to adapt
to the highly redundant spatiotemporal structure of video.

The recent surge in Video Transformer (VT) works makes it convoluted to
keep track of the latest advances and trends. Existing surveys focus on de-
sign choices for Transformers in general [102], NLP [82], images [105, 209],
or efficient designs [44, 175]. Given the sequential nature of video, as well
as the large dimensionality and redundancy introduced by the temporal di-
mension, adopting image-based solutions or NLP-based designs for long-term
modeling will not suffice. While other existing surveys include video, they
are limited to superficial comments of a few VTs in the broader context of
vision Transformers [59, 83, 214], techniques to integrate visual data with
other modalities [164, 207], or video-language pre-training [153]. In this sense,
they miss an in-depth analysis that properly captures the challenges of model-
ing raw image sequences or highly redundant spatiotemporal visual features
through Transformers.

In this survey, we comprehensively analyze advances and limitations of
Transformers when considering the particularities of modeling video data. To
do so, we review over 100 VT works and provide detailed taxonomies of the
various design choices throughout the VT pipeline (namely input, architecture,
and training). Finally, we extensively compare performance on the task of
video classification based on self-reported results from the state-of-the-art on
Kinetics 400 [15] and Something-Something-v2 [113].

The structure of the paper is as follows: appendix 2 introduces the original
Transformer; in appendix 3 we explore how videos are handled prior to the
Transformer; appendix 4 describes Transformer design adaptations to video;
appendix 5 investigates common training strategies; appendix 6 discusses VTs
performance on action classification; and in appendix 7 we discuss the main
trends, limitations, and future work. For an extensive list of all VT works
reviewed in this survey, and details on how each section in this survey relates
to a given work, see appendix 8 in the supplementary.

2 The Transformer

Originally proposed for language translation [183], the Transformer consists
of two distinct modules: encoder and decoder, each composed of several
stacked Transformer layers (see fig. C.1). The encoder was designed to produce
a representation of the source language sentence that is then attended by
the decoder, which will eventually translate it into the target language. We first
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introduce a few necessary concepts (input pre-processing and the self-attention
operation) to then follow the flow of the Transformer while explaining its
components and functioning.
Input pre-processing: tokenization, linear embedding, and positional en-
codings. The tokenization converts the input source and target language sen-
tences into sequences of words (or subwords), namely "tokens". Let ˜̃X =

(̃̃x1 , . . . ,˜̃x𝑁x) and ˜̃Z = (̃̃z1 , . . . ,˜̃z𝑁z) be, respectively, the source and target se-
quences of one-hot encoded tokens over their respective word vocabularies
𝒳 and 𝒵 (i.e., ˜̃x ∈ R|𝒳| and ˜̃z ∈ R|𝒵|). Then, linear embedding is simply the
step of projecting one-hots to a continuous embedding space via a learned
linear transformation: 𝑓𝒳 : R|𝒳| ↦→ R𝑑𝑚 (analogously 𝑓𝒵), where 𝑑𝑚 will be
the dimensionality handled internally by the Transformer. This way, we ob-
tain the source embeddings X̃ = ( 𝑓𝒳 (̃̃x1), . . . , 𝑓𝒳 (̃̃x𝑁x)) and target embeddings
Z̃ = ( 𝑓𝒵 (̃̃z1), . . . , 𝑓𝒵 (̃̃z𝑁z)). Finally, positional encodings are added to signal the
position of the tokens in the sequence to the later (otherwise permutation
invariant) attention operations. Defined using a set of (non-learnable) sinu-
soidal encodings (see [183] for details), these are added to the source/target
embeddings before being input to encoder/decoder (as depicted in fig. C.1):
X0 = (̃x1+ex

1 , . . . , x̃𝑁x +ex
𝑁x
) and Z0 = (̃z1+ez

1 , . . . , z̃𝑁z +ez
𝑁z
), where ex

· , ez
· ∈ R𝑑m .

Self-attention (SA). It is the core operation of the Transformer. Given an
arbitrary sequence of token embeddings X ∈ R𝑁x×𝑑m (e.g., X0), it augments
(contextualizes) each of the embeddings x𝑖 ∈ R𝑑m with information from the
rest of embeddings. For that, the embeddings in X are linearly mapped to the
embedding spaces of queries Q = XW𝑄 ∈ R𝑁x×𝑑k , keys K = XWK ∈ R𝑁x×𝑑k ,
and values V = XWV ∈ R𝑁x×𝑑k , where WQ ,WK ∈ R𝑑𝑚×𝑑𝑘 , WV ∈ R𝑑𝑚×𝑑𝑣 , and
typically 𝑑k , 𝑑v <= 𝑑𝑚 . Then, self-attention can be computed as follows:

Att(Q,K,V) = Softmax
(
QK⊤
√
𝑑k

)
V. (C.1)

The dot-product QK⊤ ∈ R𝑁x×𝑁x is a measure of similarity. Intuitively,
the larger the similarity between q𝑖 ∈ Q and k𝑗 ∈ K the more relevant the
information embedded in x𝑗 is for x𝑖 . However, this aggregation is not done
in the space of X, but in the one of the values. By applying Softmax with
temperature

√
𝑑𝑘 , we come up with normalized similarities (the self-attention

matrix) that weigh how much each of the values v𝑗 contributes to the output
representation of every other v𝑖 .
Encoder module. It consists of 𝐸 layers, each including Multi-Head Self-
Attention (MHSA) and Position-wise Feed-Forward Network (PFFN) sub-layers.
The MHSA sub-layer performs self-attention through multiple separate heads
that map X to ℎ different representation sub-spaces (i.e., {(Q𝑖 ,K𝑖 ,V𝑖) | 1 ≤
𝑖 ≤ ℎ}). The outputs of the heads are concatenated and mapped back to a
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Fig. C.1: Visualization of the original Transformer proposed in [183].

𝑑m-dimensional space with another linear transformation WO ∈ R(ℎ·𝑑v)×𝑑m :

MHSA(X) = Concat(H1 , ...,Hℎ)WO ,

where H𝑖 = Att(Q𝑖 ,K𝑖 ,V𝑖),
(C.2)

where H𝑖 ∈ R𝑁x×𝑑v is the output of the 𝑖th head, and Q𝑖 , K𝑖 , and V𝑖

are computed with their own associated embedding matrices (i.e., WQ𝑖
∈

R𝑑m×𝑑k , WK𝑖
∈ R𝑑m×𝑑k , and WV𝑖

∈ R𝑑m×𝑑v with 𝑑k = 𝑑v = 𝑑m/ℎ). “Add
+ Norm” is then applied to come up with X̄ = LN(X + MHSA(X)), where
X̄ ∈ R𝑁𝑋×𝑑m . After this, the following PFFN sub-layer further refines each
embedding in X̄ individually (point-wise). This sub-layer is composed of
two linear layers and ReLU activation function: PFFN(X̄) = ReLU(X̄WF1)WF2,
where WF1 ∈ R𝑑m×(4∗𝑑m) and WF2 ∈ R(4∗𝑑m)×𝑑m . Note, W· are independent for
each layer, but we omit those indices for ease of notation. By applying this,
X̄′ = LN(X̄ + PFFN(X̄)).

156



2. The Transformer

Decoder module. Consisting of𝐷 layers and fed with Z0, it substitutes MHSA
with two other sub-layers. The first one, Masked Multi-Head Self-Attention
(Masked MHSA), modifies Att in appendix 2 to include a mask, B = (𝑏𝑖 𝑗), 1 ≤
𝑖 , 𝑗 ≤ 𝑁z, impeding the access to certain tokens. This is added to the result
of the dot-product in the numerator (and before the Softmax), as follows:
QK⊤ + B ∈ R𝑁Z×𝑁Z , where 𝑏𝑖 𝑗 = −∞ iff 𝑖 < 𝑗 (otherwise 𝑏𝑖 𝑗 = 0). This draws
attention values for the masked attention pairs to 0 when taking exponents
in the Softmax. As we will see, such masking is crucial to define the auto-
regressive behavior of the decoder module (avoiding tokens to attend to other
tokens later in the sequence). The produced Z̄ is now passed to the Encoder-
Decoder Multi-Head Cross-Attention (MHCA) sub-layer, which leverages the
memory/context produced by the encoder, namely M (i.e., X̄′ at encoder’s 𝐸th

layer), into Z̄ as follows: MHCA(Z̄,M) = Concat(J1 , . . . , Jℎ)UP, where J𝑖 =

Att(Z̄UQ𝑖
,MUK𝑖

,MUV𝑖
) ∈ R𝑁Z×𝑑𝑣 is the output of the 𝑖th cross-attention head,

UQ𝑖
∈ R𝑁Z×𝑑𝑘 , UK𝑖

∈ R𝑁x×𝑑𝑘 , UV𝑖
∈ R𝑁x×𝑑𝑣 , and UP ∈ R(ℎ·𝑑v)×𝑑m . Then, ¯̄Z =

LN(Z̄ + MHCA(Z̄,M)). The remaining PFFN sub-layer, which is no different
from the one in encoder layers, is used to produce ¯̄Z′ = LN( ¯̄Z + PFFN( ¯̄Z)).
Finally, in the 𝐷th layer, the embeddings from the PFFN are each sent through
a linear layer followed by softmax to generate the output probabilities over the
words in the target vocabulary 𝒵, i.e., Ŷ ∈ R𝑁z×|𝒵| .
Current Transformer trends adopted for video. Many variations to the Trans-
former have become common in vision and, particularly, video. First, the use
of special tokens such as [CLS] (class) or [MSK] (mask) tokens. In video, these
are parameters initialized at random and adapted during the optimization
process based on the learning objective. [CLS] is used to condense (into a
vector representation) information from the rest of token embeddings in a se-
quence (representing spatiotemporal patches from the video [2]), and suited
for high-level tasks (such as classifying the sequence globally). Using input
token embeddings instead of [CLS] may cause the model to be biased to-
wards them [191]. Conversely, [MSK] is used to replace input embeddings and
signal the Transformer to reconstruct those guided by the loss and based on
the remaining tokens. This forces the Transformer to learn context from the
tokens and how these relate to the masked ones. Conceived for language rep-
resentation learning [32], this has been adopted also for video representation
learning [178, 196].

Second, deviations from the canonical encoder-decoder: encoder-only or decoder-
only Transformer architectures. Encoder-only are suited to produce fixed-size
outputs, i.e., augmentations of the input embeddings that can be used for
more granular tasks (e.g., per-frame classification) or, when used together
with [CLS], to come up with a global representation (e.g., sequence-level clas-
sification). For instance, [2, 5, 38] adopted an encoder-only architecture (along
with the inclusion of [CLS]) for video classification following [34]. Instead,
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decoder-only alternatives enable auto-regressive tasks if the size of the output
cannot be determined a priori just by knowing the input size (e.g., to predict
a series of temporal action detections). Initially proposed by [141] in NLP,
these have been also followed in the context of video in [117, 174, 232]. Other
trends originated in other fields have been followed: swapping the order of the
residual connection and layer normalization [2, 38], although no clear general
advantage of one over the other has been empirically shown yet; or replacing
ReLU in the PFFN by GeLU [5, 48, 81, 189] following [32], with only [48] ablat-
ing this decision (finding out that GeLU was slightly outperforming ReLU on
their task/data).
Transformer limitations. Transformers have two key limitations: first, given
the pair-wise affinity computation in appendix 2, they exhibit quadratic complex-
ity (𝒪(𝑁2)), which will be especially problematic for video. In appendix 4.1,
we will explore some works alleviating this issue by reducing the scope of
the SA operation. The second limitation is the lack of inductive biases. This is
a double-edged sword, allowing for a general-purpose architecture that can
handle any modality but severely complicates the learning process. While this
can be solved through large quantities of data [34], this further adds to the
computational costs of training Transformers. Throughout the three follow-
ing sections, we will explore various approaches (transversal to the whole VT
pipeline) to solve this issue.

3 Input pre-processing

Here, we review how video is processed before being input to the Transformer.
This involves tokenization, embedding, and positioning (see fig. C.2). How-
ever, in the context of video, embedding often comes before tokenization: a
separate network embeds the raw data into a continuous and compact repre-
sentation, which can be used directly as a token or be further tokenized into
more atomic units.
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Fig. C.2: Overview of the input pre-processing step, showing tokenization and embedding strate-
gies, as well as positioning (inclusion of positional information).

3.1 Embedding
In order to embed video, we find VTs following two main trends: embedding
networks or minimal embeddings. The key difference between the two is size:
while minimal embeddings are generally limited to single linear layers, large
embedding networks are instantiated as full CNN architectures. Furthermore,
while minimal embeddings follow the classic tokenization-then-embedding
approach, full embedding networks can be used to embed full input sequences
for later tokenization. In the context of video, embedding layers also function
as a crucial dimensionality reduction mechanism.
Embedding network. Leveraging an embedding network (such as a CNN),
can potentially ease the learning of the Transformer by providing strong initial
features thanks to locality inductive biases. We can roughly categorize the
choice of embedding network by the types of relationships they encode into
spatial and spatiotemporal. Within spatial embeddings, we find 2D CNN net-
works, typically ResNet variants [64, 204], pre-trained on large image corpora
(most commonly ImageNet [31, 150]) to learn general filters that can extract
meaningful representations of individual frames. This has been shown to
work effectively in the context of video [57, 67, 80, 88, 92, 98, 103, 137]. How-
ever, 2D convolutions lack the ability to model temporal information. For
this reason, we also find the use of spatiotemporal embedding networks (e.g.,
in [49, 98, 137, 167, 190]). These are generally instantiated as 3D CNNs (such
as I3D [16] and S3D [205]), commonly pre-trained on large video datasets
such as Kinetics [14, 15] or HowTo100M [118] to produce features involv-
ing temporal relationships. Alternatively, LSTMs [106] or a hybrid ConvL-
STM [162, 193, 198], can be leveraged to embed local temporal information.
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While spatial embedding networks are limited to per-token spatial interac-
tions, spatiotemporal counterparts help provide initial locally-based temporal
interactions.
Minimal embeddings. Inspired by the success of ViT [34], some works [2, 5,
34, 77, 103, 219] omit deep embedding networks and subdivide the input (i.e.,
tokenize) and then perform embedding with only a few linear projections or
convolutions. In this sense, they are guaranteed to not share information be-
tween tokens, leaving the learning of interactions between them entirely to the
Transformer. Empirical studies like [5, 77], show that stand-alone Transformers
(i.e., without complex CNN embedding networks) are as performant as CNN
counterparts, although the resulting model becomes data-hungry and com-
putationally expensive. Given that, training and deploying VTs with minimal
embeddings may benefit from architectural modifications inducing necessary
biases (see appendix 4).

3.2 Tokenization
When dividing a video into smaller tokens to form the input sequence to the
Transformer, we find several categories depending on the token input receptive
field (i.e., the extent of the original input covered by a given token before being
processed by the Transformer). We distinguish between patch, instance, frame,
and clip tokenization (see fig. C.2).
Patch-wise tokenization. Most VTs follow ViT [34] and employ a 2D-based
patch tokenization [5, 219, 227, 234], dividing the input video frames into re-
gions of fixed spatial size [5, 219, 234] or even multi-scale patch sizes [227]. Oth-
ers propose using 3D patches (also regarded as cubes) instead [1, 2, 38, 109, 178],
allowing to consider local motion features within the tokens themselves. While
non-overlapping patches are the most common, a few works propose using
overlapping 2D [103] or 3D [38] patches for smoother information flow between
neighboring patches. Due to their access to neighboring information in the
input, we also regard positions of intermediate feature maps from CNN em-
bedding networks as patches (e.g., 2D in [103, 166, 186, 194] or 3D in [46, 137]),
as their exact receptive field will depend on the specific setting in which they
are produced. Overall, patch-based tokenization provides finer granularity,
allowing to properly model spatiotemporal interactions in the VT.
Instance-wise tokenization. We refer to instances as semantically meaningful
(foreground) regions that extend their reach beyond small patches but still
smaller than whole frames [49, 125, 200, 239]. On the one hand, a Region Pro-
posal Network (RPN in fig. C.2), such as a Faster R-CNN [149], can be used to
generate region proposals and their corresponding embeddings [200]. Thus,
they allow reasoning about foreground objects or region interactions. Alter-
natively, in [49, 95, 239], this kind of tokenization is combined with other
coarser tokenizations (frame- and clip-wise tokenization) allowing to form
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instance-context relationships. Instance-based tokenization can be regarded
as a form of sparse sampling (e.g., [68, 152]), potentially reducing redundancy
and allowing to input relatively large temporal sequences of per-frame instance
representations to the VT without running into efficiency limitations.
Frame-wise tokenization. In this case, the embedding network learns initial
local spatial features for each frame, and the Transformer focuses on modeling
the temporal interactions among the resulting frame tokens (e.g., [94, 125, 128,
131, 189, 221, 227, 238]). This allows longer videos to be modeled (especially
compared to patch tokenization), although the Transformer may have a hard
time modeling fine-grained spatial interactions. However, some tasks focusing
on frame-level predictions (such as video summarization [37]) may not require
them.
Clip-wise tokenization. Condensing the information of several frames (clip)
into each individual token allows further reducing the temporal dimension
of the input (e.g., in [45, 48, 90, 167, 168, 239]). This way, the Transformer
can effectively consume more frames to cover longer temporal spans. This
makes clip tokenization very suitable for long-term modeling tasks. Given the
high dimensionality of clips, it is necessary to embed them into single token
representations through large embedding networks: for instance, [232] with
C3D, [239] with 3D ResNet-50, [168] with S3D, [81] with R(2+1)D, or [90] with
SlowFast, to name a few. This tokenization could also be suitable for retrieval
tasks, where a high-level representation of the video is required [45, 239]. Clip-
based tokenization exacerbates the pros and cons of frame-based tokenization
where fine-grained information may be lost or mixed, preventing the Trans-
former from disentangling it later, in favor of efficiency when handling longer
videos.

3.3 Positional Embeddings (PE)
Given that SA is an operation on sets, signaling positional information is
necessary in order to exploit the spatiotemporal structure of videos. This
is done via positional embeddings (PE), which can be either fixed or learned
and then absolute or relative: fixed absolute [38, 49, 193], learned absolute [77,
90, 239], fixed relative [92, 143], or learned relative [101, 109, 197]. Absolute
variants are summed to the input embeddings but can also be concatenated [77,
194, 216], while for the relative ones, the positional information is introduced
directly in the multi-head attention [202].

Absolute embeddings are generally 1D. This naturally fits frame or clip
tokenization to indicate position in the only remaining (temporal) dimension.
However, when dealing with patch-wise tokenization, fixed 1D in raster order
may seem counter-intuitive, as the last patch 𝑖-th from row 𝑗, will be regarded
as closer to the first patch in the next row 𝑗 + 1, than to patch 𝑖 at row 𝑗 − 1
(or 𝑗 + 1). For this reason, 2D absolute PE [46, 50] accounting for joint space
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𝑤ℎ and time 𝑡 dimensions, and 3D absolute PE [77, 193, 194, 219] for width
𝑤, height ℎ, and 𝑡 have also been proposed, disregarding [34] who found 1D
learned absolute PE to suffice – at least for images.

The idea behind relative PE is that the positional information added when
computing attention between token 𝑖 and 𝑗 depends on their relative position,
making them translation equivariant. In other words, 1D relative PE added
when computing attention between tokens at positions 𝑖 and 𝑗 = 𝑖 + 𝑘 will
be the same regardless of the value for 𝑖 (i.e., −𝑘). Relative PEs are generally
added as an additional bias term (as in [30, 92, 107, 161]) in the dot-product
between Q and K (modifying appendix 2). We find different variants of rela-
tive PEs applied to VTs, for instance [109, 174, 197] are based on decomposable
attention [124], whereas [101] follows the approach of relation-aware atten-
tion [161].

3.4 Discussion on input pre-processing
Most VTs employ large CNN embeddings to reduce input dimensionality
(aiding with data redundancy) and to exploit their ability to produce strong
representations (thanks to local inductive biases). This significantly alleviates
complexity and simplifies training when employing Transformers for video
tasks. The success of these methods is clearly visible in the number of works
which utilize large embedding networks as opposed to minimal embeddings.
While minimal embeddings are indeed lighter than large CNN counterparts,
they do result in overall more costly models if used naively. As they do not pro-
vide the necessary inductive biases, these will have to be provided elsewhere
(such as in the Transformer design – see appendix 4 –, or during training,
through large-scale (self-)supervised pre-training – see appendix 5). However,
as we observe in appendix 6.2, this may result in better-performing models.
Regarding tokenization, it has an impact on two main factors: (1) it will affect
the level at which information is modeled by the VT (longer temporal spans by
using frame- or clip-based tokenization, and more fine-grained spatiotempo-
ral modeling when employing patches); (2) it will impact the input sequence
length, and consequently the computational complexity of the model. For
these reasons, most works use a patch-based approach accompanied by some
efficient design, or frame-based tokenization, as it provides better long-term
modeling scalability.

We find that the interactions between embedding and tokenization play
a crucial role in defining the abstraction level and granularity at which the
Transformer can model interactions. On the one hand, large embedding net-
works allow to produce tokens sharing information between them, guided
by interactions defined by CNN’s inductive biases. In this regard, it may be
desirable to leverage 3D CNNs that provide local interactions among spa-
tiotemporally neighboring positions. On the other hand, some tokenization
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strategies (such as 3D patches or clips) allow the formation of fine-grained
temporal interactions within the token itself. This can be further motivated by
most state-of-the-art VTs employing 3D patches. In this sense, the choices of
embedding network and tokenization need to be carefully considered, as they
will affect the level at which spatial and temporal interactions can be formed.

Finally, the fixed absolute PEs proposed in [183] require fewer parameters
than the learned counterpart. However, the latter could be learning relevant
positional relations that Fourier-like approaches are unable to capture (simi-
larly to how learned convolutional filters replaced handcrafted features). The
vast majority of VTs employ these absolute variants while the use of rela-
tive counterparts is still marginal. We believe, however, that the translation
equivariance these latter provide could prove useful for generalizing to un-
seen lengths (see appendix 7). This ability would be highly useful in the video
domain as it is much more prone to display inconsistent temporal lengths
(and cannot be re-scaled as easily as spatial dimensions, without harming
fine-grained motion modeling – see appendix 4.4).

4 Architecture

In this section, we overview Transformer designs. The different alternatives
focus on specific limitations of VTs or on better exploiting the abundant in-
formation in videos. In appendix 4.1 we analyze approaches to reduce the
number of tokens accessible in a single attention operation, aiming to reduce
quadratic complexity. Then, in appendix 4.2 we describe proposals to enhance
the temporal modeling capabilities of VTs. Finally, in appendix 4.3 we ex-
plore specialized designs to separately capture fine-grained and coarse-level
features.

4.1 Efficient designs
Given the high dimensionality of video, it may be challenging to represent
long time spans without potentially incurring information loss or stumbling
upon the quadratic attention matrix problem. For this reason, many works
decompose full attention into multiple smaller SA. This has a two-fold benefit,
as it will reduce the size of individual attention matrices while infusing differ-
ent inductive biases. Two main trends are observed: (1) restricted approaches,
which limit the scope of a single SA operation but maintain the sequence
length throughout the network; and (2) aggregation approaches, which focus
on progressively condensing information into smaller sets of tokens. A com-
plete overview of our proposed taxonomy for efficient video designs can be
seen in fig. C.4.
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(a) appendix 4.1 (b) appendix 4.1

(c) appendix 4.1 (d) appendix 4.2 (e) appendix 4.3

Fig. C.3: Visualization of the different design choices for VTs. Data tokens are in light gray (and
black stroke if the token is used), whereas augmented tokens are in darker gray; those in white
are initialized learnable tokens; and, [CLS] tokens are indicated with “C” (filled black after being
augmented). Data flowing into the (T)ransformer from the side is used for cross-attention.

