7 research outputs found

    A novel band selection and spatial noise reduction method for hyperspectral image classification.

    Get PDF
    As an essential reprocessing method, dimensionality reduction (DR) can reduce the data redundancy and improve the performance of hyperspectral image (HSI) classification. A novel unsupervised DR framework with feature interpretability, which integrates both band selection (BS) and spatial noise reduction method, is proposed to extract low-dimensional spectral-spatial features of HSI. We proposed a new Neighboring band Grouping and Normalized Matching Filter (NGNMF) for BS, which can reduce the data dimension whilst preserve the corresponding spectral information. An enhanced 2-D singular spectrum analysis (E2DSSA) method is also proposed to extract the spatial context and structural information from each selected band, aiming to decrease the intra-class variability and reduce the effect of noise in the spatial domain. The support vector machine (SVM) classifier is used to evaluate the effectiveness of the extracted spectral-spatial low-dimensional features. Experimental results on three publicly available HSI datasets have fully demonstrated the efficacy of the proposed NGNMF-E2DSSA method, which has surpassed a number of state-of-the-art DR methods

    Scalable and Compact 3D Action Recognition with Approximated RBF Kernel Machines

    Get PDF
    Despite the recent deep learning (DL) revolution, kernel machines still remain powerful methods for action recognition. DL has brought the use of large datasets and this is typically a problem for kernel approaches, which are not scaling up eciently due to kernel Gram matrices. Nevertheless, kernel methods are still attractive and more generally applicable since they can equally manage dierent sizes of the datasets, also in cases where DL techniques show some limitations. This work investigates these issues by proposing an explicit ap- proximated representation that, together with a linear model, is an equivalent, yet scalable, implementation of a kernel machine. Our approximation is directly inspired by the exact feature map that is induced by an RBF Gaussian kernel but, unlike the latter, it is nite dimensional and very compact. We justify the soundness of our idea with a theoretical analysis which proves the unbiasedness of the approximation, and provides a vanishing bound for its variance, which is shown to decrease much rapidly than in alternative methods in the literature. In a broad experimental validation, we assess the superiority of our approximation in terms of 1) ease and speed of training, 2) compactness of the model, and 3) improvements with respect to the state-of-the-art performance

    Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images

    Get PDF
    Dimensionality reduction is of high importance in hyperspectral data processing, which can effectively reduce the data redundancy and computation time for improved classification accuracy. Band selection and feature extraction methods are two widely used dimensionality reduction techniques. By integrating the advantages of the band selection and feature extraction, the authors propose a new method for reducing the dimension of hyperspectral image data. First, a new and fast band selection algorithm is proposed for hyperspectral images based on an improved determinantal point process (DPP). To reduce the amount of calculation, the dual-DPP is used for fast sampling representative pixels, followed by k-nearest neighbour-based local processing to explore more spatial information. These representative pixel points are used to construct multiple adjacency matrices to describe the correlation between bands based on mutual information. To further improve the classification accuracy, two-dimensional singular spectrum analysis is used for feature extraction from the selected bands. Experiments show that the proposed method can select a low-redundancy and representative band subset, where both data dimension and computation time can be reduced. Furthermore, it also shows that the proposed dimensionality reduction algorithm outperforms a number of state-of-the-art methods in terms of classification accuracy

    MIMN-DPP: Maximum-information and minimum-noise determinantal point processes for unsupervised hyperspectral band selection

    Get PDF
    Band selection plays an important role in hyperspectral imaging for reducing the data and improving the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. Without the category labels, it is challenging to select an effective and low-redundancy band subset. In this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion and an improved Determinantal Point Processes (DPP). First, to preserve the original information of hyperspectral image, a novel band search criterion is designed for searching the bands with high information entropy and low noise. Unfortunately, finding the optimal solution based on the search criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider the correlation of bands from both original hyperspectral image and its spatial information to construct a double-graph model to describe the relationship between spectral bands. Besides, an improved DPP algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph model. Experiment results on several well-known datasets show that the proposed optical band selection algorithm achieves better performance than many other state-of-the-art methods

    A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization

    Get PDF
    When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provide more details on modeling the physical phenomena occurring on the Earth’s surface. In this article, we introduce a flexible and efficient method based on graph Laplacians for information selection at different levels of data fusion. The proposed approach combines data structure and information content to address the limitations of existing graph-Laplacian-based methods in dealing with heterogeneous datasets. Moreover, it adapts the selection to each homogenous area of the considered images according to their underlying properties. Experimental tests carried out on several multivariate remote sensing datasets show the consistency of the proposed approach

    Mehitamata õhusõiduki rakendamine põllukultuuride saagikuse ja maa harimisviiside tuvastamisel

