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1. INTRODUCTION

My study began in Estonia in September 2018. Previously, as an 
agronomic in East Asia, the study was focused on the production and 
quality of  rice (Oryza sativa L.), maize (Zea mays L.), and other tropical 
crops. However, the composition of  agricultural activities and species 
in Estonia and other Nordic nations is somewhat different from that 
in Asia. As of  the beginning of  2018, Estonia had not constructed a 
platform for comparing field-based phenotypes or crop breeding using 
the remote sensing (RS) platform. The supply of  agriculture decision 
support systems is important as the precise and efficient interpretation 
of  phenotypic data is crucial to the future development of  precision 
agriculture. As well as enhancing crop fertilization, disease, pest, and 
weed identification in Estonia, all of  which are in their infancy of  
development. The major objective of  this research, from an agricultural 
standpoint, is to aid Estonia’s agricultural research institutions in 
developing a reliable remote-sensed platform and delivering innovative 
real-time analytical methodologies to deal with climate change and food 
scarcity shocks in the future. In 2018, The study began by contacting 
Kuusiku Agricultural Center in Estonia to ascertain which comparison 
tests and crop categories were presently being conducted. According to 
Statistics Estonia of  crop farming area  (Ministry of  Rural Affairs, 2021), 
the top three cultivated areas between 2014 and 2019 were mostly wheat, 
forage crops, and barley. Additionally, the Kuusiku Agricultural Center 
is conducting comparative experiments on these crops. As a result, the 
study concentrated on these critical crops first. Thus, under the major 
axis of  sustainable agriculture development, the relevance of  selecting 
these crop cultivation methods, monitoring techniques, and breeding 
systems are essential.

Legume-based systems, particularly red clover practices, are economically 
appealing to dairy producers in northern Europe and are critical for 
organic systems to compete with more conventional or artificially 
modified systems in terms of  profitability. (Doyle & Topp, 2004). 
For example, in the majority of  Northern Europe’s nations, including 
Estonia, red clover (Trifolium pratense L.) is one of  the dominant 
perennial forage crop legume species (Annicchiarico et al., 2015; 
Bender & Tamm, 2018). Legumes can boost grass pasture production 
by fixing atmospheric nitrogen into the soil through symbiotic rhizobia 
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located in their root nodules (Thilakarathna et al., 2016). The ability 
to fix atmospheric nitrogen makes red clover a suitable rotating crop, 
especially in organic farming systems that do not utilize synthetic 
nitrogen fertilizers (Vleugels et al., 2019). Numerous studies have shown 
that when red clover is seeded in combinations with grass species rather 
than in pure, monocultural stands, it is more effective at growing (Arturi 
et al., 2012; Zarza et al., 2020). On the other hand, according to data 
from the European statistical system – EUROSTAT (The European 
Commission 2017), the total area under cereal cultivation in the eight 
Baltic Sea-bordering European countries (Denmark, Estonia, Finland, 
Germany, Latvia, Lithuania, Poland, and Sweden) was 19 million 
hectares (ha) in 2016, with wheat (Triticum aestivum L.) accounting for 
8 million ha, making it the region’s most significant cereal (Chawade et 
al., 2018). Thus, breeding cultivars with well-characterized physiological 
characteristics and the potential to maximize grain output while allowing 
for modification of  the nitrogen rate and agricultural approaches would 
be advantageous. This would therefore boost the ability to predict real 
nitrogen demand using a variety of  techniques based on grain production 
and quality requirements (Chawade et al., 2018; Muñoz-Huerta et al., 
2013).

As far as was known, trials and phenotyping methodologies, have 
come under greater scrutiny in recent years. One of  the study’s aims 
is to investigate and broaden the monitoring range beyond controlled 
conditions such as laboratories and greenhouses to circumstances 
involving bare soil fields (Araus & Cairns, 2014; G. Yang et al., 2017). 
As an alternative, variety performance trials (VPT) are a randomized 
controlled field-based experimental design used to enhance 
recommendations for environmental management scenarios for variety 
comparison and breeding selection (Laidig et al., 2014; Lollato et al., 
2020). The recognition of  various crop genotypes and their reaction to 
management approaches is a common strategy of  VPT. With increased 
awareness of  environmental preservation and the notion of  sustainable 
agriculture, the applicability of  eco-friendly farming practices such 
as decreased tillage and the use of  a variety of  minerals and organic 
fertilizers is becoming noticeable (Zhu-Barker & Steenwerth, 2018b). 

Regardless of  the weather, soil, or management circumstances in current 
experiments with rigorous model simulation, the sampling and model 
building challenges are increased by landscape variability (Frazier, 2015). 
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and a variety of  patterns of  spatial distribution for geographical objects 
(Ge et al., 2016). To address these issues, remote sensing (RS) technology 
enables the measurement of  biophysical parameters at research places. 
Unmanned Aerial Systems (UA S) equipped with multifunctional 
sensors are regarded as a critical technology for the advancement of  
precision agriculture (PA) (Mulla, 2013) and sustainable smart farming 
(Tripicchio et al., 2015). They are frequently used to monitor cultivated 
areas, offering effi cient solutions for accurate decision support, boosting 
agricultural effi ciency, and profi tability, minimizing environmental 
impact and stimulating future technological innovation (Herwitz et al., 
2004; Mulla, 2013; C. Zhang & Kovacs, 2012a). UAS outfi tted with a 
variety of  unique sensor types have the potential to signifi cantly increase 
the agreement and synergy between imaging and fi eld reference data. 
Additionally, these systems may highlight regional monitoring needs, 
including disease detection, growth observation, yield calculation, 
and weed control (Tsouros et al., 2019; Xiang & Tian, 2011). Figure 1 
illustrates how environmentally friendly sustainable agriculture principles 
work in conjunction with emerging remote sensing technology to affect 
agricultural management, productivity, and decision-making. On the 
other hand, a h igh spectral resolution imaging system (i.e., hyperspectral 
imaging) also creates the opportunity to enable increasingly sophisticated 
agricultural applications. The necessity for research in identifying 
optimum wavebands to predict crop biophysical characteristics is vital 
as hyperspectral remote sensing data becomes ever more available and 
signifi cant (Monteiro et al., 2012; Xavier et al., 2006). 

Figure 1. The application of  remote sensing technologies under the concept of  
sustainable agriculture.
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This thesis aims to examine how machine learning (ML) technologies 
have aided significant advancements in image analysis in the area of  
precision agriculture. These multimodal computing technologies extend 
the use of  machine learning to a broader spectrum of  data collecting 
and selection for the advancement of  agricultural practices (Nawar et al., 
2017) These techniques will assist complicated cropping systems with 
more informed decisions with less human intervention, and provide a 
scalable framework for incorporating expert knowledge of  the precision 
agriculture (PA) system (Chlingaryan et al., 2018). Complexity, on the 
other hand, can be seen as a disadvantage in crop trials, as machine 
learning models require training/testing databases, limited areas with 
insignificant sampling sizes, time and space-specificity, and environmental 
factor interventions, all of  which complicate parameter selection and 
make using a single empirical model for an entire region impractical. 
During the early stages of  writing this thesis, this study used a relatively 
traditional machine learning method to address the regression problem 
of  crop yield and biomass prediction [(i.e., random forest regression 
(RFR), support vector regression (SVR), and artificial neural network 
(ANN)] to predicted dry matter (DM) yields of  red clover. It obtained 
favourable results, however, the selection of  hyperparameters, the 
lengthy algorithms selection process, data cleaning, and redundant 
collinearity issues significantly limited the application of  the machine 
learning techniques.

The thesis discusses the recent trend of  automated machine learning 
(AutoML) that has been driving further significant technological 
innovation in the application of  artificial intelligence from its automated 
algorithm selection and hyperparameter optimization of  the deployable 
pipeline model for unravelling substance problems. However, a present 
knowledge gap exists in the integration of  machine learning (ML) 
technology with UAS-multispectral and airborne-hyperspectral imaging 
data categorization and regression applications. In this thesis, a state-
of-the-art (SOTA) and entirely open-source AutoML framework, Auto-
sklearn was explored, which was built on one of  the most frequently 
used machine learning systems, Scikit-learn. It was integrated with two 
unique AutoML visualization tools to examine the recognition and 
acceptance of  multispectral vegetation indices (VI) data collected from 
UAS-multispectral and airborne-hyperspectral narrow-band VIs across 
a varied spectrum of  agricultural management practices (AMP). These 
procedures incorporate soil tillage method (STM), cultivation method 
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(CM), and manure application (MA), and are classified as four-crop 
combination fields (i.e., red clover-grass mixture, spring wheat, pea-oat 
mixture, and spring barley). Additionally, they have not been thoroughly 
evaluated and lack characteristics that are accessible in agriculture remote 
sensing applications.

The aim of  this thesis is to study existing gaps in the knowledge 
base for several critical crop categories and cultivation management 
methods referring to biomass and yield analysis, as well as to gain a 
better understanding of  the potential for remotely sensed solutions to 
field-based and multifunctional platforms to meet precision agriculture 
demands. To overcome these knowledge gaps, this research introduces a 
rapid, non-destructive, and low-cost framework for field-based biomass 
and grain yield modelling, as well as the identification of  agricultural 
management practices. The results may aid agronomists and farmers 
in establishing more accurate agricultural methods and in monitoring 
environmental conditions more effectively.

Paper I examined the variation in DM yields of  a red clover-grass mixture 
across temporal periods (one- and two-year cultivated) and farming 
operations, utilizing three ML techniques RFR, SVR, and ANN and six 
multispectral VIs to predict DM yields. Paper II employed a SOTA and 
completely open-source AutoML framework, combined with two novel 
AutoML visualization tools to focus particularly on the recognition and 
adoption of  UAS-derived multispectral vegetation indices (VI) data 
across a diverse range of  agricultural management practices. Paper III 
explores the airborne hyperspectral system’s extensive coverage, high 
spectral resolution, and varied narrow-band selection. It integrates 
open-sourced systems (R and Python) combined with automated 
hyperspectral narrowband vegetation index calculation and the robust 
AI-based AutoML technology to estimate yield and biomass for three 
crop categories (spring wheat, pea and oat mixture, and spring barley 
with red clover) in Estonia.
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2. LITERATURE REVIEW

2.1. Development and challenges of  forage and grain crops in 
Nordic countries and Estonia

In Estonia, experiments with red clover result in a mixed-species 
strategy, with other grass species blended to boost its commercial 
application value, where estimating complexity may be greater than in 
monocropping systems. Red clover’s performance in pasture farming 
systems establishes it as a critical economically viable crop regardless 
of  whether it is incorporated into conventional or organic farming 
operations. Despite the beneficial effects on agricultural productivity, 
legumes can support reducing greenhouse gas emissions by reducing 
the use of  inorganic nitrogen fertilizers and substituting symbiotically 
fixed nitrogen, as well as by utilizing perennial grass species, which is a 
common practice, to reduce carbon loss in cultivated soil (Hanson & Ellis, 
2020). This strategy increases the agricultural ecosystem’s sustainability 
compared to monocropping systems and adds to the conservation value 
of  vulnerable bumblebee species (Carvell et al., 2006). In Estonia, the 
cultivation of  clover-grass mixtures has served significant agronomic 
purposes in co-cultivation increasing the feed value of  the mixture, 
sequestering nitrogen and thereby reducing the amount of  fertilizer (X. 
M. Yang et al., 2019), and achieving C-balance and carbon sequestration 
(Y. Yang et al., 2019) in crop rotation through perennial grassland.

It is important to note, however, that with the current trend toward 
global trade, the increasing importation of  grain legumes into Europe 
has resulted in decreased domestic output in a number of  countries 
(Godfray et al., 2010). This trend has prompted concerns about the 
long-term sustainability and security of  protein supplies (Lüscher et 
al., 2014). Perhaps contrary to this, the main objective of  red clover 
cultivation has been forage yields and persistence (Boelt et al., 2015), 
which might have a direct impact on company competitiveness and 
agricultural adaptability. This also emphasizes the critical significance 
of  estimating and quantifying high-yield clover and grass combinations, 
in particular extending from the laboratory to field-based performance 
trials and studies. Traditional destructive silage and forage biomass 
sampling and measurements on-site give precise reference data for 
developing and evaluating yield models. However, it is time demanding, 
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labour intensive, and constrained by the gathering of  large-scale special 
quantity parameters (Wachendorf  et al., 2018). 

2.2. Agricultural management strategies in variety performance 
trials

A common approach when identifying multiple crop management 
procedures and their interaction with the environment involves a 
well-conducted randomized experimental design, in which different 
agricultural management practices (AMP) are imposed on crops 
(Andrade et al., 2019). Variety performance trials (VPT) are a valuable 
method to address this issue. VPTs are regularly implemented in AMP 
research activities to improve the understanding of  diverse systems 
and develop environmental management recommendations for variety 
selection (Laidig et al., 2014; Lollato et al., 2020). Concerning the AMPs 
trial criteria chosen and the recent growth of  environmental protection 
awareness under the concepts of  sustainable agriculture, the flexibility 
of  environmental-friendly cultivation methods, such as reduced tillage 
and the application of  various minerals and organic fertilizers, are being 
developed (Zhu-Barker & Steenwerth, 2018a). For example, tillage 
reduction is an essential characteristic of  agricultural management that 
changes the soil either physically, chemically, mechanically, or biologically 
to create the appropriate conditions for seedling sprouting and healthy 
plant growth (DeLonge et al., 2014; Zhu-Barker & Steenwerth, 2018b), 
whereas organic additions such as manure or organic fertilizers are 
widely used methods to enhance soil fertility (Crews & Peoples, 2004a). 
Moreover, AMP is based on the concept of  sustainable cropping ideas 
(such as reduced tillage intensity (Ashapure et al., 2019; Desta et al., 
2021; Fanigliulo et al., 2020; Karlen et al., 2013; Telles et al., 2018; 
Triplett & Dick, 2008), fertilizer input (Crews & Peoples, 2004b), and 
organic farming  (Crews & Peoples, 2004a; X. M. Yang et al., 2019; Zikeli 
et al., 2013) combined with mixed cropping systems, can effectively 
diminish greenhouse gas emissions by reducing the use of  inorganic 
nitrogen fertilizers and replacing them with symbiotically fixed nitrogen, 
as well as carbon loss (Gianelle et al., 2009; Loide, 2019; Mandal et al., 
2020) and soil erosion (Seitz et al., 2019) in cultivated soil. Studying 
VPT datasets, however, provides unique analysis problems due to their 
structure, nature, and husbandry variations in each trial. The evaluation 
of  differences in management practices could potentially be confounded 
due to their nested structure (e.g. as opposed to controlled replicated 
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treatments) (Munaro et al., 2020). These AMPs have been increasingly 
proposed as an ecological method involving nutrient management, 
increased water holding capacity, and recoupled C and N cycling in 
agricultural ecosystems to improve sustainability (Drinkwater & Snapp, 
2007; Gardner & Drinkwater, 2009). Although the specification of  
weather, soil, and management practices in current cropping systems 
are vital for robust model simulation and evaluation, these data are 
usually inaccessible for most cropping systems with adequate geospatial 
detail and lack of  ability to replicate measured yields of  field crops that 
received the best possible AMPs across a broad range of  environments 
(van Ittersum et al., 2013). 

In recent years, new developments in precision agriculture (PA) and 
the development of  automated systems for agricultural resource 
management have been extensively studied and implemented (Pavón-
Pulido et al., 2017). The emergence of  these techniques seeks to boost 
crop growth and production, maximize profitability through empirical 
models and data assimilation, and make a substantial contribution to food 
security (Karthikeyan et al., 2020; Wen et al., 2021), agricultural disasters 
risk management (M. Der Yang et al., 2017), and more importantly, 
address concerns relating to climate change mitigation (Mandal et al., 
2020). These challenges and opportunities have pushed remote sensing 
technology to the forefront. The use of  RS for crop monitoring and 
trait decision-making provides cost-effective, non-destructive, and 
geographically comprehensive techniques. Additionally, when integrated 
with phenotypic feature modeling, RS methods may assist in yield 
prediction and support the determination and assessment of  a diverse 
variety of  plant characteristics (Costa et al., 2019). Its use in agriculture is 
especially critical for increasing the understanding of  plant-environment 
interactions that occur during crop management. (Pieruschka & Schurr, 
2019). Therefore, it is required to widen the scope of  rapid and accurate 
RS methodologies for evaluating red clover-grass combination trials in 
response to a variety of  agricultural practices and activities.

2.3. The significance of  UAS-multispectral imaging and 
vegetation indexes in precision agricultural

Among the many remote sensing technologies, the UAS platform is 
considered one of  the most significant technologies for the further 
development of  PA (Mulla, 2013) and sustainable smart farming 
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(Tripicchio et al., 2015). UAS equipped with multifunctional sensors are 
frequently employed for the surveillance of  cultivated lands, offering 
efficient solutions for accurate decision support, boosting agricultural 
efficiency, and profitability, minimizing environmental impact and 
stimulating future technological innovation (Herwitz et al., 2004; Mulla, 
2013; C. Zhang & Kovacs, 2012a). They have developed into a low-cost 
remote sensing platform capable of  acquiring high-resolution images 
(Mozgeris et al., 2018). The recent proliferation of  sensors and cameras 
that can be incorporated into and mounted on these systems allows the 
identification and monitoring of  plant changes both geographically and 
temporally for the detection and differentiation of  local agricultural 
practices (Yeom et al., 2019a). For instance, the reflectance of  vegetation 
data captured by UAS-borne sensors is verified by the biological and 
morphological characteristics of  the tissues or leaves’ surfaces (C. Zhang 
& Kovacs, 2012b). Depending upon the sensor types, the vegetation 
light spectra that may be captured can range from the ultraviolet area 
(UV), the visible region (RGB), down to the near-infrared region (NIR). 
UAS equipped with various novel sensor types can be exploited to 
improve agreement and synergy between imagery and field reference 
data. In addition, these systems can also identify the regional monitoring 
requirements, such as disease detection, growth observation, yield 
estimation, and weed management (Tsouros et al., 2019; Xiang & Tian, 
2011).

From the application of  UAS platform in precision agriculture, 
vegetation indices (VI) are one of  the most often utilized outputs from 
UAS imaging applications. They aid in the supply of  reliable spatial 
and temporal information for a wide range of  agricultural operations 
with the ability to reduce soil or environmental noise and enhance their 
sensitivity for target characteristics (Wachendorf  et al., 2018).  VIs 
are typically mathematical combinations of  individual or groups of  
electromagnetic spectrum bands and are meant to reduce the influence 
of  external confounding variables while increasing the detectability of  
vegetative features (Raeva et al., 2019; Tsouros et al., 2019). Currently, 
UAS-based remote sensing techniques offer a notable contribution to 
field-based crop phenotyping investigations (Sankaran, Khot, & Carter, 
2015). One of  the most applied multispectral VI is the Normalized 
Difference Vegetation Index (NDVI) with its ratio between the red 
and near-infrared bands (Rouse et al., 1974). However, NDVI is not 
only sensitive to soil and atmospheric effects but also certain spectrum 
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ranges were found to have asymptotic relations as applicability is limited 
for higher biomass levels (Chao et al., 2019; Xue & Su, 2017). Also, the 
ability of  the reflectance sensor in biomass prediction could be limited 
by ageing crop materials and diverse canopy structures caused by mixed 
species (Wachendorf  et al., 2018). Therefore, an alternative for increasing 
the accuracy of  various crop modeling tasks is by increasing the varieties 
and combinations of  adjusted and optimized VIs (Osco et al., 2019). 

Several UAS-based studies have been conducted in recent years. UAS-
RGB-based vegetation indexes and linear regression models were utilized 
in estimating the red clover DM yield with the best performance R² value 
0.62 (Lussem et al., 2018). UAS-RGB-based point cloud data generated 
into photogrammetric canopy height models (CHM) can also be utilized 
in forage legumes DM prediction; clover-grass canopies showed better 
performance than lucerne-grass mixtures for DM prediction (Grüner 
et al., 2019). Concerning another study combining CHM, RGB, and 
VIs with ML techniques for grass swards silage prediction, the Pearson 
correlation coefficients reached 0.98 (Viljanen et al., 2018a). Equally, 
clover related phenotypic research has also received much attention 
in recent years: It included clover-grass pasture coverage and spatial 
dynamics monitoring (Abuleil et al., 2015; Bonesmo et al., 2004), and 
quality parameters, such as the digestibility of  organic matter, water-
soluble carbohydrates, the nitrogen concentration, and uptake (Oliveira 
et al., 2020). 

2.4. Application of  hyperspectral imagery to agricultural yield 
and biomass estimation

On the other hand, multi-spectral, broadband-based remote sensing 
has had longstanding success in establishing correlations between 
conventional indices with yield and crop status. However, due to 
saturation in dense vegetation at larger leaf  area index (LAI) values, 
multilayered canopies, and various farming systems, the calculated 
indices can occasionally produce inaccurate measurements and pose 
limits for quantitative estimation of  biochemical properties owing to 
lower spectral resolution (Haboudane et al., 2004; Mutanga & Skidmore, 
2004b; Sahoo et al., 2015; Zarco-Tejada et al., 2005). As an alternative 
technology, a high spectral resolution imaging system (i.e., hyperspectral 
imaging) creates the opportunity to enable increasingly sophisticated 
agricultural applications. The necessity for research in identifying 
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optimum wavebands to predict crop biophysical characteristics is vital 
as hyperspectral remote sensing data becomes ever more available and 
significant (Monteiro et al., 2012; Xavier et al., 2006). With the use of  
narrow spectral channels of  less than 10 nm, hyperspectral remote sensing 
data has the potential to identify more nuanced differences in vegetation 
than multispectral data (Stagakis et al., 2010). It has been suggested that 
hyperspectral data analysis may present a format to provide a deeper 
understanding of  the mechanisms governing spectral reflectance from 
field scales and canopy levels (Zarco-Tejada, 2000; Zarco-Tejada et 
al., 2001). These reduced-range channels allow for the detection of  
detailed plant and crop characteristics that would typically be obscured 
by broader-band multispectral channels. Innovative approaches for 
analysing spectral reflectance data are being established as a result of  
advances within hyperspectral remote sensing technology (Monteiro 
et al., 2012; Schmidt & Skidmore, 2003). Whilst hyperspectral sensors 
provide a more detailed depiction of  plant canopy reflectance than more 
traditional multispectral sensors, they come with concerns regarding 
data redundancy and spectral autocorrelation (J. Feng et al., 2016; Thorp 
et al., 2017; M. der Yang, Huang, et al., 2020). In an attempt to redress 
and resolve these challenges, the reduction of  data dimensionality 
is proposed, which can often be achieved via feature extraction, i.e., 
translating the spectra to a lower-dimensional representation, or selecting 
only a subset of  essential bands or spectral characteristics for analysis 
(Bajcsy & Groves, 2004). One proposed technique to investigate imaging 
spectroscopy via spectral characteristics is to use application-specific 
optimal bands’ combination, i.e., narrowband VIs. These narrowband 
VIs have significantly improved crop characteristics and deliver 
substantially advanced variability information with a superior dynamic 
range and considerable improvements over broad bands (Sahoo et al., 
2015). There is mounting evidence that narrowband VIs can improve 
biomass estimations for many land-cover types (Heiskanen et al., 2013). 
Recently, a study regarding wheat grain yields also revealed that when 
compared to broadband VIs, hyperspectral indices provided greater 
estimation ability of  grain production and biophysical factors (Xavier et 
al., 2006). As a result of  the emergence of  hyperspectral systems, there 
exists now the possibility to both refine previous spectral indices and 
build novel approaches that make use of  the increased spectral resolution 
of  hyperspectral data. Alternatively, the analysis might suggest that 
narrow-band, continuous reflectance data from a hyperspectral sensor 
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is preferred and potentially more accurate for certain remote sensing 
applications (Thorp et al., 2017). 