Restricted approaches

In order to approximate the full receptive field (i.e., the whole input sequence),
restriction relies on stacking multiple smaller SA (similar to local filters in
CNNs). We categorize restricted approaches by how subsets of tokens are
selected for each SA. It can be by attending local token neighborhoods, spe-
cific axis (i.e., height, width or time) or sparsely sampled subsets of tokens
(see fig. C.3a).
Local approaches are defined as the restriction by limiting attention to specific
neighborhoods. Similar to sliding filters in CNNs, the works in [5, 27, 57,
120, 215] define the neighborhoods by sampling nearby tokens given a query.
Instead, [107, 109, 197, 228] proposed limiting SA to small fixed windows,
performing full SA separately in each of them. Relaxing the locality constraint
only to time, in [9, 213] the fixed windows span all patches of a given frame.
While sliding window local attention allows for more flexible learning (as
each query has an independent local neighborhood), it has been shown to
be cumbersome to implement [4]. Let 𝑆 and 𝑇 be the number of tokens in
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space and time respectively (i.e., 𝑆 · 𝑇 = 𝑁), local approaches reduce the
computational complexity of VTs from 𝒪((𝑆 · 𝑇)2) down to 𝒪(𝑆 · 𝑇) assuming
a small (and constant) spatiotemporal neighborhood size. These approaches
gain locality biases and linear complexity at the expense of non-local receptive
fields, hence will require depth to account for it. For this reason, in order
to allow information to flow between windows, we find different neighborhood
sizes for each head in [57, 197], shifting the fixed windows on every layer
in [107, 109] and swapping groups of features or neighborhood aggregation
tokens between windows in [9, 213]. Instead, the use of global tokens is seen
in [5, 228] (alternating between local and sparsely global attention), in [120]
(where the [CLS] token attends to and is attended by all tokens, acting as
a bottleneck for non-local information) and in [9] (which includes a global
Transformer layer at the end).
Axial approaches define the restriction to attention by specific axes (i.e., height,
width, or time). These can only be applied in patch-based tokenization models,
where the underlying structure of the data along the different axes is kept. Full
axial attention decomposition has been tested for VTs, either by attending over
individual axes in three consecutive MHA sub-layers [5], or in a single one
where each query token attends to all tokens that share with it the position in
at least two axis [35]. However, it is more common to decompose attention into
spatial and temporal, for modeling intra-frame and inter-frame interactions re-
spectively. Spatiotemporal decomposition reduces computational complexity
from 𝒪(𝑆2 ·𝑇2) to 𝒪(𝑆2 ·𝑇+𝑆 ·𝑇2). The way in which spatial and temporal atten-
tion are related in the architecture will define the granularity at which spatial,
temporal, and spatiotemporal interactions of the input tokens are learned. On
the one hand, allowing attention to both axes at each Transformer layer al-
lows for spatiotemporal relationships to form throughout layers. This can be
done sequentially, through two MHSA sub-layers, as in [2, 5] (and subsequent
work [146, 182, 225]) or in parallel for latter combination, seen in [2] through
independent spatial and temporal heads and in [95] through separate streams
for each axis. On the other hand, entirely separating spatial from temporal atten-
tion into consecutive modules as explored in [27, 50]. In this sense, it is not
until the latter layers that temporal modeling occurs, where it may be too late
for certain spatial relationships to form.
Sparse approaches. Sparse restrictions do not limit the scope of attended
tokens, as opposed to local and axial approaches. Instead, given the high
redundancy in video data [235], sparse models provide a way to reduce un-
necessary computation while maintaining a global receptive field at each layer.
Sparsity can be embedded in the SA operation by restricting it to fixed strided
patterns for each query [5, 35]. In other words, a given query is only allowed to
attend (at most) to every other token on each axis. These are generally used to
complement densely local attention. Other approaches involve some form of
clustering. This can be done through a hard assignment, where tokens get sep-
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arated into groups (e.g., by k-means), allowing only attention within each of
them. Intuitively, as SA contextualizes token representations through their re-
lationships, these groupings allow attending directly to the most relevant ones
for each token, discarding the ones that will contribute less. In order to allow
for inter-group flow of information, [95] employs centroid SA, broadcasting
contextualized cluster representations to each token within, whereas [228] uses
an aggregation mechanism for later global modeling. Alternatively, in [127] Q
and K are softly assigned to a subset of maximally orthogonal “prototypes”
sampled from Q and K, performing SA in that reduced space.

Aggregation approaches

Aggregation-based VTs can be roughly categorized into hierarchical and query-
driven compression. The key distinction is whether the input sequence length is
reduced for all Q, K and V, or if a small set of tokens (Q) is used to condense
information from the full input sequence (K and V).
Hierarchical designs can be further divided into abrupt or progressive. The
former employ bigger neighborhoods (e.g., whole frames) and perform a single
aggregation step, whereas the latter tend to work on smaller neighborhoods
and involve multiple such steps (see fig. C.3b). In both cases, the improve-
ment in efficiency comes from the fact that deeper layers will have to process
a smaller sequence length. Abrupt approaches divide the input tokens into
separate groups which are independently processed by a Transformer, to learn
intra-group relationships. Then, information from each subset is aggregated,
generally through a [CLS] token (e.g., [2, 50]), although some use learnable
global pooling in the form of linear [48] or convolutional layers [154]. The ag-
gregated representations are then fed into the next stage, modeling inter-group
relationships. We only find one work leveraging pure temporal hierarchy [48],
which models frame-then-clip interactions. It is more common to employ
spatiotemporal hierarchical models. These works ([2, 9, 50, 73, 120, 217, 228])
are the aggregation equivalent of spatiotemporal axial methods: a first module
(generally a ViT [34] or Swin [108] architecture), learns spatial patch-wise inter-
actions, and a second one models frame-level temporal interactions. Interest-
ingly, in [154] multiple aggregation tokens are used for each frame, containing
different features. As we discuss later in appendix 4.4, these approaches may
lose the ability to model fine-grained features after aggregation, potentially
missing relevant temporal cues.

Progressive approaches, tackle this limitation by learning spatiotemporal
interactions at all levels. In works such as Video Swin [109] and MViT [38] (as
well as their followups [68, 97, 107, 185, 187, 196, 201]) non-local interactions
are learned at each level, whereas in [93] the first layers are limited to local
interactions. In both cases, sequence length is progressively aggregated by
local neighborhoods (i.e., through learnable local pooling) while expanding
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the tokens’ dimensionality. While this increased model capacity for deeper
layers will require more parameters (weight matrices W quadratically grow
with the number of feature channels), it is generally compensated by smaller
dimensionality in shallower layers. The work of [228] combines both types
of hierarchy, by progressively downsampling in the spatial module, for latter
aggregation and high-level temporal modeling.
Query-driven compression. Another aggregation-based approach consists in
defining the set of queries Q, such that 𝑁Q ≪ 𝑁 . Then, the computations
are reduced from 𝒪(𝑁2) to 𝒪(𝑁 · 𝑁Q). In these, SA is performed only on the
tokens that correspond to Q, while K and V will be attended over via cross-
attention. With this, the 𝑁Q queries will iteratively access the whole input to
distill the most useful information and aggregate it in the token embeddings
corresponding to the queries. The intuition behind this is similar to how the
input tokens to the decoder get refined by repeatedly cross-attending to the
encoder’s memory M (see fig. C.1). These queries are either an aggregated
or sub-sampled version of the input data, or they are an independent set of
tokens. Aggregating the input into queries (e.g., through global pooling) can
be used to build global streams while maintaining access to a broader low-
level context within 𝐾 and 𝑉 . This may be useful for tasks that require a
high-level representation of the input clip (e.g., video retrieval [48], scene or
action classification [157] or group activity recognition [95]). Interestingly,
in [166] this idea is developed by forming a reduced set of queries at each
layer. In particular, 𝑇 and 𝑆 embeddings resulting from spatial and temporal
average pooling respectively, are concatenated and used to attend the full set
of keys and values. Alternatively, a sub-sampled version of the input can be
used to reason about specific regions or objects (e.g., by extracting a small set
of boxes from the input clip to be used as queries [49, 237]). Using a fixed set
of learnable queries to cross-attend the input was first explored in [77] to build
a global stream, where latent embeddings are used to progressively gather
information from the raw high-dimensional input. In VT literature it is more
common to use these learnable queries in an object-centric fashion, extending
on DETR [12] (used to detect objects at each frame) and propagating detection
tokens to build recurrent Transformers (e.g., [116, 236]). Alternatively, a set
of independent text-based queries can be defined from the text modality to
aggregate relevant visual information for video question answering [86]. This
idea naturally extends the original Transformer, replacing the textual encoder
with a video one while maintaining the auto-regressive text decoder, for video
captioning [74, 92, 94, 117] or dense captioning [74, 221, 238] (through further
event sampling).
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4.2 Long-term (temporal) modeling
Capturing long-term dynamics might be crucial for video tasks, as events
observed at a given moment could potentially be only understood by looking
far away in time. We here focus on works that propose dealing with long-term
temporal modeling. We roughly categorize them into memory- (e.g., [92, 201])
and recurrence-based approaches (e.g., [116, 212]). Whereas recurrent ones
aggregate information into fixed-size representations, memory-based ones are
variable-size and allow selective attention. In both, portions (i.e., frames/clips)
of the videos are processed sequentially in a sliding window fashion to keep
manageable compute and GPU memory but still ensure relevant information
from past windows is within reach.

Memory

Naively caching many past raw (high-dimensional) input frames quickly be-
comes prohibitive. Instead, one can store global frame features [39, 206] or
convolutional maps late in the embedding network [215], intermediate em-
beddings across Transformer layers (e.g., those from patches [201]), or the
Transformer’s output embeddings [7]. In particular, when dealing with patch
embeddings, aggregation might be needed before storing them [201]. On
top of that, some works maintain several memories with different temporal
reach (long/short) [206, 215], abstraction level [201], or granularity (fine/-
coarse) [7, 201].

Memories are mostly accessed via either cross-attention [39, 206, 215] or self-
attention [7, 201]. By concatenating input and memory tokens sequence-wise
to perform self-attention, the cost of the operation is 𝒪((𝑁M +𝑁X)2). Although
manageable with small memories, cross-attention turns out to be much more
affordable, with cost 𝒪(𝑁M · 𝑁X) if we assume 𝑁X ≪ 𝑁M. Either way, if 𝑁M
happens to be too large, one can reduce the number of tokens on-the-fly when
accessing them [39, 201, 206] by either query-driven compression [39, 206] or
progressive aggregation [201] – both seen in appendix 4.1. On the one hand,
memories leveraging query-driven compression follow a two-stage bottleneck
compression: a first Transformer compresses the memory into a smaller set of
tokens, whereas a second one “decompresses” the output of the former into a
larger set but still much smaller than the original memory. In the case of [206]
the second Transformer is also deeper than the one in the first stage. It also uses
two separate sets of learnable tokens to perform the aggregation in both stages,
while [39] uses a hard selection of memory tokens in the first stage (obtained via
Farthest Point Sampling [138]). Besides the efficiency gained from such two-stage
factorizations, we intuit differentiated underlying roles of the Transformers.
While the first focuses on rough selection/compression, the second tries to
recover as much information as possible, aggregating and further refining
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embeddings. On the other hand, progressive memory aggregation throughout
the Transformer layers provides later access to finer-to-coarser details. For
instance, [201] keeps spatially aggregated 𝐾ℓ(𝑡−𝑀ℓ ):(𝑡−2) from previous timesteps
after a learnable pooling and concatenates with lastly cached memory that is
to be compressed in this iteration (i.e., 𝐾ℓ

𝑡−1), and the current input’s 𝐾ℓ𝑡 to be
used in the ℓ -th MHSA sub-layer (and analogously for 𝑉 embeddings).

Multiple memories (e.g., short- and long-term) can be separately accessed
and their respective memory-enhanced embeddings fused [215] or, alterna-
tively, a short-term memory (with fewer tokens) can drive the compression of
the long-term one [206]. In multi-layer memories [201], the ones in later Trans-
former layers implicitly access information provided by earlier ones, effectively
allowing local memory accesses to approximate the full receptive field of the
memory in deeper layers. As we move forward in time, memories are discarded
in a First-in First-out (FIFO) fashion [39, 201, 206, 215]. A notable exception
is [7], which leverages the self-attention weights to discard memory token(s)
that are less attended by the rest.

Recurrence

Drawing inspiration from RNNs/LSTMs, recurrence mechanisms have also
been proposed to deal with long video sequences. Here we distinguish be-
tween recurrence applied between intermediate layers in the VT [92, 212] and
outside of it [116, 236].

Within the first category, we find RViT [212] and MART [92]. RViT [212] is
essentially a ViT-like spatial Transformer that propagates the output of every
self-attention sub-layer forward in time. Acting as recurrent states, these are
added to the embeddings from the current time step after projecting both to its
own Q, K, and V. Instead, MART [92] leverages the embeddings alone to form
Q whereas a sequence-wise concatenation of those with the recurrent state is
used to derive K and V. Differently from RViT, the recurrent state is not the
output of SA, but the result of a gating mechanism between the previous state
and the current input embedding.

Recurrence can also be established outside the Video Transformer. In other
words, the output embeddings from the Transformer at time 𝑡−1, namely �̂�𝐷

𝑡−1,
can be propagated to its own input at 𝑡. In the context of object detection, [116,
236] propose an encoder-decoder architecture where the decoder augments
a set of learnable tokens while attending to the encoder’s representation of
the current frame. At time 𝑡 = 0, the decoder augments an initial set of
learnable tokens that will become recurrent tokens. At 𝑡 > 0, the decoder
augments the sequence-wise concatenation of the recurrent tokens at 𝑡 −1 and
added learnable tokens at 𝑡 to capture newly appeared objects. Trained using
pairs of frames, these can still deal with long sequences during inference.
One may argue that having a token for each object could be regarded as a
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Fig. C.4: Venn diagram displaying our proposed taxonomy of efficient VT designs (best viewed
in color). We describe Local, Axial and Sparse approaches in appendix 4.1, Hierarchical and
Query-driven compression in appendix 4.1, and Memory and Recurrence in appendix 4.2.

form of memory, but from the point of view of time, the information is being
recurrently aggregated into a fixed-size representation.

4.3 Multi-view approaches
Opposed to dense sampling of single views, a few VTs define multiple views
of a given video to solve the task at hand in a cooperative fashion. Instance-
based contrastive approaches instead employ multiple views to drive the loss
(see appendix 5.2). Note that multi-view approaches are related to multi-view
sampling at inference (see appendix 6.1), but crucially, the former leverage
this technique also during training. A clear example of this parallel is [91],
which defines sparse views by uniformly sampling video frames with a fixed
stride but varying starting positions. Then, separate streams process each view
and the final classification is reached by averaging predictions in a late fusion
manner. This work could be seen as the sparse equivalent to fixed window
local restriction. In this sense, it only incurs 𝒪(𝑅2𝑘), where 𝑘 is the number of
sparse sequences (i.e., 𝑅 · 𝑘 = 𝑁). As weights are shared across streams, no
parameter increase is incurred.

Interestingly, many approaches define views by varying the resolution of a
given clip, while allowing interactions between them to form throughout the
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network (i.e., early fusion). This was first explored for video in [227] by using
patches of different spatial size at each head, and later extended to time in [211]
by using 3D patches instead. In the latter case, a multi-stream network is used
where each stream models the same video but tokenizes with different tempo-
ral resolution (inspired by the SlowFast Network [41]), allowing information
flow between views through cross-attention and a final global stream (in an
abrupt hierarchical fashion). In [198] a similar architectural setting is used,
but the views are sampled from the output of progressively deeper layers of
a ConvLSTM embedding network. In this sense, each view holds a smaller
spatial resolution, but a bigger temporal context. Intuitively, these methods
use redundancy to their advantage, helping the network become robust to
missing information in single views, while each stream models a coherent
representation of the full input.

4.4 Discussion on Architecture
VT designs focus on reducing computational complexity and handling the
redundancy of videos without compromising spatiotemporal modeling capa-
bilities. Furthermore, restrictions imposed on VTs to make them more efficient
will bias them towards favoring certain kinds of relationships. For instance,
abrupt hierarchy learns temporal translation equivariance in spatial layers by
modeling each frame independently, and local approaches that enforce locality
biases.

However, efficient designs and inductive biases do not handle redundancy.
Video redundancy can be mostly attributed to appearance-based semantics
varying slowly through time, even when small variations in specific pixels
occur [235]. However, the extended information provided by these subtle
changes in many consecutive frames may be crucial to properly model fine-
grained motion features [41]. In order to learn spatiotemporal relationships
from video, this must be taken into account. Reducing spatial redundancy
may be desirable, as it will allow focusing on more relevant parts of the video
(e.g., through aggregation or sub-sampling of tokens). However, this requires
careful consideration: removing certain information too early into the net-
work may limit the formation of crucial temporal interactions later on. Prior
works on modeling video with CNNs have shown this to be the case: early
aggregation of spatial features hinders the formation of fine-grained motion
features [99, 159, 179], and temporal pooling seems to hurt spatiotemporal
representation learning [17, 40]. With Transformers, tackling this may involve
taking into account non-local neighborhoods before deciding which informa-
tion is to be discarded.

Motivated by this, we derive three crucial aspects for spatiotemporal mod-
eling: (1) explicit spatial redundancy reduction while (2) allowing to model
temporal features at all levels in (3) high-fidelity temporal contexts. Different
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VTs exhibit varying degrees of capabilities in these three aspects. Restricted
approaches allow for low-level temporal modeling and, due to the lack of ag-
gregation, always maintain temporal fidelity. Given their potential to overlap
low- and high-level features they can be suitable for both low-level (e.g., seg-
mentation [35]) and high-level tasks (e.g., classification [5]), but with certain
limitations. Hierarchical approaches effectively exhibit (1) and (3) through
aggregation on the spatial dimensions only (except in [93]). Particularly, for
progressive hierarchy (e.g., [97, 107]), the gradual increase in channel dimen-
sionality provides deeper layers with a larger capacity to represent high-level
concepts while further limiting the modeling of redundant low-level features.
Furthermore, by leveraging different levels of spatiotemporal non-local con-
texts (e.g., [38, 109]) at least in deeper layers (e.g, [93]), they guarantee that
extended temporal fidelity is exploited before aggregation. In contrast, the
abrupt counterparts (e.g., [50]) may be suffering from early aggregation. While
training end-to-end may infuse temporal feedback into spatial layers (which
may be sufficient for appearance-biased video benchmarks, see appendix 5.3),
they may lack proper motion modeling. This can be addressed by allowing
to form spatiotemporal interactions before aggregation, either locally (by ex-
plicitly sharing information between neighborhoods [9, 73, 213, 228] as well as
by using 3D patches [2, 211]) or globally [154]. Query-driven compression ap-
proaches reduce redundancy through aggregation when used to derive global
streams [48, 95, 157], or through sparsity when reasoning of individual objects
or regions [49, 95]. In both cases, the small set of queries forms high-level
representations of (parts of) the input, while maintaining temporal fidelity
in keys and values. However, they may exhibit a limited capability to form
low-level temporal features. While iterative accesses may alleviate the dan-
gers of early aggregation for high-level tasks (e.g., classification [49, 77, 157]),
low-level tasks may require to also evolve the fine-grained input representa-
tions [95] or to infuse them back with high-level features from the queries [166]
(similar to clustering-based sparse approaches). This is similar to the behavior
exhibited by recurrent approaches. As temporal information is collapsed into
the recurrent state, they may suffer from early aggregation, which may be
especially detrimental for high-level tasks [212]. However, these approaches
may excel on applications that only require low-level reasoning of the current
observation, enhanced with the forwarded high-level past context (such as
for tracking [116], segmentation [215] or dense video captioning [92]). Mem-
ory-based approaches exhibit great capabilities for preserving the temporal
resolution of the input. They can tackle redundancy through aggregation
(e.g., upon storing [201] or dynamically on access [206]) or sparsity (either
by storing only some past observations [215], by dropping elements in the
memory according to their relevance [7] or only attending to a small subset
of memory tokens [39]). Finally, multi-view approaches working at different
input resolutions explicitly allow the formation of separate coarse- and fine-
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level features while allowing interactions between them [198, 227]. However,
as redundancy is not explicitly managed, the success of these methods may be
limited to computationally heavy models [211]. Sparse counterparts heavily
downsample the input sequence, hurting temporal fidelity and requiring to
compensate with other modalities [1, 91, 220].

5 Training a Transformer

The two main limitations of Transformers will heavily influence the way in
which they are trained. On the one hand, large-scale pre-training aids Trans-
formers to overcome their lack of inductive biases [22, 32, 34], but recent studies
suggest that self-supervised pre-training (see appendix 5.2) alleviates the need
for large supervised datasets [178, 196]. On the other hand, some solutions
to the lack of inductive biases aggravate computational costs. CNN embed-
ding networks add to the memory footprint and potentially overflow GPU
memory when training, especially if done end-to-end. Avoiding overfitting
big models requires strong regularization [208] and lots of data [229], which is
further problematic when handling several stages of training that require more
time and compute. Finally, leveraging self-supervised tasks is computationally
heavy, especially for video.

5.1 Training regime
We next explore how VTs are trained, from a lens of embedding networks
and pre-training. Pre-training involves one or more training stages before
transferring the network to a downstream task, for which the model is either
fine-tuned or linearly probed (training a few linear layers on top of the frozen
Transformer).
End-to-End training with minimal embeddings. End-to-end training of deep
neural networks has proven to outperform multiple-stage algorithms. To ease
memory limitations while allowing for end-to-end training of the Transformer,
it is common to use minimal embeddings. Some train in a supervised fash-
ion [2, 5, 38, 77, 197, 228], directly for a downstream task on large datasets,
such as Kinetics-700 [14], or ImageNet21K [150]. However, all these leveraged
efficient architectures and thanks to the inductive biases these designs pro-
vide, the network will pick up on relevant patterns faster, and more capacity
can be given to Transformer layers. Other works aiming for smaller datasets
train aided by some data augmentation [198, 219, 223] or self-supervised
losses [1, 50, 103, 117, 227] on medium to large datasets. Stand-alone Trans-
formers seem to be able to learn without large CNN embeddings if aided by the
inductive biases that efficient designs, data augmentation, or self-supervised
losses provide. Still, most of these require multiple stages of training either
through large datasets or computationally heavy self-supervised techniques.
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End-to-End with embedding networks. Other works train Transformer and
deep CNN embedding layers end-to-end either with a pre-trained embedding
network [23, 86, 166], fine-tuning just the later layers [157, 167], or training
end-to-end from scratch [111, 129, 186, 193]. Some were able to train end-to-
end by capping Transformers to 1∼4 layers [81, 217, 234], suggesting that just
a few Transformer layers after a large embedding network may be enough to
boost performance. Some others’ success is attributable to leveraging efficient
designs (e.g., local SA [57]) or weight sharing [90] – that reduces the effective
number of parameters to be stored in memory (discussed later in appendix 7).
Finally, [49, 195] report having substantial computational resources available,
which allowed them to fit in memory both, a large embedding network and a
big Transformer. Empirical studies on both image [29, 144] and video [93]
Transformers have consistently found improvements when training Trans-
formers and CNN embedding layers end-to-end. This may further be seen
in works reporting improved CNN-based results alone after being trained as
the embedding net of a Transformer [90, 167, 169], pointing towards CNNs
benefiting from long-term temporal feedback provided by the Transformer
layers.
Frozen embedding networks. The most common approach by far for VTs is
leveraging some large pre-trained and frozen CNN embedding network. These
are then used for feature extraction, which further boosts cost-effectiveness, as
they can be pre-computed. Transformer layers are then trained for a down-
stream task on those features. Compared to end-to-end training from scratch,
it is often cheaper and more efficient to employ SOTA models, which have been
carefully tuned to perform well on some supervised task. While it is definitely
common to use medium to large datasets (as in [74, 75, 92, 125, 131, 221, 232,
238]), with this approach, many video works [10, 11, 25, 46, 98, 134, 136, 137,
174, 189] are still able to train the Transformer on small datasets (<10k training
samples). Nevertheless, these approaches are limited by the quality of the
pre-trained features and could be biased towards the task they were trained
on (which is generally supervised).
Pre-trained Transformers. Video-based pre-training has proven to work best
for video classification tasks [185, 196], maybe due to the distribution gap,
as pre-training only on images does not provide any motion cues. Neverthe-
less, image-based pre-training may provide stronger spatial features, given the
higher variability of appearance and number of categories (providing better
semantics regarding objects) compared to video datasets (where many consec-
utive frames contain similar appearance statistics). It is for this reason that we
find many VTs leveraging image pre-trained Transformers, commonly on some
ImageNet variant [31, 150]. This is generally done in one of two fashions. On
the one hand, some works [2, 9, 50, 120, 211, 215] leverage a pre-trained image
Transformer (generally ViT [34] or Swin [108]) as the spatial stage of an abrupt
hierarchical VT, training the later temporal layers from scratch. On the other
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hand, a pre-trained image Transformer can be directly adapted by using 3D
patches to factor time in (as well as inflating linear embeddings and positional
biases to account for this change) before fine-tuning for video [38, 107, 109, 196].
Finally, some object-centric approaches (e.g., [116, 194, 195, 237]) leverage pre-
trained Transformer-based object detectors (e.g., DETR [12]) as initialization.

5.2 Self-supervised pretext tasks
Harvesting large annotated datasets incurs additional labeling costs, and may
further influence towards human-induced annotation biases [26, 151]. Self-
supervised learning (SSL) has been recently shown to alleviate data needs for an
equivalent supervision-based pre-training (e.g., [178, 196]), while providing
more robust [66] and general features [24, 56, 84]. Despite the great success of
SSL in both NLP [32] and Image Transformers [61], they are not as widespread
in the video domain, which could be attributed to the large costs involved in
such a process. Therefore, we next analyze the benefits and limitations of SSL
for VTs, so as to motivate further research in this area.

Traditional time-related pretext tasks (see [156] for a complete review) are
rarely used in the context of VTs. They are generally limited to shuffling the
input sequence, and training the network to correctly reorder it [58, 94, 182,
225], effectively learning coherent temporal dynamics. However, these have
not found as much success [156] compared to (1) Instance-based learning and
(2) Masked Token Modeling (MTM), which we explore next. The former learns
sequence-level representations that are invariant to different spatiotemporal
perturbations, whereas the latter mask individual token representations of the
input and tries to reconstruct them.