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Environmental Protection.Väitekiri filosoofiadoktori kraadi taotlemiseks keskkonnakaitse erialal.This thesis aims to examine how machine learning (ML) technologies have aided significant advancements in image analysis in the area of precision agriculture. These multimodal computing technologies extend the use of machine learning to a broader spectrum of data collecting and selection for the advancement of agricultural practices (Nawar et al., 2017) These techniques will assist complicated cropping systems with more informed decisions with less human intervention, and provide a scalable framework for incorporating expert knowledge of the PA system. (Chlingaryan et al., 2018). Complexity, on the other hand, can be seen as a disadvantage in crop trials, as machine learning models require training/testing databases, limited areas with insignificant sampling sizes, time and space-specificity, and environmental factor interventions, all of which complicate parameter selection and make using a single empirical model for an entire region impractical. During the early stages of writing this thesis, we used a relatively traditional machine learning method to address the regression problem of crop yield and biomass prediction [(i.e., random forest regression (RFR), support vector regression (SVR), and artificial neural network (ANN)] to predicted dry matter (DM) yields of red clover. It obtained favourable results, however, the choosing of hyperparameters, the lengthy algorithms selection process, data cleaning, and redundant collinearity issues significantly limited the way of the machine learning application. We will further discuss the recent trend of automated machine learning (AutoML) that has been driving further significant technological innovation in the application of artificial intelligence from its automated algorithm selection and hyperparameter optimization of the deployable pipeline model for unravelling substance problems. However, a present knowledge gap exists in the integration of machine learning (ML) technology with unmanned aerial systems (UAS) and hyperspectral-based imaging data categorization and regression applications. In this thesis, we explored a state-of-the-art (SOTA) and entirely open-source AutoML framework, Auto-sklearn, which was built on one of the most frequently used machine learning systems, Scikit-learn. It was integrated with two unique AutoML visualization tools to examine the recognition and acceptance of multispectral vegetation indices (VI) data collected from UAS and hyperspectral narrow-band VIs across a varied spectrum of agricultural management practices (AMP). These procedures incorporate soil tillage method (STM), cultivation method (CM), and manure application (MA), and are classified as four-crop combination fields (i.e., red clover-grass mixture, spring wheat, pea-oat mixture, and spring barley). Additionally, they have not been thoroughly evaluated and lack characteristics that are accessible in agriculture remote sensing applications. This thesis further explores the existing gaps in the knowledge base for several critical crop categories and cultivation management methods referring to biomass and yield analysis, as well as to gain a better understanding of the potential for remotely sensed solutions to field-based and multifunctional platforms to meet precision agriculture demands. To overcome these knowledge gaps, this research introduces a rapid, non-destructive, and low-cost framework for field-based biomass and grain yield modelling, as well as the identification of agricultural management practices. The results may aid agronomists and farmers in establishing more accurate agricultural methods and in monitoring environmental conditions more effectively.Doktoritöö eesmärk oli uurida, kuidas masinõppe (MÕ) tehnoloogiad võimaldavad edusamme täppispõllumajanduse valdkonna pildianalüüsis. Multimodaalsed arvutustehnoloogiad laiendavad masinõppe kasutamist põllumajanduses andmete kogumisel ja valimisel (Nawar et al., 2017). Selline täpsemal informatsioonil põhinev tehnoloogia võimaldab keerukate viljelussüsteemide puhul teha otsuseid inimese vähema sekkumisega, ja loob skaleeritava raamistiku täppispõllumajanduse jaoks (Chlingaryan et al., 2018). Põllukultuuride katsete korral on komplekssete masinõppemudelite kasutamine keerukas, sest alad on piiratud ning valimi suurus ei ole piisav; vaja on testandmebaase, kindlaid aja- ja ruumitingimusi ning keskkonnategureid. See komplitseerib parameetrite valikut ning muudab ebapraktiliseks ühe empiirilise mudeli kasutamise terves piirkonnas. Siinse uurimuse algetapis rakendati suhteliselt traditsioonilist masinõppemeetodit, et lahendada saagikuse ja biomassi prognoosimise regressiooniprobleem (otsustusmetsa regression, tugivektori regressioon ja tehisnärvivõrk) punase ristiku prognoositava kuivaine saagikuse suhtes. Saadi sobivaid tulemusi, kuid hüperparameetrite valimine, pikk algoritmide valimisprotsess, andmete puhastamine ja kollineaarsusprobleemid takistasid masinõpet oluliselt. Automatiseeritud masinõppe (AMÕ) uusimate suundumustena rakendatakse tehisintellekti, et lahendada põhiprobleemid automatiseeritud algoritmi valiku ja rakendatava pipeline-mudeli hüperparameetrite optimeerimise abil. Seni napib teadmisi MÕ tehnoloogia integreerimiseks mehitamata õhusõidukite ning hüperspektripõhiste pildiandmete kategoriseerimise ja regressioonirakendustega. Väitekirjas uuriti nüüdisaegset ja avatud lähtekoodiga AMÕ tehnoloogiat Auto-sklearn, mis on ühe enimkasutatava masinõppesüsteemi Scikit-learn edasiarendus. Süsteemiga liideti kaks unikaalset AMÕ visualiseerimisrakendust, et uurida mehitamata õhusõidukiga kogutud andmete multispektraalsete taimkatteindeksite ja hüperspektraalsete kitsaribaandmete taimkatteindeksite tuvastamist ja rakendamist põllumajanduses. Neid võtteid kasutatakse mullaharimisel, kultiveerimisel ja sõnnikuga väetamisel nelja kultuuriga põldudel (punase ristiku rohusegu, suvinisu, herne-kaera segu, suvioder). Neid ei ole põhjalikult hinnatud, samuti ei hõlma need omadusi, mida kasutatatakse põllumajanduses kaugseire rakendustes. Uurimus käsitleb biomassi ja saagikuse seni uurimata analüüsivõimalusi oluliste põllukultuuride ja viljelusmeetodite näitel. Hinnatakse ka kaugseirelahenduste potentsiaali põllupõhiste ja multifunktsionaalsete platvormide kasutamisel täppispõllumajanduses. Uurimus tutvustab kiiret, keskkonna suhtes kahjutut ja mõõduka hinnaga tehnoloogiat põllupõhise biomassi ja teraviljasaagi modelleerimiseks, et leida sobiv viljelusviis. Töö tulemused võimaldavad põllumajandustootjatel ja agronoomidel tõhusamalt valida põllundustehnoloogiaid ning arvestada täpsemalt keskkonnatingimustega.Publication of this thesis is supported by the Estonian University of Life Scieces and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund
    corecore