2.5. The evolution and challenges of  machine learning in 
agricultural remote sensing

In the subject of  agricultural RS, machine learning techniques are 
commonly applied. In general, machine-learning systems are capable of  
modeling complicated class signatures, accepting a range of  predictor 
data as input, and making no assumptions about the data distribution (i.e., 
nonparametric) (Maxwell et al., 2018). These incorporating multisensory 
computing science approaches provide a wide range of  valuable 
information for the expansion of  precision farming practices (Nawar et 
al., 2017). ML techniques may not provide a universal solution in precision 
farming; however, these approaches enable better determination in 
verisimilitude scenarios with minimum human intervention. They 
provide not only a powerful and flexible framework for decision-making 
but also facilitate the integration of  expert knowledge into the PA 
system (Chlingaryan et al., 2018). For instance, when combined with 
hyperspectral imaging, ML has significantly improved crop biomass and 
yield estimation.(Changchun Li et al., 2020; Choudhury et al., 2021; Näsi 
et al., 2018). 

Complexity, however, can be seen as a disadvantage in crop trials since 
the ML modelling includes training/testing databases, limited areas 
with insignificant sampling sizes, time and space-specificity, which 
raises problems in parameter selection and makes use of  a single 
empirical model for an entire region impractical (Colombo et al., 2003; 
W. Zhang et al., 2019). Likewise, environmental factor interventions 
also enhance obstacles in parameter selection in ML systems owing to 
the differences in climate, and soil properties (W. Zhang et al., 2019). 
Occasionally, even the same crop genotypes may not express similar 
spectral characteristics in RS imaging, which renders the models invalid. 
If  the reference parameters exist to formulate relationship functions, the 
genuine implementation results are frequently unsatisfactory owing to 
mismatches between concepts and realities.

Instead, the robust artificial intelligence-based notion of  automated 
machine learning (AutoML) has emerged to minimize such data-
driven expenses and enables experts to build self-regulating machine 
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learning applications (X. He et al., 2021; Mendoza et al., 2016). 
AutoML is characterized as a combination of  selecting an algorithm 
and hyperparameter optimization based on the Bayesian optimization 
method that seeks to identify the optimum (cross-validated) combination 
of  algorithm components by encompassing data from raw datasets to 
a deployable pipeline ML model, which greatly simplifies these stages 
for people with limited expertise (Feurer, Klein, et al., 2015a; Thornton 
et al., 2013; Yao et al., 2018). Recent advancements in AutoML systems 
such as Auto-WEKA (Thornton et al., 2013), and Auto-sklearn (Feurer, 
Klein, et al., 2015b) are recommended as an artificial intelligence-based 
solution for the expanding challenge of  ML applications by combining a 
highly parametric ML framework with a Bayesian optimization method 
for a given dataset, significantly streamlines these steps for non-experts 
(Feurer, Klein, et al., 2015b). The standard procedure of  ML modelling 
involves data pre-processing, feature engineering, feature extraction, 
feature selection, algorithm selection and hyperparameter optimization 
to increase the model’s predictive performance (Remeseiro & Bolon-
Canedo, 2019).

2.6. Knowledge gaps and prospects for research

A current gap persists in the knowledge base for multispectral-based 
AMP analysis and agriculture land use studies in addition to the 
further understanding of  the potential for remotely-sensed solutions 
to field-based and multifunctional platforms for the demands of  plant 
phenotyping and smart farming management. To address this knowledge 
gap, this study presents a rapid, non-destructive, low-cost framework 
for field-based crop yield and biomass modeling. To address this gap in 
knowledge, this thesis further employed a SOTA and completely open-
source AutoML system, Auto-sklearn, which is constructed based on one 
of  the most widely used ML system Scikit-learn in the scientific Python 
community (Komer et al., 2014), combined with two novel AutoML 
visualization tools to explore UAS and airborne -derived vegetation 
indices (VI) as an example for handling the AMPs classification tasks. 
Finally,  an AutoML framework was constructed for hyperspectral 
imaging regression tasks, and used to explore the applicability of  the 
AutoML models to estimate spring wheat, spring barley, pea and oat 
mixture grain yields and straw mass in regular mono- or mixed cropping 
systems in Northern Europe and Estonia.



24

3. HYPOTHESIS AND AIMS OF THE STUDY

Due to existing agricultural challenges, no platform for comparing 
field-based phenotypes or crop breeding had been developed using the 
RS platform. The absence of  precise and effective interpretation of  
phenotypic data necessitates the development of  agriculture decision 
support systems. The principle objective of  this research, from an 
agricultural standpoint, is to assist a dependable remote-sensing 
platform and delivering innovative real-time analytical methodologies to 
deal with future climate change and food scarcity shocks. According 
to spatial resolution observability, UAS and airborne are suited as RS 
carriers in this investigation. More precisely, the central objective is to 
employ UAS-multispectral and airborne-hyperspectral imaging, with 
further employed a SOTA and entirely open-source AutoML system in 
conjunction with two innovative visualization tools to explore the yield 
prediction and cultivation management categorization skills of  common 
crops in Estonia.

The following general objectives and hypotheses motivated this study:

1. To explore the relationship between crop period, location, and 
technique of  cultivation, as well as the feasibility of  using multispectral-
UAS to estimate forage crop production and biomass. 

Hypothesis 1: UAS-multispectral is applicable to achieve accurate predictions in 
a variety of  seasons, periods, and cultivation management

2. To investigate the use of  developing automated machine learning 
approaches to crop image analysis in developing effective regression and 
classification models.  

Hypothesis 2: Emerging automated learning approaches that combine classic 
machine learning methods can effectively solve regression and classification tasks of  
captured agricultural images.

3. To investigate the capability of  UAS-multispectral imaging to discover 
agricultural cultivation management strategies. 
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Hypothesis 3: Applicable to recognize multiple agri-management categories of  
common crops in Estonia.

4. To study the predictive potential of  hyperspectral imaging and the 
synergistic benefits of  combining it with AI-based auto-learning 
algorithms for crop production and monitoring.

Hypothesis 4: By combining airborne hyperspectral images with a novel automated 
learning system, it is feasible to perform precise predictions.
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4. METHODOLOGY

4.1. The fundamental methodology of  the thesis

The objective of  this study was to establish a non-destructive and 
low-cost framework for biomass and yield modelling in several crop 
categories and cultivation management methods, as well as to gain a 
better understanding of  the potential for remotely sensed solutions to 
field-based and multifunctional platforms to meet precision agriculture 
demands. As agriculture trial fields were often no larger than 3 by 9 
meters.  We conclude that the UAV equipped with a multispectral 
sensor andirborne sensor were best suited for the crop yield estimation 
and agricultural management practices (AMPs) recognition due to its 
superior velocity and spatial resolution over handheld sensors and 
satellite imagery. In particular, an unmanned aerial vehicle equipped with 
multispectral sensors was employed, as well as airborne hyperspectral 
imagery, to estimate yield and categorize fields by image processing, 
extraction, and various machine learning calculation procedures.

4.2. Study area and experiment layout

The study area of  this thesis was undertaken at the Agricultural Research 
Centre (ARC) in Kuusiku (58°58’52.7”N 24°42’59.1”E), Estonia (Figure 
2). The ARC was established in 1924 by an official institution under the 
governance of  the Ministry of  Agriculture and consists of  consolidated 
laboratories and field testing centres. The experimental area covers 226 
hectares, of  which the 2.87-hectares variety performance trial (VPT) 
area was selected to consist of  two soil types: Calcaric Cambisol and 
Calcari-Leptic Regosol (FAO, 2006). This experimental design was 
developed to facilitate the understanding of  the physiological conditions 
and yield performance capabilities of  the chosen varieties and their 
combinations under three types of  AMPs. To assess the UAS-based 
AMP detection capacity, the experiment was put together with three 
principal experimental factors which include: (1) soil tillage methods 
(STM), considering reduced tillage (R) (8-10 cm), ploughing (P) at a 
depth traditionally used in conventional tillage (18-20 cm), and disking 
(DP) (8-10 cm) as treatments; (2) cultivation methods (CM), considering 
conventional farming with mineral fertilizer application (CMin+), 
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organic farming with mineral fertilizer application (OMin+), and organic 
farming without mineral fertilizer (OMin-); and (3) manure applications 
(MA) (Figure 2A and 2B). The ARC experimental area has a temperate 
climate with an average annual temperature of  5.3 °C, where the average 
daytime temperature was 9.5 °C, and 0.8 °C as the night temperature. 
The annual precipitation was 75 cm. 

Figure 2. (a) The Agricultural Research Centre (ARC) is situated in Kuusiku, Estonia. 
A. The experiment layout contains three treatments, 1. Soil tillage method (STM) 2. 
cultivation method (CM), and manure application (MA) for one-year cultivation (1YC) 
in Field A with a total of  72 observation plots, and two-year cultivation (2YC) in Field 
B equally with a total of  72 plots. For caption descriptions, see Table 1. (b) A visual 
demonstration of  the different CM treatments within the 2YC DP area.

Table 1. The farming operation and treatment of  the red clover experiment fi elds.

 Farming Operation Treatment Description
Soil tillage methods 

(STM)
Reduced tillage (R) R (8-10 cm)

Ploughing (P) P (18-20 cm)
Disking and ploughing (DP) D (8-10 cm) & P (18-20 cm)

Cultivation 
methods (CM)

Conventional framing with 
fertilizer (Cmin+)

NPK 5-10-25 1

Organic farming with mineral 
fertilizer (Omin+)

Patentkali 2

Organic farming without mineral 
fertilizer (Omin-)

N/A

Manure application 
(MA)

With manure application (M+) M (30000 kg ha-1) 3

Without manure application (M-) N/A
1 NPK 5-10-25 (chemical fertilizer) 291 kg ha-1 (N-14 kg ha-1, P-13 kg ha-1, and K-60 kg ha-1), 
2 Patentkali (mineral fertilizer) 240 kg ha-1 (K-60 kg ha-1, S- 41 kg ha-1, M-14 kg ha-1)
3 Manure 30000 kg ha-1 (N-234 kg ha-1, P-20 kg ha-1, and K-216 kg ha-1)
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Although the same ARC experiment region was selected, the three 
papers covered distinct fields, which will be detailed as follows:

4.2.1 Red clover-grass mixture yield estimation

The variability, particularly in dry matter yields of  a red clover-grass 
combination over temporal periods [(one- and two-year farmed (1YC 
and 2YC)] and farming practices was examined. The mixture’s fresh 
aboveground biomass was cut twice in two fields. Each field contains 
72 plots, which means in a total 144 plots were sampled; the first cut 
took place on 10/06/2019, and the second took place on 16/08/2019. 
The fresh biomass was weighed by plot and dried to verify its DM yield 
measured in kilograms per hectare. 

4.2.2 Agricultural management practices recognition

The primary focus was particularly on the recognition and adoption 
of  UAS-derived multispectral vegetation indices (VI) data across a 
diverse range of  agricultural management practices. Four different crop 
categories were selected to enrich the diversity of  crop identification. 
The experimental layout consists of  four types of  common crop and 
their regular combinations in Estonia, i.e., Field 1: red clover 75% 
(Trifolium pratense L.) with grass 25% (Festuca pratensis) (RC+G). 
Field 2: spring wheat (SW), Field 3: pea and oat mixture (P+O), and 
Field 4: spring barley with under-sowing red clover (SB+RC) in 2019. 
Each field comprises 72 plots, which amounts to a total of  288 plots 
sampled within the study area (Figure 3).
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Figure 3. (a) The study area is located at Kuusiku agriculture centre, Estonia. (b) The 
RGB orthomosaic image from May 30th of  the experimental layout fi elds with four 
crop types i.e. [F1. (RC+G), F2. (SW), Field 3. (PO), and Field 4. (SB+RC)] 

4.2.3 Hyperspectral image analysis in crop yield and biomass 
estimation

The airborne hyperspectral system’s extensive coverage, high spectral 
resolution, and varied narrow-band selection to estimate yield and biomass 
for three crop categories (spring wheat, pea and oat mixture, and spring 
barley with red clover) in Estonia were explored. The experimental fi elds 
consist of  three commonly cultivated crop categories and their regular 
cropping combinations in Estonia (Figure 4b), i.e., Field 1: spring wheat 
(SW) (Figure 4c), as representative of  the uniform variety planting fi eld; 
Field 2: pea and oat mixture (P+O), and Field 3: spring barley with 
under-sowing red clover (SB+RC) (Figure 4d) as representative of  the 
mixed planting fi elds. All three fi elds are part of  common crop rotation 
with a spatial and temporal arrangement (Figure 4).

(c)

F1 (RC+G​)F2 (SW​)

F3 (P+O)F4 (SB+RC​)

(b)

(a)
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Figure 4. Airborne push-broom hyperspectral image in the Agricultural Research 
Centre (ARC), Kuusiku, Estonia. (a) Hyperspectral image with the band combination: 
band 83 (630 nm), band 47 (532 nm), and band 22 (465 nm) light in. (b) The experiment 
fi elds of  this study, where Field 1 (F1): spring wheat (SW), Field 2 (F2): pea and oat 
mixture (P+O), and Field 3 (F3): spring barley with under-sowing red clover (SB+RC). 
The interpretation diagrams represent on-site (c) single variety planting SW, and (d) 
mixed planting SB+RC.

Figure 5 shows the AMPs and their specifi c arrangement in SW, P+O, 
and SB+RC fi elds. Every fi eld comprised 72 plots, with a total of  216 
plots. Based on considerations of  budget limitations, labour shortages, 
excessive scope, and repetitiveness, the sampling of  grain yield was 
taken from 56 out of  72 plots (n = 56), and straw biomass were sampled 
from 24 out of  72 plots (n = 24) specifi c from the disking and ploughing 
(DP) area (Figure 5). The harvesting took place on 5 August 2019 in 
fi eld SB+RC and on 16 August 2019 in fi elds SW and P+O. The fresh 
grain and biomass were weighed by plot and dried to verify its dry grain 
yield and fresh straw mass measured in kilograms per hectare. However, 
regarding the mixture P+O fi eld, the total weight of  the two crops was 
calculated, while in the SB+RC fi eld only the SB grain yield and straw 
mass.
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Figure 5. The structure of  agriculture management practices (AMPs) and the sampling 
method of  grain yield and straw mass in the SW, P+O, and SB+RC fi elds. The AMPs 
contain three treatments: 1. soil tillage method (STM), 2. cultivation method (CM), 
and manure application (MA), where the grain yield (n = 56) (black striped rectangle 
box) and straw mass (n = 24) (grey rectangle box). To guarantee that the training area 
contained all combinations of  AMPs, each fi eld was split into training and testing 
areas equally from the centre. The special arrangements of  AMP categories and the 
sampling method were the same in the 3 fi elds.

4.3. UAS-multispectral and hyperspectral image acquisition

4.3.1 UAS-multispectral Image acquisition for red clover-grass 
Mixture fi elds 

Figure 6 presents a workfl ow of  the methodology used to combine 
the UAS-based image collection, processing, and biomass sampling. To 
capture data for both image processing and biomass evaluations, the UAS 
imaging was conducted twice [i.e., 1 1 days before 1st cut (11DB) and 38 
days before 2nd cut (38DB) harvesting] in the summer of  2019. Due 
to the needs of  the other experimental areas, data of  80 hectares were 
collected, of  which 2.4 hectares were used in this study. An eBee Plus 
device (senseFly, 2016), with onboard GNSS p ost-processed kinematic 
(PPK) capabilities, was deployed and equipped with a Parrot Sequoia 
multispectral sensor. The Parrot Sequoia© (Parrot S.A., Paris, France) 
sensor captured imagery across four spectral bands: near-infrared (770–
810 nm); red-edge (730–740 nm); red (640–680 nm); and green (530–
570 nm). The fl ight lines overlap was set with a frontal image overlap 
of  80% and lateral image overlap of  75%. All the operations took place 
between 10 a.m. to 2 p.m. to ensure consistency with the sun’s angle, 



32

and to reduce lateral shading within the experimental fi elds. The images 
were captured from a height of  120 meters, and the resulting images 
had ground  sampling distance (GSD) of  10 cm per pixel. Prior to each 
fl ight mission, an Airinov radiometric calibration target and one-point 
calibration method (Poncet et al., 2019) was used to facilitate post-fl ight 
radiometric correction of  the multispectral imagery.

Figure 6. The methodology fl owchart of  red clover-grass mixture UAV data collection 
and processing. The image processing rectangular dotted box contains all predictors 
extracted from the UAV images.

4.3.2 UAS -multispectral Image Processing and Analysis

The UAS-multispectral data was post-processed in SenseFly eMotion 3 
(senseFly, 2016) using receiv er independent exchange (RINEX) format 
data provided by the GNSS CORS ( Continuously Operating Reference 
Station) of  Estonia (Land Board, Republic of  Estonia, 2018) for post-
processing kinematics (PPK) corrections. This post-process provided 
an increase in the geotagging accuracy (Mokroš et al., 2019) of  the UAS 
images from 5 m error to under 0.06 m, where the method and accuracy 
obtained are similar to (Villoslada et al., 2020) ; and thus less than the 
one-pixel size in this study. Pix4D v.4.3.31® (Pix4D SA, 1015 Lausanne, 
Switzerland) software was utilized to process and radiometrically 
correct (default in Pix4D) the imagery and generate the multispectral 
orthomosaics. These images were subsequently clipped to represent 
only the extent of  the experimental area. 



33

4.3.3 UAS-multispectral Image acquisition for Agricultural 
Management Practices Recognition 

Figure 7 shows the workflow utilized to combine the UAS-based image 
collection, processing, sampling, and AutoML framework modified from 
(Feurer, Klein, et al., 2015b). A fixed-wing UAS eBee Plus (Sensefly Inc., 
Cheseaux–Lausane, Switzerland) equipped with GNSS PPK capabilities 
was deployed with a Parrot Sequoia multispectral sensor (version 1.2.1, 
Parrot, Paris, France). To facilitate seasonal image processing and AMP 
recognition, UAS images were captured over three timeslots in 2019 
at the Kuusiku Research Center: April 23rd (temperature: 16°C, wind 
speed: 11 km h-1 S, sunny), May 30th (temperature: 19°C, wind speed: 
12 km h-1 WSW, overcast), and July 10th (temperature 20°C, wind speed: 
3.6 km h-1 NW, sun with minor cloud cover). The originally designed 
flight time was 37 minutes and 30 seconds per task over an area of  65.8 
hectares (with areas of  interest 2.87 hectares in this study). However, 
depending on the weather conditions and wind speed of  the day, the 
eBee flight time might be slightly different from the number of  battery 
replacements (the endurance of  one battery was approximately 20-30 
minutes). This data capture protocol was designed to represent the 
reflectance spectrum characteristics of  crops during different growth 
stages. Flight-line overlap was set using a frontal image overlap of  80% 
and a lateral overlap of  75% with a target altitude of  120 m above 
ground level (AGL), resulting in a GSD of  10 cm per pixel. All image 
data capture procedures were undertaken between the hours of  10 a.m. 
to 2 p.m. to guarantee the consistency of  photo collection quality, and 
to minimise lateral shading of  crops within the VPT fields. An Airinov 
radiometric calibration target (Airinov, Paris, France) and a one-point 
calibration method (Poncet et al., 2019) were used to enable post-flight 
radiometric correction of  the multispectral imagery before each flight to 
remove dark current and lens vignetting effects while postprocessing the 
image (Kelcey & Lucieer, 2012).
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Figure 7. The fl owchart of  UAS framework in the classifi cation task, where (a) Three 
types of  AMPs are processed for four crop categories. (b) The eBee plus with Parrot 
Sequoia multispectral sensor with the time series fl ight (April, May, and July) to collect 
spectral information from different crop periods. (c) UAS image was post-processed 
in SenseFly eMotion with PPK corrections and orthomosaics in Pix4D. (d) 19 VIs 
calculation, segmentation and corresponding plot digital number (DN) extraction for 
AutoML modelling. 

4.3.4 UAS-multispectral Image Processing and Analysis

For pre-processing UAS-multispectral images, SenseFly eMotion 3 
applying differential correction data (RINEX) provided by the GNSS 
CORS (Continuously Operating Reference Station) of  Estonia for 
post-PPK corrections (Land Board, Republic of  Estonia, 2018) was 
used. PPK was reported to increase the higher horizontal and vertical 
geotagging accuracy when compared to ground control points (GCP) 
(Mokroš et al., 2019). In this study, the UAS image corrections were 
decreased from 5 m error to under 0.06 m (less than one-pixel size). 
Pix4D v.4.3.31® (Pix4D SA, 1015 Lausanne, Switzerland) software was 
utilized to process and radiometrically correct (calibrated according to 
the variances between the measured value and target actual refl ectance 
(Poncet et al., 2019)) the imagery, as well as to generate the multispectral 
orthomosaics. These images were subsequently clipped with a one-metre 
inward buffer zone from each plot to represent only the extent of  the 
area of  the VPTs.

4.3.5 Hyperspectral image data collection 

Airborn e measurements were carried out in Kuusiku Agricultural 
Research Centre on 18 June 2019 using hyperspectral imager HySpex 
[Norsk Elektro Optikk AS (NEO), Norway] owned by Estonian Marine 
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Institute and operated by the Estonian Land Board. HySpex was flown 
at an altitude of  900 m which resulted in a spatial resolution of  40 cm 
(Figure 4a). The spectral resolution of  HySpex is approximately 2.69 nm 
(216 spectral bands ranging from visible to near-infrared with centres 
between 409 nm and 989 nm). The day was sunny with a wind speed of  
2.6 m/s, average air temperature of  10°C. Regarding the growth stages 
of  the main crops on the flight date, spring wheat, spring barley, and oat 
were approximately in booting to heading stage. For the mixed crops, 
i.e., field pea and red clover were in the reproductive growth stages, and 
the flowing stage, respectively.