Instance-based learning

Instance-based approaches for VTs leverage contrastive losses (generally In-
foNCE [121]) to make representations of whole sequences invariant to certain
augmentations. These approaches define one anchor x, a positive sample x+
and a set of 𝐺 negative samples to contrast against {x−𝑔 }, where 1 ≤ 𝑔 ≤ 𝐺.
These tasks force representations for the positive pair to be similar, while it
drives apart representations for the negative (dissimilar) pairs. Minimizing
InfoNCE can be seen as maximizing a lower bound on the mutual information
between x and x+ [121]. These losses have also been used in the context of
cross-modal matching for VTs, as explored in [153]. Hence, we only briefly
discuss them in the context of video retrieval in the Supplementary and focus
here on their uses for video only.
View mining. Positive pairs tend to be differently augmented versions (gener-
ally regarded as views) of the same sample. In VTs (and generally for video), it is
customary to apply spatial augmentations (e.g., random cropping, color jitter-
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ing, horizontal flips, or Gaussian blur) consistently through time (i.e., applying
the same augmentation to all frames [139]). By aligning multiple views’ rep-
resentations, the model learns to be invariant to such perturbations. However,
spatial augmentations alone are not enough for video SSL [156], and generat-
ing temporal views needs to be done carefully. For instance, reversing or ran-
domly shuffling a clip may make the model invariant to temporal causality. In
VTs (similar to other video literature [43]), it is common to use multiple tempo-
ral [58, 169, 185, 200] or spatiotemporal [129, 146] crops of a given video to form
the positive pairs, with varying temporal spans [129, 146, 185] and frame-rates
(i.e, speed) [146, 185], whereas negatives are sampled among the rest of training
videos. Learning invariance to such changes may be useful for high-level tasks
where a wide abstract understanding of the video is enough. Nevertheless,
this could disregard local view-dependent information in favor of redundant
cross-view information [135], favoring the formation of appearance-biased fea-
tures (see appendix 5.3). In order to tackle this, some VTs use multiple global
and local potentially overlapping views as positives [129, 146, 185], which
may allow for better modeling of part-whole relationships. Intuitively, this
forces global views to preserve information in the local ones, while maintain-
ing global context awareness in local views. Alternatively, the alignment task
can be relaxed, skewing away from learning absolute invariance to changes
between views. One example is seen in [169], which conditions alignment
on the temporal shift between crops. Another example is seen in VT works
introducing asymmetries in the networks computing the different views’ rep-
resentations: using additional predictors [185], momentum encoders [146, 185]
(originally proposed in [62], are believed to behave as network ensembles [13]),
and even CNNs [58] (probably helping infuse some locality bias from CNN
representations into the Transformer). Introducing some of these asymmetries
has indeed been found to boost downstream performance on image [177] and
video tasks [43]. Intuitively, they may be relaxing the alignment task into a
more predictive setting, allowing features to be aware of context, not so much
invariant to it.
Negative sampling. One crucial limitation of contrastive approaches is their
need for large negative sets [21]. These are generally mined from the batch,
which can be very limiting in the context of full video representations, as
it may not always be possible to hold enough different instances in a batch.
VTs tackle this through large memory banks that store representations of past
batches [104, 160, 185] (which may further serve as regularizers, due to stor-
ing sample representations from past iterations produced by the same model
with slightly different weights) or through hard negative mining (forcing the
network to learn small nuances in the views by trying to separate somewhat
similar samples, measured by feature representation distances [90, 96]). Fi-
nally, we also find works dropping negatives altogether. One example is seen
in [146], which formulates learning as instance-based classification, where
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every positive view has to be classified in the same pseudo-class. Another
example is the work in [220], where multiple sparse views of the input are
independently processed and the aggregated prediction is used to distill the
consensus into single view streams.

Masked Token Modeling

MTM draws inspiration from the Masked Token Prediction task proposed in
BERT [32]. It randomly replaces some input tokens with a learnable [MSK]
token and the network is trained to predict (classify) the replaced tokens.
This forces the Transformer to learn contextualized representations of the
input. However, different from language tokens, visual tokens cannot be
easily mapped to a discrete and limited-size vocabulary so as to pose MTM as a
classification task. For perspective, a pixel codebook would require 2553 ≈ 16M
distinct elements, whereas BERT employed a vocabulary of 30K. Furthermore,
posing it as a classification task would disregard the distance of the prediction
to the actual ground truth value, distracting the network with high-frequency
details of the data which could be irrelevant. To solve this issue in the context
of VTs, we roughly find three families of approaches, categorized by the type
of target: (1) working at feature level either through regression [18, 94, 96, 196]
or contrasting [25, 90, 94, 167], as well as (2) quantization of visual tokens [168,
187]. Interestingly, some works have actually found success (3) regressing
the original token in pixel space [107, 178]. We also find VTs classify token
contents [200, 239], but as these require manual annotations, we do not delve
into them here.
Feature-based MTM works regress a feature-based representation of the masked
tokens. This can be posed as a prediction (e.g., using an MSE loss) [18, 94, 96]
or as a contrastive task [25, 90, 94, 203]. The target token representation is
obtained from the input embedding network (e.g., [90, 94, 203]) or from an
external encoder [167]. In this sense, by requiring an additional network, these
models potentially incur additional compute and memory costs. In order
to avert this, [196] proposes using the HOG features of the masked region,
which are cheaper to compute and can be pre-computed. Interestingly, the
work of [50] uses causal masked SA instead of replacing tokens with [MSK]. In
this sense, all tokens are tasked with solving feature-based MTM by trying to
predict the next token representation (in a predictive coding setting [121, 147]).
Quantization-based MTM involves discretizing video tokens to a limited
codebook, generally requiring some pre-trained network to define it. For
instance, in [168] an S3D [205] followed by hierarchical k-means is used for
both embedding the tokens prior to the Transformer and the discrete (cluster
assignation) pseudo label for the prediction, whereas in [187] a VQ-VAE [145]
is used instead, but only to generate the ground truth for the masked tokens.
The use of quantization makes it possible for these models to optimize the
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network with a classification objective, akin to NLP counterparts. Similar to
many feature-based MTM, however, these approaches also require an addi-
tional pre-trained network.
Pixel-based MTM directly regresses the pixel space for masked regions [107,
178]. They do not require any further networks or computing additional
features, making them very simple to implement. However, pixels as targets
have been argued to focus on irrelevant high-frequency details of data, which
could be detrimental for high-level tasks [60]. Nevertheless, this may be more
nuanced and require further research, as we discuss next in appendix 5.3.

5.3 Discussion on training strategies
Training stand-alone VTs requires balancing solutions to the lack of inductive
biases with potentially limited computational budgets. This implies factoring
in large datasets, SSL, and efficient designs while accounting for the large di-
mensionality of videos, properly sized clips, batches, and architectures. VTs
are dominated by fully supervised training aided by large frozen CNN embed-
dings (which are not so common in other fields, such as NLP), and disregard
pre-training of Transformer layers. On the one hand, long-range temporal
interactions provided by Transformers boost CNN’s performance in many ap-
plication scenarios [11, 46, 74, 88, 101, 125, 134, 137, 174]. On the other hand,
the embedding network provides initial representations and dimensionality
reduction, alleviating Transformers’ training limitations. Nevertheless, this
approach caps the potential of Transformers to model spatiotemporal interac-
tions and depends on the transferability of the pre-trained embedding features
(e.g., distribution or task shift).

The canonical pre-training then fine-tuning paradigm acts as a smart form of
initialization. Skewing from it may allow avoiding catastrophic forgetting [115]
while achieving more generalizable features. For example, by incorporating
self-supervised auxiliary losses during fine-tuning, as done by some VTs [50,
225]. In [94] a training schedule is proposed that samples a different (self-
)supervised task at each batch, showing improved results for video retrieval as
more tasks are added. Alternatively, recent works (e.g., [51, 187, 230]) deviate
from the trend of image-based pre-training and achieve promising results by
optimizing for image and video tasks in a joint manner.

SSL is not as widespread for VTs when compared to supervised or image-
based initialization. However, we believe VTs could greatly benefit from large-
scale unlabeled videos, as well as from the inductive biases SSL provides. In
this sense, we see great promise in the current developments on SSL that are
better suited to train visual Transformers. MTM could be seen from the lens of
generative-based pre-training as it bears great resemblance with CNN-based
inpainting [126]. We believe that the success of MTM may be attributable to
Transformers providing explicit granularity through tokenization. In order to
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conquer the complex global task of inpainting large missing areas of the input,
MTM divides it into smaller local predictions. This is especially true in both 2D-
and 3D-based patch tokenization approaches [178, 187, 196]. Intuitively, the
model needs an understanding of both global appearance and motion seman-
tics as well as low-level local patterns to properly gather the necessary context
to solve token-wise predictions. This may allow VTs to learn more holistic rep-
resentations (i.e., better learning of part-whole relationships). Nevertheless,
given the high redundancy of videos it could be trivial for the network to find
shortcuts, borrowing information from neighboring spatiotemporal positions
instead. It has been found that high masking ratios (e.g., 40%-60% in Mask-
Feat [196] or even 75%-90% in VideoMAE [178]), especially compared to NLP
(15%-20% in BERT [32]) or images (20%-50% in MAE [61]), indeed force the
network to capitalize on global relationships of the data, as seen by improved
performance on high-level semantic tasks (see appendix 6.2). Furthermore,
ablations in [178, 196] suggest that the masking strategy can also impact the
learning of such shortcuts, showing that masking blocks of tokens in space
consistently through time helps to avoid them. Regarding the choice of tar-
get for MTM, quantized and feature-based seem to work best for video [196]
(albeit requiring an additional pre-trained network). Pixel-based provide the
cheapest target but are generally discarded arguing they may fixate on irrele-
vant high-frequency details of data. However, the generally used MSE loss has
been shown to disregard such details [123, 126, 233], so further research may
be needed. Finally, we highlight HOG features, which provide the best com-
pute/performance trade-off (see appendix 6.2), as they are cheap to compute
while providing partial invariance to various deformations.

Despite requiring large batches for negative mining, instance-based con-
trastive approaches have consistently shown potential for high-level video
tasks [156]. By contrasting differently spatiotemporal augmented views, the
network learns invariance to appearance perturbations, spatial scale, and oc-
clusions, as well as changes of perspective or illumination naturally present in
video [54, 192]. However, the model may also become invariant to temporal
translation and deformation, effectively disregarding fine-grained motion dy-
namics and biasing it towards appearance-based static cues (which is enough
for appearance-biased datasets (e.g., UCF101 or Kinetics) where the presence
of certain objects may suffice to predict an action class [8, 71]). As we dis-
cussed in appendix 5.2, re-introducing motion modeling requires relaxing the
alignment task through network asymmetries (e.g., [58, 146]) or careful sam-
pling techniques (e.g., [129, 185]) to balance part-whole relationship learning.
However, compared to MTM, it is easier for these approaches to overlook
low-level view-dependent temporal information, crucial for proper motion
modeling [139, 222].

In this context, we see promise in combining instance-based contrastive
learning and MTM, both in multi-task scenarios [167, 169, 200] as well as
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feature-based contrastive MTM [90, 94, 167, 203] (as opposed to direct regres-
sion). These latter could combine the holistic feature learning of MTM while
potentially accounting for the uncertainty of modeling missing information
through contrastive losses (as the model is not tasked with explicit hard pre-
diction [60]). For instance, in [94], this alternative is found to outperform L2
feature regression in the context of video-moment retrieval. These approaches
remain, to the best of our knowledge, unexplored in the context of patch-based
tokenization, where the cardinality of the negative set would be much larger
than for instance-based approaches (allowing for many hard negatives from
the same sequence as well as easy negatives from all other sequences in the
batch). Nevertheless, it is still unclear what these models are actually learn-
ing, so future research is needed for proper interpretation of SSL features,
which currently are mostly evaluated based on their success on downstream
performance [79, 156].

6 Performance on video classification

The task of video classification has attracted the most research in Transformers
for video, given the generality of the task and availability of large datasets
for training and evaluation, things that allow for more comprehensive perfor-
mance analysis. Next, we overview the particularities of video classification
(appendix 6.1) and then analyze VT state-of-the-art performance on it (ap-
pendix 6.2).

6.1 Video classification
Video classification aims to predict the class of a given input sequence of
frames. For the task, a VT will encode descriptive high-level global repre-
sentations of a given sample. Then, some linear layers followed by a softmax
provide a class-score probability distribution. The category with maximum
probability should match the ground-truth class. VTs competing to become
state-of-the-art in classification tend to be standalone (i.e., use minimal embed-
ding), and thus will be the ones we cover. Next, we present the benchmarking
datasets, experimental protocols, and details on the sampling of the clips.
Evaluation datasets. The most popular dataset is the large-scale Kinetics-400
(K400) [15], consisting of 306K 10-second clips and 400 manually annotated
human actions categories with at least 400 examples per class. Kinetics-600
(K600) – an extension of K400 with 495K clips and 600 classes – is only used
for pre-training, but not for evaluation. K400/K600 are however known to
be appearance-biased [225]. To better assess the modeling of more complex
temporal dynamics, most works are also evaluated on Something-Something v2
(SSv2) [55, 113]. SSv2 is an egocentric human action dataset where some of the
categories can only be distinguished by having an understanding of the arrow
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of time (e.g., “Moving [sth] away from [sth]” vs “Moving [sth] closer to [sth]”).
SSv2 consists of 220K videos of duration ranging from 2 to 6 seconds and 174
fine-grained categories.
Experimental protocols. We find two learning protocols being followed: train-
ing from scratch or pre-training the model first. Training from scratch is rarer
because of the size of the models (especially, their larger variants). When
following pre-training, the weights learned during the first stage are used to
initialize the model that is to be trained in the downstream dataset/task.
Common pre-training strategies for video classification are (a) image-based
pre-training on ImageNet, and either (b) supervised or (c) a self-supervised
video pre-training (generally on video datasets larger than the downstream
one, e.g., K600 for evaluating K400 and K400/K600 for SSv2). After initializa-
tion, the models are trained on the downstream dataset, fine-tuning existing
weights and adapting new ones.
Clip sampling. Models are fed with trimmed video clips. These are relatively
short, with a number of frames 𝑇′ typically 8 to 64 frames and fixed spatial
resolution 𝑆′ = 𝐻′ × 𝑊 ′ pixels (often 𝐻′ = 𝑊 ′ = 224, hence shortened to
𝑆′ = 2242, see “Input” in tables C.1 and C.2). However, to make sense of
these numbers, and especially 𝑇′, it is crucial to consider the temporal stride
𝜏, i.e., the step between clip frames when sampling them from the original
video. A larger 𝜏 extends the temporal span of the clip w.r.t. the video without
incurring extra computation costs, while also reducing the redundancy among
otherwise nearby sampled frames. For instance, with 𝜏 = 4 and 𝑇′ = 64, a clip
covers a temporal span equivalent to a densely (𝜏 = 1) sampled clip of 256
frames. Importantly, 𝜏 must be chosen factoring in the temporal resolution of
videos (e.g., ∼25 FPS in K400) and the fine-grained motion information one is
willing to sacrifice in favor of context.
Views. The clips generated can be regarded as temporal views (related to the
views described in appendix 5.2, which are used for some methods during
pre-training). During training, one temporal view per video is gathered at
a random temporal position. These are constructed with fixed size 𝑇′ × 𝑆′

and stride 𝜏. For inference, most models follow a multi-view approach: the
classification decision for the video is achieved by averaging the prediction
obtained from different spatiotemporal crop views.

6.2 Comparison among state-of-the-art models
To draw comparisons we consider the factors defined by the columns of ta-
bles C.1 and C.2. Among those, the most interesting one to study is perhaps
the pre-training strategy, which will drive the rest of the section, separately
analyzing K400 and SSv2.
K400: training from scratch. Doing so, we only find MViTv2 [97] and its pre-
decessor MViT [38]. The main difference between the two is the inclusion of an
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extra residual pooling connection and the use of relative positional encoding.
With these, “MViTv2-B 32@3” (82.9%) performs better than its older counter-
part “MViT-B 32@3” by +2.7%. In fact, it also surpasses “MViT-B 64@4” – which
has an increased temporal receptive field (2.6x) – by +1.7%. Later in [196], the
same authors explored different initialization strategies and showed overfit-
ting of the larger variants of MViTv2 when not using effective initialization.
This can be seen for “MViTv2-L↑”, with an increased spatial resolution (from
224 to 312) and compute (from 51 MP to 218 MP), performing worse (-0.7%)
than “MViTv2-B 32@3’. Although this is to be expected, the smaller variants
are still able to learn from scratch successfully – as we will see later, even better
than 3D ConvNets. Given the need for pre-training of larger models, we next
discuss the two most popular strategies in the context of K400 and demonstrate
its large positive effect (e.g., “MViTv2↑ 32@3” boosts its results from 82.2% to
85.3% by leveraging image-based pre-training).
K400: image pre-training. The majority of VTs pre-train on either ImageNet-
1K (“IN”), ImageNet-21K (“IN21”), or JFT-300M (“JFT”). IN and IN21 consist of
1K and 21K classes and over 1.2M and 14M examples respectively, whereas JFT
is a non-public dataset with 300M multi-label images and 18,291 non-mutually-
exclusive labels. Other works have been using their own image datasets or
extending public ones. For instance, “Video-SwinV2-G” [107] (86.8%), being
the best performing model, extended IN21 (14M images) with a private dataset
of images (“P” in Tab. C.1), totaling 70M samples. Close second is “MViTv2-L↑
40@3” [97] (86.1%), with weights pre-trained exclusively on IN21 while only
dropping by -0.7% with respect to the first one, but with 14x fewer parameters.
The third is “MTV-H” [211] (85.8%), this one pre-trained on JFT with 300M
images. Unfortunately, in this work, the authors used JFT to pre-train their
largest models (“MTV-L” and “MTV-H”) and IN21 to train “MTV-B”/“MTV-B
(320)”, therefore not validating the actual contribution of JFT w.r.t. IN-21K
for any of the variants; making difficult to discern the actual contribution of
the model scaling. Also, TokenLearner [154] completely relies on JFT for all
the experiments, with its best model “TokenLearner 16at18 (L/10)” (85.4%)
coming fourth. It was ViViT [2] that showed how the same model variant
trained on JFT, “ViViT-L (JFT)” (83.5%), was considerably improving upon
the same variant pre-trained on IN-21K (“ViViT-L”), by +1.8%. It is, hence,
of great merit that “MViTv2-L↑ 40@3” (86.1%) still surpasses, respectively by
+0.3% and +0.7%, the results of “MTV-H” and “TokenLearner 16at18 (L/10)”.
It is true that compared to those, MViTv2 variant utilizes larger spatial (3122,
versus 2242 and 2562 pixels) and temporal receptive field (120 vs 64 frames),
but the number of TFLOPs and the amount of pre-training data to process are
still both lower: 14 MP versus 300 MP in JFT for MTV and TokenLearner, and
42 TFLOPs versus 47 and 48 TFLOPs.

In terms of cost-effectiveness, we find “UniFormer-B” [93] (83.0%), “SCT-
L” (83.0%) [228], “Direcformer” [182] (82.8%) – this one based on [5]-, and
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“MViTv2-S” (82.6%) [196]. These models only suffer a drop between -3.1%
and -3.3% of accuracy but between 10x and 70x less FLOPs w.r.t. “MViTv2-L↑
40@3”.
K400: video (self-supervised) pre-training. An emerging trend in the lit-
erature is to perform all SSL pre-training, fine-tuning and evaluation on the
same dataset [178, 185, 187, 196]. “MaskFeat-L↑ 40@3” [196] reaches 86.4%,
thus showing the contribution of MaskFeat (SSL) pre-training compared with
supervised training on the same architecture, i.e., MViTv2, by +0.3%. That
result of MaskFeat is also only -0.2% behind the best image-based pre-trained
model (i.e., “Video-SwinV2-G”). Then, “MaskFeat-L↑↑ 40@30” by switching
K400 with K600 and slightly increasing the spatial resolution from 312 to 352
(still lower than 382 of “Video-SwinV2-G”), the model obtains state-of-the-art
results (87%), outperforming any of the image pre-trainings. VideoMAE [178]
comes second in this category consisting of a ViT backbone with 3D inflation of
the patch embeddings. This outperforms all image-based pre-trained models,
except for “Video-SwinV2-G”. Thus it seems learning motion priors during
pre-training has a very positive effect on performance when targeting video
classification.
K400: ConvNets. For the sake of completeness, we compare VTs to 3D Con-
vNets, which were state-of-the-art right until VTs managed to surpass them.
See how “MViTv2-S” (81.1%) trained from scratch, exceeds the performance of
comparable ConvNets: “SlowFast R101+NL” (79.8%) and “X3D-XXL” (80.4%).
This might be attributable to the higher temporal fidelity of MViTv2 being
more profitable than extra context – at least on short videos. The number
of views for testing was also higher for both (30 versus 5 in ” MViTv2-S” ).
Nonetheless, it also consumes 18x - 22x fewer TFLOPs and works on a smaller
spatial resolution (224 only, versus 256 or 312). Switching to “MViTv2-B 32@4”
(82.9%), we see how trained from scratch this model does better than Con-
vNets pre-trained on the very-large weakly-annotated video dataset IG65 (i.e.,
‘R(2+1)D-152” [47] (81.3%) and “ir-CSN-152” [180] (82.6%)), even when using
half the views.

Moving to the study of SSv2, we found none of the works train from
scratch. Another thing to note is the number of temporal views used because
of the shorter duration of SSv2 videos compared to Kinetics. Despite that, the
temporal dynamics are harder to capture as we will see next.
SSv2: image pre-training. Although less common than for K400, there are
works that pre-train on image datasets. Among the ones using IN, “Direc-
Former” [182] (64.9%) is the one performing the best. It surpasses its own
backbone (“TS” [5]) in all the variants by forcing the learning of temporal or-
der of shuffled input frames via auxiliary SSL. “TIME” [225] is another one
using auxiliary SSL ablated with different VT backbones. This one, not so
much competing in performance with larger model variants, still points out
the effectiveness of temporal guidance for image-based pre-trained models
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when transferred to the downstream video task. Finally, trained on IN-21K,
“X-ViT” (66.4%) [9] is the absolute winner in this category. Unfortunately, by
focusing on efficiency alone, it is not able to compete with heavier models that
are supervisedly pre-trained on K400.
SSv2: video (supervised) pre-training. It is quite common to reuse super-
visedly trained checkpoints on Kinetics by transferring them to SSv2 for fine-
tuning. These have often also been pre-trained on IN-1K/IN-21 before Kinet-
ics. However, to better disentangle video and image contributions, we focus
first on video-only pre-training models, and concretely on those relying on
K600. Looking at “MViT-B 32@3” (67.8% pre-trained on K600) and “MViT-
B 64@4” (67.7% pre-trained on K400), with a temporal receptive field of 96
to 128 frames respectively, we see there is no improvement in SSv2 by ex-
tending temporal context, but slightly better performance when keeping finer
temporal resolution (stride 3 instead of 4). Even more interesting is that the
deeper “MViT-B-24 32@3” (with 24 layers) outperforms +0.9% upon the 12-
layered 32@3 variant. This suggests more complex temporal dynamics might
require not necessarily increasing temporal resolution, but higher abstract spa-
tiotemporal semantics being modeled. That or advancements in architectural
designs to better model those without going deeper, as done by “MViTv2-B
32@3” (70.5%) also with 12 layers. Finally, if we have a look at models that
leverage image-based pre-training before Kinetics, we find further improve-
ment (e.g., “MViTv2-B 32@3” from 70.5% to 72.1%). What seems to be not as
useful, according to “UniFormer” variants, is to switch from K400 to K600.
SSv2: video (self-supervised) pre-training. The only model pre-training
on SSv2 is VideoMAE (“VMAE”), which turns out to be the best perform-
ing one. In particular, “VMAE (ViT-L) 32@2” (75.3%) slightly improves upon
“MaskFeat-L↑ 40@3”, those being self-supervisedly pre-trained on K400 (74.4%)
or K600 (75.0%). It does so with almost half the temporal context, half the
FLOPs, and – importantly – with fewer data. All in all, VideoMAE and
MaskFeat seem to point out pixel- and feature-based MTM approaches com-
pare favorably with “SVT” (instance-based invariance learning) or “BEVT”
(quantization-based MTM) despite the latter also using image-based pre-
training.

6.3 Discussion on performance
We have introduced the task of video classification and analyzed the perfor-
mance of state-of-the-art models on Kinetics-400 and Something-Something
v2. Our main finding was that the pre-training strategy was the biggest factor
influencing the performance of VTs for video classification, thus the following
discussion will address three questions related to this: (1) Can Video Transform-
ers be trained from scratch?, (2) Which is the best pre-training strategy?, and (3) How
can we effectively model stronger spatiotemporal dynamics?.
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For the smallest models, training from scratch seems to be doable. In par-
ticular, MViT [38] and MViTv2 [97] are able to, respectively, compete with
and slightly surpass 3D ConvNets trained from scratch. In fact, MViTv2 even
outperforms those pre-trained on very large weakly-annotated video datasets
(e.g., IG-65M). In particular, we attribute the success of those to the locality bias
they infused (via the local pooling-based progressive aggregation discussed
in appendix 4.1), which allows these models to go deeper without exploding
in computational complexity while still keeping their self-attention operation
global. However, training from scratch seems to be the least desirable strategy
to follow.

Among pre-training strategies, video-based ones, either supervised (e.g.,
on K400/K600 before fine-tuning SSv2) or self-supervised, are superior to
image-based pre-training alone. Image-based supervised pre-trained models
seem to be able to partially compensate the lack of temporal modeling with
appearance diversity by leveraging huge – often non-public – image datasets
(e.g., JFT [2, 154, 211] or extensions of IN21 [107]). Alternatively, image-based
self-supervised learning only competes with video pre-training when lever-
aging prohibitively large models [107]. However, parting from learned very
diverse and general appearance features will not harm the modeling of time in
later stages, but serve as a good initialization for subsequent video-based pre-
training (e.g., all those works that combine IN/IN21 and K400/K600 before
fine-tuning on SSv2) or fine-tuning stages with temporal SSL auxiliary losses
(e.g., [182, 225]). On the other hand, we can see how self-supervised video
pre-training surpasses supervised regimes. In particular, MaskFeat [196] (with
MViTv2 [97] backbone) and VideoMAE [178] (with a plain ViT [2]) outperform
those pre-trained on video in a supervised way.

For the successful modeling of spatiotemporal patterns, Masked Token
Modeling stands out (see appendix 5.3). Concretely, MaskFeat (feature-based
MTM) obtains the best results on K400 and is second best on SSv2, which is
dominated by VideoMAE (pixel-based MTM). Interestingly, these models do
not require extra data or manual annotations to surpass all other models, being
able to self-supervisedly pre-train on the evaluation dataset itself. Unfortu-
nately, instance-based invariance learning (e.g., [146, 185]), being that popular
for image representation learning, heavily underperforms compared to MTM
for video classification.