Raw HySpex image data were converted into units of  spectral radiance 
(W m−2 nm−1 sr−1) using Rad software developed by the NEO. PARGE 
(Parametric Geocoding, ReSe Applications Schäpfler, University of  
Zurich) geo-coding software was used for geo correction of  the flight 
lines utilizing accurate altitude and location measurements provided by 
the GNSS/INS unit. The captured Hyspex flight line used in this study 
is shown in Figure 4a. Atmospheric influence at such a low altitude 
was considered minimal and therefore atmospheric correction was not 
applied to the imagery.

4.3.6 Hyperspectral Image Processing

Most hyperspectral processing techniques now employ commercial 
software such as Erdas Imagine, ENVI, or the MATLAB hyperspectral 
toolbox (The Mathworks Inc., 2019). These technologies are often 
expensive and can have limited statistical analysis capabilities. Therefore, 
a new package that was built on the open-source software R in 2019 was 
employed. The hyperspectral data analysis (Hsdar) package incorporates 
several important hyperspectral capabilities from the HyperSpec package 
(Beleites & Sergo, 2012), with an emphasis on the analysis of  large data 
sets collected in the field for vegetation remote sensing. It is available at 
https://CRAN.R-project.org/package=hsdar on the Comprehensive R 
Archive Network (CRAN).

Hyperspectral data was reconstructed into a class named ‘Speclib’ to offer 
a framework for handling huge sets in R. This allows the user to store 
three-dimensional (3D) cube data together with extra adding information 
into a matrix. This matrix, together with the wavelength information can 
then be utilized in the Hsdar software and used to manage subsequent 
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calculations. A Savitz-ky-Golay filter (method „sgolay”) with a length of  
15 nm was used in the initial preprocessing stage to reduce noise from 
the spectra. By fitting a polynomial function to the reflectance data, 
the filter minimizes noise and removes minor discrepancies between 
adjacent bands. These noise-reduced hyperspectral data were calculated 
zonal statistics and converted to a [216 (wavelength bands) multiplied 
by 216 (plot Shapefile)] table. This table was then subsequently used 
for preliminary correlation analysis between grain yield and straw 
mass with the mean wavelength reflectance value into plot level. The 
correlation analysis results of  each narrowband band can be utilized 
as a consideration in the following selection of  narrowband vegetation 
indexes.

4.4. Vegetation Indices selection and calculation

4.4.1 Vegetation Indices selection and calculation in Red clover-
grass mixture yield estimation

Six VIs were calculated using R version 4.0.2 (R Core Team, 2020) 
(Table 2). The normalized difference vegetation index (NDVI) utilizes 
the reflectance (ρ) in the NIR and Red wavelengths, and the outputs 
range from −1.0 to 1.0. This index was selected for this study as it has 
a sensitive response to tracking physiological dynamics and biomass 
(Hassan et al., 2019). However, NDVI reaches saturation when leaf  
area index (LAI) values are about 2.5–3 or in dense crop canopies 
[42,43]. The green normalized difference vegetation index (GNDVI) 
was also calculated and outputs values range from 0 to 1. Previous 
studies have shown GNDVI to be linearly correlated with LAI and 
biomass, with the ability to reduce the effects of  soil reflectance and 
estimate nitrogen conditions (Hunt et al., 2008). Similarly, the Simple 
Ratio (SR), a normalization of  ρ NIR against ρ Red, was calculated 
as it has been previously shown that this index can better indicate the 
strength of  canopy photosynthetic material and yield prediction than 
NDVI under different nitrogen supplies (Serrano et al., 2000). The Red-
Edge Simple Ratio (SRre) formula was calculated by replacing the ρ 
Red band with the ρ Red-edge. Its inclusion in the assessment was due 
to previous studies indicating a higher correlation with plant nitrogen 
concentration compared to ρ Red based VIs. This can lessen the soil 
background influence on crop reflectance (Walsh et al., 2018). Finally, 
the Modified Simple Ratio (MSR), as a potentially improved version of  
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the Renormalized Difference Vegetation Index (RDVI), was calculated 
to linearize the relationship between biophysical parameters (J. M. Chen, 
1996) and enhance the sensitivity of  vegetation occurrences which can 
be observed in other VIs. The two experimental fields [i.e., 1YC (n = 72) 
and 2YC (n = 72)], with a total of  144 plots were digitized in ArcGIS 
Pro 2.6.3 (ESRI, 2016). The average VIs within each plot were extracted 
and calculated as the VIs of  each plot at the experiment site. To avoid 
potential edge effects in the fertilizer treatment, a one-meter buffer zone 
was extended inwards from each plot boundary, and data sampled within 
this target region (Figure 8). These extracted values were further used 
in this study when building ML algorithms for clover-grass mixture DM 
yield estimation and evaluation.

Table 2. Descriptions and formulas of  NIR related VIs used in this study.

Vegetation Index Description Equation Reference
NDVI Normalized 

Difference 
Vegetation Index

(ρ NIR – ρ R 1) / 
(ρ NIR + ρ R)

(Rouse et al., 1974)

GNDVI Green Normalized 
Difference 

Vegetation Index

(ρ NIR - ρ G 2)/ (ρ 
NIR + ρ G)

(A. A. Gitelson et 
al., 1996)

GDVI Green Difference 
Vegetation Index

ρ NIR 3 - ρ G (Sripada et al., 
2006)

SR Simple Ratio ρ NIR / ρ R (Jordan, 1969)
SRre Red-edge simple 

ratio
ρ NIR / ρ REG 4 (A. Gitelson & 

Merzlyak, 1994b)
MSR Modified simple 

ratio
((ρ NIR- ρ R)-

1)/((( ρ NIR+ ρ 
R)*(.5))+1)

(J. M. Chen, 1996)

1 ρ R refers to red band, 2 ρ G refers to green band, 3 ρ NIR refers to near-infrared, and 
4 ρ REG refers to the red edge.
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Figure 8. A demonstration of  VIs (GDVI as an example) zonal statistics in 1YC and 
2YC fields. (a) RGB image with 1-meter buffer zone plot polygons from 1YC11DB, 
(b) RGB image with 1-meter buffer zone plot polygons from 2YC11DB, (C) GDVI 
zonal statistic with ROI in 1YC11DB, and (d) GDVI zonal statistics with ROI from 
2YC11DB.

4.4.2 Vegetation Indices selection and calculation in AMP 
Recognition

Nineteen VIs were chosen and calculated to address the issues of  
heterogeneous crop classes, soil types, and the current absence of  
valuable referenced parameters in AMPs (see Table 3). More specifically, 
Datt4, SRre, NDVIre were selected due to their positive correlation 
with chlorophyll content (Dong et al., 2015; A. Gitelson & Merzlyak, 
1994b; J. Zhang et al., 2014); MTVI, MSR, MSRre, RVIS, WDRVI (J. 
M. Chen, 1996; Haboudane et al., 2004; Henebry et al., 2004; Merton 
& Huntington, 1999; C. Wu et al., 2008) are known to be sensitive to 
variations in leaf  area index (LAI); GDVI was used for better lower 
vegetal land cover estimates and characterization (W. Wu, 2014); GIPVI 
was calculated for its potential in grassland communities detection 
(Strong et al., 2017); GNDVI, NDVI, RTVIcore were utilized due to 
their high performance in crop above-ground biomass (AGB) estimation 
(P. F. Chen et al., 2010; Kross et al., 2015); GDI, GRDI, and RDVI 
were included due to their ability to compensate for NDVI saturation 
problems and the potential effects of  soil and sun viewing geometry 
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(Mutanga & Skidmore, 2004b; Vasudevan et al., 2016); GRVI was applied 
for its sensitivity to soil moisture (Ballester et al., 2019), SR for strongly 
correlated with comprehensive growth index (CGI) (H. Feng et al., n.d.) 
and REGVI was included for its sensitivity to deviations in senescence 
and vegetation stress (Cross et al., 2019).

Table 3. Descriptions and formulas of  multispectral UAS derived VIs used in this 
study. The ρ R refers to the reflectance of  the red band, ρ G refers to the reflectance of  
the green band, ρ REG refers to the reflectance of  the red edge, and ρ NIR refers to 
the reflectance of  the near-infrared.

Vegetation Index Equation Reference
Datt4 ρ R /( ρ G * ρ REG) (Datt, 1998)

Green Infrared Percentage 
Vegetation Index (GIPVI)

ρ NIR /( ρ NIR + ρ G) (Crippen, 1990)

Green Normalized 
Difference Vegetation 

Index (GNDVI)

(ρ NIR - ρ G)/(NIR+ ρ G) (A. A. Gitelson et al., 
1996)

Green Difference 
Vegetation Index (GDVI)

ρ NIR - ρ G (Sripada et al., 2006)

Green Ration Vegetation 
Index (GRVI)

ρ NIR / ρ G (Sripada et al., 2006)

Green Difference Index 
(GDI)

ρ NIR - ρ R + ρ G (Gianelle & Vescovo, 
2007)

Green Red Difference 
Index (GRDI)

(ρ G - ρ R)/( ρ G + ρ R) (Gianelle & Vescovo, 
2007)

Normalized Difference 
Vegetation Index (NDVI)

(ρ NIR - ρ R)/( ρ NIR + 
ρ R)

(Rouse et al., 1974)

Red-edge Normalized 
Difference Vegetation 

Index (NDVIre)

(ρ NIR - ρ REG)/( ρ NIR 
+ ρ REG)

(A. Gitelson & Merzlyak, 
1994b)

Red-edge Simple Ratio 
(SRre)

ρ NIR / ρ REG (A. Gitelson & Merzlyak, 
1994b)

Renormalized Difference 
Vegetation Index (RDVI)

((ρ NIR - ρ R)/(( ρ NIR + 
ρ R)**(.5)))

(Roujean & Breon, 1995)

Red-edge Modified Simple 
Ratio (MSRre)

((ρ NIR - ρ REG)-1)/((( ρ 
NIR + ρ REG)**(0.5))+1)

(C. Wu et al., 2008)

Red-edge Triangular 
Vegetation Index 

(RTVIcore)

(100*( ρ NIR - ρ REG))-
(10*( ρ NIR - ρ G))

(P. F. Chen et al., 2010)

Red-edge Vegetation 
Stress Index (RVSI)

((ρ R + ρ NIR)/2)- ρ REG (Merton & Huntington, 
1999)
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Red-edge Greenness 
Vegetation Index 

(REGVI)

(ρ REG - ρ G)/( ρ REG 
+ ρ G)

(Sims & Gamon, 2002)

Simple Ratio (SR) ρ NIR / ρ R (Jordan, 1969)
Modified Simple Ratio 

(MSR)
((ρ NIR - ρ R)-1)/(((NIR+ 

ρ R)**(.5))+1)
(J. M. Chen, 1996)]

Modified Triangular 
Vegetation Index (MTVI)

1.2*((1.2*( ρ NIR - ρ G))-
(2.5*( ρ R - ρ G)))

(Haboudane et al., 2004)

Wide Dynamic Range 
Vegetation Index 

(WDRVI)

(((0.2* ρ NIR)- ρ R)/((0.2* 
ρ NIR)+ ρ R))

(A. A. Gitelson, 2004)

4.4.3 VI extraction and principal component analysis

Principal component analysis (PCA) (Kambhatla & Leen, 1997) was 
employed as an exploratory data analysis (EDA) technique to describe 
the relationship between three different agricultural management types 
(CM, MA, and STM) and multispectral UAS-VIs. The PCA was used for 
testing whether or not it could improve the classification efficiency of  
AMPs. PCA was conducted using R version 4.0.2 (R Core Team (2020), 
2020) and the FactoMineR package (Lê et al., 2008). For extraction of  the 
digital number (DN) values from each VIs of  four experimental fields 
(72 plots in each field), a total of  288 plots were digitized in ArcGIS Pro 
2.6.3 (ESRI, 2016). As stated previously, a one-meter buffer zone was 
extended inwards from each plot boundary, to address potential edge 
effects from agricultural management, the average VIs were isolated and 
calculated. These extracted values were further used in this study when 
building ML algorithms and for AutoML assessment and evaluation. 

4.4.4 Narrowband vegetation indices selection and calculation 
from hyperspectral imagery

Optical indices for chlorophyll estimation studies have focused on 
analyzing reflectance in specific narrow bands, ratios, combinations, and 
the properties of  derivative spectra to minimize extraneous factor changes 
and increase sensitivity to chlorophyll content (Haboudane et al., 2002). 
In this study, VIs that were sensitive to canopy structure, biochemistry, 
and physiology, and those that might potentially indicate variance in 
grain yields and biomass were targeted. Pigments (i.e., chlorophyll a, 
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chlorophyll b, and carotenoids) exhibit varied spectral behaviour from 
an optical standpoint, with specific absorption properties at different 
wavelengths (Blackburn, 1998). Therefore, pre-defined indices in the 
Hsdar R package were deployed to automatically fit provided wave-
length positions and compute corresponding VIs to reduce the intricacy 
of  computation and boost the repeatability of  this research (Table 4 ).

The Normalized Difference Vegetation Index (NDVI) was adopted 
based on it is sensitivity to green leaf  area or green leaf  biomass, and 
it can be used to monitor photosynthetically active vegetation biomass 
distribution using linear combinations of  red and infrared radiances 
(Tucker, 1979). However, it is crucial to note that NDVI has a saturation 
effect at richer vegetation covers (Fernández-Manso et al., 2016). To 
solve the probable saturation problem, NDVI2 was applied with its 
ability to adequately determine chlorophyll in the presence of  a high 
pigment concentration background (A. Gitelson & Merzlyak, 1994a). 
The renormalized difference vegetation index (RDVI) narrow band, 
was employed in this study due to its capacity in identifying mixture 
phytomass in grassland (Vescovo et al., 2012). The prospect for 
using the Transformed Chlorophyll Absorption in Reflectance Index 
(TCARI) in an operational remote sensing situation in the context of  
precision agriculture was investigated. The R700/R670 ratio was chosen 
to reduce the combined impacts of  underlying soil reflectance and non-
photosynthetic materials. The changes in reflectance characteristics of  
background materials (soil and non-photosynthetic components) and 
the R700/R550 ratio are strongly connected to differences in background 
materials (Haboudane et al., 2002; M. S. Kim et al., 1994). Soil-Adjusted 
Vegetation Index (SAVI) was conducted to reduce soil-induced 
fluctuations in vegetations using a transformation approach to decrease 
soil brightness impacts by counting red and near-infrared wavelengths 
from spectral data (Huete, 1988). Where Optimized Soil-Adjusted 
Vegetation Index (OSAVI) with two types of  reflectance combinations 
(OSAVI and OSAVI2) was selected for its simplicity of  use in the context 
of  deployable observations on agricultural landscapes, as its estimation 
requires no knowledge of  soil optical properties, and it also provided 
the best results for most crops (Rondeaux et al., 1996), as well as the 
distinction of  tillage effects in an economically RGB UAV application 
(Yeom et al., 2019b). In addition, the choice of  Simple Ratio (SR) narrow-
band indices (R515/R550), different from chlorophyll pigment content 
detection, is based on its feasibility to predict carotene content on 
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hyperspectral imagery in heterogeneous canopies (Hernández-Clemente 
et al., 2012). Carotenoid concentrations reveal important information 
about plant physiological state (Demmig-Adams & Adams, 1992), and 
offering a heterogeneous VI source may improve model predictability 
and minimize collinearity. 

Table 4. Descriptions and formulae of  narrowband VIs were utilized in this study. 
Narrowband VIs were calculated which were closest to the wavelengths given in the 
original Hsdar R package references.

Vegetation 
Index

Description Equation Reference

NDVI Normalized 
Difference 

Vegetation Index

(R800-R680) / (R800+R680) (Tucker, 1979)

NDVI2 Normalized 
Difference 

Vegetation Index 2

(R750-R705)/(R750+R705) (A. Gitelson & 
Merzlyak, 1994a)

OSAVI Optimized 
Soil Adjusted 

Vegetation Index

(1+0.16)*(R800-R670)/ 
(R800+R670+0.16)

(Rondeaux et al., 
1996)

OSAVI2 Optimized 
Soil Adjusted 

Vegetation Index 2

(1+0.16)*(R750-R705)/ 
(R750+R705+0.16)

(C. Wu et al., 
2008)

RDVI Renormalized 
Difference 

Vegetation Index

(R800-R670)/√(R800+R670) (Roujean & 
Breon, 1995)

SR Simple Ratio R515/R550 (Hernández-
Clemente et al., 

2012)
SAVI Soil-Adjusted 

Vegetation Index
(1+L1)*(R800-R670)/

(R800+R670+L)
(Huete, 1988)

TCARI Transformed 
Chlorophyll 
Absorption 

Reflectance Index

((R700-R670)-
0.2*(R700-R550))*

(Haboudane et al., 
2002)

1 L, a soil brightness adjustment factor (L) established as 0.5 to suit the majority of  land 
cover types for the SAVI index.

These narrowband VIs were computed and saved in TIFF file format 
( https://www.adobe.io/open/standards/TIFF.html), which were then 
utilized to extract spatial information in the SW, P+O, and SB+RC 
experimental fields. For extraction, a total of  216 plots were digitized in 
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ArcGIS Pro (ESRI, 2016). Average VIs across every plot were extracted 
and determined at each plot at the research location, while one-meter 
buffer zones were calculated inwards from each plot boundary to 
eliminate unexpected boundary effects. Considering the potential 
variances in the treatment of  each AMP, the field from the centre of  the 
area into training and testing areas were equally divided, ensuring that 
the training area contained all combinations of  AMPs. These collected 
parameters were then utilized in this study to create AutoML algorithms 
for estimating and evaluating grain production and straw mass.

4.5. Machine Learning Techniques

4.5.1 Machine learning techniques in red-clover biomass 
estimation

Parametric regression models may lead to multicollinearity between 
covariates and overfitting, which renders them impractical when dealing 
with highly dimensional remotely sensed data (Zheng et al., 2019). 
Conversely, machine learning algorithms can handle high volumes of  
predictor variables that are interrelated and have a non-linear relationship 
with response variables (Poley & McDermid, 2020). A recent remote 
sensing-based ML study collected data from 220 related articles and 
found that random forest (RF), support vector machine (SVM), and 
artificial neural network (ANN) algorithms were amongst the most 
used ML techniques (L. Ma et al., 2017a). Therefore, these derived ML 
regressions [random forest regression (RFR), support vector regression 
(SVR), and artificial neural network (ANN)] were chosen for modeling 
DM in this study. These algorithms were programmed in Python 
(Pilgrim, 2009) (version 3.8). The VI values presented in Table 3 were 
used as continuous predictor variables of  the DM regression models, 
which were divided into training sites and prediction sites, and the 
parameters of  each algorithm were adapted to ensure the performance 
as effectively as possible for the training and testing dataset.

4.5.2 Random Forest regression

An adaptation of  the RF algorithm (Breiman, 2001) was conducted for 
DM regression models (i.e. RFR). The RFR algorithm fits an ensemble 
of  decision tree models to a set of  data. The regression tree algorithm 



44

creates individual decision trees automatically based on randomly 
chosen samples and subsets of  the training data. For random forest 
construction, the best split is selected among a random subset of  the 
predictors at each node. Calculations were conducted with 100 trees, 
the minimum number of  samples required to split an internal node 
was set to 2, and the minimum number of  samples required to be at a 
leaf  node was set to 1. Tests were run to confirm regression accuracy 
by using different amounts of  trees ranging from 100 to 500, and it 
was noted that accuracy did not vary substantially with this parameter. 
Similar results have also been observed in other RF study (Liu et al., 
2018). In terms of  variable importance, the feature importance values 
were extracted using the feature_importances object located in the sklearn.
ensemble. RandomForestRegressor class. The algorithm calculates these 
percentage values based on how every feature decreases the impurity 
of  the split (mean decrease impurity) in each decision tree. The average 
across all trees in the forest represents the feature importance.

4.5.3 Support Vector regression

Support vector regression (SVR), which is a Kernel-based machine 
learning method, was used for its low dimensional and quadratic 
programming (QP) problem converted ability with usually only a scarce 
training data set needed (Shin et al., 2010). For this study, a linear kernel 
was used. Three extra parameters were set for the algorithm. The first 
included the regularization parameter (C, cost) set at 500. This parameter 
controls the trade-off  between achieving a low error on the training data 
and minimizing the norm of  the weights. The second parameter, gamma 
was set at 0.5. It defines how far the influence of  a single training example 
reaches. The third parameter, epsilon, gives a margin of  tolerance and 
was set at 0.01. In terms of  variable importance, the coefficients of  all 
six predictors estimated by the inner sklearn algorithm were extracted 
from the created SVR model using the coef_ value located in the sklearn.
svm.SVC class, and then rescaled to be in terms of  percentage.

4.5.4 Artificial Neural Network regression

The gradient-based artificial neural network (ANN), which is also 
called multi-layer perceptron, is a supervised algorithm that can learn 
nonparametric and nonlinear features that simulate human brain 
neural network spreading between layers and receivers and information 
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processing (Q. He, 1999) for classification or regression tasks. Execution 
of  the ANN algorithm required fine-tuning of  certain parameters. 
In this study, lbfgs, which stands for Limited-memory Broyden–Fletcher–
Goldfarb–Shanno, was used as the solver since it was most optimal in 
saving memory. The MLPRegressor algorithm was executed using one 
layer with fifteen hidden units, with the regularization parameter (alpha) 
set at 0.00005. The maximum number of  iterations allowed for this 
algorithm was set to 100,000. In terms of  variable importance, the 
weights of  all six predictors assigned by the inner MLPRegressor algorithm 
were extracted from the created model using the coefs_ object located in 
the sklearn.linear_module.Perceptron class, and then rescaled to be in terms 
of  percentage. The SVR and ANN importance scores were similarly 
extracted but were rescaled to also be in terms of  percentage. 

4.5.5 Automated machine learning (AutoML) classification with 
Auto-sklearn 

Auto-sklearn (Feurer, Klein, et al., 2015b), a robust and efficient 
AutoML system first introduced in 2015 and upgraded in 2020 (Feurer 
et al., 2020), was utilized in this study. Auto-sklearn is developed on the 
Python scikit-learn machine learning package. It uses 15 classifiers, 14 
feature pre-processing methods, and four data pre-processing methods, 
giving rise to a structured hypothesis space with 110 hyperparameters 
(Pedregosa et al., 2011). It improves on existing AutoML methods by 
automatically considering the previous performance on similar datasets, 
and by constructing ensembles from the models evaluated during the 
optimization process. At its core, this method combines the highly 
parametric ML framework with automatically constructed ML pipelines 
suggested by the Bayesian optimization method sequential model-
based algorithm configuration (SMAC) (Hutter et al., 2011). SMAC 
can automatically construct ML pipelines that include feature selection 
(i.e. removing insignificant features), transformation (i.e. dimensionality 
reduction), classifier selection comprising SVM (Suykens & Vandewalle, 
1999), RF (Breiman, 2001) and other algorithms, hyperparameter 
optimization, etc. Subsequently, it then utilizes a random forest technique 
for swift cross-validation by evaluating one-fold at a time, while at the 
same time discarding poor-performing hyperparameter settings during 
early stages. It achieves competitive classification accuracy, in addition to 
novel pipeline operators that significantly increase classification accuracy 
on the datasets (Olson et al., 2016). During the feature selection stage, 
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any highly correlated VIs were removed to eradicate the influence of  
collinearity. This step was omitted here since Auto-sklearn deals with 
the low dimensional optimization problems (Feurer, Springenberg, et 
al., 2015).

In this study, all calculations were done in the open-source operating 
system LINUX with Intel Core i5-1035G1 CPU (1.00 GHz) and 16 GB 
RAM. For the AutoML framework, the steps were described in (Feurer, 
Klein, et al., 2015b). Firstly, the system uses a supplementary approach 
of  extensively applied meta-learning methods to train machine learning 
models over statistical attributes of  datasets and estimate the parameter 
of  models that yield the best precision (Franceschi et al., 2018). Secondly, 
the system automatically built ensembles of  the models considered 
by Bayesian optimization. Thirdly, the system constructed a highly 
parameterized ML framework from high-performing classifiers and pre-
processors implemented within the ML framework. Finally, the system 
performed broad empirical analysis using a diverse collection of  datasets 
to demonstrate the resulting Auto-sklearn system outperformed preceding 
AutoML methods. The major AutoML parameter settings of  this study 
are described in Table 5. Due to computational resource constraints and 
to test the efficiency of  AutoML, CPU time for each run was limited 
to 60 seconds and the running time for evaluating a single model to 10 
seconds as an example of  rapid model selection. Subsequently, a total of  
1200 seconds with a 10-second single model computing time was used as 
a representative of  the better processing of  AutoML models. The data 
were analysed separately according to the four crop fields (F1-F4), with 
each field containing 72 plots (n=72) with splitting in the training site and 
validation site (0.6/ 0.4) for classification modelling.

Table 5. The AutoML main parameters and descriptions that were used in this study.

Parameter Name Range Value Description
time_left_for_this_task 60- 1200 sec The time limit for the 

search of  appropriate 
models.

per_run_time_limit 10 sec The time limit for a 
single call to the machine 

learning model.
ensemble_size 50 (default) The number of  models 

added to the ensemble 
built by Ensemble selection 

from libraries of  models.
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ensemble_nbest 50 (default) The number of  best 
models for building an 

ensemble model.
resampling_strategy CV; folds = 3 (CV= cross-validation); to 

handle overfitting
seed 47 Used to seed SMAC.

training/ testing split (0.6; 0.4) Data partitioning way
* The other parameters that are not listed on the table were run in default mode.

A recent review study of  supervised ML methods applied in land-cover 
image classification disclosed that RF, SVM, and ANN classifiers were 
amongst the most commonly used ML techniques from 220 related 
articles (L. Ma et al., 2017a). Therefore, in this study, these popular ML 
classifiers were selected for comparison against the accuracy performance 
of  AutoML (with 60-sec run, and 1200-sec run of  Auto-sklearn). These 
algorithms were programmed in Python by the robust ML library 
Scikit-learn (0.24.2) (Pedregosa et al., 2011) with the perimeter setting 
as following: sklearn.ensemble.RandomForestClassifier [ 100 trees; min_
samples_split (2); leaf_node (1)]; sklearn.svm.SVC [ cost (C=500); gamma 
(0.5); epsilon (0,01)], and sklearn.neural_network.MLPClassifier [alpha 
(0.00005); the maximum number of  iterations (100,000)] 

4.5.6 Automated Machine Learning (AutoML) regression with 
Auto-sklearn 

This study employed the robust and frequently updated AutoML system, 
Auto-sklearn, based on the scikit-learn ML library in Python (Pedregosa 
et al., 2011). It employs 15 classifiers, 14 feature processing, and four 
data pre-processing methods, yielding a 110-hyperparameter structured 
hypothesis space (Feurer et al., 2020; Feurer, Klein, et al., 2015a). It offers 
an advancement on existing AutoML approaches by incorporating prior 
performance on comparable datasets and generates ensembles from the 
models that were examined throughout the optimization procedure. 
This technique involves the largely configurable ML prototype with the 
automatically generated ML pipelines, i.e. feature selection (deleting trivial 
features), transformation (reducing dimensionality), hyperparameter 
optimization based on Bayesian optimization strategy SMAC (Hutter et 
al., 2011). Following that, a Random Forest (Breiman, 2001) approach 
was utilized for fast cross-validation, assessing one-fold at a time and 
eliminating poor-performing hyperparameter configurations during the 
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initial phases. The Random Forest approach delivers a superior accuracy 
rate, as well as alternative pipeline operators that boost regression 
performance within the datasets (Feurer, Klein, et al., 2015a; Olson et 
al., 2016).

All computations in this study were performed on an Intel Core 
i5-1035G1 CPU (1.00 GHz) with 16 GB RAM utilizing the LINUX 
open-source operating system. The processes outlined in (Feurer, Klein, 
et al., 2015a) were executed for the AutoML framework. To begin with, 
the system employs a supplemental technique based on widely used 
meta-learning procedures to train machine learning models over the 
statistical features of  datasets and evaluates the model parameters that 
produce the greatest performance (Franceschi et al., 2018). Second, the 
system creates ensembles of  the models that Bayesian optimization 
examined, using high-performing regressors and pre-processors 
employed within the ML framework. Finally, the program works a wide 
range of  empirical examinations on a diverse set of  data to determine 
whether the AutoML regression offers better outcomes than previous 
regressions. However, any strongly correlated VIs should be eliminated 
during the feature selection step to avoid the effects of  collinearity. Since 
Auto-sklearn works with low-dimensional optimization issues (Feurer, 
Springenberg, et al., 2015), this step was bypassed in this stage. Table 6 
lists the principal AutoML regression parameters employed in this study. 
To perform tests, as a demonstration of  the practicability and efficiency 
of  AutoML model selection, CPU timing for each task was restricted to 
30 seconds, and the runtime for assessing a single model to 10 seconds. 
The analyses were performed separately for each of  the crop fields, with 
grain yield consisting of  56 plots (n=56) and straw mass divided in the 
training and test sites (0.5/0.5) for regression modelling (see flowchart 
Figure 9).

Table 6. The AutoML regression parameters and descriptions were employed in this 
study.

Parameter Name Range Value Description
time_left_for_this_task 30 sec The time restriction for 

seeking suitable models.
per_run_time_limit 10 sec The maximum amount 

of  time a single call to the 
ML model could perform.
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ensemble_size 50 (default) Several models were 
added to the ensemble 
from Ensemble libraries.

ensemble_nbest 50 (default) The amount of  best 
models for building an 

ensemble model.
resampling_strategy CV; folds = 3 (CV= cross-validation); to 

deal with overfi tting
seed 47 Used to seed SMAC.

training/ testing split (0.5; 0.5) Data partitioning way
* Other options and parameters that aren’t shown in the table were set to default.

Figure 9. The flowchart of  the hyperspectral image processing and AutoML framework 
was utilized in this study. (A) The hyperspectral image processing framework where 
hyperspectral imager HySpex was conducted and R Hsdar package was employed in 
the processing steps. (B) Field reference data transformation, ARC fi eld were digitized 
based on each fi eld and following AMP treatments. The grain yield and straw mass data 
were collected according to plots. Eight narrowband VIs were selected and calculated 
and segmented into corresponding plot digital numbers (DN) for AutoML modelling. 
(C) To achieve robust performance, the Auto-sklearn framework automatically built 
ML pipelines that were provided by the Bayesian optimization method with warm-
started meta-learning and combined with a post hoc ensemble building strategy 
(adapted from (Feurer, Klein, et al., 2015a)).
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4.6. Model evaluation

4.6.1 Regression Model Evaluation 

In red-clover biomass estimation, to reduce the potential over-fitting 
problem of  the model, a leave-one-out cross-validation (LOOCV) 
procedure (Kearns & Ron, 1999) was conducted to validate the three 
ML techniques. The LOOCV procedure involves creating a model by 
separating one sample for testing and the rest (n = 36) for validation 
in every iteration (Figure 10a). Second, all training sites were used to 
model, evaluate and predict the three ML methods (Figure 10b). As the 
training and testing dataset comprised two repetitions of  results from 
each treatment, a comprehensive range of  crop conditions was covered 
by the modelling. The variable importance of  the VIs was calculated 
for each ML technique differently and was listed per each model’s VIs 
importance scores, and the suitable models for different periods for DM 
yield spatial mapping were demonstrated. Finally, experimental treatments 
(i.e. STM, CM, and MA) were used to explore the relationship between 
different experiment factors and models (Figure 10c). The testing sites 
were sampled following a stratified approach based on the three different 
farming operations, 3 strata with 12 samples in each one in STM (DP, P, 
and R) and CM (Cmin, Omin+, and Omin-) groups, and 2 strata with 18 
samples in MA (M+, and M-). The ML methods, selected parameters, 
model evaluation techniques, and variable importance calculations are 
described below.
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Figure 10. Examples of  different sampling methods and regions in fi eld 2YC, the 
training site (1/2, n = 36) contains two repeated trial plots. (a) The evaluation of  RFR, 
SVR, and ANN using the cross-validation method LOOCV in the training site (1/2, 
n = 36) and validation site (1/2, n = 36) (b) Model construction including training 
site (1/2, n = 36) and testing site (1/2, n = 36) (c) Evaluation of  the model effi ciency 
across three different treatments: STM (n = 12 for each subset), CM (n = 12 for each 
subset), and MA (n = 18 for each subset).

For the model prediction evaluation of  each model, the accuracy 
evaluation method described by (Yue et al., 2017), was used. The 
models’ accuracies were measured by the coeffi cient of  determination 
(R²) (Equation 1) and normalized root means square error (NRMSE) 
(Equation 2). The equations used are as follows:

𝑅𝑅𝑅𝑅2  = 1 −  ∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖− 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

  
(1) 

𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
�1
𝑁𝑁𝑁𝑁∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖

𝑦𝑦𝑦𝑦𝑦
   

(2) 

Table 7. The confusion matrix-based accuracy evaluation equations 
used throughout this study. 

Indices Equations 

Recall TP/ (TP+FN) 

Precision TP/ (TP+FP) 

Specificity TN/(TN+FP) 

Accuracy TP/ (TP+TN+FP +FN) 

F1-score 2 * Precision * Recall / (Precision + Recall) 

False Positive Rate (FPR) 1 - Specificity = FP / (FP + TN) 

True Positive Rate (TPR) Sensitivity = TP / (TP + FN) 
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where N represents the total sample size, yi is the ith DM yield value 
of  the sample, ŷi is the ith predicted value, ӯi is the ith computed mean 
value, and ӯ represents the difference between the maximum and 
minimum values of  the dataset.

4.6.2. Classification model evaluation

The parameters not mentioned were computed as default settings from 
Scikit-learn, and for accuracy, the calculation refers to Table 7.

Table 7. The confusion matrix-based accuracy evaluation equations used throughout 
this study.

Indices Equations
Recall TP/ (TP+FN)

Precision TP/ (TP+FP)
Specificity TN/(TN+FP)
Accuracy TP/ (TP+TN+FP +FN)
F1-score 2 * Precision * Recall / (Precision + Recall)

False Positive Rate (FPR) 1 - Specificity = FP / (FP + TN)
True Positive Rate (TPR) Sensitivity = TP / (TP + FN)

For the visualization and evaluation of  the Auto-sklearn model, the 
workflow includes, in general, multiple iterations through feature 
engineering, algorithm selection, and hyperparameter tuning (Kumar 
et al., 2016). In this study, an open-source visual steering tool 
Yellowbrick visualization package (essentially a wrapper for the Sklearn 
documentation) was conducted for AutoML evaluation (Bengfort & 
Bilbro, 2019). Yellowbrick contributes to assessing the stability and 
predictive values of  ML models and delivers visualizations for the 
AutoML classification models. The accuracy evaluation based on the 
confusion matrix system of  the AutoML classification parameters were 
defined as follows: true positive (TP), false positive (FP), true negative 
(TN), and false-negative (FN), which have been well described in (Anwar 
et al., 2019). The equations used in this study are described in Table 7. 
The derived receiver operating characteristic curve (ROC) graph with 
the x-axis showing FPR and the y-axis showing TPR was used in this 
study to show the relationship among specificity and sensitivity for each 
possible cut-off  (Fawcett, 2006) and the area under the curve (AUC) 
ranges from 0 to 1 to visualize the trade-off  between the classifier’s 
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sensitivity and specificity (Fawcett, 2006; Pencina et al., 2008). Macro 
and micro-averaging ROC were calculated to evaluate overall classifier 
performance in multi-class problems. In this approach, the ROC curve 
was calculated anew, based upon the true positive and false-positive 
rates for all datasets (by weighting curves by the relative frequencies 
of  the dataset and then averaging them) (Gunčar et al., 2018; Sokolova 
& Lapalme, 2009). In addition, the precision-recall curve (PR) was 
calculated for different probability thresholds. PR curves were conducted 
in cases where there was an imbalance in the observations between the 
classes (Boyd et al., 2013) as another classification evaluation standard to 
assist with the ROC curve. The prediction errors (confusion matrix) and 
classification report that displays precision, recall, and F1-score (Chicco 
& Jurman, 2020) (Table 7) per class as a heatmap in this study.

Alternatively, even though the AutoML framework facilitates the 
construction of  models, given their black-box nature, the complication 
of  the underlying algorithms, and the large number of  pipelines they 
derive leads to reduced trust in AutoML pipelines systems (Q. Wang et 
al., 2019). Therefore, in this study, PipelineProfiler (Ono et al., 2021) 
was conducted for AutoML pipelines visualization. PipelineProfiler is a 
SOTA in visual analytics for AutoML interactive visualization tool that 
allows the examination of  the solution space of  end-to-end ML pipelines. 
It offers a recovering understanding of  how the AutoML algorithms 
are generated and the perceptions of  how they can be optimized. As 
the outcome of  the interactive AutoML pipeline matrix plots, where 
illustrated Pipeline flowchart, primitives used by the pipelines; one-
hot-encoded hyperparameters for the primitive across pipelines; the 
accuracy ranking; primitive contribution view; and the class balancing 
of  correlation score with accuracy. These calculations and expressions 
are clearly detailed described in the (Ono et al., 2021) article.
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5. RESULTS

5.1. The Multispectral-VIs Application for Red Clover-grass 
Mixture Yield Estimation

5.1.1 The red clover- grass mixture DM modeling and LOOCV

For better evaluation evaluating of  the model performance, LOOCV 
was firstly conducted in this research to assess three machine learning 
methods (RFR, SVR, and ANN) abilities to predict DM yield using six 
VI. The distributions of  R² and NRMSE values under thirty-six LOOCV 
iterations of  the three models are shown in box plots (Figure 11). The 
results showed that in terms of  flight dates, 11DB generally performed 
better than 38DB. In terms of  model performance, ANN had the best 
performance in 11DB, with the highest R² values (1YC = 0.84, 2YC 
= 0.85), and the lowest median NRMSE with a stable distribution of  
outliers. RFR’s accuracy was slightly smaller than for ANN. In terms 
of  regional prediction, 2YC was on average better than 1YC. Overall, 
the results of  LOOCV showed that the three models have moderate to 
high accuracies in two locations and different flight dates, and the best 
R² values were observed in 2YC11D (0.80 to 0.85), while the worst were 
observed in 1YC38DB (0.64 to 0.70).
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Figure 11. Comparison of  the NRMSE and R² values resulting from 3 different ML 
methods (RFR, SVR, and ANN) of  LOOCV in (a) 1YC11DB (b) 1YC38Db (C) 
2YC11DB (d) 2YC38DB. Each model performed 36 times LOOCV calculations. 
The R² for LOOCV was calculated using the average variance between the actual and 
prediction value for every iteration of  the cross-validation. The black dots showed 
the NRMSE results of  each cross-validation, and the white dots represent its average 
value. The median line in the box shows the middle value, and the interquartile range 
of  the box (shown in blue, red, and green) represent the 25th to the 75th percentile.

5.1.2 The red clover- grass mixture model evaluation and variable 
importance

After the cross-validation, the training dataset (n = 36) was used for 
the calculation of  models separately (Figure 10). During the modeling 
phase, the appropriate combinations of  the parameters of  the data set 
were tested. The scatter plots with model predictions and observed 
DM values compared to the 1:1 line, and their corresponding variable 
importance are shown in Figures 12 and 13. 
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Figure 12. Regression plots of  1YC and 2YC fields based on RFR, SVR, and ANN 
methods in 11DB flight. The plots correspond to (a) 1YC11DB and (b) 2YC11DB. 
The horizontal bar plots on the right side of  each graph shows the variable importance 
estimation based on the models. The horizontal axis in the scatter plots describes the 
predicted DM yield acquired from the model, and the vertical axis stands for the field-
observed DM yield. The R² = coefficient of  determination, NRMSE = normalized 
root means squared error, and the black dotted line exemplifies the 1:1 slope.

Figure 12 shows three red clover-grass mixture DM models across the 
1YC and 2YC fields where the images were captured eleven days before 
harvesting (11DB). The results indicate that, in 1YC11DB (Figure 12a), 
the ANN model had the lowest prediction errors (NRMSE= 0.12) and 
the highest R² value (0.90). RFR had a similar performance, but with 
higher NRMSE. Although the three models performed well, a slight 
uniform underestimation of  DM yield appeared in both the RFR and 
ANN models. On the other hand, a non-uniform bias appeared in the 
SVR model, which overestimated small DM values and underestimated 
large DM values. According to the ranking of  variable importance, 
GDVI and MSR provided higher contributions to the RFR and ANN 
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models. Concerning the SVM model, larger contributions were found 
for SR and GDVI. The results of  1YC38DB (Figure 12b) show that 
the three models performed relatively well (R² from 0.84 to 0.88). The 
slope of  RFR was closest to the 1:1 line, with the smallest NRMSE 
(0.11) and highest R² value (0.88); ANN and SVR had similar predictive 
capabilities. With regard to variable importance ranking, SVR showed 
similar results compared to 11DB with the highest contribution of  SR, 
while in the results of  RFR and ANN, the contribution of  VIs did not 
show obvious similarity with the highest ranking in MSR and NDVI, 
respectively.

Figure 13. Regression plots of  1YC and 2YC fields based on RFR, SVR, and ANN 
methods in 38DB flight. The plots correspond to (a) 1YC38DB and (b) 2YC38DB. 
The horizontal bar plots on the right side of  each graph shows the variable importance 
estimation based on the models. The horizontal axis in the scatter plots describes the 
predicted DM yield acquired from the model, and the vertical axis stands for the field 
observed DM yield. The R² = coefficient of  determination, NRMSE = normalized 
root means squared error, and the black dotted line exemplifies the 1:1 slope.
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Figure 13 shows the behavior of  predictive models using the thirty-eight 
days before harvest (38DB) datasets. The 1YC38DB results (Figure 13a) 
showed that SVR had the highest R² (0.89) and the smallest NRMSE 
(0.11), where the slope was close to the 1:1 line. In contrast, ANN 
and RFR relatively had weaker performances. However, the overall 
performance of  the models for the 2YC dataset was slightly inferior 
to the result of  1YC, showing a higher bias of  the slopes. In terms of  
2YC38DB results (Figure 13b), ANN had the best performance among 
the three algorithms (R² = 0.89, NRMSE= 0.15). In the ranking of  
predictor variables in 1YC and 2YC, the GNDVI, MSR, NDVI, and 
SRre played crucial roles in both RFR and ANN models. Besides, the 
GNDVI was the most important variable in both 1YC and the model 
of  ANN in the 2YC fi eld. In contrast, SR stably ranked as the most 
important in the models of  SVR, regardless of  fl ight dates or regions.
Based on the evaluation of  models (Figures 12 and 13) and their suitability 
for different periods, prediction maps (Figure 14) of  DM yield for both 
experimental sites were generated.

Figure 14. The spatial testing (prediction) site mapping output of  DM yields (kg ha-1) in 
1YC and 2YC fi elds based on 11DB and 38DB fl ights by machine learning techniques 
at the plot level: (a) 1YC11DB, (b) 2YC11DB, (c) 1YC38DB, and (d) 2YC38DB. The 
best performing algorithm was chosen for each of  the four categories, as shown in the 
previous results.
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5.2. The Multispectral-VIs and AutoML framework into 
agricultural management practices recognition. 

5.2.1 The AMPs observation in VPTs and VIs calculation

Figure 15 displays the observation of  onsite crop VPTs [i.e., Field 1 (F1) 
(Figure 15a) and Field 2 (F2) (Figure 15b) with CM treatments] and one 
of  the VIs (NDVI; Figure 15c) captured on July 10th from F1 and F2. 
It can be observed from the onsite AMPs treatment photographs of  F1 
and F2 in July that is not readily distinguishable. In addition, it can be 
seen from the NDVI image that the heterogeneity within the plot may 
be caused by edge effects or uneven fertilization. For this reason, the 
plot average value considering the pixels’ inward boundary clipping to 
decrease the noise was used.

Figure 15. Interpretation diagrams representing onsite crop VPTs and the calculation 
of  VIs per the image captured on July 10th (a) Field 1: red clove +grass (RC+G) with 
CM treatment. (b) Field 2: Spring wheat (SW) fi eld with CM treatment. (a) Normalized 
Difference Vegetation Index (NDVI) image captured of  F1(RC+G) and F2 (SW) VPT. 

5.2.2 Monthly PCA Analysis in Various Crop Growth Periods

The PC A results (Figure 16) was conducted as the fi rst step of  data 
exploration in this study to gain an understanding of  the relationship 
between VIs and different AMP categories during the three fl ight 
periods (April, May, and July) with their corresponding growing stages. 
The results show that on May 30th and July 10th, the PC1 and PC2 
captured most of  the variation from the F1 to F4 fi elds with 98.3%, 
98.7%, 97.3%, and 97.6%, respectively, on May 30th (Figure 16b), and 
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with 98.7%, 94.0%, 95.4%, and 95.4%, respectively, on July 10th (Figure 
16c); followed by April 23rd (Figure 16a). In addition, during the three 
flight periods, the PCA results in May and July provide better separation 
of  the three AMP categories throughout the four crop cultivation areas 
based on the coloured concentration ellipses where the sizes determined 
by a 0.95-probability level. In terms of  the AMP category, the subclasses 
of  CM (Cmin+ Cmin+ and the other two categories) and MA (M+ 
and M-) seems easier for non-overlapping AMP clustering, followed by 
STM. In terms of  crop types, F1 (SW) were better clustered in April, 
while F2 (SW), F3 (P+O), and F4 (SB+RC) were better clustered in 
May or July. Given the better clustering performance in May, follow-up 
AutoML analysis was conducted on the UAS multispectral-VIs data 
of  this month. In general, feature selection (finding the most relevant 
spectral bands) and extraction (reduced set of  new significant variables) 
are commonly used to solve the collinearity and overfitting problems in 
the dimensionality reduction process (Serpico et al., 2003). However, 
after test results, using PCA 95% feature extraction in the preliminary 
experiments could not significantly improve the classification efficiency. 
Therefore, these PCA results were simply used as a reference basis for 
AutoML classification. 
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Figure 16. PCA biplot of  19 VI variables (n = 72) of  each crop fi eld at April, May, and 
July. Each biplot shows the PCA individuals (3 AMPs) [i.e.,  CM (Cmin, Omin+, Omin-
), MA (M+, M- ), STM (DP, P, R)] of  the fi rst (x-axis : PC1 score) and second (y-axis : 
PC2 score) principal components (the variation explained by the dimensions are shown 
on the axes); four crop categories (F1-F4) and its corresponding growing stage from 
top to bottom. Coloured concentration ellipses (size determined by a 0.95-probability 
level) show the observations grouped by marked AMP sub-classes.