Apart from the importance of pre-training, other findings in appendix 6.2
we might want to highlight are: first, that the modeling of the complex spa-
tiotemporal dynamics seems to benefit more from deeper models and temporal
granularity than extended temporal spans; second, that naive adoptions of im-
age and NLP models (e.g., VTN [120], which leverages the image-based ViT [4]
to model space and the language-based Longformer [4] to model time) might
not work that well; and, third, that although joint self-supervised learning on
image and video (i.e., BEVT [187]) is promising, it still has a long way to go.
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Pre-train Name Ref. Input TF × 𝑣𝑡 × 𝑣𝑠 MP. Acc.

C
on

vN
et

s

- SlowFast (R101+NL) [42] 16@8 × 2562 0,23 × 10 × 3 60 79,8
X3D-XXL [40] 16@5 × 3122 0,19 × 10 × 3 20 80,4

IG65
(video)

R(2+1)D-152 [47] 32@1 × 1282 0,25 × 10 × 1 118 81,3
ir-CSN-152 [180] 32@2 × 2242 0,10 × 10 × 3 NA 82,6

Sc
ra

tc
h

-

MViT-S
[38]

16@4 × 2242 0,03 × 5 × 1 26 76,0
MViT-B 32@3 × 2242 0,17 × 5 × 1 37 80,2
MViT-B 64@4 × 2242 0,46 × 3 × 3 37 81,2
MViTv2-S [97] 16@4 × 2242 0,06 × 5 × 1 35 81,0
MViTv2-B 32@3 × 2242 0,23 × 5 × 1 51 82,9
MViTv2-L↑ [196] 32@3 × 3122 2,06 × 5 × 3 218 82,2

Im
ag

e
pr

e-
tr

.(
I)

IN
UniFormer-B [93] 16@4 × 2242 0,10 × 4 × 1 50 82,0
UniFormer-B 32@4 × 2242 0,26 × 4 × 3 50 83,0

IN21

Swin-B [109] 32@2 × 2242 0,28 × 4 × 3 88 80,6
SCT-L [228] 24@10 × 2242 0,34 × 4 × 3 60 83,0
Swin-B [109] 32@2 × 2242 0,28 × 4 × 3 88 82,7
Swin-L↑ 32@2 × 3842 2,11 × 10 × 5 200 84,9
TS [5] 8@16 × 2242 0,20 × 1 × 3 121 78,0
ViViT-L-FE [2] 32@2 × 2242 3,98 × 1 × 3 352 81,7
VTN-3 (Aug) [120] 250@1 × 2242 4,22 × 1 × 1 114 79,8
DirecFormer [182] 8@32 × 2242 0,20 × 1 × 3 124 82,8
Mformer [127] 96@3 × 2242 0,96 × 10 × 3 NA 81,1
Mformer↑ 64@4 × 3362 1,19 × 10 × 3 NA 80,2
X-ViT [9] 16@1 × 2242 0,28 × 1 × 3 92 80,2
X-ViT 16@1 × 2242 0,28 × 2 × 3 92 80,7
MTV-B [211] 32@2 × 2242 0,4 × 4 × 3 310 81,8
MTV-B↑ 32@2 × 3202 0,96 × 4 × 3 310 82,4
RViT-XL [212] 64@NA × 2242 11,90 × 3 × 3 108 81,5
MViTv2-S [196] 16@4 × 2242 0,07 × 10 × 1 36 82,6
MViTv2-L↑ 32@3 × 3122 2,06 × 5 × 3 218 85,3
MViTv2-L↑ [97] 40@3 × 3122 2,83 × 5 × 3 218 86,1

(IN-21 + P) SwinV2-G↑ [107] 8@NA × 3842 NA × 4 × 3 3 K 86,8(SSL)

JFT

ViViT-L-FE [2] 32@2 × 2242 3,98 × 1 × 3 352 83,5
ViViT-H 32@2 × 2242 3,98 × 4 × 3 352 84,9
MTV-L [211] 32@2 × 2242 1,50 × 4 × 3 NA 84,3
MTV-H 32@2 × 2242 3,71 × 4 × 3 NA 85,8
TokenLearner [154] 64@1 × 2562 4,08 × 4 × 3 450 85,4

V
id

eo
pr

e-
tr

.(
V

)

K400 (SSL)

LSTCL (Swin-B*) [185] 16@8 × 2242 0,36 × 5 × 1 88 81,5
MaskFeat-S

[196]

16@4 × 2242 0,07 × 10 × 1 36 82,2
MaskFeat-L↑ 32@3 × 3122 2,06 × 5 × 3 218 86,3
MaskFeat-L↑ 40@3 × 3122 2,83 × 4 × 3 218 86,4
MaskFeat-L↑↑ 40@3 × 3522 3,79 × 4 × 3 218 86,7
VideoMAE (ViT-B)

[178]
16@4 × 2242 0,18 × 5 × 3 87 80,9

VideoMAE (ViT-L) 16@4 × 2242 0,60 × 5 × 3 305 84,7
VideoMAE↑ (ViT-L) 32@4 × 3202 3,96 × 5 × 3 305 85,8

K600 (SSL) MaskFeat-L [196] 16@4 × 2242 0,34 × 10 × 1 218 85,1
MaskFeat-L↑↑ 40@3 × 3522 3,79 × 4 × 3 218 87,0

I+
V

IN + SVT (TS) [146] 8@NA × 2242 + 0,20 × 1 × 3 121 78,1K400 (SSL) 64@NA × 962

IN (SSL) + BEVT [187] 16@NA × 2242 0,28 × 4 × 3 88 80,6
K400 (SSL) BEVT (Dall-E tknzr.) 16@NA × 2242 0,28 × 4 × 3 88 81,1

↑: increased spatial resolution.
“IN21 + P”: extension of IN21 with a private private dataset (70M images in total).

Table C.1: Accuracy (top-1) on Kinetics-400. “Input”: temporal and spatial size of the views;
“TF”: TFLOPs; 𝑣𝑡 and 𝑣𝑠 : the number of temporal and spatial views; “MP”: parameters (×106);
and “Pre-train”: pre-training strategy.
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Pre-train Name Ref. Input TF × 𝑣𝑡 × 𝑣𝑠 MP. Acc.

C
N IN TDN (R101) [42] 8@1 × 2562 + 0,2 × 1 × 3 198 69,616@1 × 2562

Im
ag

e
pr

e-
tr

.(
I) IN

TS*

[225]

8@NA × 2242 NA × 1 × 3 121 62,1
Mformer* 8@NA × 2242 NA × 1 × 3 NA 63,8
TIME (TS*) 8@NA × 2242 NA × 1 × 3 121 63,7
TIME (Mformer*) 8@NA × 2242 NA × 1 × 3 NA 64,7
DirecFormer [182] 8@32 × 2242 0,20 × 1 × 3 124 64,9

IN21

TS
[5]

8@16 × 2242 0,20 × 1 × 3 121 59,5
TS-HR 16@16 × 4482 1,70 × 1 × 3 121 62,2
TS-L 96@4 × 2242 2,38 × 1 × 3 121 62,4
ViViT-L [2] 32@2 × 2242 3,98 × 1 × 3 352 65,9
X-ViT [9] 16@NA × 2242 0,28 × 1 × 3 92 66,2
X-ViT 32@NA × 2242 0,42 × 1 × 3 92 66,4

V
id

eo
pr

e-
tr

.(
V

)

K400
MViT-B [38] 32@3 × 2242 0,17 × 1 × 3 37 67,1
MViT-B 64@4 × 2242 0,46 × 1 × 3 37 67,7
MViTv2-B [97] 32@3 × 2242 0,23 × 1 × 3 51 70,5

K600 MViT-B [38] 32@3 × 2242 0,17 × 1 × 3 37 67,8
MViT-B-24 32@3 × 2242 0,24 × 1 × 3 53 68,7

K400 (SSL) LSTCL (Swin-B*) [185] 16@8 × 2242 0,36 × 5 × 1 88 67,0
MaskFeat-L↑ [196] 40@3 × 3122 2,83 × 4 × 3 218 74,4

K600 (SSL) MaskFeat-L↑ [196] 40@3 × 3122 2,83 × 1 × 3 218 75,0

SSv2 (SSL)
VideoMAE (ViT-B)

[178]
16@2 × 2242 0,18 × 2 × 3 87 70,6

VideoMAE (ViT-L) 16@2 × 2242 0,60 × 2 × 3 305 74,2
VideoMAE (ViT-L) 32@2 × 3202 1,44 × 1 × 3 305 75,3

Im
ag

e
+

vi
de

o
pr

e-
tr

.(
I+

V
)

IN + K400 UniFormer-B [93] 16@4 × 2242 96,67 × 1 × 3 50 70,4
UniFormer-B 32@4 × 2242 259,00 × 1 × 3 50 71,2

IN21 + K400

Swin-B [109] 32@2 × 2242 0,28 × 1 × 3 88 69,6
X-ViT [9] 16@1 × 2242 0,28 × 1 × 3 92 67,2
MViTv2-B [97] 32@3 × 2242 0,23 × 1 × 3 51 72,1
MViTv2-L↑ 40@3 × 3122 2,83 × 1 × 3 218 73,3
Mformer [127] 96@3 × 2242 0,96 × 1 × 3 NA 67,1
Mformer↑ 64@4 × 3362 1,19 × 1 × 3 NA 68,1
MTV-B [211] 32@2 × 2242 0,40 × 4 × 3 310 67,6
MTV-B↑ 32@2 × 3202 0,96 × 4 × 3 310 68,5
RViT-XL [212] 64@NA × 2242 35,70 × 1 × 3 108 67,9
MViTv2-S [97] 16@4 × 2242 0,06 × 1 × 3 35 68,2
ORViT MF-L [68] 32@4 × NA 1,26 × 1 × 3 148 69,5

IN + K600 UniFormer-B [93] 16@4 × 2242 96,67 × 1 × 3 50 70,2
UniFormer-B 32@4 × 2242 259,00 × 1 × 3 50 71,2

IN21 + K600 SCT-L [228] 24@10 × 2242 0,34 × 4 × 3 60 68,1

IN + K400 (SSL) SVT (TS) [146] 8@NA × 2242 + 0,20 × 1 × 3 121 59,264@NA × 962

IN21 + K400 (SSL) MaskFeat-L [196] 40@3 × 2242 2,83 × 1 × 3 218 73,3
IN (SSL) +
K400 (SSL)

BEVT [187] 16@NA × 2242 0,32 × 1 × 3 88 70,6
BEVT (Dall-E tknzr.) 16@NA × 2242 0,32 × 1 × 3 88 71,4

*: re-implementation.
↑: increased spatial resolution.

Table C.2: Accuracy (top-1) in Something-Something v2. See caption in table C.1.
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7 Final Discussion

In this survey, we have comprehensively analyzed trends and advances in
leveraging Transformers to model video.
Complexity. Given the inherent complexity of Transformers and the great
dimensionality of videos, most changes focus on handling the computational
burden. This is done transversally across the various stages of the VT pipeline.
We find this is most generally addressed with frozen embedding networks, eas-
ing Transformer learning through the provided inductive biases and reducing
input dimensionality. The Transformer in this context is used to enhance these
representations through long-range interactions, which seems enough to boost
performance in many areas of application. However, this trend alone may be
limiting the potential of Transformers to learn non-local low-level motion cues.
We are excited to see novel VT designs (e.g., MViT [38]) which greatly reduce
complexity thanks to the inductive biases embedded in the Transformer itself
(sometimes becoming lighter than CNN counterparts, see appendix 6.2). We
also see great promise in MTM when separating the representation learning
from the reconstruction which is done by an additional decoder discarded
after pre-training [178]. This separation allows the (deeper) encoder to only
leverage unmasked tokens, which greatly alleviates training complexity when
using large masking ratios. Crucially, this sacrifices the possibility to leverage
certain designs for the VT, as the input structure is lost (e.g., local or hierarchi-
cal approaches may not find enough tokens in a given neighborhood to learn
valuable representations).
Spatial redundancy and temporal fidelity. Modeling temporal interactions re-
quires special considerations not present when only modeling appearance (i.e.,
with image Transformers). On the one hand, the highly redundant appear-
ance information in videos [178, 235] makes it difficult to model information-
rich representations that avoid repeatedly representing similar or same sub-
representations. It has been proven that pure attentional models lose ex-
pressivity with depth, collapsing towards uniform attention in deeper lay-
ers [33, 34, 77]. It further seems that this smoothing of the attention matrix
is accompanied by highly uniform token representations and even redundant
weight matrices [20]. Proper handling of video redundancy is crucial in VTs,
where we hypothesize these observations may get exacerbated. On the other
hand, few exceptions aside, many current designs and SSL approaches directly
inherit from image approaches without careful consideration of the nuances
that come with time, making them strongly biased to learn appearance fea-
tures. As we have seen, allowing temporal features to form at both low- and
high-level while accounting for the necessary temporal fidelity is also critical.
In this sense, reducing redundancy for video should mostly target appearance
features.
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Key advancements on VTs. Regarding architectural choices, we find progres-
sive hierarchical approaches to stand out. They carefully consider non-local
temporal contexts before spatial aggregation. This effectively tackles the re-
dundancy problem while avoiding early aggregation problems that hinder the
learning of fine-grained motion features. However, to properly handle long-
range interactions without losing temporal fidelity, memory-based approaches
with adequate sampling or aggregation techniques may be crucial. Regarding
self-supervised learning, MTM forces to leverage global spatiotemporal semantic
contexts through high masking ratios when solving local token-wise predic-
tions. By doing so, it is driven to learn both motion and appearance cues
necessary to solve the task. Nevertheless, we look forward to further develop-
ments in sampling techniques for instance-based contrastive approaches that
skew from appearance biases toward motion-specific features.
Inductive biases. As we have seen, inductive biases are a pivotal aspect for
all aspects of VTs. They alleviate the need for data by providing stronger
cues for the Transformer to pick up faster. Frozen embedding networks could
be regarded as infusing task-specific biases, as the Transformer is bounded
to learn on the provided representations, which in turn are dependant on
the pre-training auxiliary task. Some examples include detected bounding
boxes of objects [50, 68], higher-level (action) features [239], or scene, mo-
tion, OCR, and facial features, among others [45]. We have also seen how
most architectural designs infuse some inductive biases to aid in training the
Transformer. However, in this regard, VT literature so far is limited when
considering infusing motion-specific biases that help the network to pick up
relevant spatiotemporal cues. Just two works deviate from this trend. Motion-
former [127] proposes trajectory attention to reason about aggregated object or
region representations through implicit motion paths in both time and space.
Differently, OrViT [68] leverages separate motion and appearance streams. The
former learns trajectories of individual objects or regions that later get added
to patch-wise token representations of the whole video appearance, effectively
infusing motion into it. Finally, besides locality biases or invariance to pertur-
bations induced by different training losses, we deem it interesting to highlight
works infusing causality biases by training the network to sort shuffled video
sequences [182, 225]. Furthermore, the work in [58] combines the benefits of
both CNNs and Transformers for video learning through a siamese distillation
setting, effectively inducing CNN locality biases into the Transformer.

7.1 Generalization
It has been shown that vision Transformers are robust to various perturba-
tions [6, 114], suggesting they may be better able to form abstract seman-
tic representations [231], probably due to their ability to leverage non-local
contexts [130]. These findings point towards Transformers favoring out-of-
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distribution (OOD) generalization [65]. Few VTs have studied this on OOD
data [103, 106, 128, 160, 198, 239] or evaluated the learned features in other
settings [48, 168, 174, 219], showing consistent results. Nevertheless, the is-
sue of generalization of video may entail studying other aspects that are still
under-researched. For instance, we hypothesize that generalizing to varied
frame sampling rates may require further training or conditioning the net-
work on said rates such that it may become robust. We observed, however,
that some existing work may display capabilities to generalize to unseen se-
quence lengths.
Unseen sequence length. One issue to account for when processing sequences
of unseen length is positional encodings. While we expect them to generalize
to shorter sequences, they may have trouble when dealing with longer ones
(which may be desirable to provide extended temporal fidelity during deploy-
ment), as no positional information is present to account for them. We find
few VTs showing that PEs can easily be extended by fine-tuning the model on
longer sequence lengths [1, 38]. Recent VT works have also seen promising
results when leveraging input conditioned RPEs [93] or by learning a small
network that computes log-scale relative positional biases [107]. These ad-
vances pose a great potential to easily generalize to unseen sequence lengths.
Similarly, long-range modeling architectures could also handle sequences of
any given length, as they process inputs sequentially within fixed windows,
but they may require RPEs [201].
Multi-modality. Video is inherently multi-modal (i.e., contains visual and
auditory information), which could be leveraged to learn more general rep-
resentations. The lack of inductive biases makes Transformers very versatile
tools to handle any modality. It has been found that high-level semantic
features learned by language-based Transformers generalize to other modal-
ities [110, 170]. In the context of VTs we find VideoBERT [168], where a pre-
trained language BERT [32] model is used as initialization, showing promising
results in this direction. Lately, there has been a great interest to use these
architectures to solve multi-modal tasks [153]. We hypothesize that the lack of
inductive biases may allow Transformers to learn shared multi-modal repre-
sentation spaces that exhibit better generalization capabilities. When targeting
video-only tasks (e.g., tracking, segmentation, classification) we see potential in
multi-modal SSL to learn such spaces. We find a few VTs leveraging instance-
based multi-modal learning approaches [48, 90, 94, 167] to align representa-
tions from various modalities. For instance, [1] successfully performs heavy
downsampling of video by aligning it with audio and textual modalities; or
the model in [129] which learns to attend to the spatial sources of audio within
the video by aligning audio with visual crops. Interestingly, this alignment
is further enforced in some works by sharing weights between Transformer
streams modeling different modalities [1], sometimes even showing improved
results compared to not sharing [90]. As pointed out in [156], this has proven
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to be very useful for video (at least in the context of classification) outside of
Transformers, especially when pairing video with audio or text.

7.2 Future work
VTs are still in their infancy and despite seeing clear trends, much more re-
search is needed. First of all, we find a severe lack of explainability tools
that properly assess the kind of spatiotemporal representations that different
designs and self-supervised losses provide. Overlaying head-specific atten-
tion heat-maps of the first layer over a given input may provide some ad-hoc
explanations on what the model deems relevant [78, 158, 199]. Even if some
VTs have explored this direction (e.g., [7, 50, 77, 94, 120, 125, 128, 129]), this
technique may prove overly cumbersome for video, as it requires inspecting
such per-sample activations for multiple full video sequences. Possible future
venues could analyze the learned patterns of attention preferred by differ-
ent heads (as in [119]), which may clue on relevant design choices that favor
such patterns. Besides, the aforementioned versatility of Transformers could
be used to probe the model through textual descriptions (as done for images
in [176]). Furthermore, we see an interesting future direction in analyzing
whether video-based features would also generalize to other modalities. For
instance by following a similar approach as in [170] and tuning a few adapter
layers to map other modalities into the video representation space. Beyond
current MTM approaches, other traditional losses could be adapted to the
token granularity, such as 3D jigsaw puzzles [85]. Regarding instance-based
methods, adapting recent developments to images such as Barlow Twins [226]
or VicReg [3] which focus on preserving view-dependent information, may
prove beneficial to video modeling. Nevertheless, further research is still
needed to alleviate the computational burden of self-supervision in video. Fi-
nally, key advancements in architectural choices and training techniques for
VTs are mostly limited to high-level tasks, hindering analysis of the contri-
butions they provide for general video representation learning. Furthermore,
VTs have barely tackled generative tasks such as frame prediction [143, 197] or
inpainting [103, 227]. We believe that token granularity and long-range mod-
eling capabilities of Transformers could benefit these tasks. However, given
the high complexity, they entail and the tendency of Transformers to disregard
high-frequency details may pose severe challenges. We hope our contributions
in this paper will entice further research in many different areas of application
and boost our current understanding of Video Transformers.
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8 Appendix

The supplementary material includes the following: the general table with
a general overview of the most relevant Video Transformers surveyed in ap-
pendix 8 and details about specific Transformer trends for different video tasks
in a more application-oriented manner in appendix 8.

General table
The general table overviews the most relevant Video Transformers surveyed.
Note that due to its length, the table has been split into two subtables, table C.3
and table C.4.

Task-specific designs
In this section, four major subsections review specific designs of the following
tasks: Action classification in appendix 8.1, Video translation (e.g., caption-
ing) in appendix 8.2, Retrieval in appendix 8.3, and Object-centric tasks (e.g.,
detection and tracking) in appendix 8.4. This is followed by short summary
subsections regarding the remaining tasks: Low-level in appendix 8.5, Seg-
mentation in appendix 8.6, Summarization in appendix 8.7, and Others in
appendix 8.8.

8.1 Classification
Regarding video classification, few works rely on pure Transformers [1, 2,
5, 109, 228] that for the most part focus on efficiency: both [2] and [5] test
various space-time decompositions, whereas [2] also tests tokenization strate-
gies (2D vs 3D patches). They found that a pre-trained ViT [34] encoding
2D patches with a temporal encoder on top performed the best. The works
of [109] and [228] propose different types of restricted attention: the former
restricts locally in shifting windows and the latter by only attending to previ-
ous frame’s patches after having exchanged information with another efficient
attention mechanism [87]. In [38] they opt for 3D patches whose receptive field
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Name Ref. Yr. Architecture Input Train.
Arch. Aggr. Restr. Long-t. Backbone Embd. Tknz. Pos. SSL

C
la

ss
ifi

ca
tio

n

TimeSformer [5] '21 E - LAS - - Minimal Embedding P LA -
PE [90] '21 E - - - - SlowFast [42], RN-50 [64] C LA P
CBT [167] '19 E - - - - S3D [205] C - P
ViViT [2] '21 E H A - ViT [34] Minimal Embedding P LA -
ELR [137] '19 E - - - - I3D [16] P - -
FAST [219] '21 E - - - - Minimal Embedding P LA -
VATNet [49] '19 E Q - - - I3D [16], Faster R-CNN (RP only) [149] P + I FA -
VATT [1] '21 E - S - - Minimal Embedding P LA P
MViT [38] '21 E H - - - Minimal Embedding P LA -
SCT [228] '21 E H L - - Minimal Embedding P LA -
CATE [169] '21 E - - - - SlowFast [42] (Slow br.) C - P
LapFormer [88] '20 E - - - - RN-50 [64] P FA -
TRX [131] '21 E - - - - RN-50 [64] F FA -
LTT [81] '20 E - - - - R(2+1)D [181] F LA -
Actor-T [46] '20 E - - - - I3D [16], HRNet [184] I FA -
STiCA [129] '21 E - - - - R(2+1)D-18 [181], RN-9 [64] F LA A
GroupFormer [95] '21 ED Q L - - I3D [16] I + F LA -
Video Swin [109] '21 E H L - - Minimal Embedding P LR -
VTN [120] '21 E H L - ViT [34] Minimal Embedding P LA -
Video-Swin-V2 [107] '22 E H L - - RN-50 [64] P LR P
MTV [211] '22 E H - - ViT [34] Minimal Embedding P LA -
Motionformer [127] '21 E - - - - Minimal Embedding P LA -
X-ViT [9] '21 E - L - ViT [34] Minimal Embedding P LA -
ObjTr [200] '21 E - - - - Faster R-CNN [149], RN-101 [64] I FA + LA -
MViTv2 [97] '22 E H - - - Minimal Embedding P LR -
MaskFeat [196] '22 E H - - MViT [97] Minimal Embedding P LR P
LSTCL [185] '22 E - - - Swin [109] Minimal Embedding P LA P
RViT [212] '22 E - - R ViT [34] Minimal Embedding P LA -
Direcformer [182] '22 E - A - TimeSformer [5] Minimal Embedding P LA -
VideoMAE [178] '22 E - S* - ViT [34] Minimal Embedding P LA P
BEVT [187] '22 E H L - Swin [109] Minimal Embedding P LA P
TIME [225] '22 E - - - Motionformer [127] Minimal Embedding P LA A
TokenLearner [154] '21 E H - - ViT [34] Minimal Embedding P LA -
SVT [146] '22 E - A - TimeSformer [5] Minimal Embedding P LA P
UniFormer [93] '22 E H L - - Minimal Embedding P LA + LR * -

C
ap

tio
ni

ng

ActBERT [239] '20 E - - - - R(2+1)D [181], Faster R-CNN [149] I + C LA P
HERO [94] '20 E H - - - RN-101 [64], SlowFast [42] F FA P
MART [92] '20 ED - - R - RN-200 [64], BN Inception [76] F FR -
VideoBERT [168] '19 E - - - - S3D [205] C LA P
E2E-DC [238] '19 ED - - - - RN-200 [64], BN Inception [76] F FA -
BMT [74] '20 ED - - - - I3D [16] F FA -
AMT [221] '21 ED - - - - RN-200 [64], BN-Inception [76] F FA -
MDVC [75] '20 ED - - - - I3D [16] F FA -
RLM [98] '20 D - - - - I3D [16] C FA -

R
et

ri
ev

al

HiT [104] '21 E - - - - S3D [205], SENet-154 [70] F + C LA T
COOT [48] '20 E H - - - RN-152 [64]; ResNext-101 [204]; I3D [16] F - T
MMT [45] '20 E - - - - S3D [205], DenseNet-101 [72], RN-50 [64], SENet-154 [70] P + F FA T
Support-set [128] '21 E - - - - RN-152 [64], R(2+1)D-34 F - T
TCA [160] '21 E - - - - iMAC [53], L-3-iRMAC [89] F - T
MDMMT [36] '21 E - - - - CLIP [140] F LA T
Fast and Slow [117] '21 D - - - - TSM RN-50 [100] P - T
ClipBERT [91] '21 E - S* - - RN-50 [64] P LA -
CACL [58] '22 E - - - - RN-50 [64] F LA P

Tr
ac

ki
ng

Hopper [237] '21 ED - - - - ResNeXt-101 [204], DETR [12] I + F LA -
DTT [218] '21 ED - - - - RN-50 [64] P LA -
TrDIMP [186] '21 ED - - - - RN-50 [64] P - -
TransT [23] '21 E - - - - RN-50 [64] P FA -
STARK [210] '21 ED - - - - RN-50 [64] P FA -
Trackformer [116] '22 ED Q - MR - RN-50 [64] P FA -
VDRFormer [236] '22 ED Q - MR - RN-101 [64] P FA -
*: Non-attentional sparsity (e.g., input level).