5.2.3 AutoML ROC and AUC Evaluation of  AMP Recognition in 
May

The di fferent subclasses and average results of  ROC/AUC were 
calculated for evaluation of  the AutoML performance for the AMP 
classifi cation ability in UAS multispectral-VIs that were captured in May 
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(Figure 17), where AUC values were categorized in this study as AUC 
= 0.5: no discrimination; 0.7≦AUC≦0.8 (acceptable discrimination); 
0.8≦AUC≦0.9 (excellent discrimination); 0.9≦AUC≦1.0 (outstanding 
discrimination) (Fawcett, 2006).

Figure 17. ROC curves and AUC of  the AutoML classifi cation corresponding to the 
subclasses within the AMPs for the acquisition of  the UAS multispectral-VIs DN in 
May. From left to right, the ROC curves computed on (a) CM [(Cmin (blue lines), 
Omin+ (green lines), Omin- (red lines)]; (b) MA[M+ (blue lines), M- (green lines)]; (c) 
STM [DP (blue lines), P (green lines), R (red lines)]; and their micro (pink dotted line) 
and macro (dark blue dotted line) average performance. Four crop categories (F1-F4) 
from top to bottom.

The AutoML results showed that the micro-average ROC of  CM’s 
classifi cation results in F1(RC+G) and F2 (SW) were higher (AUC = 
0.95, and 0,92, respectively). Especially in the subclass Omin-, the AUC 
both reached 0.99, the micro-average ROC followed by F4, and F3 
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(P+O), with 0.86 and 0.75, respectively) (Figure 17a). On the contrary, 
MA classification results show that the micro-average AUC in F3 and F4 
were higher (AUC = 0.83, and 0,89, respectively), followed by F1 (AUC 
= 0.71). F2 performance for MA was the worst (AUC =0.51), with 
no discrimination ability (Figure 17b). In contrast, STM classification 
results were generally poor, with better results only present in F3, while 
other fields have larger divergence in classification results under the 
sub-class (DP, P, and R), as shown in Figure 17c). Overall, the AutoML 
classification ability from UAS multispectral-VIs of  CM was the best, 
followed by MA and STM.

5.2.4 AutoML precision-recall, prediction error, and classification 
report of  CM recognition

Amongst the classification results of  AMPs in May (Figure 17.) of  four 
crop types that CM yielded the best ROC/AUC overall performance. 
Therefore, the precision-recall (PR) curves, prediction error, and 
classification report plots were used to gain an in-depth understanding 
of  the classification status of  CM treatments (Figure 18). 

The PR curve of  F4 CM shows the trade-off  between a classifier’s 
precision performance from UAS multispectral-VIs in May (Figure 18a) 
where a model with perfect performance is depicted at the coordinate 
of  (1, 1). A curve that tends towards the (1, 1) coordinate represents 
a well-performing model, whereas a no-skill classifier is depicted as a 
horizontal line on the plot with a precision that is proportional to the 
number of  positive examples in the dataset. For a balanced dataset, this 
value ought to be 0.5 (Saito & Rehmsmeier, 2015). The results show 
that the classifications of  Field 1 and 2 were promising, their average 
PR being 0.90 and 0.85 respectively, while the results of  F3 and F4 were 
poor (0.50 and 0.49). One can further discover from the prediction error 
graph (Figure 18b) in F3 and F4 that the judgment error of  Cmin+ is 
low, and the confusions of  Omin+ and Omin- were more common. The 
precision, recall, and F1-score results of  various cultivation method sub-
classes can be compared to evaluate the classification accuracy from the 
heatmap (Figure 18c).
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Figure 18. The evaluation of  AutoML classifi cation of  AMPs from the acquisition 
of  the UAS multispectral-VIs DN in May. (a) Precision-recall, where the class 0, 1, 
2 equals to Cmin+, Omin+, and Omin- respectively (b) Prediction Error (confusion 
matrix), the X-axis represents the three subclass form CM result in May, and the Y-axis 
represents the type (with colour) and the number of  correct or incorrect estimates., and 
(c) Classifi cation report lists the precision, recall, and F1-score per class as a heatmap 
for overall comprehensive evaluation results.

5.2.5 AutoML Pipeline Visualization

An interactive AutoML visualization tool PipelineProfi ler was conducted 
in this study. Figure 19 shows the CM classifi cation results across four 
crop fi elds in May with the accuracy performance of  AutoML pipelines 
running time set at 60 seconds, and the primitive comparison against 
the others and the real-time hyperparameter selection strategy. The 
results demonstrate that the best classifi er found for Field 1 was linear 
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discriminant analysis (LDA) (FISHER, 1936) (Figure 19a), for Field 2 
it was the Extra Trees Algorithm (Geurts et al., 2006)(Figure 19b), for 
Field 3 it was LDA (Figure 19c) and RF for Field 4 (Figure 19d), with 
each of  their hyperparameters found by AutoML also being represented 
in the figures.

Figure 19. The interactive AutoML pipeline matrix plots with running time-limited 
setting 60 sec sorted by accuracy performance (a)-(d), (a) Field 1 pipeline matrix 
with the Top1 classifier LDA, where (a1) illustrated Primitives (in columns) used by 
the pipelines (a2) (in rows, the blue line showed the best accuracy rank); (a3) one-
hot-encoded hyperparameters (in columns) for the primitive across pipelines, (a4) the 
AutoML pipeline with the accuracy ranking; (a5) Primitive contribution view, showing 
the correlations between primitive usage and pipeline scores – in a5 displays that class 
balancing has the highest correlation score with accuracy; (a6) Step by step AutoML 
Pipeline flowchart. The ML box before Output represents the classifier used by this set 
of  algorithms (in a6 LDA as the classifier) (b)-(d) Field 2, 3, and 4 interactive pipeline 
matrix sort by AutoML accuracy performance with the chosen hyperparameters (top 
1 was listed).

 

(a) F1 (RC+G) CM May (b) F2 (SW) CM May

(c) F3 (P+O) CM May (d) F4 (SB+RC) CM May

AutoML pipeline

AutoML pipeline AutoML pipeline

AutoML pipeline

(a1)

(a2)

(a3)
(a4)

(a5)

(a6)



66

5.2.6 Comparison of  performance between AutoML and other 
machine learning technologies

Based on the large calculations and multiple classifier selections that 
were required during the initial stage of  AutoML computations, the 
processing time setting of  60 seconds may not completely reflect the 
performance power of  AutoML. To evaluate the effects of  AutoML 
processing time, the times were adjusted to 1200 seconds and 60 seconds 
(original running time) and considered the AMPs classification accuracy 
with RF, SVM, and ANN algorithms (Table 8). The results demonstrate 
that under the permutation and combination of  ML algorithms included 
in AutoML, classification accuracy does not perform well in 60 seconds 
of  computing time. Furthermore, performance was the worst in F1 
CM, F2 STM, and F3 CM classifications compared to RF, SVM, and 
ANN. However, as processing time was increased to 1200 seconds, the 
classification accuracy of  AutoML in AMPs was shown to improve. The 
results also indicated that overall AutoML (1200 sec) and RF classifiers 
produced 5 and 3 best classification accuracy in AMPs respectively (in 
black bold) and did not produce the worst accuracy values (in bold red) 
in any instances. Regarding SVM and ANN, the classifiers performed the 
best in 3 and 5 cases, respectively. However, these methods consistently 
produced low performing classifiers compared to other AMPs.  

Table 8. The AMPs classification accuracy comparison of  AutoML and three other 
popular applied ML (RF, SYM, and ANN) algorithms in UAS multispectral-VIs. 

ML algorithms
Field AMPs AutoML 

(1200 sec run)

AutoML 

(60 sec run)

RF SVM ANN

F1

(RC+G)

CM 0.79 0.76** 0.79 0.83 0.86*
MA 0.59 0.62* 0.62* 0.62* 0.55**
STM 0.57* 0.31 0.48 0.38** 0.48

F2

(WS)

CM 0.79 0.79 0.79 0.83* 0.72**
MA 0.55* 0.52 0.48 0.52 0.45**
STM 0.52* 0.45** 0.48 0.45** 0.52*

F3

(P+O)

CM 0.55* 0.41** 0.55* 0.48 0.55*
MA 0.66 0.72 0.76* 0.62** 0.76*
STM 0.66 0.69* 0.69* 0.57** 0.59
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F4

(SB+RC)

CM 0.57 0.59* 0.56 0.59* 0.48**
MA 0.85* 0.78 0.67 0.78 0.63**
STM 0.56 0.59 0.59 0.52** 0.63*

(*) The bold black numerical value in the Table represents the highest accuracy classifi er 
in the row; (**) the thin red numerical value represents the worst accuracy in the row. 

5.3. The Hyperspectral Image and AutoML in Crop Yield and 
Biomass Estimation.

 5.3.1 The Field Observation DM Data Analysis

 The average actual grain yield and above ground straw mass data (fresh 
and dry) gathered from the SW, P+O, and SB+RC experimental regions 
are displayed in the violin plot (Figure 20), where the range of  grain yield 
and straw mass data are exhibted and were assembled by fi elds since 
the treatments were interspersed within each plot. In addition, dry and 
fresh weight were examined separately since the accumulated rainfall of  
4.1 mm (in SW and P+O fi elds) and 0.4 mm (in SB+RC fi elds) in the 
three days before the two harvests (on 16 August 2019, and 5 August 
2019, respectively) may have contributed to increased fresh weight with 
additional water content.

Figure 20. Violin plots of  mean harvest results of  fresh and dry (a) grain yield and 
(b) straw mass, grouped by  spring wheat (SW), pea and oat mixture (P+O), and 
spring barley with under-sowing red clover (SB+RC) fi elds. White dots represent the 
median, while thick black bars in the centre demonstrate interquartile ranges, black 
lines represent the remainder of  the distribution. The shape of  the violins shows point 
density and data distribution as a whole.
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5.3.2 The Hyperspectral Reflectance Signature under Various 
Agriculture Management Practises

Figure 21 displays a mean reflectance plot produced from hyperspectral 
data of  SW, P+O, and SB+RC fields, with enclosed subsets categorized 
by (Figure 21-A) STM and (Figure 21-B) CM agricultural operations. 
Regarding agricultural management practices, the wavelength bands 
between 700-750 nm and 760-900 nm have significant identification 
capabilities, while the 400-700 nm region shows little differentiation 
between management practices. The cultivation method (figure 21-B) 
provides greater recognition ability (separation) in this range when 
compared to STM spectral information (figure 21-A). In terms of  
crop types, spring wheat monocropping seems to give a better ability 
to recognize AMPs, followed by mixed cropping systems SB+RC and 
P+O fields. However, since the focus of  this study is on grain yield 
and biomass prediction, the narrowband VIs wave range were omitted 
based on the strong absorption bands near 760 nm were omited and 
thus excluded from subsequent AutoML analyses.
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Figure 21. Mean radiance plot derived from hyperspectral data of  spring wheat (SW), 
pea and oat mixture (P+O), and spring barley with under-sowing red clover (SB+RC) 
fi elds, grouped by (A) soil tillage method (STM) and (B) cultivation method (CM) 
farming operations with contained subsets. The wavelength ranges from the visible to 
near-infrared (VNIR, 400-1000 nm)
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5.3.3 Characterization of  the Correlation Coefficient with 
Averaged Radiance Hyperspectral Data and Field Observation

Correlation Coefficient (r) was used as exploratory analysis in this 
study and as a reference for subsequent modelling. Figure 22 shows the 
correlation coefficients (r) between each averaged hyperspectral narrow-
band data with the dry mass (Figure 22-A) and fresh mass (Figure 
22-B) at the plot level. The pattern of  positive r values was typically 
obtained with reflectance between 750 – 940 nm wavelengths, whereas 
the strong negative correlation with reflectance was between 500 – 700 
nm. Moreover, the correlation of  straw mass (red line) was stronger 
than grain yield (blue line) at all fields in the 750-1000 nm range. By 
comparison, the results showed that, in the patterning of  r curves, SW 
was closely associated with highly positive and negative r values in dry 
mass (Figure 22-A), while with the lower correlation nearby the oxygen 
absorption peak 760 nm. This tendency has been observed in the 
previous reflectance signature analysis as well. Among the three fields, 
P+O has the least correlation. Regarding the fresh mass (Figure 22-B), 
the correlation and spectral characteristics are comparable to the weight 
of  the dry mass. Except for 740 - 750 nm, SW has overall the strongest 
correlation, followed by SB+RC, P+O.
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 Figure 22. The Pearson Correlation Coeffi cient (r) between the fi eld observation value 
[grain yield (A); Straw mass (B)] and averaged hyperspectral radiance at the plot level 
in SW, P+O, and SB+RC region.

5.3.4 The AutoML Model Prediction and Evaluation

In this study, the narrowband VIs refl ectance of  grain yield (n = 56) 
and straw mass (n = 24) based on training/testing (0.5/0.5) principles 
were used for AutoML modelling, respectively. The AutoML framework 
was used to test the appropriate combinations of  data set parameters 
throughout the modelling process. Scatter plots representing model 
predictions and observed weight values (kg ha−1) were compared to the 
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coefficient of  the determination (R2) and normalized root means square 
error (NRMSE) along with the 1:1 line.

Figure 23 shows the regression plots of  fresh (Figure 23-A) grain 
yield (kg ha−1) and (Figure 23-B) straw mass (kg ha−1) in SW, P+O, and 
SB+RC fields based on narrowband VIs and AutoML methods. The 
results indicate that, in fresh grain yield (Figure 23-A), the AutoML 
model had the lowest prediction errors (NRMSE= 0.13) and the highest 
R² value (0.95) in SW field, followed by SB+RC field (NRMSE= 0.16, 
R²=0.88), and P+O (NRMSE= 0.16, R²=0.88). Even though the three 
models functioned well, there was a minor non-uniform bias found 
within the models, with an underestimation of  grain yields in areas 
with higher output in SW and SB+RC fields. On the other hand, for 
fresh straw mass, the SW field remains the best performing among the 
other fields with (NRMSE= 0.16, R²=0.88) followed by SB+RC field 
(NRMSE= 0.27, R²=0.77) with uniform overestimation bias, and P+O 
(NRMSE= 0.25, R²=0.56) (Figure 23-B). Among them, P+O prediction 
ability is insufficient, and the reference data collected are concentrated in 
the 3,000 to 5,000 (kg ha−1) interval, which makes the regression model 
unable to be effectively extended.
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Figure 23. Regression plots of  (a) fresh grain yield (kg ha−1) and (b) fresh straw mass 
(kg ha−1) in SW, P+O, and SB+RC fi elds based on narrowband VIs and AutoML 
methods. The horizontal axis in the scatter plots represents the model’s projected grain 
yield or straw mass, while the vertical axis represents fi eld-observed data. Where the 
R2 = coeffi cient of  determination, NRMSE = normalized root represents the squared 
error, while the 1:1 slope is shown by the black dotted line.

Figure 24 demonstrates the behaviour of  predictive models utilizing dry 
(A) grain yield (kg ha−1) and (B) straw mass (kg ha−1) in SW, P+O, and 
SB+RC fi elds based on narrowband VIs and AutoML methods. The 
results specify that, in summary, SW yields the best performance for dry 
grain yield (NRMSE= 0.12, R²=0.96) and straw mass (NRMSE= 0.15, 
R²=0.89) among SB+RC, and P+O fi les (Figure 24-A). Compared to 
the fresh mass model, the dry performance is better in general, especially 
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in the dry straw model of  SB+RC (NRMSE= 0.33, R²=0.86), and P+O 
(NRMSE= 0.24, R²=0.83) (Figure 24-B), although these two models 
have a larger degree of  bias under the comparison of  1:1 slope.

Figure 24. Regression plots of  (a) dry grain yield (kg ha−1) and (b) dry straw mass (kg 
ha−1) in SW, P+O, and SB+RC fi elds based on narrowband VIs and AutoML methods. 
The horizontal axis in the scatter plots represents the model’s projected grain yield 
or straw mass, while the vertical axis represents fi eld-observed data. Where the R2 = 
coeffi cient of  determination, NRMSE = normalized root means squared error, and 
the black dotted line exemplifi es the 1:1 slope.
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5.3.5 The AutoML Model Pipeline Visualization

An interactive AutoML visualization tool PipelineProfiler (Ono et al., 
2021) was used in this study (Figure 25). To simplify the description, the 
best regression modelling results across 2 crop fields (SW and SB+RC) 
were listed, and the evaluation performance of  AutoML pipeline 
execution times set at 30 seconds, the primitive comparison against 
other regressors in the same pipeline, and real-time hyperparameter 
selections. The results confirmed that the best regressor found for dry 
grain yield was automatic relevance determination (Ard) Regression (Qi 
et al., 2004) for SW field (Figure 25-A), and for SB+RC field, it was the 
Random Forest (Breiman, 2001) (Figure 26-A), while for dry straw mass, 
it was Gaussian Process (Seeger, 2004) (Figure 25-B) for SW field, and 
Ard Regression for SB+RC field (Figure 26-B), with all hyperparameters 
found by AutoML also displayed in the figures.
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Figure 25. The interac tive AutoML  pipeline matrix plots with thirty-second running-
time limits sorted by coeffi cient of  determination (R2) performance (A, and B). (A) 
Spring wheat (SW) dry grain yield pipeline matrix with the Top1 regressor, automatic 
relevance determination (Ard) regression, where (A1) illustrated Primitives (in 
columns) used by the pipelines (A2) the blue line (in rows) showed the best R2 rank); 
(A3) one-hot-encoded hyperparameters (in columns) for the primitive across pipelines, 
(A4) R2 performance ranking of  AutoML pipelines; (A5) Primitive contribution 
view demonstrating the correlations between pipeline scores and primitive usage are 
displayed in A5. The Gaussian Process showed the highest correlation score regarding 
R2 performance; (A6) Step by step AutoML Pipeline algorithm fl owchart, where the 
box before the output represents the regressor of  the model. (in A6 Ard regression 
as the regressor) (B) Spring wheat (SW) dry straw mass Field pipeline matrix with the 
Top1 regressor, Gaussian Process.
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Figure 26. The interactive AutoML pipeline matrix plots with thirty-second running-
time limits sorted by coeffi cient of  determination (R2) performance (A, and B). (A) 
spring barley with under-sowing red clover (SB+RC) dry grain yield pipeline matrix 
with the Top1 regressor, Random Forest. The rows display a blue line representing 
the best R2 rank followed by its hyperparameters settings; (B) SB+RC dry straw mass 
pipeline matrix with the Top1 regressor, Ard regression, followed by its hyperparameters 
settings.
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5.4. The Field Observation DM Data Analysis

Based on the AutoML models provided above (Figure 25 and Figure 
26), a series of  prediction maps were generated (Figure 27) for dry grain 
yield and straw mass for SW, P+O, and SB+RC experimental sites at the 
plot level. Furthermore, the SW and P+O fi elds’ prediction capability 
were 60 days before the harvest date (18 Jane -16 August), whereas the 
SB+RC fi eld’s estimating was 49 days before harvest (18 Jane - 5 August).

Figure 27. The spatial prediction mapping output of  (a) dry grain yield (kg ha−1) 
and (b) dry straw mass (kg ha−1) in SW, P+O, and SB+RC fi elds based on their 
respective AutoML prediction models at the plot level. The performing coeffi cient of  
determination (R2) is displayed in the previous results.
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6. DISCUSSION

6.1. Applicability of  this thesis

This thesis has presented a rapid, non-destructive, low-cost framework 
for field-based crop yield modelling as well as the recognition of  the 
management practice. The prediction models covered three different 
agricultural operations (STM, CM, and MA) to represent the variable 
conditions in a practical farming system, which provided varied 
agricultural data to identify the robustness of  the derived ML and 
AutoML models. Acquisition of  UAV data conducted cover full growing 
periods in 2019 offered a wider range of  suitable monitoring capabilities. 
Traditional machine learning techniques (RFR, SVM, and ANN) and 
SOTA AI-based, open-sourced AutoML framework for automatically 
exploring crop image regression and classification ability and assisting in 
optimizing problematic hyperparameter adjustments. 

All VI information was derived from four multispectral and 216 
hyperspectral bands under regular mono- and mixed cultivation. Utilizing 
various VIs which calculate the relative values or ratio among wavelengths 
can reduce the impact of  radiance effects caused by individual reflectance 
spectra (Li et al., 2020). Besides, high-resolution multispectral imaging 
produces continuous and accurate indices in contrast to simple visual 
scores and rankings (J. Wang et al., 2019). Consequently, no additional 
sensors were needed, which reduced measurement errors and increased 
cost-efficiency. Additionally, in this thesis, the possibilities of  deploying 
UAS multispectral-VIs systems were examined to monitor small-scale 
experimental fields and larger-scale farmland by employing hyperspectral 
imaging. The flexibility, in sensor systems, environmental capabilities, 
and increased flight durations could expand the application to meet a 
diverse range of  requirements (Wachendorf  et al., 2018), whilst still 
providing the precise yield prediction accuracy required in this study. 
Since the investigation was carried out under a diversity of  agricultural 
management practices, the methods and findings can profoundly aid 
agronomists and farmers in designing accurate cropping systems to 
enhance environmental assessment. 

Remote sensing related modelling research publications have significantly 
increased in recent years, with over a hundred articles developed since 
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2017. This substantial adoption of  UAS and hyperspectral related 
approaches demonstrates its impact and the mounting interest in 
such research issues (Samaras et al., 2019). This framework may 
also be implemented in other classification and regression research, 
such as research employing multi-sensors [i.e., thermal, visible light, 
hyperspectral, radar or light detection and ranging (Lidar) sensors] across 
a range of  contemporary agriculture classification activities (ie, weed 
management (David & Ballado, 2017; Torres-Sánchez et al., 2013), crop 
phenotyping (Chawade et al., 2019; Sankaran, Khot, Espinoza, et al., 
2015; G. Yang et al., 2017; Young, 2019), disease monitoring (Vivaldini 
et al., 2019; X. Zhang et al., 2019); as well as research focused on 
ecological classification schemes, multispectral-based plant community 
mapping options (Villoslada et al., 2020), and coastal wetland vegetation 
classification results (Burnside et al., 2007).