Table C.3: General overview of relevant Video Transformers surveyed. In Architecture, “Arch.”:
architecture, that is Encoder (E), Decoder (D), or Encoder-Decoder (ED); “Aggr.”, aggregation
strategy, either Hierarchical (H) or Query-driven compression (Q); “Restriction”, can be Local (L),
Axial (A), Sparse (S), or a mix. “Long-t.”: long-term temporal modeling, Memory (M), Recurrence
(R), or a both. In Input, “Backbone” refers to Transformer backbone; “Embd.”, the Embedding
Network; “Tknz’, the tokenization strategy, patch- (P), instance- (I), frame- (F), or clip-wise (C);
and “Pos.”, the positional embedding, can be Fixed Absolute (FA), Fixed Relative (FR), Learned
Absolute (LA), Learned Relative (LR), or a combination. (Continuation in table C.4)

is enlarged across stages by subsequently merging token embeddings. Oth-
ers pursue building very deep Transformers by maintaining a very compact
latent representation [77]. These larger Transformers for classification require
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Name Ref. Yr. Architecture Input Train.
Arch. Aggr. Restr. Long-t. Backbone Embd. Tknz. Pos. SSL

Lo
w

-le
ve

l

ET-Net [198] '21 ED - - - - ConvLSTM [163] P FA T
STTN [227] '20 ED - - - - 2D CNN (custom) P - T
FuseFormer [103] '21 ED - - - - I3D [16] P - T
SAVM [197] '20 ED - L - - Minimal Embeddings P LR T
VLT [143] '20 ED - - - - VQ-VAE [122] P FR T
TransformerFusion [7] '21 E - S* M - RN-18 [64] F LA -

Se
gm

en
ta

tio
n VisTR [194] '21 ED - - - - RN-50 [64] P FA -

MFN [193] '21 E - - - - 3D CNN (custom) P FA -
CMSANet [216] '21 E - - - - DeepLab-101 [19] P FA -
IFC [73] '22 ED Q - - - RN-101 [64] P FA -
TeViT [213] '22 ED Q - - MsgShifT [188, 213] Minimal Embedding P FA -
AOT [215] '21 E - L MR Swin [109] MobileNet-V2 [155] P FA + RL -

O
.D

.

PCSA [57] '20 E - L - - MobileNet-V3 [69] P - -
TCTR [224] '21 ED - - - - RN-50 [64] P FA -
PMPNet [217] '20 ED - - - - GraphCNN (custom) P - -
ORViT [68] '22 ED - - - - Faster R-CNN [149], RN-50 [64] P + I LR -

Su
m

m
. H-MAN [106] '19 E - - - - VAE-GAN [112] F - -

VasNet [37] '19 E - - - - GoogLeNet [173] F FA -
BiDAVS [101] '20 E - - - - GoogLeNet [173] F LR -
VMTN [157] '19 E Q - - - ResNet-18 [64], SENet-101 [70] P FA -

Lo
ca

liz
.

HISAN [134] '19 E - - - - Faster R-CNN [149] I + F - -
STVGBert [166] '21 E Q - - - RN-101 [64] P - -
MeMViT [201] '22 E H - M MViTv2 [97] Minimal Embedding P LR -
MSAT [232] '21 E - - - - C3D [179] C FA -
RTD-Net [174] '21 D - - - - I3D [16] F LR -
LSTR [206] '21 ED Q - M - RN-50 [64] F FA -

O
th

er
s SiaSamRea [220] '21 E - S* - ClipBERT [91] RN-50 [64] P LA A

Perceiver [77] '21 E Q - - - Minimal Embedding P LA -
AVT [50] '21 E H - - ViT [34] Minimal Embedding P LA A
OadTR [189] '21 ED - - - - RN-200 [64], BN-Inception [76] F LA -
STTran [27] '21 ED - L - - RN-101 F R-CNN [149] I + F LA -
E.T. [125] '21 E - - - - Faster R-CNN [149], Mask R-CNN [63] F FA -
SMT [39] '19 ED Q S* M - RN-18 [64] F FA -
JSLT [11] '20 ED - - - - InceptionV4 [172] F FA -
MSLT [10] '20 ED - - - - InceptionV4 [172] F FA -
SBL [111] '20 ED - - - - RN-18 [64] F - -
MDAM [86] '19 E Q - - - RN-152 [64] F FA -
PSAC [234] '21 E - - - - Minimal Embedding P FA -
BTH [96] '21 E - - - - VGG-16 [165] F FA P
BERT4SessRec [25] '20 E - - - - GoogLeNet [173] C FA P
Dyadformer [28] '21 E - - - - R(2+1)D-152 [181] C FA -
MM-Transformer [152] '22 ED - L - - Mask R-CNN [63] I FA -
*: Non-attentional sparsity (e.g., input level)

Table C.4: (Continuation of table C.3)

large labeled datasets for fully-supervised training [38, 109] or heavily rely
on self-supervised pre-training [90, 168]. For multi-modal datasets, encoder
fusion [168] or hierarchical encoder fusion is utilized [167].

Several other works rely on larger (usually CNN-based) backbones [46,
81, 90, 129, 131, 167–169], facilitating the training on smaller datasets. When
equipped with these backbones, shallow encoders can serve as mere pooling
operators [46, 81, 129, 137]. For detection backbones, Transformers are also
a natural way to fuse information among detections [95] or to allow them
to attend over a larger visual context [49]. Although mostly used in pure
Transformers, efficient designs have been explored for these kinds of works as
well, e.g. weight sharing [90].
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8.2 Video translation
The translation task intends to map the raw input video to an output signal
of a potentially different nature and with an arbitrary (a priori unknown)
length. Although the output could be another video, it is often a signal in
another modality (e.g., language) or simply a sequence of discrete symbols.
The most popular instantiation of translation is video captioning [74, 92, 94, 117]
that consists in producing natural language descriptions of what is globally
going on in the video. When producing separate captions for different video
subparts independently, this is referred to as dense video captioning [221, 238].
A more specialized type of video captioning is sign-language translation [10, 11].
Additional other forms of translation are: video reasoning [237], which extends
the task of captioning by allowing a natural language prompt along with the
video; video-language dialogue systems, which add to reasoning the requirement
of back and forth communication with an external agent while reasoning about
the visuals [98]; temporal (or spatiotemporal) action localization [174] to produce a
list of, respectively, temporal begin and end times or a “tube” of bounding boxes
containing the human actions in the video; or robot video-based navigation [39],
in which the video – and perhaps other sensory inputs – are translated to the
next action (a sequence of next actions) to take.

VTs tackling translation typically leverage encoder-decoder architectures,
in which video is passed through the encoder and served as context to the
decoder – similarly to [183], only that the encoder is a video encoder instead
of a language one. Task-specific modifications of this design are found for
dense video captioning [74, 221, 238], where a temporal proposal generator is
attached after the encoder to tell the decoder where/when in the sequence it
has to focus. [74] is a two-stage method where the proposals are generated in
the first stage. In the second stage, proposals are used to cut temporal clips
from the video that need to be re-encoded (to avoid information from the
different proposals being mixed up) and fed to the decoder to produce the per-
clip captions. Slightly different is [238], which instead of clipping the videos,
converts the proposals to differentiable masks with a masking function whose
parameters are trained also getting a back-propagation signal from the decoder.
Still, the different masks have to be applied to the video and yet again re-
forwarded through the encoder. [221] eliminates the re-forwarding by making
the most of local self-attention, which limits the leak of information across
the encoded proposals. [174] tackled temporal action detection by relying only
on a Transformer Decoder. Inspired by [12], proposals are not generated
by the encoder or an external module after it but are sourced from a set
of learnable token embeddings input to the decoder. The decoder augments
these tokens and, later, two heads are in charge of classifying those into actions
and regressing their temporal position and length – similarly to a YOLO-like
network [148].
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In most of those works, the decoder module maintained its canonical form,
although there are works that propose small variations. One has to do with
the first and foremost SA sublayer. [98] removes the decoder’s SA layer before
the CA, whereas [221] substitutes it by a moving average – both to make the
models computationally lighter. Another one is to modify the input received
by the CA sublayer. [74, 238] receive the outputs of the encoder layers but
at their respective depth, instead of only the one from the encoder’s layer.
The disadvantage of this is assuming the encoder and the decoder require
the same number of layers. In [10], the decoder also receives multiple inputs
but from separate encoders. The decoder deals with those in different paral-
lel CA sublayers and averages their outputs. There are also designs that go
without a Transformer encoder, replacing it with an external non-Transformer
module [174] or relying entirely on the decoder [92, 98]. [98] follow the prompt-
based input of GPT-2 [142] and feds 𝑛 video features as the first tokens in the
decoding sequence and decodes the caption starting at the 𝑛 + 1-th input em-
bedding. In particular, [92] prompts not only the visual features but the current
language sentence features to generate the next sentence in a paragraph. All in
all, prompting is the generalization of the original shifting operation in [183],
where the decoding starts at a shifted position to account for the start token.

8.3 Video retrieval
The task of retrieval consists in recovering a piece of information associated
to a particular query. Those associations can be video-video pairs [160] or
pairs composed of different modalities (video with, most often, language [48,
104, 117, 128] or language plus audio [36, 45]). Retrieval relies on a distance
metric among the representations of the queries and the retrieval candidates.
The representations are learned during training using the pairs to minimize
the distances between the representations of the corresponding pairs while re-
pelling from the query the non-corresponding candidates’ representations in a
joint space. This can be done through classification, by extending BERT’s Next
Sentence Prediction to a cross-modal matching task, forcing the network to find
co-occurrent information in both modalities [90, 168, 239]. Alternatively, this
can be naturally extended into a contrastive setting. In retrieval, it is common
to use two anchors (which form the positive pair) and two negative sets, one
from each modality. In VT literature we find these losses instantiated through
a combined hinge loss [48, 94] or Bi-directional Max-Margin [36, 45, 128], which
enforce similarity for true pairs to be higher than that of negative pairs, by at
least a given margin. Alternatively, InfoNCE is also used [104, 129], normal-
izing the similarity score of positive pairs by that of a set of negative pairs,
effectively forcing the network to learn similar representations for correctly
paired samples and vice-versa for negative ones. While the most common
approach is to align final output representations, some works leverage hier-
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archical contrastive losses, which also align intermediate feature representa-
tions [48, 104]. During inference, the aligned representations are fixed, so the
task simply becomes a search (e.g., K-Nearest Neighbors) to find the top-k
examples most similar to a given query within the database of candidates’
pre-computed representations.

One interesting variation of this pipeline is [117], in which the alignment is
performed on the outputs of a siamese two-stream video-and-language CNN
for faster retrieval instead. Then, a decoder-only Transformer fed with the
text as input and CNN-based video features as context re-ranks the previously
top-k retrieved elements using the decoding likelihood score. In a similar
spirit, [128] also leverages the likelihood of a language-based decoder-only
Transformer during training as a loss that measures how well the query lan-
guage caption can be reconstructed from the weighted combination of the
features from all the non-corresponding videos in the batch. Those weights
are based on the similarity of the query caption with the captions of those
other videos. [45] aligns at the same time video, audio, and recognized speech
with a language caption. The language-video, language-audio, and language-
speech similarities are aggregated before contrastive alignment with a mixture
of weights governed by the content of the caption (e.g., the language-video
similarity is given more weight if the caption refers to something that is more
salient in the video than in the other modalities).

8.4 Object-centric tasks: tracking and object detection
Tasks such as object detection, tracking, and segmentation are inherently
object-centric in nature, and recent work [68, 73, 116, 213, 236] within these
tasks have begun to leverage temporally coherent object representations. As
object-centric approaches tend to focus on per-object outputs, a large part of
the information within a given frame is redundant (as mentioned in Sec. 4.1),
therefore leveraging known and relevant content from previous frames can
be used to focus the global attention to object relevant cues. As such, these
approaches typically leverage memory or recurrency (as described in 4.2) to
correlate object information temporally.

In the former recent work [73, 213] leverage a set of ”messenger tokens
to relay contextual information between frames. IFC-transformer [73] pro-
cesses the relationship in an isolated encoder, whereas TeViT [213] shifts the
tokens between frame sequences to achieve object-specific information aggre-
gation, to accumulate temporal information across different steps sequentially,
resulting in a hierarchical-like approach for temporal information sharing.
Other work [215] however, performs both long-term and short-term infor-
mation sharing in parallel, subsequently concatenated. Due to varied fram-
erate and inter-frame changes in content, smoothness cannot be guaranteed
through long-term alone, thus short-term attention is computed on a smaller
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spatiotemporal neighborhood, to ensure smooth and continuous predictions
between frames. With regards to recurrency, other approaches [116, 236] lever-
age object-specific tokens that are derived from an outputted bounding box,
and the spatial+size information is then recurrently propogated [116, 236]
or used to produce region-specific attention for each concurrently between
frames [68]. Inspired by recent works in Vision transformers (particularly
DETR and its variants) [116, 236], leverages the bounding box predictions
from each frame to augment the decoder queries by concatenating detection
tokens from previous frames to the existing learned-fixed tokens, in addition
to storing each detection in memory for increased robustness to occlusions in
the video sequence.

As can be observed in vision transformers, architectures that leverage the
object features to aggregate contextual information such as [68, 134] attempt to
enhance existing representations with more focus on object-centric informa-
tion. Where ORViT [68] leverages auxiliary bounding box information in each
transformer layer, whereas the GroupFormer [95] leverages bounding boxes to
isolate objects for a separate object-specific action classification branch. Un-
like the recurrent and memory style approach these types of approaches don’t
seem to aim for an efficient design in terms of computational cost, but rather
efficient in the sense of information-rich representation, that leverages object-
centric information in addition to global context information.

8.5 Low-level tasks
Given the high dimensionality of video data, video generation tasks are quite
challenging, and not many video Transformers try to address them. In partic-
ular, [143, 197] tackle future frame prediction, [198] generates grayscale video
from event-based videos and [103, 227] perform video inpainting. Most of
these propose to embed a Transformer within some type of convolutional auto-
encoder to evolve representations between encoder and decoder [103, 198, 227].
The only exception is [197], which performs local attention and generates
video autoregressively one pixel channel at a time. Interestingly, [103] outper-
forms [227] in all tested benchmarks for inpainting by using an overlapping
patch tokenization strategy.

8.6 Segmentation
Most work in segmentation leverage temporal relations to refine intermediate
feature representations [193, 194, 219]. Most notably, [194] leverages the Trans-
formers’ ability to view the entire sequence, to include an auxiliary loss where
representations of individuals are matched temporally, effectively teaching the
network to implicitly track objects and leverage temporal fine-grained informa-
tion. Alternatively, [216] leverages a novel word-visual attention mechanism
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allowing a textual query to attend to specific content in multiple spatial scales
and perform segmentation based on the said query.

8.7 Summarization
Few works have used Transformers for the task of video summarization by
predicting frame-wise importance scores. We find two key trends when solv-
ing this task through VTs: the use of RNNs as an initial step [106, 171] and
using individual frames to attend to aggregated subsets of the video either
from a GRU [171] or by using a masked Transformer [101].

8.8 Other tasks
Transformers have also been applied for action anticipation [50, 189], sign-
language translation [10, 11], visual-question answering [86, 234], autonomous
driving [133], robot navigation [39], visual-language navigation [125], person-
ality recognition [28], lip reading [111], dynamic scene graph generation [27],
and multimedia recomendation [25]. As not many video Transformers have
tackled this, it is too early to ascertain specific trends, so we simply list them
here for completeness.
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1. Abstract

1 Abstract

The time dimension of datasets and long-term performance of machine learn-
ing models have received little attention. With extended deployments in the
wild, models are bound to encounter novel scenarios and concept drift that
cannot be accounted for during development and training. In order for long-
term patterns and cycles to appear in datasets, the datasets must cover long
periods of time. Since this is rarely the case, it is difficult to explore how
computer vision algorithms cope with changes in data distribution occurring
across long-term cycles such as seasons. Video surveillance is an applica-
tion area clearly affected by concept drift. For this reason we publish the
Long-term Thermal Drift (LTD) dataset. LTD consists of thermal surveillance
imaging from a single location across 8 months. Along with thermal im-
ages we provide relevant metadata such as weather, the day/night cycle and
scene activity. In this paper we use the metadata for in-depth analysis of the
causal and correlational relationships between environmental variables and
the performance of selected computer vision algorithms used for anomaly and
object detection. Long-term performance is shown to be most correlated with
temperature, humidity, the day/night cycle and scene activity level. This sug-
gests that the coverage of these variables should be prioritised when building
datasets for similar applications. As a baseline, we propose to mitigate the
impact of concept drift by first detecting points in time where drift occurs. At
this point we collect additional data that is used to retraining the models. This
improves later performance by an average of 25% across all tested algorithms.

2 Introduction

Once computer vision algorithms step outside the lab and are deployed in
real-life outdoor applications, their performance tends to drop significantly
due to conditions changing over time, i.e. concept drift [24, 87, 92]. Concept
drift can materialize as gradual, recurring or sudden changes in the visual
representation of the scene. Existing datasets, in general, favour coverage
of multiple locations [33, 77] for short periods of time [46, 47, 85]. Such
datasets are ill suited for exploring long-term effects such as concept drift and
algorithms developed on their basis are unlikely to show robustness to long-
term phenomena. Research studying concept drift [28, 57], uses synthetic
datasets or datasets augmented in order to introduce drift. This does not
necessarily completely represent real-world concept drift.

Our work presents a novel real-world dataset covering the 8 months from
January to August. This time span means that the dataset encompasses a
wide range of weather conditions, human activity, seasonal transitions, and
recurring cycles such as weekdays, weekends, mornings and evenings. Along
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with the thermal images, timestamped metadata has been gathered. The
metadata includes weather data such as temperature, humidity, precipitation,
etc. as well as metrics for scene activity level. We use the dataset to study
concept drift by exploring contributing factors and demonstrating their effects
on algorithmic performance. By publishing the dataset, we seeks to aid the
community in evaluating exiting algorithms against a long-term benchmark
and in the development of algorithms that show greater robustness to long-
term phenomena.

To explore the dataset, two common tasks are chosen, namely anomaly and
people detection. These tasks tend to suffer strong performance degradation
when exposed to long-term concept drift [79]. Object detection in general
or detecting people in particular is a fundamental task involved in many use
cases such as autonomous driving [8, 10, 88], tracking [6, 19, 69, 75] and re-
identification [26, 41, 42]. Common for many of the use cases is the application
of object detection in unconstrained environments and across long spans of
time. Anomaly detection, where the goal is to detect unusual behavioral
patterns, is another task that is exposed to concept drift. These algorithms
must be able to distinguish irrelevant changes due to e.g. concept drift from
emergencies such as burglaries or assaults [77], car accidents [40], loitering
and suspicious behaviour [91], indoor [27] and outdoor [15, 37, 44] falls.

We select representative algorithms for each task and evaluate their per-
formance across time and in relation to environmental factors. As expected,
all models exhibit performance degradation, as the test data diverges from
the training set. Temperature and humidity proves to influence the models
the most, followed by the change between day and night and the activity
level of the scene. On the other hand, variation in precipitation and wind
do not influence the performance of the models. In general, methods that
learn from solving tasks that consider the entirety of the image are likely to
be less impacted by drift, compared to methods that consider small regions
or individual pixels [78]. An example could be object detectors vs. autoen-
coders, where something like brightness is likely to impact the autoencoder’s
reconstruction significantly, but won’t effect the class or position of objects. By
including both autoencoders and object detectors we ensure that both ends of
this spectrum are covered in our analysis.

Finally, a baseline algorithm is presented to reduce the consequences of
concept drift. This algorithm provides additional training data from points
in time where concept drift is detected. This baseline is intended to encour-
age researchers to develop other methods of reducing the impact of concept
drift. We believe that our findings on this novel dataset generalize to other
environments and use cases, as well as other modalities and therefore will be
an example to follow for future definition and collection of datasets. This in
turn will help the community getting closer to deploying long-term computer
vision algorithms for real-life outdoor applications. The main contributions of
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this paper can be summarized as follows:

• The Long-term Thermal Drift (LTD) dataset - the longest-spanning sys-
tematically collected thermal dataset comprised of 8 months of video
data, containing both timestamp and weather condition metadata;

• In-depth analysis of the correlational and causal relationships between
the performance of models and environmental factors;

• A baseline algorithm for reducing the effects of concept drift.

3 Related Work

3.1 Concept Drift Detection
As many systems need to be deployed and work stably for long periods of
time and with input data which can change both gradually and suddenly, the
presence of drift and ways to deal with it is a topic that has been widely studied.
In computer vision it is normally studied by either focusing on specific real-
world use cases or synthetically augmenting existing datasets. Real-world
cases can be taken from egocentric video [54] or industrial inspection [53].
These cases present both examples of the problem and detection methods, but
have limited use outside of the specific environments. Augmented versions of
popular datasets such as MNIST and CIFAR can also be used. The works by [57]
and [63] focus on methods for detecting data shifts using differences between
the training and testing data, utilizing dimensionality reduction and statistical
tests like Maximum Mean Discrepancy and Kolmogorov-Smirnov test. The
benefit of using synthetically augmented data for testing is that different types
of shifts can easily be simulated - from gradual drift to adversarial attacks [28].
But these simulated shifts do not always correspond to real-world ones. Some
more robust methods also exist [79], aimed at using real-world drift in wider
variaty of use cases. The need for more research into concept drift, paired with
a long-term real-world dataset is evident, as the effects from it can limit long
term deployment of vision systems [2, 74].

3.2 Datasets
We can separate previous work roughly in two types of use cases - datasets that
contain a scenes from a stationary location, like the ones captured from CCTV
and surveillance cameras and datasets with constantly changing locations, like
the ones specifically directed towards autonomous cars, robots and human
egocentric footage. The two types of datasets are used for different tasks,
like vehicle and pedestrian detection and environmental segmentation for
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Table D.1: Existing urban computer vision stationary and changing location datasets. The Location
can be either changing denoting moving camera like the ones on self-driving cars or stationary
like on surveillance cameras. The Type of the datasets can be either RGB, thermal or LiDAR, the
Duration is the size of the dataset in hours, the Period is the capturing time span and the Metadata
is any additional information

St
at

io
na

ry

Name Year Type Duration Period Metadata

UCSD [50] 2010 RGB 3.1 - -
Caltech Pedestrian [13] 2011 RGB 10 - -
VIRAT [56] 2011 RGB 29 - -
Avenue [47] 2013 RGB 0.5 - -
ShanghaiTech [46] 2018 RGB 3.6 - -
Surveillance Videos [77] 2018 RGB 128 - -
Street Scene [64] 2020 RGB 4 2 summers -
ADOC [62] 2020 RGB 24 1 day -
AU-AIR [5] 2020 RGB 2 - Time, Positions
MEVA [12] 2021 RGB/Thermal 144 3 weeks GPS, Time
LTD [55](Paper D) 2021 Thermal 298 8 months GPS, Day/Night, Weather, Time

C
ha

ng
in

g

KAIST [32] 2015 RGB/Thermal 43.41 - -
CVC-14 [20] 2016 RGB/Thermal 11.8 - -
Oxford RobotCar [49] 2017 RGB/LiDAR - 1 year GPS, IMU, Day/Night, Weather
Aachen Day-Night [72] 2018 RGB - - GPS, Day/Night, Weather
Gated2Depth [23] 2019 RGB/LiDAR - - GPS, IMU, Day/Night, Weather
Dark Zurich [70] 2019 RGB - - GPS, Day/Night
ACDC [71] 2020 RGB - several days GPS, Weather
Ford AV [1] 2020 RGB/LiDAR - 1 year GPS, IMU Day/Night, Weather, Time
Bdd100k [89] 2020 RGB - - Weather, Time

changing datasets [1, 33, 89] and pedestrian tracking and anomaly detection
for stationary ones [12, 46, 64]. The changing datasets also benefit from more
diverse data coming from different sensors, compared to more image based
stationary datasets. Our proposed LTD dataset is directed towards advancing
the state-of-the-art in stationary location outdoor urban datasets by providing
a longer duration, larger variation and rich metadata. A comparison in Table
D.1 shows how the dataset stacks against previous work.

Datasets used for autonomous driving with changing locations [1, 23, 72,
89], which contain multiple modalities like LiDARs, RGB, depth cameras,
as well as GPS and IMU data. They also contain data with longer dura-
tion from multiple days [71] to a whole year [49]. These datasets also fo-
cus on presenting adverse weather conditions, which can be used for domain
adaptation and making autonomous driving and robotics application more ro-
bust [1, 70, 71].Thermal datasets are less prevalent but still widely used [17, 20].
These moving location car datasets normally do not contain explicit informa-
tion of their duration, as they are captured from many cars and the data is
sampled.

On the other hand stationary location datasets do not contain any informa-
tion about the period over which they were collected. This combined with the
relative short duration of many of the widely used datasets ( [13, 45, 46, 50])
makes it impossible for them to be used for studying long-term effects on de-
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ployed machine learning solutions. The duration of some of these datasets is
taken from the research presented in [62]. Some larger datasets are gathered
from internet videos [77], which lack the needed continuity for testing gradual
concept drift in the data. More recent datasets have been produced with the
goal to capture larger variations in the environments [12, 62], but with a limited
scope. The lack of metadata is another problem, limiting the study of factors
causing concept drift, as only some of the investigated datasets provide insuffi-
cient metadata [5, 12, 68]. Most of the investigated datasets focus on RGB data,
with only some containing both RGB and thermal data [12, 33]. However, ther-
mal imaging is better at preserving preserving people’s anonymity as it does
not capture facial and body detail. This removes the need for post-processing
like blurring or pixelating faces to protect personal data [38, 48, 90], which
is a crucial requirement for complying with the European general data pro-
tection regulations (GDPR).The thermal imaging market has seen significant
growth [14] and is forecast to expand even more in the following years [35, 67],
which makes it necessary for long-term public thermal datasets to be easily
accessible

4 The Long-term Thermal Drift (LTD) Dataset

To address the gaps seen in the stationary surveillance state-of-the-art and to
leverage the need for more thermal data, a new dataset is proposed. It consists
of thermal videos with resolution 288 × 384 captured through the period of
8 months using a Hikvision DS-2TD2235D-25/50 thermal camera [30]. The
camera is a long wavelength infrared (LWIR) unit, capturing wavelengths
between 8 and 14 �𝑚. Raw data is captured through the day and saved in a
mp4 format as 8-bit uncalibrated grayscale videos. A pre-processing algorithm
is then run through the data. It first cuts the raw files into days starting from
00 : 00 and separates them into folders. Each folder is timestamped with the
year, month and day timestamp. The videos for each day are then cut into 2-
minute clips selected every 30 minutes through the day, for a total of 298 hours.
These videos are additionally timestamped with hour and minute timestamp.
The starting point of the data is May 2020 until September 2020, together with
a second part from January 2021, up until May 2021. This gives the data a
large weather variation through the winter, spring and summer seasons. The
images were taken on the harbor front in Aalborg, Denmark. The approximate
longitude and latitude coordinates are given as (9.9217, 57.0488). We provide
the dataset - https://www.kaggle.com/ivannikolov/longterm-thermal-drift-
dataset, together with the code to extract the necessary data and to reproduce
the experimental pipeline https://github.com/IvanNik17/Seasonal-Changes-
in-Thermal-Surveillance-Imaging.

Some examples of seasonal and day and night variation of the captured
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data, together with weather and human activity variation can be seen in Figure
D.1. These large variations, together with a total size almost twice as large as
other datasets in Section 3.2, allows for studying the effects of concept drift on
trained models.

Seasons

Day

Night

Environment

Fig. D.1: Examples of extreme changes in the image data contained in the proposed dataset. From
left to right the day and night rows show example changes from data of February, March, April,
June and August. The third row shows changes based on weather conditions and human activity.

Figure D.1 depicts issues stemming from the natural thermal data concept
drift, such as grayscale inversion in the background and people in different
seasons, view limitation and reflections caused by weather like fog, rain, snow,
view cluttering from multiple people and vehicles.

4.1 Metadata Analysis
Besides video data we also provide metadata in the form of weather data, gath-
ered using the open source Danish Meteorological Institute (DMI) weather
API [34] in 10-minute intervals. The selected properties are - temperature,
measured in [°𝐶], relative humidity percentage measured 2m over terrain, ac-
cumulated precipitation in [𝑘𝑔/𝑚2], dew point temperature in [°𝐶] measured
2m over terrain, wind direction in degrees orientation, wind speed in [𝑚/𝑠],
both measured 10m over terrain, mean sun radiation in [𝑊/𝑚2] and minutes
of sunshine in the measured interval. These properties are selected, as it is
speculated that they would be useful to explain changes in the captured im-
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Table D.2: Average metadata for each month. From left - temperature, humidity, precipitation,
dew point, wind direction, wind speed, sun radiation and minutes of sunshine in a 10-minute
interval.

Temp.
[°𝐶]

Hum.
[%]

Precip.
[𝑘𝑔/𝑚2]

Dew P.
[°𝐶]

Wind Dir.
[𝑑𝑒𝑔𝑟𝑒𝑒𝑠]

Wind Sp.
[𝑚/𝑠]

Sun Rad.
[𝑊/𝑚2]

Sun
[𝑚𝑖𝑛]

Jan. -0.48 90.10 0.01 -1.96 161.91 2.58 23.97 0.90
Feb. -0.54 85.15 0.01 -2.83 131.00 2.95 51.12 1.42
Mar. 3.75 83.61 0.01 0.93 218.80 3.58 99.35 1.85
Apr. 4.47 97.25 0.13 4.10 126.50 2.97 67.31 2.23
May 10.74 75.46 0.01 6.07 217.32 3.04 256.76 3.66
June 16.36 71.46 0.01 10.57 151.27 2.37 256.46 3.63
July 12.91 75.32 0.01 8.46 268.15 3.97 270.17 3.62
Aug. 16.93 79.17 0.02 12.69 163.18 2.08 197.86 3.15

age data. An overview of the average weather metadata measurements of the
dataset can be seen in Table D.2. Temperature and relative humidity have been
shown to affect thermal cameras, when detecting surface defects in concrete
structures [82], measuring skin temperature changes on athletes [36], getting
accurate readings for volcanology [3] and inspecting food [21]. Precipitation
and dew point temperature can indicate the presence of rain, fog or high mois-
ture and condensation. These can increase attenuation of infrared light and
change the produced camera response [4, 11]. The build-up of moisture can
create puddles in the images, which would change the scene reflectivity and
reflected temperature [7]. The sun radiation and amount of sunshine can af-
fect the captured images by rapidly changing the intensity of the infrared light.
Finally wind speed and direction can cause movement of background parts
of the scene like water ripples, ropes, etc., as well as movement of the camera
itself.

5 Long-term Performance Experiment

We study the effects of concept drift on six machine learning models - two
autoencoders, two object detectors and anomaly detectors. For these exper-
iments only weather parameters not found to have significant correlation to
other parameters are considered, namely - temperature, humidity, wind speed,
wind direction and precipitation. More information on the correlation between
weather parameters is given in the Appendix.

5.1 Data Selection Protocol
In order to keep the experiments and labelling effort manageable, samples
across the full data set are selected based on the following protocol. This is
done to minimize the number of frames and maximize the variation covered
by the selection. For the sampling temperature metadata is used, as it is proven
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to directly correlate with changes to thermal images [21, 36, 82]. The protocol
can be summarized as follows:

1. Every 2-minute clip in the dataset is sampled with a frequency of one
frame per second, resulting in 120 frames per clip;

2. Based on the temperature metadata, we select a cold month for the
training set and another cold month, a median temperature one, and a
warm month for the test set;

3. The training set exists in three variants: coldest day 13th of February, the
corresponding week 13-20 of February, and the entirety of February;

4. The test sets consist of data from January (similar cold month), April
(month with median temperature), and August (warmest month).

From each of the thus created subsets, a greedy furthest point sampling is
used for selecting frames. The frames for each day are sampled by calculating
the farthest distances in the 2D feature space of the frame numbering and the
temperature. A visual example of the sampling can be seen in the Appendix.
The amounts of selected samples vary for the training data depending on the
used algorithm. This is further discussed in the next sections.

5.2 Tested Models
Six deep learning models are tested. All six are originally designed to work
with RGB data, so their input channel is reduced from 3 to 1, corresponding to
a change to the grayscale thermal data. No additional changes were made, as
the focus of the paper is not algorithm performance but change in performance
over time.

Two of tested models are autoencoders, as representatives for dimensional
reduction, noise removal, concept drift detection and anomaly detection meth-
ods. Autoencoders are well suited for researching concept drift in long-term
datasets, as their reconstruction performance is inherently tightly connected
to the training data. The first autoencoder follows a simple fully convolutional
architecture with symmetric 5-layer encoder and decoder. The implementa-
tion is based on the autoencoder used in a previous work [44]. It is theorized
that its simplicity will make it sensitive to concept drift in the input data. The
second autoencoder is the latest version of the Vector Quantised Variational
Autoencoder (VQVAE2) [65]. This autoencoder uses collections of multi-scale
hierarchical discrete tensors, called codebooks, to map its latent space. This
gives it more robustness compared to regular autoencoders. The VQVAE2 im-
plementation used here is closely based on [51]. Both autoencoders are trained
for 200 epochs.
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Two versions of the anomaly detector method MNAD [59] are also tested.
They extend traditional autoencoders, by introducing memory-guided nor-
mality detection. We look at the typical reconstruction based comparison
(MNAD_recon), as well as the prediction approach (MNAD_pred), using the
preceding four consecutive frames to predict the future frame. The backbone
consists of the U-Net structure, without skip-connections for the MNAD_recon
variant. In between the encoder and decoder of U-Net is a memory module,
storing prototypical events, concatenated with the original encoder output.
The memory is primarily learned during training, but also updates during
testing. Both versions are trained for 100 epochs.

Lastly two supervised object detectors are also tested - the YOLOv5 and
Faster R-CNN [66]. The chosen hyperparameters for YOLOv5 remain the same
as the work in [84], except that the initial learning rate is set to 0.00075 and
trained for 200 epochs. The Faster R-CNN is trained for 200 epochs as well
with SGD, with initial learning rate set as 0.005, the weight decay as 0.005
and the momentum kept at 0.9. Both object detectors have previously been
successfully applied to outdoor thermal imaging [9, 18, 31, 39].

The autoencoders are trained on a NVIDIA GTX1070 Super, the anomaly
detectors on a NVIDIA RTX3080 and the object detectors on a NVIDIA RTX2080Ti.

5.3 Drift Algorithmic Performance Analysis
This experiment aims to see how the performance of the selected algorithms
changes depending on the variation of the training data.

The training sets for the autoencoders and the anomaly detectors contain
5000 frames per subset, sampled using the method discussed in subsection
5.1, where 20% are used for validation. Performance is reported as the average
MSE across every image in each of the three test sets. The performance of the
two autoencoders and anomaly detectors is listed in Table D.3. We can see that
the MSE for the CAE, VQVAE2 and MNAD_recon increases the farther away
the test data goes from the training data. It can also be seen that the larger
temporal pool provided for sampling for the weekly and monthly training
data helps with keeping the MSE lower through the different months. The
MNAD_pred is the only model keeping a consistent performance through the
months without any noticeable drift. This is most likely due to the U-Net skip
connections being able to reconstruct the background scene with a very low
reconstruction error.

For the object detectors, because of the necessary data-labeling a smaller
number of images are used for training and testing - both having 100 frames
per subset. In addition to these a validation set comprising of 51 images
evenly sampled from a previous annotated dataset [44] collected in February
2020 is used. All of the subsets are annotated with bounding boxes around
people seen in each frame using the LabelImg open source program [83]. The
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Train Test
Methods Feb. Jan. Apr. Aug.

CAE
Day 5k 0.0096 0.0202 0.0242
Week 5k 0.0061 0.0167 0.0212
Month 5k 0.0042 0.0109 0.0147

VQVAE2
Day 5k 0.0051 0.0072 0.0068
Week 5k 0.0039 0.0066 0.0061
Month 5k 0.0021 0.0039 0.0035

MNAD
Recon.

Day 5k 0.0028 0.0057 0.0069
Week 5k 0.0065 0.0066 0.0062
Month 5k 0.0015 0.0041 0.0048

MNAD
Pred.

Day 5k 0.0008 0.0007 0.0009
Week 5k 0.0007 0.0006 0.0007
Month 5k 0.0007 0.0006 0.0007

Table D.3: Results are reported as the average
of the MSE across every frame in the test set.
Higher results show worse performance.

Train Test
Method Feb. Jan. Apr. Aug.

YOLOv5
Day 100 0.8010 0.5390 0.5240
Week 100 0.7940 0.4540 0.4860
Month 100 0.7930 0.4860 0.4830

Faster
R-CNN

Day 100 0.6760 0.3230 0.3370
Week 100 0.6740 0.2790 0.3060
Month 100 0.6400 0.2560 0.3180

Table D.4: Results are reported as the mAP50
across every frame in the test set. Lower results
show worse performance.

annotations are also part of the LTD dataset. Since the performance of object
detector is based on detected bounding boxes, mAP is used to evaluate it. The
performance of the object detectors is given in Table D.4. The accuracy of both
object detectors, drastically drops in the month of April. To prevent overfitting
the smaller amount of training data, we observe the validation and test loss.

As a conclusion from the performance analysis the higher variation pro-
vided by sampling from the week and month data, has been translated to better
and more stable models in all the tested models. We can still see the effects
of the seasonal drift, so additional analysis will be provided in the following
sections.

6 Drift Analysis

In this section we look at the possible relations between the observed model
performance drift and the changes in the captured metadata. Looking through
the data examples given in Figure D.1, two main visual change types are iden-
tified - seasonal and day/night. These types can be caused by either changes
in the weather conditions, the human activity or a combination between the
two. The relation between the model performance metrics and metadata fea-
tures representing these changes is analysed. As discussed in section 4.1, we
choose temperature, humidity, precipitation, wind direction and wind speed
as weather data features. For analysing the day/night changes the timestamp
data is used to calculate hours of the day, as well as to calculate the sunrise
and sunset times [52, 76]. To quantify the activity in the scene the difference
between each testing frame and the previous frame from the main dataset is
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calculated. The mean value from this difference is selected. To focus only on
scene activity everything in the background that moves like the waterfront
and the visible ropes and masts is masked out. More information on this can
be found in the Appendix.

We choose to use the results only from the models trained on the monthly
February data, for easier visualization. The correlation between each of these
features and the measured performance metric for each of the methods is first
calculated. For the autoencoders and anomaly detectors this is the MSE, while
for the object detectors we calculate the F1-score from all images containing
people, as it gives a good overview of the precision and recall of the models.
Both the basic Pearson’s correlation, as well as the more sensitive to non-linear
relations Distance correlation [16, 80] are calculated. The statistical significance
p-values are also calculated with threshold at 0.05. The calculated correlation
𝑟 values are given in Table D.5, where those with p-values below the threshold
are shown in red.

Table D.5: Correlation between the model’s measured performance values MSE and F1-score and
the weather, time and scene activity features. Two correlation measures are used - Pearson’s (P.C.)
and Distance (D.C.) correlation. Measures which do not meet the statistical significance threshold
of their p-values are shown in red and marked ✗. The Day/Night features is specified as D./N.

Measure Temp. Hum. Wind Dir. Wind Sp. Precip. Activ. D./N. Hour

CAE - MSE P. C. 0.679 0.636 0.018 ✗ 0.157 0.109 ✗ 0.270 0.545 0.166
D. C. 0.682 0.588 0.158 0.170 0.126 ✗ 0.291 0.538 0.287

VQVAE2 - MSE P. C. 0.381 0.690 0.001 ✗ 0.194 0.172 0.217 0.403 0.124
D. C. 0.347 0.639 0.174 0.201 0.224 0.217 0.382 0.213

MNAD Recon. - MSE
P. C. 0.607 0.672 0.016 ✗ 0.173 0.126 0.220 0.509 0.156
D. C. 0.617 0.629 0.188 0.177 0.155 0.252 0.501 0.273

MNAD Pred. - MSE
P. C. 0.107 ✗ 0.277 0.064 ✗ 0.152 0.072 ✗ 0.677 0.369 0.137
D. C. 0.231 0.348 0.154 0.172 0.086✗ 0.665 0.462 0.312

YOLOv5 - F1-score
P. C. 0.261 0.258 0.102 ✗ 0.011 ✗ 0.096 ✗ 0.124 ✗ 0.047 ✗ 0.009 ✗

D. C. 0.293 0.283 0.146 ✗ 0.094 ✗ 0.135 ✗ 0.255 0.113 ✗ 0.174 ✗

Faster R-CNN - F1-score
P. C. 0.354 0.456 0.115 ✗ 0.135 ✗ 0.0124✗ 0.199 0.147 0.001 ✗

D. C. 0.334 0.460 0.228 0.149 ✗ 0.065 ✗ 0.231 0.163 0.118 ✗

From Table D.5 it can be seen that temperature and humidity have both the
largest correlation values to most of the metrics, as well as the most consistently
statistically significant results, followed by the scene activity and day/night
features. We focus on these four features in the following analysis.

To get a better understanding of not only the correlational, but also causal
relations between the models’ performance metrics and the chosen features,
we look at the Granger causality test [22]. The test only guarantees a predic-
tive causality between variables, but would be able to point out any possible
connections. The Granger causality tests the null hypothesis that the past
values of one variable do not cause another. The p-value threshold is set to
0.05, below that the null hypothesis can be rejected, with the conclusion that
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there is a predictive causality between the variables. As the normal Granger
causality test as presented in [73] is used on data with linear relations, we also
use the more robust non-linear Neural Granger test [81]. Two best performing
versions are used, based on long-short term memory networks (LSTM) and
multi-level perceptron (MLP). Both models were trained using proximal gradi-
ent descent [58], with � = 0.002, ridge regression coefficient 0.01 and learning
rate of 0.005. The results from the Granger causality tests are given in Table
D.6, where cells shown with green indicate a statistically significant presence
of Granger causality and the ones with red - no presence.

Table D.6: Results from calculating linear and non-linear (LSTM and MLP) Granger causality
tests. The cells marked with ✓ show positive predictive causality, while cells marked with ✗ show
no significant causality.

Temp. Hum. Activ. D./N.

Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP Basic LSTM MLP
CAE - MSE ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

VQVAE2 - MSE ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

MNAD Recon. - MSE ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

MNAD Pred. - MSE ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

YOLOv5 - F1-score ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Faster R-CNN - F1-score ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

The results show that the human activity has no predictive causality to-
wards the performance of the models, which combined with the results from
the correlation analysis, can point towards a second-hand relation. Our hy-
pothesis is that the change in weather conditions and the day/night cycle are
related to the change in human activity. From the other features, temperature
has stronger predictive causality towards the autoencoders and anomaly detec-
tors, while humidity and the day/night cycle have a more balanced predictive
causality.

Figure D.2 shows the relationship between the features and the model
metrics. As a processing step before plotting the temperature and humidity
they are first smoothed using a mean filter with a kernel size of 20 and then the
MSE is normalized between 0 and 1. This is done as they are not compared,
but the trend of their change is visualized. We plot the average values for the
training month of February, as a vertical red line, to indicate a "threshold".
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Fig. D.2: Visual representation of the changes of MSE and F1-score for the tested models compared
to the temperature, humidity and day/night cycle.

7 Drift Prediction Baseline

As a baseline for exploring and mitigating the effects of concept drift a reference
algorithm for predicting drift is presented. We use three strongest features -
temperature, humidity and day/night cycle, together with MSE from our
convolutional autoencoder (CAE) trained on the February monthly data. The
CAE is chosen, as it is the most sensitive to changes in the dataset and is strongly
correlated to the performance of all other tested models, except Faster R-CNN.
The CAE MSE results from the training data are used together with the chosen
features to train two widely used novelty/outlier detection models - isolation
forests [43] and one-class SVM [61], available as part of scikit-learn [60]. The
isolation forest has 100 base estimators, the one-class SVM has a radial basis
function (RBF) kernel and 𝛾 of 0.03. We then test the results from each day
from the full LTD dataset to detect points where many outliers emerge in both
predictors. The first large concentration of outliers in 7 consecutive days is
selected, which in our case is 5th of March.

To test if taking in consideration data from the found drift point can help
with the performance of the models against concept drift, training data from
one week starting after the 5th of March is sampled. The new data is used
together with the previous training data from February to retrain the tested
models. The results, together with the month results from Table D.3 and D.4 for
comparison, are given in Table D.7 and Table D.8. By adding the March data,
all tested models achieve better results. We can see that the outlier detection
models trained on the CAE MSE, together with the temperature, humidity

229



Paper D.

and day/night cycle can be used together as a indicator for the amount of drift
present in the input data.

Table D.7: The MSE results from the full month
in Table D.3, compared to the ones using the
new training datasets containing a combina-
tion of February and the week in March where
drift is detected. Higher results show worse
performance.

Train Test
Methods Jan. Apr. Aug.

VQVAE2 Feb. 5k 0.0021 0.0039 0.0035
Feb. 5k + Mar. 5k 0.0020 0.0033 0.0030

MNAD
Recon.

Feb. 5k 0.0015 0.0041 0.0048
Feb. 5k + Mar. 5k 0.0006 0.0015 0.0025

MNAD
Pred.

Feb. 5k 0.0007 0.0006 0.0007
Feb. 5k + Mar. 5k 0.0007 0.0005 0.0006

Table D.8: The mAP50 Results from the full
month in Table D.4, compared to the ones us-
ing the new training datasets containing a com-
bination of February and the week in March
where drift is detected. Lower results show
worse performance.

Train Test
Method Jan. Apr. Aug.

YOLOv5 Feb. 100 0.7930 0.4860 0.4830
Feb. 100 + Mar. 100 0.8690 0.6640 0.6110

Faster
R-CNN

Feb. 100 0.6400 0.2560 0.3180
Feb. 100 + Mar. 100 0.6990 0.3910 0.3380

8 Conclusion and Future Work

In this paper we introduced the Long-term Thermal Drift (LTD) dataset span-
ning 8 months for detecting concept drift in deep learning models. The dataset
and the accompanying metadata can be used to document performance degra-
dation as data drifts from the training set. These effects were studied on
anomaly and object detection models, as well as autoencoders. It was demon-
strated that more diverse training data lowers the effects of concept drift.
The performance of the models showed a strong correlational and causal re-
lationship to the change in temperature and humidity. A less pronounced
relationship was observed to the day/night cycle and scene activity. Lastly,
we showed how the concept drift can be further mitigated by detecting when
it starts to manifest and providing additional data to the training process.

The proposed LTD dataset contains a combination of diverse environmen-
tal images and granular metadata. The equally spaced long-term data can be
used to test the change in performance of deep learning models at different
data scenarios - only day or night data, changes between activity in the week-
day and weekends, summer and winter scenarios. The influence of weather
conditions like rain, snow or fog can also be explored. The possibility of train-
ing more robust models and predicting when steps need to be taken, before
their performance degrades, is only possible with such long-term sequential
datasets.

Possible negative social impacts of such long-term datasets concentrating
on a single location is that they can be used to track the habits, interactions and
movements of people. We offset this by providing a thermal dataset, which
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provides greater protection of people’s anonymity than conventional RGB and
does not require post-processing for blurring facial features.

The long-term nature of the dataset can also be used, as demonstrated
in this paper, to utilize time-series analysis procedures on the outputs from
different layers of deep learning models. From simple time-series analysis
and forecasting models like Vector Autoregressive (VAR) Models [29] to more
complex and data agnostic models like STRIPE [25] or Adversarial Sparse
Transformers [86].

We believe that the proposed dataset and the accompanied analysis would
help researchers understand the causes for performance drift in models and
hence enable easier deployment of long-term solutions in outdoor environ-
ments.
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1. Introduction

Abstract

In thermal video security monitoring the reliability of deployed systems rely on
having varied training data that can effectively generalize and have consistent
performance in the deployed context. However, for security monitoring of
an outdoor environment the amount of variation introduced to the imaging
system would require extensive annotated data to fully cover for training and
evaluation. To this end we designed and ran a challenge to stimulate research
towards alleviating the impact of concept drift on object detection performance.
We used an extension of the Long-Term Thermal Imaging Dataset, composed
of thermal data acquired from 14th May 2020 to 30th of April 2021, with a
total of 1689 2-minute clips with bounding-box annotations for 4 different
categories. The data covers a wide range of different weather conditions
and object densities with the goal of measuring the thermal drift over time,
from the coldest day/week/month of the dataset. The challenge attracted 184
registered participants, which was considered a success from the perspective
of the organizers. While participants managed to achieve higher mAP when
compared to a baseline, concept drift remains a strongly impactful factor. This
work describes the challenge design, the adopted dataset and obtained results,
as well as discuss top-winning solutions and future directions on the topic.

1 Introduction

In the context of thermal video security monitoring the sensor type that is
responsible of quantifying the observed infrared-radiation as a thermograph
can be split into two groups: sensors that produce relative thermographs and
sensors that produce absolute thermographs. Absolute thermographs can
correlate the observed radiation directly with temperature, whereas relative
thermographs produce observations relative to the “coldest” and “warmest”
radiation. In security monitoring contexts the absolute temperature readings
produced by an absolute thermograph are not necessary and can potentially
suppress thermal details when observing thermally uniform environment.
Furthermore the price of absolute thermal cameras are much higher than their
relative counterpart.

When performing image recognition tasks the visual appearance of objects
and their surroundings is very important, and in an outdoor context that is
subjected to changes in temperature, weather, sun-radiation, among others, the
visual appearance of objects and their surroundings change quite drastically.
This is further expanded by societal factors like the recent pandemic which
could introduce mandatory masks. This is known as “Concept Drift” where
objects remain the same however the concept definition which is observed
through representation changes. While in theory it could be possible to collect
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a large enough dataset encompassing the weather conditions, the actors, usu-
ally people, within the context also dress and act differently. Furthermore the
cost of producing such a dataset would be quite extensive as potentially years
worth of data would have to be annotated. Typically deployment of object
detectors would have a pretrained baseline, and the model would have to be
retrained when the observed context drifts too far away from the training con-
text. The reliability in such a system is questionable as deployed algorithms
tend not to have a way to quantify the performance during deployment and
extra data would have to be routinely annotated to verify that the system is still
performing as expected. To address this issue and foster more research into
long-term reliability of deployed learning based object detectors a benchmark
for classifying the impact of concept drift could greatly benefit the field.