6.2. The Impact of  the Cultivated Period, Flight Times, and 
Farming Operations 

The initial goal was to build red-clover biomass prediction models for 
one and two-year growing periods.  Despite the results of  the established 
models (Figure 12 and 13), the prediction accuracy of  1YC (R² ranges 
from 0.81 to 0.90, NRMSE ranges from 0.11 to 0.15) and 2YC (R² 
ranges from 0.84 to 0.89, NRMSE ranges from 0.11 to 0.15) were both 
adequate. Regardless, the clover-grass mix produced a heterogeneous 
canopy with the coverage of  the two components.  A previous mixed 
clover-grass study focused on canopy height (CH) modelling for DM 
yield prediction showed the models performed better when constructed 
independently among the two species, and cannot be easily shifted to 
other grassland types due to their structural properties (Grüner et al., 
2019).  A previous study found that although measurements performed 
at the ground-level were more accurate, the use of  aerial systems was 
preferred since species identification was irrelevant when predicting the 
biomass of  mixed-grass (Rueda-Ayala et al., 2019). Thus, these species-
dependent VI events seem to be minor concerns within this study’s 
findings. NIR-based Vis were inferred to be suitable for the estimation 
of  DM yields in one- and two-year cultivation periods in this study.

The second objective was to compare the impact of  different pre-harvest 
flight dates on model estimation capabilities. The choice of  flight timing 
was crucially matched with the spectral reflectance data during various 
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growth periods. A previous study showed that the ideal period for forage 
crop assessment was one day before harvesting (Lussem et al., 2018), 
whereas another study suggested that the targeted silage harvesting 
stage was favoured (Viljanen et al., 2018b). The results from this study 
indicate that in clover-grass mixture fields, the estimation ability is 
improved when UAS imagery is collected closer to the harvest period. 
Moreover, the results indicate that the VIs derived from UAS images 
captured earlier than 38 days before harvest also have sufficient DM 
yield estimation capacity.

A study of  grassland DM yield estimation by a UAV-RGB camera showed 
different nitrogen fertilizer levels with its R² ranging from 0.57 to 0.70 
(Lussem et al., 2019). Currently, adequate fertilizer estimation remains 
challenging in heterogeneous plant communities such as grasslands 
(Lussem et al., 2018). However, legume crops could provide more 
positive N balance input than mineral fertilization under various tillage 
conditions [(Wittwer & van der Heijden, 2020). Although the input of  N 
is not effectively quantified in this study, the DM yields of  the various N 
input combinations could still be effectively predicted, which increases 
the viability of  using non-destructive methods to quantify a range of, 
and distinct, N sources in future fertilizer management decisions.

6.3. The machine learning methods and Importance of  Variable 
Rankings

6.3.1 The machine learning methods

Machine learning techniques are still deemed to be a novel in the realm 
of  estimating grassland biomass (Ali et al., 2015; Bithas et al., 2019; 
Maimaitijiang et al., 2020; Maxwell et al., 2018). The predictive ability of  
three broadly adopted and reliably implemented ML methods in clover-
grass DM yield was promising in this study. ANN showed better predictive 
accuracy eleven days prior to harvest (11DB). This result is consistent 
with the LOO cross-validation results. The practicality and flexibility 
of  ANN has previously been demonstrated in studies of  grassland 
biomass estimation(Ali et al., 2017; Xie et al., 2009), and nitrogen and 
phosphorus concentration modeling in mixed-species environments 
(Mutanga & Kumar, 2007; Mutanga & Skidmore, 2004a). Interestingly, 
within the study, RFR and SVR were shown to have increased predictive 
capability at 38DB; which is farther from the harvest period. Both RFR 
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and SVR were also shown to have a promising potential in clover-grass 
biomass prediction applications, since they are fast and require fewer 
training samples, when compared to the ANN (Ali et al., 2015; Z. Zhang 
et al., 2017). The overall accuracy of  the three ML methods provided 
R² ranges from 0.81 to 0.90, and the NRMSE ranges from 0.11 to 0.15. 
These findings further support the asserted dominant ability of  MLs as 
a perennial forage crop biomass estimator; demonstrated in this study 
for mixed-grass species.

6.3.2 Importance of  Variable Rankings

Variable importance ranking is essential for predictor selection and model 
simplification normally. In this study, the results of  ranking showed 
which VIs were able to capture most of  the variability in vegetation 
characteristics from the grass fields. Different VI values at the level of  
leaf  area indices were likely caused by the diverse canopy structures of  
clover (horizontal) and grass leaves (vertically orientated) (Biewer et al., 
2009). A recent study confirmed that GNDVI is suitable as a biomass 
predictor for perennial forage crops, where R² = 0.80 for freshly-cut, and 
0.66 for dry yields (Aube, 2021), as well as in the grain yield estimation 
in maize (Marques Ramos et al., 2020). These results resemble the RFR 
and ANN modelling of  this study, where the GNDVI, GDVI, and MSR 
had the highest average contributions. The weight of  SR was generally 
low. Similar result was also found in a study of  grass DM yield prediction 
by Partial Least Square (PLS) and RF techniques, where the above-
mentioned VIs were relatively important variables, while SR yielded the 
worst prediction out of  twelve VIs (Grüner et al., 2020). Other previous 
studies have indicated that NDVI is more commonly used for pasture 
biomass measurements (Insua et al., 2019; Lee et al., 2015), as well as in 
larger-scale grassland followed by the seasonal monitoring (Q. Ma et al., 
2019). However, the findings of  this study indicate that NDVI may not be 
the most suitable VI, which was supported by the previous study (Aube, 
2021). This highlights the importance of  considering the saturation, 
sensitivity, stages of  crop development, canopy structure and the type 
of  environment when testing various vegetation indexes (Wachendorf  
et al., 2018). This study’s findings indicate that multispectral information 
based on NIR and the green band may be more suitable for DM yield 
prediction using RFR and ANN modelling. The exception, however, is 
the SR indices, which has the highest contribution consistently across 
all periods in the SVR modelling. This distinctive finding has yet to 
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be found in similar crop studies in other literature. It is clear from the 
findings that more tests of  VI should be conducted in studies to increase 
the collective understanding and provide improve the knowledge base.

6.4. The Impact of  Algorithm Selection, Cultivated Period, and 
Crop types in AutoML AMP recognization 

6.4.1 the Impact of  the AutoML Method in UAS

The AutoML framework quickly provided usable classifiers and 
hyperparameter selections for unknown UAS classification tasks and 
parameter selection. For example, in the current study, the parameters 
and applicable classifiers of  AMPs were unknown a priori. However, it 
provided a promising and efficient performance rating for classifiers 
for inclusion in modelling selection. As the results of  Figure 19 show, 
LDA (Figure 19a and Figure 19c) and Extra Trees (Figure 19b) were 
chosen as the best classifiers corresponding to the VPT fields of  the 
AMP recognition task. These ML methods have been less applied and 
referenced in the field of  UAS (L. Ma et al., 2017a). These findings 
clearly illustrate that AutoML has the potential to locate alternative ML 
approaches that might customarily be ignored by investigators with 
unknown classification subjects.

In addtion, the operational efficiency of  AutoML classifiers can be 
given a time limit and gives the researcher the flexibility to find the 
most suitable formula within the required time. In general, a longer time 
setting allows for increasingly accurate results with additional classifier 
combinations. Since the experiments did not involve substantially large 
datasets, the focus was put on time setting close to the minimum limit 
of  AutoML calculation [60 sec of  total CPU operation (this can be up 
to 3000 sec) and 10 seconds of  a single ML algorithm computation] to 
highlight the flexibility and rapid performance of  AutoML.

Finally, within this research, the latest released AutoML interactive 
visualization system PipelineProfiler was employed and assisted in the 
screening of  classifiers and the reference of  fine-tuning parameters 
when analyzing UAS data. This interaction includes adjustable time, 
accuracy ranking, and selection of  hyperparameters in response to the 
requirement of  customized UAS modelling. The results showed that 
AutoML computations within a 60-seconds-run produced between 11 
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and 12 pipelines (Figure 19), which might offer a beneficial foundation 
for providing adequate outcomes in most cases with minimal attempts 
and time.

6.4.2 The Impact of  Algorithm Selection, Cultivated Period, and 
Crop types in AutoML AMP recognization

In terms of  algorithm selection in the AMP classification results, 
different classifiers were suggested by AutoML as the best performances 
even within the same AMP category for different crop types (Figure 19). 
The conclusion is that applying AutoML in UAS-derived multispectral 
VI data allowed for the consideration of  a variety of  algorithm 
combinations to meet the complexity of  the VPT field. The three most 
used ML algorithms (RF, SVM, and ANN) were compared in the UAS 
classification fields with AutoML algorithms (Table 8). The overall 
performance shows that AutoML (with 1200-second CPU duration) 
provided the five best (or equal best) accuracy performances (shown 
in bold black in Table 8). Interestingly, in all tests, the AutoML (1200) 
and RF methods were never found to be the worst-performing methods 
(shown in bold red). Moreover, when using the ANN method, despite 
providing five of  the best classification accuracy results, this method 
also included five of  the worst performance results. Similar outcomes 
were observed regarding the SVM and AutoML 60-seconds runs. 

From the results, increasing the computing time was deduced to have the 
potential to improve the accuracy and stability of  AutoML classification 
performance under certain AMPs conditions. However, it also highlights 
the potential to include AutoML methods in the computation of  
common classification problem-solving. Similar ranks were shown in a 
study that compared the results of  the numerous classifiers with Auto-
sklearn, where the RF classifier presented the strongest performance, 
and SVM showed robust performance for some datasets (Feurer, Klein, 
et al., 2015b). Since the Auto-Sklearn classifiers are based on Scikit-learn 
as a blueprint, it should theoretically capture the hyperparameters of  
the RF algorithm on what was selected for Table 8. Despite the strong 
performance of  AutoML (1200 sec), there were still several results 
that indicated an inferior of  AutoML (1200 sec) when compared to 
the RF classifier (i.e., Field 1 MA; Field 3 MA and STM). Moreover, in 
a few cases, the accuracy of  AutoML (1200 sec) was even lower than 
the calculation result of  the 60-sec set (i.e., Field 1 MA, Field 3 STM, 
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and Field 4 CM). It may be that the algorithm computations involve 
different factors other than accuracy, and the model it uses to tune the 
parameters actively tries to avoid overfitting. This will possibly lead to 
the situation where the most accurate model, on the testing or training 
data, will not be the one that can generalize the best on real data. Also, 
developers from the Auto-sklearn team have previously described that 
during the ensemble selection phase the methods can add numerous 
substandard models to the final ensemble and unregularized selection 
may lead to overfitting with a small number of  candidate models (Feurer 
et al., 2018). This result shows that there is still room for improvement 
regarding AutoML calculation methods in the future.

In terms of  cultivated period and crop type, according to the monthly 
performance of  different crop growth stages, the PCA results indicate 
that the VPT with better clustering performance occurred during the 
flight in May; with a confidence level of  0.95 (Figure 16b). In this regard, 
this flight period was further used for the AMPs classification study. 
Conversely, in the case of  more homogeneous crop types [field 3 (WS)], 
and despite promising as the classification result in CM, the results 
of  MA and STM were not as effective as other crops (Figures 17 and 
18). These results may suggest that even with higher heterogeneity of  
cultivation within the plots (i.e., F1, F3, and F4) appears to not necessarily 
affect the classification ability. However, concerning the Field 3 results 
from the PCA in May (stage of  stem elongation) and July (stage of  
flowering), the MA clustering ability was better with a 0.95 confidence 
level in both months, and the accuracy was later improved from the 
classification analysis. The results of  the study have demonstrated that, 
although the feature selection stage of  AutoML is a black box, the 
potential predictive ability of  the AutoML model based on PCA result 
can still be preliminerarily be discovered, and cost of  period selection 
can be reduced; as was done in this study. In addition, this study has 
contributed evidence to the classification obstacles in the case of  STM 
that may cause by the orientation of  images taken over vegetation or 
soil with uniform texture and re-cursive pattern, sub-optimal flight 
configuration (Sona et al., 2016), or unflavored VIs selection. Some 
studies also suggest that the use of  grey-level co-occurrence matrix 
(GLCM)-based texture information (David & Ballado, 2017; Kwak & 
Park, 2019), semantic segmentation (M. der Yang, Tseng, et al., 2020) 
or edge computing (M. der Yang, Boubin, et al., 2020a) can improve 
the accuracy of  UAS-ML classification in the crop categories. This may 
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be an applicable technology for AMPs classification in the future. The 
applicability and optimization of  this framework, and the visualization 
of  feature importance, required the optimization of  the AutoML 
programmers and UAS application feedback to improve.

Currently, multispectral indices were effectively applied in some AMP 
image analysis studies with the colour, texture and shape factors of  the 
agricultural land at the satellite level. These include conservation tillage 
methods identification (Najafi et al., 2021) and agriculture landscapes 
with pixel-based or object-based classification tasks (Duro et al., 
2012; H.-O. Kim & Yeom, 2012). AMPs application are indispensable 
for environmental monitoring and for facilitating the agricultural 
decision-making process, regarding the adoption practices proposed 
by growing conservation agriculture demand (Telles et al., 2018), and 
for its potential upscaling ability to accelerate land cover classification 
studies. Recently, combining commonly adopted management practice 
with UAS multispectral-VIs research has gradually gained attention and 
has been applied to cotton and sorghum fields (Yeom et al., 2019b). 
In this study, the effective application of  UAS sensors to recognize 
multiple AMP categories has been shown. More specifically, an UAS-
AutoML approach can improve the classification ability under specific 
crop AMPs, highlighting that, in this study site, classification performed 
better in CM, with overall classification performance followed by MA 
and STM.

6.5. The Impact of  the AutoML Method in Hyperspectral 
Imaging 

6.5.1 The Effect of  Hyperspectral Signatures and the Correlation 
between Crop Yield and Straw Mass 

The initial goal of  this study was to conduct an exploratory evaluation 
of  the hyperspectral reflectance signature and determine the ideal 
narrowband VIs for modelling common crop types and farming 
schedules in Northern Europe. To identify redundant bands and establish 
wavebands that could best help AutoML regression modelling, the VIs 
were first chosen based on prior knowledge of  the literature and then 
filtered by the reflectance signature (Figure 21) and their Correlation 
Coefficients with yield and biomass (Figure 22). Although there was no 
general focus on a formal classification analysis in this current study, 
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the characteristics of  hyperspectral data under different agricultural 
practices ( i.e., STM, CM, and MA) are still worthy of  attention. 

Figure 21 reveals that, in general, because chlorophyll absorption is not 
limited to the centre wavelength but also affects adjacent bands, the 
reflectance values in the blue and red sections are significantly reduced, 
resulting in „absorption characteristics” in the spectral signature of  the 
reflectance in all spectral results. In addition, all the reflection spectra 
show obvious absorption peaks at 760 nm. This spectral region is 
influenced by atmospheric oxygen (Riris et al., 2017) and therefore, this 
region was avoided while calculating VI’s. Also from the results, the 
wavelength range 750-900 nm (NIR) has strong recognition capabilities 
based on the variation of  reflection intensity, however, the 400-700 
nm (visible bands) region was inefficient and offered little separation 
or discernment. The differentiation on spectra at the wavelength range 
of  750 – 900 nm suggests that the interior leaf  structure, biochemical 
concentration, and water content of  the target vegetation are different. 
A previous study pointed out that the diversity of  NIR regions is usually 
caused by differences in internal leaf  structure (A. A. Gitelson et al., 
2003). While reflectance varies at the canopy level may be due to additional 
factors like LAI, canopy design, and backdrop soil (Darvishzadeh et al., 
2008). These results will be valuable for further classification activities in 
agriculture management recognition.

The coefficients correlation (r) of  each narrow-band with both grain 
yield and straw mass exhibited a similar pattern of  r curves for both dry 
(Figure 22-A) and fresh weight (Figure 22-B) analysis, yet r in absolute 
values for the P+O field was observed to be less correlated than those 
for grain yield and straw mass, especially in the fresh weight. Since the 
P+O field was mixed cultivation and the source of  weight is the sum of  
the two crops and the amount of  precipitation before harvesting may 
indirectly bring about a lower degree of  correlation. Interestingly, while 
the findings of  these linear correlation tests all show that the straw mass 
has a stronger link with the spectrum, it does not depend on the empirical 
model’s degree of  fit (see Figure 23 and 24). Hence, it was discovered 
that grain yield (R2) had a superior goodness-of-fit performance than 
straw mass in general, with lower NRMSE.
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6.5.2 The Hyperspectral Narrowband VIs and AutoML 
modelling

Despite the opportunities afforded by hyperspectral systems to collect a 
multitude of  spectrum data, extracting the relevant important wavelengths 
from a data cube can be challenging (Martínez-Usó et al., 2007). In 
this study, hyperspectral narrowband Vis were used as predictors for 
AutoML modelling. However, selecting narrowband VIs with spectrums 
that might be affected by atmospheric oxygen were avoided. With this in 
mind, the target VIs selected for analysis were extracted, calculated, and 
processed in the modelling stage, which reduced processing and storage 
demands.

Based on the empirical AutoML regression model, the estimation 
capacity of  hyperspectral narrowband VIs was exceptional. The best 
coefficient of  determination for mono-cultivated wheat was 0.96, for 
mixed peas and oats were 0.76, and for mixed legumes and spring barley 
was 0.88. In terms of  straw mass estimation, they were 0.98, 0.83, and 
0.86 respectively. The prediction ability of  dry weight was discovered to 
be typically greater than that of  fresh weight, especially in fields where 
mixed peas and oats, which was 27 per cent higher. This demonstrates 
that the crop water content has an influence on the model’s estimation 
outputs to a certain extent.

According to a previous study, spectral measurements were taken 
during the Tillering II and Heading phases in wheat yielded the best 
results for estimating biophysical factors using narrowband VIs (Xavier 
et al., 2006). This is consistent with the recommended flight time. In 
addition, different band combinations can be effectively utilized since 
crop circumstances change according to factors such as management 
conditions, soil characteristics. Others have demonstrated that piecewise 
multiple regression models on narrow bands provide for greater flexibility 
in selecting the bands that provide the most information at a given stage 
of  crop development (Thenkabail et al., 2000). This viewpoint has also 
been confirmed in this research.
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6.5.3 The AutoML Method’s Applicability and Impact in 
Hyperspectral Imaging

In this study, an AutoML framework to assist in self-regulating, 
instinctive regression operations, as well as enhancing challenging 
hyperparameter adjustments was employed. This method advances the 
use of  hyperspectral imaging in farm-scaled environmental and crop 
phenotypic activity and possesses several advantages. 

A general consideration is the flexibility of  implementation. With the 
ever-increasing variability of  remote sensing systems and the requirement 
for empirical model choices, the constraints of  adjusting unidentified 
background parameters are being addressed. This means that many 
existing models that have been under-optimized in the past now have 
the chance to be re-modelled using artificial intelligence-based machines 
to relearn the performance tasks.

Another pertinent point regarding the alleviation of  learning costs. 
Experience tells us that computer learning for remote-sensed images 
frequently necessitates a large number of  samples and a lengthy learning 
period, i.e., Deep learning (Lecun et al., 2015; M. der Yang, Boubin, et 
al., 2020b; M. der Yang, Tseng, et al., 2020). This is incompatible with 
conventional agricultural experimental sampling procedures, which are 
limited by personnel, the complexity of  the experiment design, and the 
number of  repetitions. While, AutoML practices the Random Forest 
(RF) method (Breiman, 2001) for fast cross-validation, testing one-fold 
at a time and weeding out underperformance hyperparameter choices, 
for example, the combined algorithm selection and hyperparameter 
optimization (CASH) problems (Feurer, Klein, et al., 2015a). It boasts 
novel pipeline operators that increase the goodness of  fit of  datasets 
significantly. The RF approach is well-known for assessing lower sample 
sizes and increasing the performance of  small datasets (Breiman, 2001; 
Luan et al., 2020). In addition, the AutoML framework quickly provided 
promising regressors and hyperparameter selections. In this research, 
each run of  the regression model only took thirty seconds of  learning 
time. This considerably improves learning efficiency, and the ability 
to find an appropriate formula in the time allotted and reduces the 
requirement for machine learning expertise (Feurer et al., 2020; Feurer 
& Hutter, 2018).
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More specific consideration is the capacity for innovation. It is noticeable 
that random forest (RF), support vector machine (SVM), and artificial 
neural network (ANN) algorithms are among the most widely employed 
ML techniques in a wide range of  recent remote sensing-based studies 
(L. Ma et al., 2017b). Their practicality and performance have been 
confirmed by many, but equally, there are still other similarly applicable 
ML methods that may have been shelved. As shown in Figures 25 
and  26, the Ard regressors (Mackay, 1995; Neal, 1996) and Gaussian 
Processors (Seeger, 2004) were chosen as the best regressors for the 
grain yield and biomass tasks. These algorithms have received less 
attention and reference in remote sensing studies. These results indicate 
that AutoML can uncover alternative ML methods that would otherwise 
be overlooked by investigators when working with regression subjects.

6.6. The Limitations of  this thesis

The location, soil types, chosen crop categories, and varieties present 
may be restricted in this study.  A potential solution worth pursuing may 
be to increase the VPT sampling size and/or enhance the segmentation 
number of  each plot; ultimately increasing the training samples for 
AutoML calculation. In addition, it is important to note that yield 
comparisons under different agricultural management approaches were 
not considered since the intricacy of  the experimental design may have 
led to inadequate sampling numbers; as well as possible interaction 
effects. However, efforts to achieve a wide-ranging and well-considered 
predictor collection, through a variety of  VI combinations, may lead to 
performance improvements. In addition, due to the limits of  the current 
Auto-Sklearn system, not all regressors performed could be backtracked 
in this research to explore the individual feature importance ranking of  
VIs, which limits their capacity to aid in the selection of  suitable VIs. 
However, attempts to provide a wide range of  selectable VIs (19 selected 
VIs from AMP classification study) and continuous bands (216 narrow 
bands from airborne-hyperspectral yield and straw mass estimation) 
resulted in improved performance.
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7. CONCLUSIONS

Firstly, in response to hypothesis 1, performing multispectral-UAS 
flights under the one- and two-year cultivated red clover-grass mixture 
performance trials within 38 to 11 days before the harvesting with the 
GSD 10 cm and combined with VI and multiple ML methods is promising 
in the DM yield prediction on a farm-scale with non-destructive and 
cost-effective way. The ML analysis results showed the best performance 
for ANN, followed by RFR, and SV. For VI performance, GNDVI 
and GDVI, and MSR performed well as predictors in ANN and RFR. 
However, the prediction ability of  models was influenced by the farming 
operations. The stratified sampling based on STM had a better model 
performance than CM and MA. The results support the sufficiency of  
UAS to deal with complex experimental design development, such as 
tillage methods and various fertilizer inputs. However, the robustness 
and applicability of  fertilizer quantification and the mixed legume-grass 
species distribution detection remain to be completely addressed in the 
future. 

Secondly, in response to hypotheses 2 and 3, this study demonstrated 
a novel UAS-multispectral imaging technology and a state-of-the-art 
AutoML framework across multiple AMP tasks through non-destructive 
and cost-effective approaches. The scientific merit of  this article lies 
in utilising artificial intelligence to replace the judgment of  the human 
for UAS-multispectral classification analysis with its automated data pre-
processing, model selection, feature engineering, and hyperparameter 
optimization capabilities. Furthermore, it provides innovative insights 
into agricultural management practices and accelerates the intellectualized 
progress of  the in-field monitoring UAS system and establishes future 
crop phenotyping abilities. In our study, AutoML embodied “learning 
how to learn” for any given UAS subject; and it is the first study of  
its kind to apply an auto-learning system for AMP classification tasks 
in multispectral-derived VI data. In addition, we compared AutoML 
performance with those of  three widely used ML methods. The ML 
comparison analysis results showed AutoML achieved the most overall 
classification accuracy numbers after 1200 seconds of  calculation 
and without any of  the worst-performing classifications of  the given 
datasets. In terms of  AMPs classification, the best recognized period 
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for data capture occurred in the crop vegetative growth stage (in May 
of  Estonia). 

Thirdly, in response to hypothesis 4, our study highlights the capability 
of  hyperspectral analysis for yield and biomass prediction in complex 
design fields through the use of  two significant open-sourced software 
systems: the R language hyperspectral processing package and Python’s 
Auto-Sklearn machine learning technology. The performance evaluation 
with several types of  hyperspectral vegetation indicators we employed 
to characterize crop production and straw mass was satisfactory. 
We suggest they can be further applied to other crop biophysical 
characteristics. The VIs we suggest, as well as automatic narrowband VI 
calculation, might minimize data redundancy and cleaning time, as well 
as the computational power hardware requirements. It is also envisaged 
that further agricultural cultivation practices could be classified using 
hyperspectral imaging in the NIR spectral region (750-900 nm) with 
considerable discernible changes in reflectance spectra.

In summary, this thesis focused on the integration and implementation 
of  the multispectral and hyperspectral imaging and AutoML framework 
approach with various crop types under multifunctional agriculture 
management fields in response to crop biomass/yield estimation. 
Under common crops and cultivation in most Nordic countries, it will 
provide agricultural decision-makers with professional yield estimation 
and sustainable agricultural management advice; and the integration of  
remote sensing technologies, geoprocessing methods, and automatic 
systems are vital tools for increasing the knowledge of  plant-environment 
interactions within the management of  crops. The study also reveals 
that the anticipated yield may be advanced two months before harvest. 
That is, spring wheat, spring barley, and oat were approximately in the 
booting to heading stage, for field pea around the reproductive growth 
stages,  whereas the red clover field was in the flowing stage (49 days 
before in our case). The emergence of  the AutoML system has helped 
to increase the application and effectiveness of  remote sensing-based 
data analysis technology. However, more research and experiments will 
be required in the future to advance and validate the automatic learning 
framework’s true potential and usage.
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SUMMARY IN ESTONIAN

Title. Unmanned aircraft systems and image analysis in yield estimation 
and agricultural management

Estonian title: Mehitamata õhusõiduki rakendamine põllukultuuride 
saagikuse ja maa harimisviiside tuvastamisel

SISSEJUHATUS

Doktoritöö eesmärk oli uurida, kuidas masinõppe (MÕ) tehnoloogiad 
võimaldavad edusamme täppispõllumajanduse valdkonna pildianalüüsis. 
Multimodaalsed arvutustehnoloogiad laiendavad masinõppe kasutamist 
põllumajanduses andmete kogumisel ja valimisel (Nawar et al., 2017). 
Selline täpsemal informatsioonil põhinev tehnoloogia võimaldab 
keerukate viljelussüsteemide puhul teha otsuseid inimese vähema 
sekkumisega, ja loob skaleeritava raamistiku täppispõllumajanduse 
jaoks (Chlingaryan et al., 2018). Põllukultuuride katsete korral on 
komplekssete masinõppemudelite kasutamine keerukas, sest alad on 
piiratud ning valimi suurus ei ole piisav; vaja on testandmebaase, kindlaid 
aja- ja ruumitingimusi ning keskkonnategureid. See komplitseerib 
parameetrite valikut ning muudab ebapraktiliseks ühe empiirilise mudeli 
kasutamise terves piirkonnas. Siinse uurimuse algetapis rakendati 
suhteliselt traditsioonilist masinõppemeetodit, et lahendada saagikuse 
ja biomassi prognoosimise regressiooniprobleem (otsustusmetsa 
regression, tugivektori regressioon ja tehisnärvivõrk) punase ristiku 
prognoositava kuivaine saagikuse suhtes. Saadi sobivaid tulemusi, kuid 
hüperparameetrite valimine, pikk algoritmide valimisprotsess, andmete 
puhastamine ja kollineaarsusprobleemid takistasid masinõpet oluliselt.

Automatiseeritud masinõppe (AMÕ) uusimate suundumustena 
rakendatakse tehisintellekti, et lahendada põhiprobleemid automatiseeritud 
algoritmi valiku ja rakendatava pipeline-mudeli hüperparameetrite 
optimeerimise abil. Seni napib teadmisi MÕ tehnoloogia integreerimiseks 
mehitamata õhusõidukite ning hüperspektripõhiste pildiandmete 
kategoriseerimise ja regressioonirakendustega. Väitekirjas uuriti 
nüüdisaegset ja avatud lähtekoodiga AMÕ tehnoloogiat Auto-sklearn, 
mis on ühe enimkasutatava masinõppesüsteemi Scikit-learn edasiarendus. 
Süsteemiga liideti kaks unikaalset AMÕ visualiseerimisrakendust, et 
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uurida mehitamata õhusõidukiga kogutud andmete multispektraalsete 
taimkatteindeksite ja hüperspektraalsete kitsaribaandmete 
taimkatteindeksite tuvastamist ja rakendamist põllumajanduses. Neid 
võtteid kasutatakse mullaharimisel, kultiveerimisel ja sõnnikuga 
väetamisel nelja kultuuriga põldudel (punase ristiku rohusegu, suvinisu, 
herne-kaera segu, suvioder). Neid ei ole põhjalikult hinnatud, samuti 
ei hõlma need omadusi, mida kasutatatakse põllumajanduses kaugseire 
rakendustes.

Uurimus käsitleb biomassi ja saagikuse seni uurimata analüüsivõimalusi 
oluliste põllukultuuride ja viljelusmeetodite näitel. Hinnatakse ka 
kaugseirelahenduste potentsiaali põllupõhiste ja multifunktsionaalsete 
platvormide kasutamisel täppispõllumajanduses. Uurimus tutvustab 
kiiret, keskkonna suhtes kahjutut ja mõõduka hinnaga tehnoloogiat 
põllupõhise biomassi ja teraviljasaagi modelleerimiseks, et leida sobiv 
viljelusviis. Töö tulemused võimaldavad põllumajandustootjatel ja 
agronoomidel tõhusamalt valida põllundustehnoloogiaid ning arvestada 
täpsemalt keskkonnatingimustega. 

HÜPOTEESID JA UURIMUSE EESMÄRK

Uurimuse eesmärk on luua uudne kaugseiresüsteem nutika 
täppispõllumajanduse arendamiseks ning keskkonnatingimuste paremaks 
jälgimiseks. Selleks kasutatakse multispektraalse kaameraga varustatud 
mehitamata õhusõidukit, hüperspektraalsete andmete kogumist ning 
AMÕ-d, et uurida Eestis levinud põllukultuuride saagi prognoosimise ja 
täppisviljeluse võimalusi. 

Uurimuse aluseks olid järgmised eesmärgid ja hüpoteesid.

1. Uurida seoseid põllukultuuri vegetatsaiooniperioodi, asukoha ja 
viljelustehnika vahel ning multispektraalse kaameraga varustatud 
mehitamata õhusõiduki kasutamist söödakultuuride toodangu ja 
biomassi hindamiseks. 

Hüpotees: Multispektraalse kaameraga varustatud mehitamata 
õhusõidukiga kogutud andmed on rakendatavad põllukultuuride saagi 
kiireks ja täpseks prognoosimiseks eri aastaaegadel, perioodidel ja 
erinevate viljelusviiside korral. 
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2. Uurida AMÕ kasutamist saagi pildiandmete analüüsimisel, et töötada 
välja tõhusaid regressiooni- ja klassifitseerimismudelid. 

Hüpotees: Klassikalisi masinõppemeetodeid ühendav AMÕ võib 
põllumajanduses tõhusalt ja kiiresti lahendada pildiandmete regressiooni- 
ja klassifitseerimisprobleeme. 

3. Uurida mehitamata õhusõidukite sobivust põllumajanduses 
kultiveerimisvõtete valimisel ja loomisel. 

Hüpotees: Mehitamata õhusõidukitega saadud pildiandmeid saab kasutada 
mitmeti: Eestis levinud põllukultuuride kasvatamisel mullaharimis- ja 
kultiveerimismeetodite ning sõnniku kasutamise tuvastamisel. 

4. Mõista hüperspektraalse pildistamise abil saagi prognoosimise 
võimalusi ja muude analüüsimeetoditega ühitamisest tulenevaid eeliseid 
taimekasvatuses ja seires. 

Hüpotees: Automatiseeritud süsteemi ja avatud lähtekoodiga süsteemide 
(R ja Python) ühendamisega on lahendatav hüperspektraalsete andmete 
ülikülluse probleem ning lüheneb andmetöötluse aeg. 

MEETOD

Uurimuse eesmärk oli luua kiire, keskkonna suhtes kahjutu ja 
mõõduka hinnaga süsteem biomassi ja saagikuse modelleerimiseks 
erinevate põllukultuuride ja viljelusmeetodite jaoks, ning analüüsida 
täppispõllumajanduse vajadustele vastavaid põllupõhise kaugseire 
multifunktsionaalseid lahendusi.

Uurimuse käigus kasutati multispektraalsete anduritega varustatud 
mehitamata õhusõidukit ja lennukilt kogutud hüperspektraalseid andmeid, 
et hinnata saagikust ja kategoriseerida põllud pildiandmetöötluse, 
analüüsi ja masinõppe arvutuste abil.

TULEMUSED JA ARUTELU 

Multispektraalsete anduritega varustatud mehitamata õhusõiduki 
lennud põldude kohal 38–11 päeva enne saagi koristamist, kus kasvatati 
ühe- ja kaheaastast punase ristiku rohusegu, eraldusvõimega (GSD) 
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10 cm ning kombineerituna taimkatteindeksiga ja mitme masinõppe 
meetodiga on ühe põllumajandusettevõtte mastaabis kuivaine saagikuse 
prognoosimiseks paljulubav, keskkonda säästev ja kulutõhus. Masinõppe 
analüüsitulemused olid kõige paremad tehisnärvivõrgu korral, järgnesid 
otsustusmetsa ja tugivektori regressioon. Taimkatteindeksi määramisel 
sobisid tehisnärvivõrgu ja otsustusmetsa sisenditena hästi GNDVI 
ja GDVI ja MSR. Samal ajal toimuv põlluharimine mõjutas mudelite 
prognoosivõimet. Mullaharimisel põhinev stratifitseeritud valim toimis 
paremini kui kultiveerimisel ja sõnnikuga väetamisel põhinevad mudelid. 
Tulemused kinnitavad, et mehitamata õhusõiduk sobib keerukate 
protsesside väljatöötamiseks, nagu seda on mullaharimismeetodid ja 
väetiste lisamine. Kuid väetiste koguste ning liblikõieliste ja heintaimede 
leviku tuvastamiskindlust tuleb edaspidi täpsemalt käsitleda. 

Teiseks esitleti uurimuse käigus uudset mehitamata õhusõiduki 
tehnoloogiat ning modernset AMÕ süsteemi, millega saab keskkonna 
suhtes kahjutult ja kulutõhusalt lahendada põllumajanduse ülesandeid. 
Uurimuse teaduslik väärtus seisneb tehisintellekti kasutamises, nii et see 
asendab inimese hinnangu mehitamata õhusõiduki abil tehtud analüüsiga 
koos andmete automatiseeritud eeltöötluse, mudelivaliku, funktsioonide 
projekteerimise ja hüperparameetrite optimeerimisega. Uurimus 
edastab põllumajanduse jaoks uusi teadmisi, kiirendab mehitamata 
õhusõidukite täiustamist põldude seireks ning aitab kaasa põllukultuuride 
fenotüüpimisele. Uurimuses võimaldas AMÕ süsteem mehitamata 
õhusõidukilt kogutud andmete abil mistahes objekti tundmõppimist. 
See on esimene omataoline uurimus, milles rakendatakse AMÕ süsteemi 
põllumajanduses klassifitseerimisülesannetes multispektraalsetel 
andmetel taimkatteindeksi andmete korral. Lisaks võrreldi AMÕ 
süsteemi tööd kolme laialdaselt kasutatava MÕ meetodiga. “MÕ 
võrdlusanalüüs näitas, et AMÕ saavutas pärast 1200 sekundit kestnud 
arvutamist kõige paremad klassifikatsiooni täpsuse numbrid, kusjuures 
ja sealjuures ei saadud ühtegi antud andekogu kohta käivat mitte-
sobivamat klassifikatsiooni. Põllumajanduse klassifikatsiooni järgi oli 
põllukultuuride vegetatiivne kasvufaas andmehõiveks parim periood 
(Eesti puhul maikuus). 

Kolmandaks tõstab uurimus esile hüperspektraalanalüüsi võimalusi 
saagikuse ja biomassi prognoosimiseks keeruliste juhtude korral, 
kasutades kahte olulist avatud lähtekoodiga tarkvarasüsteemi: 
R-keele hüperspektraalse töötlemise paketti ja Pythoni Auto-Sklearni 
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masinõppetehnoloogiat. Eri tüüpi hüperspektraalsete, saagikust 
ja põhumassi iseloomustavate taimkattenäitajatega analüüsimise 
tulemuslikkust sai hinnata rahuldavaks. Soovitame neid näitajaid 
kasutada ka põllukultuuride muude biofüüsikaliste omaduste 
analüüsimiseks. Uurimuses esitatud taimkatteindeksid ja automaatne 
kitsariba taimkatteindeksiarvutus võivad minimeerida andmete liiasust ja 
puhastusaega, samuti nõudeid riistvara arvutusvõimsusele. Viljelust saab 
põllumajanduses edaspidi tõenäoliselt klassifitseerida hüperspektraalse 
pildistamise abil NIR-spektripiirkonnas (750–900 nm), millel on 
märkimisväärsed muutused peegeldusspektris. 

Kokkuvõttes keskendus uurimus multispektraalsele ja hüperspektraalsele 
pildistamisele ning AMÕ integreerimisele ja rakendamisele eri 
põllukultuuride korral multifunktsionaalses põllumajanduses 
põllukultuuride biomassi ja saagikuse hindamiseks. Põhjamaades 
pakub see metoodika põllumajanduses juhtivatele otsustajatele 
saagikuse professionaalse hindamise võimalust ja lahendusi säästvaks 
põllumajanduseks. Kaugseiretehnoloogiate, geotöötlusmeetodite ja 
automaatsüsteemide integreerimine on tõhusad vahendid, et avardada 
põllukultuuride kasvatuses teadmisi taimede ja keskkonna seostest. 
Uurimus näitas ka, et eeldatavat saagikust võib prognoosida kaks kuud 
enne saagikoristust. See tähendab, et suvinisu, suvioder ja kaer olid 
valdavalt kasvu algfaasis, põldhernes reproduktiivse kasvu järgus ning 
punase ristiku põld kasvufaasis (siinses uurimuses 49 päeva varem). 
AMÕ süsteem toetab kaugseirel põhineva andmeanalüüsi tehnoloogia 
tõhustamist ja kasutuselevõttu. AMÕ potentsiaali ja kasutamise 
hoogustamiseks tuleb edaspidi teha rohkem uuringuid ja katseid.
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Abstract: A significant trend has developed with the recent growing interest in the estimation of
aboveground biomass of vegetation in legume-supported systems in perennial or semi-natural
grasslands to meet the demands of sustainable and precise agriculture. Unmanned aerial systems
(UAS) are a powerful tool when it comes to supporting farm-scale phenotyping trials. In this study,
we explored the variation of the red clover-grass mixture dry matter (DM) yields between temporal
periods (one- and two-year cultivated), farming operations [soil tillage methods (STM), cultivation
methods (CM), manure application (MA)] using three machine learning (ML) techniques [random
forest regression (RFR), support vector regression (SVR), and artificial neural network (ANN)] and
six multispectral vegetation indices (VIs) to predict DM yields. The ML evaluation results showed the
best performance for ANN in the 11-day before harvest category (R2 = 0.90, NRMSE = 0.12), followed
by RFR (R2 = 0.90 NRMSE = 0.15), and SVR (R2 = 0.86, NRMSE = 0.16), which was furthermore
supported by the leave-one-out cross-validation pre-analysis. In terms of VI performance, green
normalized difference vegetation index (GNDVI), green difference vegetation index (GDVI), as well
as modified simple ratio (MSR) performed better as predictors in ANN and RFR. However, the
prediction ability of models was being influenced by farming operations. The stratified sampling,
based on STM, had a better model performance than CM and MA. It is proposed that drone data
collection was suggested to be optimum in this study, closer to the harvest date, but not later than
the ageing stage.

Keywords: unmanned aerial system; red clover; random forest; support vector regression; artificial
neural network; tillage; fertilizing; manure; forage legume; yield estimation

1. Introduction

Red clover (Trifolium pratense L.) is the principal perennial forage crop legume species
in most countries of northern Europe, including Estonia [1,2]. Legumes have the ability
to increase the productivity of grass pastures by fixing atmospheric nitrogen into the soil;
via the symbiotic rhizobia in their root nodules [3]. This fixation of atmospheric nitrogen
makes red clover an ideal rotational crop; particularly in organic agricultural systems
where no synthetic nitrogen fertilizers are used [4]. A range of studies have observed
that the establishment of red clover was more successful when sown in mixtures with
grass species rather than in pure, monocultural stands [5,6]. In Estonia, the application of
red clover in trials results in a mixed-species approach with other grass species blended
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to increase its commercial application value, where the complexity of estimation might
be higher than monocropping systems. Legume-based systems, and in particular red
clover practices, are economically attractive to dairy farmers in northern Europe and are
essential for ensuring that organic systems can compete in terms of profitability with more
conventional or artificially improved systems [7]. The success of red clover in pasture farming
systems makes it a vital economical crop regardless of whether it is integrated into conven-
tional or organic farming operations. Besides their positive effects on farming productivity,
legumes can also play a part in lowering greenhouse gas emissions by reducing the use of
inorganic nitrogen fertilizers and replacing them with symbiotically fixed nitrogen, and
the use of perennial grass species, a common practice, to reduce carbon loss in cultivated
soil [8]. This approach improves the sustainability of the agricultural ecosystem compared
to monocropping systems, as well as contributes to the conservation value for threatened
bumblebee species [9]. In Estonia, the cultivation of clover-grass mixtures had played sig-
nificant agronomic purposes in co-cultivation and increased the feed value of the mixture,
sequestering nitrogen and thereby reducing the amount of fertilizer [10], and achieving
C-balance and carbon sequestration [11] in crop rotation through perennial grassland.

However, it is important to note that with the present trend towards global trade,
the increased importation of grain legumes into Europe has led to lower local production
in many countries [12]. This trend has raised questions regarding the sustainability and
security of protein supplies [13]. Perhaps in opposition to this, the main direction of red
clover cultivation goals has focused on forage yields and persistence [14], which may
directly improve business competitiveness and increase agricultural versatility. This also
highlights the importance of the estimation and quantification of high-yield clover and
grass mixtures, and in particular extending from the laboratory to field-based performance
trials and studies. Traditional on-site destructive silage and forage biomass sampling and
measurements provide accurate reference data for building and assessing yield models.
However, it is time-consuming, highly labor-intensive, and limited by large-scale spatial
quantity parameter collection [15]. Also, trials and phenotyping techniques have become
increasingly criticized in recent years. One of the objectives of this study is to explore
and expand the monitoring range from controlled environments, such as laboratories and
greenhouses, to bare soil-based situations [16,17]. Variety performance trials (VPT), as an
alternative, is a randomized controlled field-based experimental design to improve envi-
ronment × management scenario recommendations for variety comparison and breeding
selection [18,19]. A typical approach of VPT is recognizing multiple crop phenotypes and
their response to management practices. With the current raised awareness of environmen-
tal protection and the concept of sustainable agriculture, the adaptability of eco-friendly
cultivation techniques, such as reduced tillage and the application of various minerals and
organic fertilizers are emerging [20]. However, the description of these managements in
current VPT systems is indispensable for vigorous simulation and rigorously assessed for
their ability to reproduce measured crop yields that established near-optimal management
practices [21].

These limitations and challenges associated with silage and forage legumes have, to
some degree, promoted and encouraged the development of remote sensing (RS) solutions
for legume biomass estimation tasks [22]. The use of RS offers cost-efficient, non-destructive,
and spatially extensive approaches for crop monitoring and trait decision-making. Equally,
RS approaches can support yield prediction and help to determine and assess a multi-
faceted range of plant traits when combined with modeling of phenotypic features [23].
Its application in agriculture is also a vital tool in further understanding plant-environment
interactions within the management of crops [24]. Therefore, it is necessary to broaden the
horizon of rapid and accurate RS approaches in the analyses of red clover-grass mixture
trials in response to multiple farming techniques and operations.

More recently, Unmanned Aerial Systems (UAS) offer significant potential to support
and develop current and future red clover trial studies. It has arisen as a cost-efficient
remote-sensing platform for capturing high-resolution imagery [25]. The recent expansion
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of sensors and cameras that can be integrated with, and mounted on, these systems offers
the capability to distinguish and compare plant changes both spatially and temporally
for the detection and differentiation of local agricultural practices [26]. For example, the
reflectance of vegetation information captured by UAS-borne sensors is verified by biologi-
cal and morphological features of the surface of tissues or leaves [27]. Depending upon
the sensor types (e.g., visible spectrum or multispectral), the vegetation light spectra that
can be captured can range from the ultraviolet region (UV), the visible region (RGB),
through to near-infrared region (NIR). Furthermore, when captured across a series of these
ranges, this information can be used to calculate several vegetation indices (VIs). VIs are
widely utilized in the assessment of crop characteristics with the ability to reduce soil or
environmental noise and enhance their sensitivity for a target characteristics [15]. One of
the most applied multispectral VI is the Normalized Difference Vegetation Index (NDVI)
with its ratio between the red and near-infrared bands [28]. However, NDVI is not only
sensitive to soil and atmospheric effects, but also certain spectrum ranges were found to
have an asymptotic relation, as applicability is limited for higher biomass levels [29,30].
Also, the ability of the reflectance sensor in biomass prediction could be limited by aging
crop materials and diverse canopy structures caused by mixed species [15]. Therefore,
an alternative for increasing the accuracy of various crop modeling tasks is by increasing
the varieties and combinations of adjusted and optimized VIs [31].