The ECCV 2022 ChaLearn LAP Seasons in Drift Challenge aims to propose
a setting for evaluating the impact of concept drift at a month to month basis
and evaluating the impact of concept drift in a weighted manner. The problem
of concept drift is exacerbated with limited training data, particularly when
the distribution of the visual appearance in the data is similar. To explore the
consistency of performance across varied levels of concept drift particularly of
object detection algorithms, an extended set of frames were annotated span-
ning several months. The challenge attracted a total of 184 participants on its
different tracks. With a total of 691 submissions at the different challenge stages
and tracks, from over 180 participants, the challenge managed to successfully
establish a benchmark for thermal concept drift. Top-wining solutions outper-
formed the baseline by a large margin following distinct strategies, detailed in
Sec. 4.

The rest of the paper is organized as follows. In Sec. 2 we present the
related work. The Challenge design, which includes a short description of
the adopted dataset, evaluation protocol and baseline are detailed in Sec. 3.
Challenge results and top-winning solutions are discussed in Sec. 4. Finally,
conclusion and suggestions for future research directions are drawn in Sec. 5.

2 Related Work

Popular thermal detection and segmentation datasets, such as KAIST [13]
and FLIR-ADAS [24], provide thermal and visible images. The focus of a large
part of academic research have been focused on leveraging a multi-modal
input [10, 16, 29, 30] or using the aligned visible/thermal pairs as a way to
do unsupervised domain adaptation between the visible and thermal [7, 10,
25, 28]. Approaches that leverage the multi-modal input directly typically
use siamese style networks to perform modality specific feature extraction,
subsequently leveraging a fusion scheme to combine the information in a
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learned manner [16, 25, 29], alternatively simple concatenation or addition is
performed after initial feature extraction [10, 30]. In contrast, a network can be
optimized to be domain agnostic. HeatNet [25] and DANNet [28] leverage an
adversarial approach to guide the network to extract domain agnostic features.

It has been proven that in security monitoring contexts fusion of visible and
thermal images outperforms any modality alone [14, 17], however in a real-
world scenario camera setups tend to be single sensor setups. While thermal
cameras are robust to changes in weather and lighting conditions, they still
struggle with the change of visual appearance of objects due to the change of
scene temperature [6, 8, 9, 15, 17]. Early work [9] leveraged edges to highlight
objects, making detection possible robust to the variation when the relative
contrast between objects and their surroundings were consistent. Recent stud-
ies leverage research in the visible imaging domain, and directly apply it to
the thermal domain [6, 17]. Until recently thermal specific detection methods
have been a rarity and recently it was proven that contextual information is
important to increase robustness to day/night variation [15, 23] for thermal
only object detection. By employing a conditioning of the latent represen-
tation guided by an auxiliary day/night classification head, the accuracy of
day and night accuracy can be significantly increased [15]. Similar increase
in performance can also be gained with a combination of a shallow feature-
extractor and residual FPN-style connections [8]. Most notably the residual
connections are leverage during training to enforce learning of discriminative
features throughout the network, and serve no purpose during inference, and
as such can be removed.

3 Challenge Design

The ECCV 2022 Seasons in Drift Challenge1 aimed to spotlight the problem of
concept drift in a security monitoring context and highlight the challenges and
limitations of existing methods, as well as to provide a direction of research
for the future. The challenge used an extension of the LTD Dataset [21] which
consists of thermal footage that spans multiple seasons, detailed in Sec. 3.1.
The challenge was split into 3 different tracks associated with thermal object
detection. Each track having the same evaluation criteria/data but varying
the amount of train data as well as the time span of the data, as detailed next.

• Track 1 - Detection at day level: Train on a predefined and single day
data and evaluate concept drift across time2. The day is the 13th of
February 2020 as it is the coldest day in the recorded data, due to the

1Challenge - https://chalearnlap.cvc.uab.cat/challenge/51/description/
2Track 1 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4272
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relative thermal appearance of objects being the least varied in colder
environments this is our starting point.

• Track 2 - Detection at week level: Train on a predefined and single week
data and evaluate concept drift across time3. The week selected is the
week of the 13th – 20th of February 2020 - (i.e. expanding from our
starting point)

• Track 3 - Detection at month level: Train on a predefined and single
month data and evaluate concept drift across time4. The selected month
is the entire month of February.

The training data is chosen by selecting the coldest day, and surrounding
data as cold environments introduce the least amount of concept drift. Each
track aims at evaluating how robust a given detection method is to concept
drift, by training on limited data from a specific time period (day, week, month
in February) and evaluating performance across time, by validating and testing
performance on months of unseen data (Jan., Mar., Apr., May., Jun., Jul., Aug.
and Sep.). The February data is only present in the training set and the
remaining months are equally split between validation and test.

Each track is composed of two phases, i.e., development and test phase.
At the development phase, public train data was released and participants
needed to submit their predictions with respect to a validation set. At the test
(final) phase, participants needed to submit their results with respect to the
test data, which was released just a few days before the end of the challenge.
Participants were ranked, at the end of the challenge, using the test data. It
is important to note that this competition involved the submission of results
(and not code). Therefore, participants were required to share their codes
and trained models after the end of the challenge so that the organizers could
reproduce the results submitted at the test phase, in a “code verification stage”.
At the end of the challenge, top ranked methods that pass the code verification
stage were considered as valid submissions.

3.1 The dataset
The dataset used in the challenge is an extension of the Long-Term Thermal
Imaging [21] dataset, and spans 188 days in the period of 14th May 2020 to 30th
of April 2021, with a total of 1689 2-minute clips sampled at 1fps with associated
bounding box annotations for 4 classes (Human, Bicycle, Motorcycle, Vehicle).
The collection of this dataset has included data from all hours of the day in
a wide array of weather conditions overlooking the harborfront of Aalborg,
Denmark. In this dataset depicts the drastic changes of appearance of the

3Track 2 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4273
4Track 3 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4276
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objects of interest as well as the scene over time in a static security monitoring
context to develop robust algorithms for real-world deployment. Figure E.1
illustrates the camera setup and two annotated frames of the dataset, obtained
at different time intervals.

(a) (b) (c)

Fig. E.1: Illustration of the camera setup (a) and two annotated frames of the dataset, captured at
different time intervals (b-c).

For a detailed explination of the datasets weather contents, an overview can
be found in the original dataset paper [21]. As for the extended annotations
provided with this challenge, we can observe that the distribution of classes is
heavily skewed towards the classes that are most commonly observed in the
context. As can be seen in Table E.1 the total number of occourances of each
class is heavily scewed towards the Person class. Furthermore, as can be seen
in Figure E.2, each class follows roughly the same trend in terms of the density
of which they occur. While the most common for all classes is a single count
of the given object present in a given image is 1, the range of occurrences are
greater for the Person category.

The camera used for recording the dataset was elevated above the observed
area, and objects often appear very distant with regards to the camera, in
combination with the resolution of the camera most objects appear very small
in the image (see Figure E.1). Table E.1 summarizes the amount of objects from
each class pertaining to each size category. The size is classified using the same
scheme as used in the COCO dataset [19], where objects with areas 𝑎𝑟𝑒𝑎 < 322,
322 < 𝑎𝑟𝑒𝑎 < 962 and 𝑎𝑟𝑒𝑎 > 962 are considered small, medium and large
respectively. The density of object sizes are also illustrated in Figure E.3,
where it can be more clearly seen that the vast majority of objects fall within
the small category for classes. This holds true for classes Person, Bicycle and
Motorcycle, where as the Vehicle class more evenly covers all size categories.
This is a result of larger vehicles only being allowed to drive in the area closest
to the camera.
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(a) Person (b) Bicycle

(c) Vehicle (d) Motorcycle

Fig. E.2: Histogram of object density, across the dataset, density of objects (x-axis) and occurrences
(y-axis).

Table E.1: Object frequency observed for each COCO-style size category.

Class
Size Person Bicycle Motorcycle Vehicle
Small 5.663.804 288.081 27.153 113.552
Medium 454 7 0 37.007
Large 176.881 5.192 5.240 550.696
Total 5.841.139 293.280 32.393 701.255

3.2 Evaluation protocol
The challenge followed the COCO evaluation5 scheme for mAP. The primary
metric is, mAP across 10 different IoU thresholds (ranging from 0.5 to 0.95
at 0.05 increments). This is calculated for each month in the validation/test
set and the model is then ranked based on a weighted average of each month
(more distant months having a larger weight as more concept drift is present),
referred to as 𝑚𝐴𝑃𝑤 in the analysis of the results (Table E.2). The evaluation
is performed leveraging the official COCO evaluation tools6.

5https://cocodataset.org/#detection-eval
6https://github.com/cocodataset/cocoapi
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(a) Person (b) Bicycle

(c) Vehicle (d) Motorcycle

Fig. E.3: Illustration of object size (height×width, in pixels) across the dataset. The white outlines
seperate the areas that would be labeled as small, medium and large following COCO standards.

3.3 The baseline
The baseline is a YOLOv5 with the default configuration from the Ultralytics7

repository, including augmentations. It was trained with a batch size of 64
for 300 epochs, with an input image size of 384×288 and the best performing
model is chosen. Naturally, the labels were converted to the normalized yolo
format ([cls] [c𝑥] [c𝑦] [w] [ht]) for both training and evaluation. For submission
on the Codalab platform they were converted back to the ([cls] [tl𝑥] [tl𝑦] [br𝑥]
[br𝑦]) coordinates. The models were all trained on the same machine with 2x
Nvidia RTX 3090 GPUs, all training is also conducted as multi GPU training
using the pytorch distributed learning module.

7https://github.com/ultralytics/yolov5
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4 Challenge Results and Winning Methods

The challenge ran from 25 April 2022 to 24 June 2022 through Codalab8 [22], a
powerful open source framework for running competitions that involve result
or code submission. It attracted a total of 184 registered participants, 82, 52 and
50 on track 1, 2 and 3, respectively. During development phase we received
267 submissions from 17 active teams in track 1, 117 submissions from 6 teams
in track 2, and 96 submissions from 4 teams in track 3. At the test (final) phase,
we received 84 submissions from 23 active teams in track 1, 55 submissions
from 22 teams in track 2, and 72 submissions from 24 teams in track 3. The
reduction in the number of submissions from the development to the test
phase is explained by the fact that the maximum number of submissions per
participant on the final phase was limited to 3, to minimize the change of
participants to improve their results by trial and error.

Table E.2: Codalab leaderboards∗ at the test (final) phase.

Participant 𝑚𝐴𝑃𝑤 𝑚𝐴𝑃 Jan Mar Apr May Jun Jul Aug Sep
Track 1 (day level)

Team GroundTruth∗ .2798 .2832 .3048 .3021 .3073 .2674 .2748 .2306 .2829 .2955
Team heboyong∗ .2400 .2434 .3063 .2952 .2905 .2295 .2318 .1901 .2615 .1419
Team BDD .2386 .2417 .2611 .2775 .2744 .2383 .2371 .1961 .2365 .2122
Team Charles .2382 .2404 .2676 .2848 .2794 .2388 .2416 .2035 .2446 .1630
Team Relax .2279 .2311 .2510 .2642 .2556 .2138 .2336 .1856 .2214 .2235
Baseline∗ .0870 .0911 .1552 .1432 .1150 .0669 .0563 .0641 .0835 .0442

Track 2 (week level)
Team GroundTruth∗ .3236 .3305 .3708 .3502 .3323 .2774 .2924 .2506 .3162 .4542
Team heboyong∗ .3226 .3301 .3691 .3548 .3279 .2827 .2856 .2435 .3112 .4662
Team Hby .3218 .3296 .3722 .3556 .3256 .2806 .2818 .2432 .3067 .4714
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BDD .3007 .3072 .3557 .3367 .3141 .2562 .2735 .2338 .2936 .3942
Baseline∗ .1585 .1669 .2960 .2554 .2014 .1228 .0982 .1043 .1454 .1118

Track 3 (month level)
Team GroundTruth∗ .3376 .3464 .4142 .3729 .3414 .3032 .2933 .2567 .3112 .4779
Team heboyong∗ .3241 .3316 .3671 .3538 .3289 .2838 .2864 .2458 .3132 .4735
Team BDD .3121 .3186 .3681 .3445 .3248 .2680 .2843 .2450 .3062 .4076
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BingDwenDwen .2986 .3054 .3565 .3477 .3241 .2702 .2707 .2337 .2808 .3598
Baseline∗ .1964 .2033 .3068 .2849 .2044 .1559 .1535 .1441 .1944 .1827

Top solutions are highlighted in bold, and solutions that passed the “code verification stage” are
marked with a ∗.

4.1 The Leaderboard
The leaderboards at the test phase for the different tracks are shown in Table E.2.
Note that we only show here the top-5 solutions (per track), in addition to the
baseline results. Top solutions that passed the “code verification stage” are

8Codalab - https://codalab.lisn.upsaclay.fr
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highlighted in bold. The full leaderbord of each track can be found in the
respective Codalab competition webpage.

As expected, Table E.2 shows that overall better results are obtained with
more train data. That is, a model trained at the month level is overall more
accurate than the same model trained at the week level, which is overall more
accurate than the one trained at the day level. Therefore, the differences
in performance improvement when training the model at the month level
(compared to week level) are smaller than those obtained when training the
model at the week level (compared to day level), particularly when a large
shift in time is observed (e.g., from Jun. to Sep.), suggesting that the increase
of train data from week to month level may have a small impact when large
shifts are observed. This was also observed by the Team heboyong (described in
Sec. 4.3), which reported to have only used week level data to train their model
(i.e., on Tracks 2 and 3), based on the observation that using more data was
not improving the final result. This raises an interesting point in that even for
winning approaches the variation of the training data is much more important
than the amount of training data, a further analysis of what causes the loss of
mAP across will be discussed in 4.4.

Table E.3 shows some general information about the top winning ap-
proaches. As it can be seen from Table E.3, common strategies employed
by top-winning solutions are the use of pre-trained models combined with
data augmentation. Next, we briefly introduce the top-winning solutions that
passed the code verification stage based on the information provided by the
authors. For a detailed information, we refer the reader to the associated
fact sheets, available for download in the challenge webpage 9See footnote 1.
Two participants (i.e., Team GroundTruth and Team heboyong) ranked best on all
tracks. Each participant applied the same method on all tracks, but trained at
day, week or month level, detailed as follows.

Table E.3: General information about the top winning approaches.

Top-1
Team GroundTruth

Top-2
Team heboyong

Pre-trained model ✓ ✓

External data ✗ ✗

Data augmentation ✓ ✓

Use of the provided validation set as part
of the training set at the final phase ✗ ✗

Handcrafted features ✗ ✗

Spatio-temporal feature extraction ✗ ✗

Object tracking ✗ ✗

Leverage timestamp information ✗ ✗

Use of empty frames present in the dataset ✗ ✗

Construct any type of prior to condition
for visual variety ✗ ✗

249



Paper E.

4.2 Top-1: Team GroundTruth
The Team GroundTruth proposed to take benefit of temporal and contextual in-
formation to improve object detection performance. Based on Scaled-YOLOv4
[26], they first perform sparse sampling at the input. The best sampling set-
ting is defined based on experiments given different sampling methods (i.e.,
average sampling, random sampling, and active sampling). Mosaic [1] data
augmentation is then used to improve the detector’s recognition ability and
robustness to small objects. To obtain a more accurate and robust model at
inference stage, they adopt Model Soups [27] for model integration, given
the results obtained by Scaled-YOLOv4p6 and Scaled-YOLOv4p7 detectors
trained using different hyperparameters, also combined with horizontal flip
data augmentation to further improve the detection performance. Given a
video sequence of region proposals and their corresponding class scores, Seq-
NMS [12] associates bounding boxes in adjacent frames using a simple overlap
criterion. It then selects boxes to maximize a sequence score. Those boxes are
used to suppress overlapping boxes in their respective frames and are subse-
quently re-scored to boost weaker detections. Thus, Seq-NMS [12] is applied
as post-processing to improve the performance further. An overview of the
proposed pipeline is illustrated in Figure E.4.

Fig. E.4: Top-1 winning solution pipeline: Team GroundTruth.

4.3 Top-2: Team heboyong
The Team heboyong employed Cascade RCNN [4], a two-stage object detection
algorithm, as the main architecture for object detection, with Swin Trans-
former [20] as backbone. According to the authors, Swin Transformer gives
better results when compared with other CNN-based backbones. CBNetv2 [18]
is used to enhance the Swin Transformer to further improve accuracy. MMde-
tection [5] is adopted as the main framework. During training, only 30% of
the train data is randomly sampled, to reduce overfitting, combined with dif-
ferent data augmentation methods, such as Large Scale Jitter, Random Crop,
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MixUp [31], Albu Augmentation [3] and CopyPaste [11]. At inference stage,
they use Soft-NMS [2] and flip augmentation to further enhance the results.
An overview of the proposed pipeline is illustrated in Figure E.5. They also
reported to have not addressed well the long-tail problem caused by the ex-
treme sparsity of the bicycle and motorcycle categories, which resulted in low
mAP for these two categories.

Input image

Backbone 1 Backbone 2

Neck

Head 2

Head 1

𝐿𝑜𝑠𝑠!"#$

Neck

𝐿𝑜𝑠𝑠%&&'&(

× 3

Detection head

CBNetv2 with Swin Transformer Swin FPN Cascade Detection Head

Fig. E.5: Top-2 winning solution pipeline: Team heboyong.

4.4 What challenge the models the most?
In this section we analyze the performance of the baseline, Team GroundTruths
and Team heboyongs models on the test set. Particularly, we inspect the per-
formance of each model with regards to temperature, humidity object area
and object density. Temperature and humidity are chosen as they were dis-
covered that these two factors have the highest correlation with visual concept
drift [21]. Additionally, because of the uneven distribution of object densities
across dataset, the impact of the object density is also investigated.

Impact of temperature.

can be observed in Figure E.6, as the temperature increases the performance
of the model degrades. This is expected as the available training data has been
picked from the coldest month and as such warmer scenes are not properly
represented in the training data, and as mentioned in 3 this is deliberately done
as temperature is one of the most impactfull factors of concept drift in thermal
images [21]. The performance of the baseline model shows severe degradation
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when compared to the winner and Team heboyong, while the performance
consistently degrades for all models. Interestingly, Team heboyong method is
distinctly more sensitive to concept drift with the smaller training set, while
the winning solutions seems to perform consistently regardless of the amount
of data trained on.

Impact of humidity.

According to the initial paper [21], humidity is one of the most impactfull
factors of concept drift, as it tends to correlate positively with the different
types of weather. This leads to a quite interesting observation, which can
be made across all tracks with regards to the impact of humidity. As can be
observed in Figure E.7, the mAP of detectors increases with the humidity across
all tracks. This could be because higher humidity tends to correlate with the
level of rain-clouds, which would explain partially cloudy being more difficult
for the detectors as the visual appearance in the image is less uniform.

Impact of object size.

As would be expected the models converge towards fitting bounding-boxes to
the most dominant object size of the training data (see Table E.1). As shown in
Figure E.8, the models obtain very good performance on the most common of
object sizes and struggle with objects as they increase in size and rarity. In this
case the participants see strong improvement over baseline, and also manage
to become more robust towards rarer cases. As can also be observed in the
figure this problem is increasingly alleviated with the increase of training data.

Impact of object density.

As shown in Figure E.2, the density of objects for the majority of the images
is towards the lower end, as such one would expect the detectors’ mAP to
degrade when a scene becomes more crowded and the individual objects
become more difficult to detect due to occlusions. However what is observed
is the mAP of highlighted methods are consistent as density increases, while
the performance across densities also correlate to the amount of training data.
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(a) Track 1: Day (b) Track 2: Week (c) Track 3: Month

Fig. E.6: Overview of performance with samples separated with regards to the temperature
recorded for the given frame.

(a) Track 1: Day (b) Track 2: Week (c) Track 3: Month

Fig. E.7: Overview of performance with samples separated with regards to the humidity recorded
for the given frame.

(a) Track 1: Day (b) Track 2: Week (c) Track 3: Month

Fig. E.8: Overview of performance with samples separated with regards the size of objects
bounding-box

(a) Track 1: Day (b) Track 2: Week (c) Track 3: Month

Fig. E.9: Overview of performance with samples separated with regards to the object density of
the frame
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5 Conclusions

The Seasons in Drift challenge attracted over 180 participants whom made 480
submissions during validation and 211 submissions for test set and a potential
place on the finale leaderboard. While the concept of measuring the impact
of thermal drift on detection performance in a security monitoring context is a
very understudied field, a lot of people participated. Many of the participants
managed to beat the proposed baseline by quite a large margin, especially with
limited training data, and achieved more robust solutions when compared to
the degradation of the baseline in terms of performance with respect to drift.
Allthough great improvements can be observed, the problem of concept drift
still negatively affects the performance of participating methods. Interestingly
while the winner and Team heboyong methods use different architectures, the
impact of concept drift seems to transcend the choice of SotA object detectors.
This lends merit investigating methods that could condition layers of the net-
work given the input image, and introduce a venue for the model to learn an
adaptable approach as opposed to learning a generalized model specific to the
thermal conditions of the training context. As can be observed in Figures E.8
and E.9 the size of the observed objects seem to be a more challenging factor
than the density of which they occour in. Detection of small objects is a known
and well documented problem, and despite the nature of thermal cameras,
still persist as an issue in the thermal domain. Further research could be done
to learn more scale invariant object detectors or rely entirely on other methods
than an RPN or Anchors to produce object proposals.
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1. Introduction

1 Introduction

Deploying thermal image-recognition deep-learning models for long-term
analysis of a scene becomes increasingly difficult over time due to concept-
drift. Not only does the visual signature of the scene and objects within it
change with seasons, but it also changes significantly between day and night.
Concept drift is an increasingly researched topic [24, 32], which has focused on
identifying distinct concept-drift factors, or assume the presence of distinct dis-
tributions. Evaluating and designing methods to combat distinct concept-drift
or domain-adaptation is a vital component when deploying computer vision
systems in real-world environments. Traditional evaluation methods do not
provide accurate description of the impact concept drift has on performance
during long-term deployments [32]. Changes in contextual parameters, such
as weather conditions, can be somewhat related to the degradation of per-
formance observed with long-term concept drift [32]. For object detection
the degradation in performance with relation to temperature and humidity
is statistically significant [32]. As these signals are somewhat correlated with
change in visual appearance of captured thermal footage, they could be lever-
aged to guide the model towards learning weather-aware or weather-agnostic
representations.

Multi-task learning has become an increasingly popular method for learn-
ing generalized image-recognition models [3, 19–21, 24, 33], however mostly
focus on using auxiliary branches that are somewhat task-adjacent, where an
intuitive connection can be drawn. While each task contributes to shaping
the latent-representation to a more generalized representation, which often
increases performance for all tasks [20, 33]. Given that the signals induced
by the auxiliary tasks are beneficial to achieve a more robust representation,
similar approaches could be leveraged to extract and induce a contextually
aware signal through auxiliary conditioning.

1.1 Estimating weather
Directly leveraging weather information would require a vision system to
directly infer weather conditions from the captured data [2, 7]. By treating it
as a classification problem deep learning methods have shown great promise
at classifying categories of weather [2, 6, 7]. This shows a weather signal can be
somewhat extracted from single-images and categorized into distinct classes.
Most weather classification approaches focus on binary classification of distinct
weather conditions (i.e. cloudy, sunny, raining, etc.) and lack the granularity
observed during long-term deployment. To address this datasets like RFS [16]
and MWD [29] propose treating it as a multi-label classification problem to
capture the ambiguity between different weather phenomenons and transitive
weather conditions [16, 29]. When estimating weather conditions from a single
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image, all regions are not created equal [15, 29], thus some methods isolate
predetermined regions, such as the sky [2, 45], or leverage region-proposal
networks [15, 29], to extract region specific features.

1.2 Adapting to weather
Adverse weather conditions, particularly those which are not present in the
training dataset, present a real challenge for performance of deployed com-
puter vision systems which exposed to the weather. Typically approaches to
concept drift relies on detecting drift, and then adapting accordingly [12, 31].
With deep-learning based approaches this typically means a general system
will be trained to establish a baseline, then subsequently be exposed to unseen
data. Depending on the task, an evaluation metric will be used as a method
to detect drift [44]. When adapting to weather related drift, some have tried
to remove the distracting elements directly [1, 5, 28, 41, 42], train weather-
agnostic models by simulating various weather conditions and including that
in the training loop if possible [17, 27, 34, 39] or train several models in an
ensemble and leveraging a weighted approach to determine the final predic-
tion [13, 25, 37, 40]. Moreover, in situations where an unsatisfactory amount
of variation can be captured in the training data; continual-learning [8, 31]
or domain-adaptation [12, 31] approaches are often leveraged in an attempt to
obtain consistent performance as the visual appearance of the context changes.

1.3 Leveraging metadata for recognition
In recent years, including auxiliary optimization tasks have shown to greatly
improve the performance of the down-stream task, whether used as a pre-text
task (as often seen with vision transformers [4, 10, 18, 30]), or jointly optimized
with the down-stream task [11, 38]. Using auxiliary tasks to guide a primary
tasks by introducing aspects that cannot be properly captured in the down-
stream task’s optimization objective, have shown great promise in improving
the performance and generalization of a downstream task [24]. Dependant
on the model-architecture and desired purpose of this weather-conditioned
representation, it can be leveraged as a constraining parameter which enforces
the inclusion of the auxiliary representation directly [24], thereby forcing the
network to adjust to be aware of the contextual information induced. Alter-
natively the auxiliary representation could be seen as purely supplemental
information, which potentially consists of redundant elements and as such
should only be leveraged to indirectly guide the network.
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1.4 Qualitative vs. Quantitative thermal cameras
Thermal cameras work by capturing the amount of infrared radiation object
within the scene emit. Though they all aim to capture the same type of in-
formation (namely heat), there is two types of thermal cameras. Firstly is
qualitative-thermography (sometimes refered to as relative thermal imaging),
where the goal is to show the relative differences of infra-red radiation though-
out in the cameras field of view. Often used for for inspection and security
purposes as they often provide distinct contrast between colder and hotter
elements in the field of view regardless of absolute temperature. Secondly is
quantitative-thermography (sometimes refered to as absolute thermal imag-
ing), where each sampling point in the field of view is mapped to an absolute
temperature measurement. Enabling accurate capture of absolute thermal
differences between elements in the scene, and consistent visual response for
any thermal signature. In recent years the advances in thermal imaging tech-
nology have made the use of thermal cameras increasingly popular, either in
isolation or in conjunction with traditional CCTV-cameras. Quantitative ther-
mal cameras could be seen as the ideal solution as they provide essentially
the same functionality as qualitative thermal cameras, but with the added
benefit of accurate thermal readings. The technology required to construct an
absolute-thermograph is significantly more complicated than that of a relative-
thermograph and as such are much more costly to produce and purchase. For
the purpose of many tasks the absolute temperature readings are redundant
for the purpose of the thermal camera, and as such do not justify the cost, thus
making qualitative thermal cameras much more commmon in deployed vision
systems.

In this paper we will detail a methodology of predicting continuous weather-
related meta-variables and provide an overview of the Long-Term Drift (LTD)
which contains both object-centric annotations as well as fine-grained weather
information for each sample. Further methods decribing how fine-grained
weather prediction can be leveraged to condition the network during training
to guide the network to become weather-aware. Particularly this will be di-
vided into direct- and indirect-conditioning methods. Lastly this is followed by
a discussion of extensive experiments, evaluating the impact of the aforemen-
tioned methodology (conditioned on Temperature, Humidity, Time-of-Day),
and the impact on performance metrics with respect to the respective weather-
conditions. While analysis does not show a direct improvement in accuracy
metrics, the analysis shows that auxiliary conditioning in this way does allow
the networks to extract and somewhat model the underlying weather signal.
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2 Methodology

While more fluid prediction schemes have become available for weather es-
timation, prediction of weather conditions in literature is still predominantly
done in a binary scheme. Using a binary scheme as a conditioning method,
implies the assumption that there is a fixed amount of distribution to model.
In an uncontrolled environment this is a potentially adverse assumption as un-
known variables could induce noise to the signal that would make difficult to
distinguish ground-truth close to the bin edges [14, 36]. This is potentially fur-
ther exacerbated when processing thermal video from cameras with an relative
internal thermograph. As detailed in Appendix 1.4, the prevalence of relative
thermal cameras makes it a promising modality to investigate, particularly for
a real-world context.

To our knowledge the only existing work that performs auxiliary condition-
ing for task-specific improvements is presented in [24]. They leverage a direct-
conditioning approach (detailed in Appendix 2.3) on the KAIST Multispectral
Pedestrian Detection (KAIST) dataset and manage to achieve a decrease in
Miss-Rate (MR). However the KAIST dataset contains thermal images from an
absolute thermal camera, resulting in a fairly similar thermal signature from
pedestrians (as seen in Figure F.1).

In this section we will detail an overview of the object-centric annotations
of the LTD-Dataset and the associated meta-data. Furthermore it will be
described how the method proposed in [24] can be adapted for prediction
of a continuous auxiliary variable. Finally, we detail the architecture of a
direct-conditioning approach (similar to [24]) as well as a indirect-conditioning
approach using an State-of-the-Art (SotA) transformer-based model.

2.1 Dataset
In the original LTD dataset benchmark [32] and the subsequent challenge [23]
the performance impact concept-drift has on object detector is correlated be-
tween the absolute change in mean Average Precission (mAP) across different
concept-drift related meta variables (most notably: temperature, humidity,
time of day). Subsequently the dataset has been extended with additional
object-centric annotations. The dataset was uniformly sampled with a .5 frames
per second sample-rate, resulting in over 900.000 images with over 6.000.000
annotated objects.

As can be seen in Figure F.2, the thermal signature of people varies signifi-
cantly more in the LTD dataset, however that also results in contrast between
objects and background varies significantly more.

The objects fall are represented as four classes, namely; person, bicycle, mo-
torcycle and vehicle. The LTD dataset is captured in real-world unconstrained
context, and thus i susceptible to associated bias’, such as: skewed object
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(a) Day (b) Night

(c) Day (d) Night

Fig. F.1: Examples of thermal images in the KAIST dataset. Where a similar thermal signature of
people can be observed at different times of the day, due to the use of quantitative-thermography
as well as the limited periods of captured data.

distribution (As seen in Figure F.3a), frames without objects of interest, highly-
varied object densities and uneven distribution of weather conditions (As seen
in Figures F.4a to F.4c). Furthermore sizes of objects are also affected by the
camera being suspended 6 meters above the ground and aimed downwards,
resulting in most objects being small (As seen in Figure F.3b and appendix 5).
However this is what what could be expected for deployment in a real-world
security context.

Furthermore as shown in Figure F.3b while each class has its own unique
distribution, the distributions predominantly contain very small objects, with
an exception of the vehicle class. This means adds an additional degree of
difficulty as most object detectors tend to struggle with smaller objects [4, 26,
35]. Additionally a heatmap with absolute counts of object sizes can be found
on Appendix 5.
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(a) Day (b) Night

(c) Day (d) Night

Fig. F.2: Examples of images with people from the LTD Dataset. Where drastically different
thermal signatures for objects can be observed, due to the use of qualitative-thermography, as well
as the dataset spanning 9 different months.

2.2 From discrete to continuous meta-prediction
In the KAIST dataset [22], the data falls into two distinct categories, daytime
and nighttime, however for real-world deployment the system would observ-
ing a gradual change between daytime and nighttime which is not accurately
represented by a binary grouping. However in the LTD dataset [32] each clip
has an extensive highly granular set of meta-data. This allows us to evaluate
the impact of auxiliary task-conditioning in a real-world with more diverse
samples.

In [24] they propose guiding the conditioning branch with a binary clas-
sification head (Classifying day or night). However, to perform fine-grained
continuous weather prediction, the the auxiliary optimization task and loss
must be adjusted accordingly. The problem with binary classification is that
it treats all false positives equally, regardless of the magnitude of the error.
For continuous classifications however, a severity of the miss-classification can
be assessed by determining the absolute difference between the prediction
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(a) (b)

Fig. F.3: On F.3a the total amount of instances from each of the given classes can be observed,
while on F.3b the mean object size can be seen as a dot with additional rings drawn at 1, 2 standard
deviations respectively

(a) (b) (c)

Fig. F.4: Histograms showing the distribution of meta-variables across the entire dataset

and the ground-truth. Naively an 𝐿1-loss can be used to punish/reward the
network based on the absolute distance difference. However due to the data
being captured by a relative thermal camera, identical visual appearance can-
not be guaranteed between calibrations. During capture of the data for the LTD
dataset the camera would routinely undergo automatic calibration, resulting
in an inconsistent profile over time. This induces a noise signal which could
result in the optimization converging towards a global mean rather than an
acceptable guess. We combat this by employing an exponential L1 tuned to
allow a pre-determined degree of deviation before approaching the values of
the primary task loss or losses.

𝐿1𝑒(𝑥, 𝑦) ≡ 𝐿 ≡ {𝑙1 , ..., 𝑙𝑁 }, 𝑙𝑛 ≡ |𝑥𝑛 − 𝑦𝑛 |
𝑘

|𝑥𝑛−𝑦𝑛 | (F.1)

The exponent of the equation is conditioned on the difference between a de-
sired When establishing baseline performance for each model, the minimum,
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maximum and standard deviation of the primary loss was noted down for
the finale epoch. A corresponding 𝑘 was then was selected would approach
the expected loss values of the primary task the the border of the desired
deviation, the resulting weighting of the auxiliary in the optimization process
would be approximately equal to that of the primary task, while exponentially
increasing when deviating further from the allowed 𝑘

Due to the thermal images of the LTD dataset being recorded with a relative
thermal camera, visual appearance of a scene might be slightly different, even
similar meta-conditions. Thus predicting exact values from visual data would
be an ill-posed problem, as any given state inherits some degree of variance
from the calibration of the relative thermograph.

2.3 Directly conditioning
In [24] they propose a method of directly conditioning the latent representation
of each predictive branches through a conditioning layer. The conditioning
element is a part of an auxiliary classification network, which is aimed at
predicting whether the given sample belongs to the day-time distribution or
the night-time distribution. The latent representation used for this auxiliary
prediction is derived from an intermediate representation of the entire image.
Thus the representation must be able extract a notion of day and night, which
can make the network ’aware’ and leverage accordingly.

(a) YOLOv5 with conditioning branch
(b) Condition-
ing layer

Fig. F.5: YOLO-styled direct-conditioning network. (Figure F.5) and internals of conditioning
layer (Appendix 2.3). Red, blue, green, and yellow denote the auxiliary branch-, conditioning
layer-, conditioning layer, feed-forward network, and pooling layers respectively.

In the proposed method, the overall mAP, does not improve significantly
at higher Intersection over Union (IoU)s, however the weather-conditioned
network shows reduction in object MR. By directly conditioning the interme-
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diate representation the network is forced directly incorporate the weather
information in its semantically rich representation. We employ the original
implementation on the YOLOv5 model. As shown in Figure F.5a the standard
YOLO architecture is extended with an auxiliary branch, extracted from one of
the early stages of the feature extractor, a series of fully connected layers con-
dense the representation which is then fed to a prediction head which predicts
a single value which is regressed following the exponential L1 loss described
in Appendix 2.2. Individual fully-connected layers feed the representation to
the conditioning layer in the different stages of the network, prior to the given
stage’ prediction head. The conditioning layer (shown in Appendix 2.3), takes
in the a set of feature-maps and perform an element-wise multiplication and
summation with separated auxiliary representations 𝛼𝑛 and 𝛽𝑛 respectively.

2.4 Indirectly imposed conditioning
With the recent rise of vision-transformers and their popularity’s, they have
proven to effectively leverage global reasoning to solve various vision tasks.
By calculating an all to all affinity mapping, known as self-attention, between
input elements, known as tokens, transformers can effectively relate elements,
even when they belong to separate modalities. For classification this is often
employed with an additional learnable element, said element is then mapped
to an prediction head. The repeated self-attention allows the classification
token to extract information from the entire input without directly imposing
changes to other inter-token relationships. DETR [4, 26, 46] is a common state-
of-the-art transformer-based object detector, and subsequent variants have
shown to greatly improve convergence and stability of optimization [26, 46].
By extending the deformable-DETR [46] with a learnable classification token
and using the encoding of the classification token to perform prediction of the
auxiliary task, namely weather condition prediction. While the optimization
could potentially drive the transformer to learn embeddings that are optimized
towards affinity with the classification token, the network should be able to dis-
regard weather related embeddings in cases where weather does not provide
any significant optimization benefit. Unlike the directly-imposed approach
the network could learn to dynamically disregard regions of the image that do
not provide contextual information.

Inspired by the use of a [CLS] token in the original BERT [9] paper, we
include an additional token with every input sample which is propagated
through every encoder layer of the transformer. This way global information
from a given sample can be continuously aggregated in a single representation.
Prior to reaching the decoder layers, the [CLS] token is seperated and passed
to an auxiliary branch (as seen in Figure F.6). The auxiliary branch consists of
a series of fully connected layers (sizes; 512, 512, 1) acting as a mapping from
weather token to a single value which can be regressed.
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Fig. F.6: DETR-style transformer network with indirect conditioning. Red, light-red, blue, green,
and yellow denote the weather-token, auxiliary branch-, feed-forward network, and embedding
layers respectively

3 Results

3.1 Experimental setting
To achieve the performance capabilities described in their respective papers
and implementations. Since none of the models contained a thermal variant,
they were all trained from scratch which required increased training time
in order to expect convergence, as "standard" configurations implemented
loading an image-net pretrained feature extraction network. As such we set the
maximum allowed epochs to 250 for all models. The batch-size for all models
were also set comparatively to 8 per GPU, resulting in N total iterations. All
models were trained with the same pytorch environment (torch 1.7, torchvision
0.8.1) on two Nvidia RTX 3090 cards. Class-wise losses were weighted to reflect
the frequency of each class in their respective subsets. The complete dataset
was split into 3 roughly equal parts, where two were employed for training and
validation, and the third test set remains hidden to allow for future challenges
similar to [23]. Further information data availability is described in the ’Data
Availability section at the end of the paper.

3.2 Evaluating weather conditioning
Due to the auxiliary branch being trained in a supervised manner, it has to
be exposed to the variaty observed in the training set, as such all clips in the
dataset was evenly distributed amongst an equally sized training-, test- and
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validation-set. Because this potentially allows a naive approach to generalize
easily due to the inclusive of the full variation present in the dataset, the
proposed method is compared to an equally trained naive approach, without
the auxiliary meta-prediction branch.

To evaluate the potential impact of each of the three meta-conditions
(namely; Temperature, humidity and time of day) and the potential improve-
ment, each model was trained naively (i.e. training loop described in the
respective paper) as well as with the auxiliary conditioning branch (direct-
and indirect- conditioning for YOLO- and DETR-variants respectively). To al-
low for fair optimization each model is trained for the same amount of epochs
as their respective baseline.

Likewise we observe the performance when compared to temperature and
object size to investigate if any categories potentially suffer in order to reach a
more general improvement of the system. While these correlations might not
be intuitively tied to weather, the latent representation learned could inadver-
tently favor certain aspects of the object distributions.

Because conditions are quantified using different metrics the groundtruth
ranges vary significantly. To normalize their representation the values are be-
ing remapped so that the observed values fall roughly within the range [−2, 2].
This range is chosen to avoid the network having to also learn a mapping be-
tween arbitrary ranges, while keeping in line with the normalization done
internally in the networks, which is done to avoid unstable variances in the
activations [4, 10, 35].

3.3 Accuracy
Table F.1 details the overall mAP and MR for all of their models across val-
idation set. This is used as a metric of overall object detection performance
similarly to what is commonly done for other object detection datasets, and to
retain a fair comparison with the original LTD dataset evaluation [32]. Addi-
tionally Table F.2 details the mean Average Error (mAE) of auxiliary prediction
branch, as well as the Standard Deviation (St.Dev.) of the the prediction error.
This is listed to provide insight into the performance of the auxiliary branch.

As can be seen in Table F.1 the baseline models which are naively trained
without any auxiliary guidance tend to perform better on primary task met-
rics (mAP), however weather-conditioned variants (particularly temperature
variants) display reduced miss-rates, indicating that while their accuracy is
generally lower, they recognize more objects than the baseline-counterpart.

3.4 Accuracy compared to weather
To evaluate the impact of the conditioning branch on the performance with
respect to the different weather conditions used for auxiliary prediction and
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Model 𝑚𝐴𝑃𝑣𝑜𝑐 𝑚𝐴𝑃𝑐𝑜𝑐𝑜 𝑚𝐴𝑃𝐿 𝑚𝐴𝑃𝑀 𝑚𝐴𝑃𝑆 MR
YOLOv5 (Baseline) 0.604 0.465 0.825 0.640 0.491 0.342
YOLOv5 (Pretrain) 0.600 0.454 0.831 0.621 0.489 0.324
YOLOv5 (Temp.) 0.584 0.410 0.796 0.590 0.468 0.322
YOLOv5 (Hum.) 0.493 0.293 0.675 0.560 0.268 0.357
YOLOv5 (ToD) 0.549 0.439 0.805 0.566 0.431 0.356
DN-DETR Baseline 0.378 0.348 0.123 0.344 0.563 0.481
DN-DETR (Temp.) 0.225 0.148 0.100 0.190 0.682 0.389
DN-DETR (Hum.) 0.191 0.132 0.100 0.160 0.671 0.415
DN-DETR (ToD) 0.219 0.142 0.00 0.169 0.661 0.410
Def. DETR Baseline 0.332 0.202 0.005 0.051 0.637 0.383
Def. DETR (Temp.) 0.297 0.184 0.001 0.045 0.620 0.351
Def. DETR (Hum.) 0.213 0.114 0.000 0.020 0.517 0.416
Def. DETR (ToD) 0.289 0.178 0.001 0.040 0.619 0.395

Table F.1: In this table the mean Average Precission (mAP), and Miss-Rate (MR) of direct-
(YOLOv5) and indirect-conditioning (DETR) variants are detailed. Highlighted with bold is the
best performing across all models and highlighted with underline is the best performing model
for a given architecture. 𝑚𝐴𝑃𝑉𝑂𝐶 denotes mAP where IoU is atleast 0.5, 𝑚𝐴𝑃𝐶𝑂𝐶𝑂 denotes mAP
at varying IoUs (i.e. {0.50, 0.55, 0.60, . . . , 0.95}). 𝑚𝐴𝑃𝐿, 𝑚𝐴𝑃𝑀 and 𝑚𝐴𝑃𝑆 denote mAP of objects
with {𝑎𝑟𝑒𝑎 < 322, 𝑎𝑟𝑒𝑎 > 322 < 962 and 𝑎𝑟𝑒𝑎 > 962} respectively.

optimization, Figures F.9 to F.11 detail the the relation between mAP and the
three meta-variables chosen, (namely Temperature, Humidity and time of day).
Visual examples to accompany the accuracy overview of Tables F.1 and F.2,
can be seen in Figures F.7 and F.8 (Ground truth labels and the image without
bounding boxes can be found Figure 12), while visualizations of accuracy with
respect to the different weather variables can be seen in Figures F.9 to F.11.
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(a) Baseline (b) Temperature

(c) Humidity (d) Time of Day

Fig. F.7: Example of Direct-Conditioning performance for each conditioned model. Bounding
boxes marked in green, red, yellow are considered True Positives, False Positives, and False
Negatives respectively.

Model MAE Std.

𝐷
𝑖𝑟
.

Temperature 7.1 3.7
Humidity 18.9 9.4
Time of Day 7.3 7.1

𝐼𝑛
𝑑
𝑖𝑟
. Temperature 5.1 2.9

Humidity 15.3 8.9
Time of Day 8.3 7.9

Table F.2: Accuracy of the predicted aux-
iliary prediction value, 𝐷𝑖𝑟. and 𝐼𝑛𝑑𝑖𝑟. de-
notes the direct- and indirect-conditioning
models respectively, while the model row
denotes the variant used.

In Figure F.9 it can be observed that
training models with an temperature-
focused auxiliary branch, does not
change the performance of said model
in any significant way (other than gen-
erally lowered mAP). It can be seen that
all models follow a curve that is simi-
lar to the distribution of samples seen in
Figure F.4b, it can be expected that this
is happening as the models optimiza-
tion is simpler when regressing to the
mean of the dataset. In addition it can be
observed that the indirect-conditioning
method is generally more agnostic to
variation in the meta variable. Similarly to the temperature focused auxiliary
branch, humidity- and time-of-day-conditioning does not seem to improve
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(a) Baseline (b) Temperature

(c) Humidity (d) Time of Day

Fig. F.8: Example of Indirect-Conditioning performance for each conditioned model. Bounding
boxes marked in green, red, yellow are considered True Positives, False Positives, and False
Negatives respectively.

overall performance of the models. However interestingly the models seem
to be generally agnostic to the distribution of samples (shown in Figures F.4a
and F.4c). This indicates that the model has trouble extracting meaningful in-
formation with regards to the auxiliary optimization task. This is also present
in Table F.2 where it can be seen that the networks have difficulty with ac-
curately predicting their respective weather condition (specifically humidity
and time-of-day), whereas temperature prediction is rather accurate, and falls
close to the acceptable deviation of the 𝐿1𝑒 loss.
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(a) (b)

Fig. F.9: Accuracy of models with regards to temperature

(a) (b)

Fig. F.10: Accuracy of models with regards to humidity

(a) (b)

Fig. F.11: Accuracy of models with regards to the time of day
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4 Discussion

While previous work have shown that not only is a traditional Convolutional
Neural Network (CNN) able to predict weather categories, which in some con-
texts can help guide the network to be somewhat aware of the distribution a
given sample belongs to and adjust accordingly. While this has not shown to
increase the accuracy in terms of mAP, it has been shown to decrease false neg-
ative predictions. For thermal images with significant concept drift, whether
be continual or cyclical, could leave in artifacts which would look appropriate
for a given object in one distribution however would be a undesired for an-
other. Intuitively during training the model would either adjust to over-predict
(i.e. increased false positives), or under-predict (i.e. increased false negatives)
when concept drift is occurs. Essentially the model is tasked with learning
an unknown set of distributions, and optimize toward learning to recognize
patterns common to the mean of the cumulative distribution. Therefore one
could hypothesise that guiding the network towards being aware of a variable
correlated with the observed concept drift would allow the network to poten-
tially establish connections between the conditioning representation and the
semantic representation used for object prediction.

While it can be observed in Table F.1, the mAP scores do not improve over
baseline when conditioned with the auxiliary branch, however the change in
MR indicates that the auxiliary branch is enforcing a signal it relates to the
auxiliary task. Particularly the temperature conditioned variant manages to
detect objects which the baseline fails to detect, however the weather con-
ditioned method also produces an increase in false-positives. Because the
visual appearance changes are gradual resulting in a lower accuracy, poten-
tially the weather conditioned learns a more varied representation of given
objects which allows it to detect more objects at the cost of false activation’s
in other places. Additionally one thing that can be observed (in Figure F.9
is that the transformer-based model performs significantly more uniformly
across across temperatures, however it is not certain that this is entirely an
aspect of the auxiliary predictive branch, or the nature of transformers input
dependant attention. Another surprising detail can be found in Table F.1,
which shows the DETR-variants in general seem to work really well on small
objects which is counter to what is observed in the original and subsequent
papers [4, 26, 46]. Intuitively it could be reasoned that the reason for that
partially lies in the decoder module, which has a fixed amount of learn-able
query tokens, which naturally would converge towards spatial and latent fea-
tures that are the most prominent, i.e. the person class. Initially an experiment
was conducted with regards to the amount of queries to produce, and while
increasing them drastically(300->600) would improve performance by 0.3%,
however the performance would increase significantly as well. The increased
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amount of query tokens could have been kept as a baseline. However, for the
sake of keeping baseline models (i.e. YOLOv5 and Deformable DETR) some-
what comparable with other work, the hyperparameters described in their
respective repository and paper was kept.

In previous work, namely [24], evaluated performance on a dataset which
had two distinct thermal distributions (day and night clips). Our approach
assumed that a more continual representation could be learned, however per-
haps this cannot be learned fully without an additional proxy that enforces a
strict set of conditions forcing formation of distinct distributions.

The appearance shift induced when the thermal camera calibrates to adjust
the internal thermograph, perhaps induces a noise into the signal making it dif-
ficult to learn a robust approximation of the signal. It could be the visual noise
induced partially obfuscates clear delineations between visual groups of visu-
ally similar samples, resulting in a regression to the mean being the simplest
convergence or perhaps the optimal solution for the downstream task. In such
a situation naively training without the auxiliary branch would be the optimal
solution if the goal is simply to optimize accuracy. While the auxiliary task
does seem to induce noise, both methods (direct- and indirect-conditioning)
seem to seem to also somewhat guide the network towards containing a more
continual representation, as seen by the reduction in MR. Perhaps trying to
constructing distributions as a series of 𝑘 overlapping distributions, and lever-
aging a model-soup style approach [43] could provide a more distinct learning
of each sub-distribution while still achieving a generalized model of all distri-
butions.

An alternative solution to the regression approach could be a smooth clas-
sification approach, where the prediction is considered a smooth positive if
it predicts a value within a pre-determined bin-size for each ground-truth
number.

5 Conclusion

Thermal concept drift poses a challenging hurdle to overcome when deploy-
ing object recognition tasks. Drawing from contextual clues that impact the
visual appearance of the scene. Using auxiliary metrics to condition a network
directly or indirectly, does not seem to improve the overall performance of
the system with regards to mAP, however it does result in a consistent de-
crease in MR. While not resulting in a direct improvement this shows that a
signal can be extracted from the conditioning meta-variable, which can guide
the representations learned. The difficulty in accurately modelling the objects
across thermal signatures seems to similarly to a naively trained baseline pre-
fer representations that favor the most frequent representations, and as such
could be simply seen as a regression to the mean, however due to the networks
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consistently being able to extract a signal related to the auxiliary task, it could
imply that deliberately splitting the data into a set of 𝐾 distributions based
on a combination of meta variables or visual appearance could provide more
stable guidance.

Appendix

Additional Dataset Figures

(a) (b)

Fig. 12: The example image used in Figures F.7 and F.8 without without bounding
boxes(Figure 12a) and with bounding boxes(Figure 12b). In Figure F.7 green, yellow and red
refer to person, bicycle and vehicle classes respectively
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(a) Object Size heatmap for the person class (b) Object Size heatmap for the bicycle class

(c) Object Size heatmap for the motorcycle class (d) Object Size heatmap for the vehicle class

Fig. 13: Figures 13a to 13d show a detailed heatmap of the object size distributions for each class
individually
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(a) Object Size heatmap for the person class (b) Object Size heatmap for the bicycle class

(c) Object Size heatmap for the motorcycle class (d) Object Size heatmap for the vehicle class

Fig. 14: Histograms of training datasplit

278



5. Conclusion

(a) Object Size heatmap for the person class (b) Object Size heatmap for the bicycle class

(c) Object Size heatmap for the motorcycle class (d) Object Size heatmap for the vehicle class

Fig. 15: Histograms of Valid datasplit
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