Several UAS-based forage clover studies have been conducted in recent years. UAS-
RGB-based vegetation indexes and linear regression models were utilized in estimating the
red clover dry matter (DM) yield with the best performance R2 values 0.62 [32]. UAS-RGB-
based point cloud data generated into photogrammetric canopy height models (CHM) can
also be utilized in forage legumes DM prediction; clover-grass canopies showed better
performance than lucerne-grass mixtures for DM prediction [33]. Concerning another
study combining CHM, RGB, and VIs with machine learning (ML) techniques for grass
swards silage prediction, the Pearson correlation coefficients reached 0.98 [34]. Equally,
clover-related phenotypic research has also received much attention in recent years: it in-
cluded clover-grass pasture coverage and spatial dynamics monitoring [35,36], and quality
parameters, such as the digestibility of organic matter, water-soluble carbohydrates, the
nitrogen concentration, and uptake [37]. These studies largely used UAS-derived images
combined with state-of-the-art ML technologies for qualitative or quantitative analysis.
However, red clover silage and forage biomass studies require the establishment and
characterization of multiple management options, such as fertilizers, tillage methods, and
farming systems, in order to meet the actual planting condition and provide valuable
feedback to local farmers and policymakers. There is little scrutiny on the application of
DM modeling in the response to the above-mentioned factors.

A gap, therefore, currently exists in the knowledge base for legume biomass analysis
and the further understanding of the potential for remotely-sensed solutions to field-based
and multifunctional platforms for the demands of precision agriculture. To address this
knowledge gap, this study presents a rapid, non-destructive, low-cost framework for field-
based red-clover DM yield modeling. The outputs could potentially assist agronomists
and farmers in developing precise farming systems and increase the effective monitoring
of environmental conditions. More specifically, the objectives of this study are the com-
parison of two temporal pre-harvest (11 days and 38 days) DM prediction capabilities
under one- and two-year clover-grass cultivation fields with three different treatments; and
the comparison of the performance of three machine learning algorithms and their corre-
sponding variable importance rankings in estimating clover-grass mixture DM. To address
these aims, UAS-multispectral data and six VIs were extracted and used for training and
evaluation models.
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2. Materials and Methods
2.1. Study Area and Experiment Layout

This study was undertaken at the Agricultural Research Centre (ARC) in Kuusiku
(58◦58′52.7′′N 24◦42′59.1′′E), Estonia (Figure 1a). The ARC was established in 1924 by an
official institution under the governance of the Ministry of Agriculture and consists of con-
solidated laboratories and field testing centers. The experimental area covers 226 hectares,
of which the variety performance trial area we selected to consist of two soil types: Calcaric
Cambisol and Calcari-Leptic Regosol [38].
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Figure 1. (a) The Agricultural Research Centre (ARC) is situated in Kuusiku, Estonia. A. The experiment layout containing
three treatments: 1. soil tillage method (STM), 2. cultivation method (CM), and manure application (MA) for one-year
cultivation (1YC) in Field A with a total of 72 observation plots, and two-year cultivation (2YC) in Field B equally with a
total of 72 plots. For caption descriptions, see Table 1. (b) A visual demonstration of the different CM treatments within the
2YC DP area. (c) The eBee Plus device was used to capture the multispectral imaging data and the Airinov target was used
for radiometric calibration in this study.

In this study, red clover was used in grass-mixture for the representation in practical
farming purposes. More specifically, approximately 75% of the mixture consisted of red
clover (Trifolium pratense L.) tetraploids variety ‘Varte’, an early variety normally cropped
in Estonia, and the remaining 25% of the mix comprised of meadow fescue (Festuca praten-
sis)—variety ‘Jõgeva 47’. To assess the potential of UAS-based DM prediction capacity in
the agricultural application of the clover-grass mixture field, the experiment was designed
with three principal experimental factors (see Table 1). More specifically, these included:
(1) soil tillage methods (STM), considering reduced tillage (R) (8–10 cm), ploughing (P) at
a depth traditionally used in conventional tillage (18–20 cm), and disking (DP) (8–10 cm)
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as treatments; (2) cultivation methods (CM) (as shown in Figure 1b), considering conven-
tional farming with mineral fertilizer application (CMin+), organic farming with mineral
fertilizer application (OMin+), and organic farming without mineral fertilizer (OMin-); and
(3) manure applications (MA). Considering the convenience of ploughing and fertilizer
applications, we present the design of the field and location as shown in Figure 1a, and the
treatment details in Table 1. The mixture’s fresh aboveground biomass was cut twice in two
fields (1YC and 2YC). Each field contains 72 plots, which means a total of 144 plots were
sampled; the first cut took place on 10/06/2019, and the second took place on 16/08/2019.
The fresh biomass was weighed by plot and dried to verify its DM yield measured in
kilograms per hectare.

Table 1. The farming operation and treatment of the red clover experiment fields.

Farming Operation Treatment Description

Soil tillage methods (STM) Reduced tillage (R) R (8–10 cm)
Ploughing (p) P (18–20 cm)

Disking and ploughing (DP) D (8–10 cm) & P (18–20 cm)

Cultivation methods (CM) Conventional framing with fertilizer (Cmin+) NPK 5-10-25 1

Organic farming with mineral fertilizer (Omin+) Patentkali 2

Organic farming without mineral fertilizer (Omin−) N/A

Manure application (MA) With manure application (M+) M (30,000 kg ha−1) 3

Without manure application (M−) N/A
1 NPK 5-10-25 (chemical fertilizer) 291 kg ha−1 (N-14 kg ha−1, P-13 kg ha−1, and K-60 kg ha−1); 2 Patentkali (mineral fertilizer) 240 kg ha−1

(K-60 kg ha−1, S- 41 kg ha−1, M-14 kg ha−1); 3 Manure 30,000 kg ha-1 (N-234 kg ha−1, P-20 kg ha−1, and K-216 kg ha−1).

2.2. Image Acquisition

Figure 2 presents a workflow of the methodology used to combine the UAS-based
image collection, processing, biomass sampling, as well as modeling and evaluation within
ML algorithms. To capture data for both image processing and biomass evaluations, the
UAS imaging was conducted twice [i.e., 11 days before 1st cut (11DB) and 38 days before
2nd cut (38DB) harvesting] in the summer of 2019. Due to the needs of the other experi-
mental areas, the data of 80 hectares were collected, of which 2.4 hectares were used in
this study. An eBee Plus device (Figure 1c), with onboard GNSS post-processed kinematic
(PPK) capabilities, was deployed and equipped with a Parrot Sequoia multispectral sensor.
The Parrot Sequoia sensor captured imagery across four spectral bands: near-infrared
(770–810 nm); red-edge (730–740 nm); red (640–680 nm); and green (530–570 nm). The flight
lines overlap was set with a frontal image overlap of 80% and lateral image overlap of 75%.
All the operations took place between 10 a.m. to 2 p.m. to ensure consistency with the sun’s
angle, and to reduce lateral shading within the experimental fields. The images were cap-
tured from a height of 120 meters, and the resulting images had ground sampling distance
(GSD) of 10 cm per pixel. Prior to each flight mission, an Airinov radiometric calibration
target and one-point calibration method [39] was used to facilitate post-flight radiometric
correction of the multispectral imagery. Table 2 provides a summary of environmental
conditions for the two flights conducted prior to clover-grass biomass harvesting.

Table 2. Specification of the weather condition and the corresponding time before harvest.

Date of
Flight Weather Wind Speed

(km/h)
Wind

Direction
Temperature
(min-max◦C) Humidity Operation

30 May 2019 Sunny 11 S 15–16 35% 11 days before 1st cut
(11DB)

1 July 2019 Overcast 12 WSW 19–20 64% 38 days before 2nd cut
(38DB)
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Figure 2. The methodology flowchart of red clover-grass mixture DM modeling. The image pro-
cessing rectangular dotted box contains all predictors extracted from the UAV images, and the
modeling building, and evaluation rectangular dotted box contains all modeling methods and
analysis procedure.

2.3. Image Processing and Analysis

The UAS data was post-processed in SenseFly eMotion 3 [40] using receiver inde-
pendent exchange (RINEX) format data provided by the GNSS CORS (Continuously
Operating Reference Station) of Estonia [41] for post-processing kinematics (PPK) correc-
tions. This post-process provided an increase in the geotagging accuracy [42] of the UAS
images from 5 m error to under 0.06 m, where the method and accuracy obtained is similar
to [43]; and thus less than the one-pixel size in our study. Pix4D v.4.3.31® (Pix4D SA,
1015 Lausanne, Switzerland) software was utilized to process and radiometrically correct
(default in Pix4D) the imagery and generate the multispectral orthomosaics. These images
were subsequently clipped to represent only the extent of the experimental area.

2.4. Vegetation Indices Calculation and Extraction

In this study, six VIs were calculated using R version 4.0.2 [44] (Table 3). The normal-
ized difference vegetation index (NDVI) utilizes the reflectance (ρ) in the NIR and Red
wavelengths, and the outputs range from −1.0 to 1.0. This index was selected for this study
as it has a sensitive response to track physiological dynamics and biomass [45]. However,
NDVI reaches saturation when leaf area index (LAI) values are about 2.5–3 or in dense
crop canopies [46,47]. The green normalized difference vegetation index (GNDVI) was also
calculated and outputs values range from 0 to 1. Previous studies have shown GNDVI
to be linearly correlated with LAI and biomass, with the ability to reduce the effects of
soil reflectance and estimate nitrogen conditions [48]. Similarly, the Simple Ratio (SR),
a normalization of ρ NIR against ρ Red, was calculated as it has been previously shown
that this index can better indicate the strength of canopy photosynthetic material and yield
prediction better than NDVI under different nitrogen supplies [49]. The Red-Edge Simple
Ratio (SRre) formula was calculated by replacing the ρ Red band with the ρ Red-edge. Its
inclusion in the assessment was due to previous studies indicating a higher correlation with
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plant nitrogen concentration compared to ρ Red based VIs. This can lessen the soil back-
ground influence on crop reflectance [50]. Finally, the Modified Simple Ratio (MSR), as a
potentially improved version of the Renormalized Difference Vegetation Index (RDVI), was
calculated to linearize the relationship between biophysical parameters [51] and enhance
the sensitivity of vegetation occurrences, which can be observed in other VIs.

Table 3. Descriptions and formulas of NIR-related VIs used in this study.

Vegetation Index Description Equation Reference

NDVI Normalized Difference Vegetation Index (ρ NIR − ρ R 1)/(ρ NIR + ρ R) [28]

GNDVI Green Normalized Difference Vegetation Index (ρ NIR − ρ G 2)/(ρ NIR + ρ G) [52]

GDVI Green Difference Vegetation Index ρ NIR 3 − ρ G [53]

SR Simple Ratio ρ NIR/ρ R [54]

SRre Red-edge simple ratio ρ NIR/ρ REG 4 [55]

MSR Modified simple ratio ((ρ NIR − ρ R) − 1)/(((ρ NIR + ρ R) ∗ (0.5)) + 1) [51]
1 ρ R refers to red band, 2 ρ G refers to green band, 3 ρ NIR refers to near-infrared, and 4 ρ REG refers to the red edge.

The two experimental fields [i.e., 1YC (n = 72) and 2YC (n = 72)], with a total of
144 plots were digitized in ArcGIS Pro 2.6.3 [56]. The average VIs within each plot were
extracted and calculated as the VIs of each plot at the experiment site. To avoid potential
edge effects in the fertilizer treatment, a one-meter buffer zone was extended inwards from
each plot boundary, and data sampled within this target region (Figure 3). These extracted
values were further used in this study when building ML algorithms for clover-grass
mixture DM yield estimation and evaluation.

Figure 3. A demonstration of VIs (GDVI as an example) zonal statistics in 1YC and 2YC fields.
(a) RGB image with 1-meter buffer zone plot polygons from 1YC11DB, (b) RGB image with 1-meter
buffer zone plot polygons from 2YC11DB, (c) GDVI zonal statistic with a region of interest (ROI) in
1YC11DB, and (d) GDVI zonal statistics with ROI from 2YC11DB.

2.5. Machine Learning Techniques

Parametric regression models may lead to multicollinearity between covariates and
overfitting, which renders them impractical when dealing with highly dimensional re-
motely sensed data [57]. Conversely, machine learning algorithms can handle high volumes
of predictor variables that are interrelated and have a non-linear relationship with response
variables [58]. A recent remote sensing-based ML study collected data from 220 related arti-
cles and found that random forest (RF), support vector machine (SVM), and artificial neural
network (ANN) algorithms were amongst the most used ML techniques [59]. Therefore,
these derived ML regressions [random forest regression (RFR), support vector regression
(SVR), and artificial neural network (ANN)] were chosen for modeling DM in this study.
These algorithms were programmed in Python [60] (version 3.8). The VI values presented
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in Table 3 were used as continuous predictor variables of the DM regression models, which
were divided into training sites and prediction sites, and the parameters of each algorithm
were adapted to ensure the performance as effectively as possible for our training and
testing dataset.

First, to reduce the potential over-fitting problem of the model, a leave-one-out cross-
validation (LOOCV) procedure [61] was conducted to validate the three ML techniques.
The LOOCV procedure involves creating a model by separating one sample for testing
and the rest (n = 36) for validation in every iteration. (Figure 4a). Second, all training sites
were used to model and predict the three ML methods (Figure 4b). As the training and
testing dataset comprised two repetitions of results from each treatment, a comprehensive
range of crop conditions were covered by the modeling. The variable importance of the
VIs was calculated for each ML technique differently and was listed per each model’s
VIs importance scores, and the suitable models for different periods for DM yield spatial
mapping were demonstrated. Finally, experimental treatments (i.e., STM, CM, and MA)
were used to explore the relationship between different experiment factors and models
(Figure 4d). The testing sites were sampled following a stratified approach based on the
three different farming operations, 3 strata with 12 samples in each one in STM (DP, P,
and R) and CM (Cmin, Omin+, and Omin−) groups, and 2 strata with 18 samples in MA
(M+, and M−). The ML methods, selected parameters, model evaluation techniques, and
variable importance calculations are described below.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 25 

 

 

and R) and CM (Cmin, Omin+, and Omin-) groups, and 2 strata with 18 samples in MA 
(M+, and M-). The ML methods, selected parameters, model evaluation techniques, and 
variable importance calculations are described below. 

  

Figure 4. Examples of different sampling methods and regions in field 2YC, the training 
site (1/2, n = 36) contains two repeated trial plots. (a) The evaluation of RFR, SVR, and 
ANN using the cross-validation method LOOCV in the training site (1/2, n = 36) and 
validation site (1/2, n = 36). (b) Model construction including training site (1/2, n = 36) 
and testing site (1/2, n = 36). (c) Evaluation of the model efficiency across three different 
treatments: STM (n = 12 for each subset), CM (n = 12 for each subset), and MA (n = 18 for 
each subset). 

2.5.1. Random Forest Regression 
An adaptation of the Random Forest (RF) algorithm [62] was conducted for DM 

regression models (i.e., RFR). The RFR algorithm fits an ensemble of decision tree models 
to a set of data. The regression tree algorithm creates individual decision trees 
automatically based on randomly chosen samples and subsets of the training data. For 
random forest construction, the best split is selected among a random subset of the 
predictors at each node. Calculations were conducted with 100 trees, the minimum 
number of samples required to split an internal node was set to 2, and the minimum 
number of samples required to be at a leaf node was set to 1. Tests were run to confirm 
regression accuracy by using different amounts of trees ranging from 100 to 500, and it 
was noted that accuracy did not vary substantially with this parameter. Similar results 
have also been observed in other RF studies [63]. In terms of variable importance, the 
feature importance values were extracted using the feature_importances object located in 
the sklearn.ensemble. RandomForestRegressor class. The algorithm calculates these 
percentage values based on how every feature decreases the impurity of the split (mean 

Figure 4. Examples of different sampling methods and regions in field 2YC, the training site (1/2,
n = 36) contains two repeated trial plots. (a) The evaluation of RFR, SVR, and ANN using the cross-
validation method LOOCV in the training site (1/2, n = 36) and validation site (1/2, n = 36). (b) Model
construction including training site (1/2, n = 36) and testing site (1/2, n = 36). (c) Evaluation of the
model efficiency across three different treatments: STM (n = 12 for each subset), CM (n = 12 for each
subset), and MA (n = 18 for each subset).
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2.5.1. Random Forest Regression

An adaptation of the Random Forest (RF) algorithm [62] was conducted for DM re-
gression models (i.e., RFR). The RFR algorithm fits an ensemble of decision tree models to
a set of data. The regression tree algorithm creates individual decision trees automatically
based on randomly chosen samples and subsets of the training data. For random forest
construction, the best split is selected among a random subset of the predictors at each node.
Calculations were conducted with 100 trees, the minimum number of samples required
to split an internal node was set to 2, and the minimum number of samples required to
be at a leaf node was set to 1. Tests were run to confirm regression accuracy by using
different amounts of trees ranging from 100 to 500, and it was noted that accuracy did
not vary substantially with this parameter. Similar results have also been observed in
other RF studies [63]. In terms of variable importance, the feature importance values were
extracted using the feature_importances object located in the sklearn.ensemble. RandomFore-
stRegressor class. The algorithm calculates these percentage values based on how every
feature decreases the impurity of the split (mean decrease impurity) in each decision tree.
The average across all trees in the forest represents the feature importance.

2.5.2. Support Vector Regression

Support vector regression (SVR), which is a Kernel-based machine learning method,
was used for its low dimensional and quadratic programming (QP) problem converted
ability with usually only a scarce training data set needed [64]. For this study, a linear
kernel was used. Three extra parameters were set for the algorithm. The first included
the regularization parameter (C, cost) set at 500. This parameter controls the trade-off
between achieving a low error on the training data and minimizing the norm of the
weights. The second parameter, gamma, was set at 0.5. It defines how far the influence of a
single training example reaches. The third parameter, epsilon, gives a margin of tolerance
and was set at 0.01. In terms of variable importance, the coefficients of all six predictors
estimated by the inner sklearn algorithm were extracted from the created SVR model
using the coef_ value located in the sklearn.svm.SVC class, and then rescaled to be in terms
of percentage.

2.5.3. Artificial Neural Network Regression

The gradient-based artificial neural network (ANN), which is also called multi-layer
perceptron, is a supervised algorithm that can learn nonparametric and nonlinear features
that simulate human brain neural network spreading between layers and receivers and
information processing [65] for classification or regression tasks. Execution of the ANN
algorithm required fine-tuning of certain parameters. In this study, lbfgs, which stands
for Limited-memory Broyden–Fletcher–Goldfarb–Shanno, was used as the solver since it was
most optimal in saving memory. The MLPRegressor algorithm was executed using one
layer with fifteen hidden units, with the regularization parameter (alpha) set at 0.00005.
The maximum number of iterations allowed for this algorithm was set to 100,000. In terms
of variable importance, the weights of all six predictors assigned by the inner MLPRe-
gressor algorithm were extracted from the created model using the coefs_ object located in
the sklearn.linear_module.Perceptron class, and then rescaled to be in terms of percentage.
The SVR and ANN importance scores were similarly extracted but were rescaled to also be
in terms of percentage.

2.5.4. Model Evaluation

The evaluation was performed for LOO cross-validation, model prediction and ex-
perimental factor assessment (Figure 4). For the evaluation of each model, the accuracy
evaluation method described by [66] was used. The models’ accuracies were measured
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by the coefficient of determination (R2) (Equation (1)) and normalized root means square
error (NRMSE) (Equation (2)). The equations used are as follows:

R2 = 1 − ∑(ŷi − yi)
2

∑(yi − y)2 (1)

NRMSE =

√
∑((ŷi − yi)

2)/n

∆y
(2)

where: yi represents the ith observation value of the training dataset; y represents mean
value of the training dataset, ŷi is the model predictions, n is the number of observations,
and ∆y represents the difference between the maximum and minimum values of the
training dataset.

3. Results
3.1. The Field Observation DM Data Analysis

The violin plot (Figure 5) displays the average true ground DM data collected from
144 plots taken during two harvest periods (1st cut and 2nd cut) of two experimental
areas. Since the treatments were mixed with each plot, we only displayed the range of
DM yield data, and grouped them by three farming operations, namely STM, CM, and
MA. The potential interaction effects between treatments were not addressed during the
analyses. The results of 1YC (Figure 5a) for STM showed that treatment P had a relatively
lower DM than the R and DP treatments with a mean DM of 5195 kg ha-1. However, the
effect of STM was noticeable in the two-year cultivation (2YC), in which the DM yield
of R and P decreased in the 2YC field (Figure 5b). In terms of CM, DM from organically
cultivated crops without mineral fertilizer (Omin-) can be expected to show lower yields in
both fields. The DM yield of 2YC was slightly less than that of 1YC.

Figure 5. Violin plots of mean harvest results of clover-grass mixture dry matter (DM) yield in the
(a) 1YC field and the (b) 2YC field, grouped by STM, CM, and MA farming operations. Biomass
data were obtained during two separate harvests (1st cut and 2nd cut). The white dot indicates the
median, while the thick black bars in the center show the interquartile range, the black line represents
the rest of the distribution, and violins show point density and data distribution.
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3.2. The Red Clover-Grass Mixture DM Modeling and LOOCV

For better evaluation evaluating of the model performance, LOOCV was firstly con-
ducted in this research to assess three machine learning methods’ (RFR, SVR, and ANN)
abilities to predict DM yield using six VIs. (Figure 4a) The distributions of R2 and NRMSE
values under thirty-six LOOCV iterations of the three models are shown in box plots
(Figure 6). The results showed that in terms of flight dates, 11DB generally performed
better than 38DB. In terms of model performance, ANN had the best performance in 11DB,
with the highest R2 values (1YC = 0.84, 2YC = 0.85), and the lowest median NRMSE with a
stable distribution of outliers. RFR’s accuracy was slightly smaller than for ANN. In terms
of regional prediction, 2YC was on average better than 1YC. Overall, the results of LOOCV
showed that the three models have moderate to high accuracies in two locations and
different flight dates, and the best R2 values were observed in 2YC11D (0.80 to 0.85), while
the worst were observed in 1YC38DB (0.64 to 0.70).

Figure 6. Comparison of the NRMSE and R2 values resulting from 3 different ML methods (RFR,
SVR, and ANN) of LOOCV in (a) 1YC11DB (b) 1YC38Db (c) 2YC11DB (d) 2YC38DB. Each model
performed 36 times LOOCV calculations. The R2 for LOOCV was calculated using the average
variance between the actual and prediction value for every iteration of the cross-validation. The black
dots showed the NRMSE results of each cross-validation, and the white dots represent its average
value. The median line in the box shows the middle value, and the interquartile range of the box
(shown in blue, red, and green) represent the 25th to the 75th percentile.

3.3. The Red Clover-Grass Mixture Model Prediction and Variable Importance

After the cross-validation, the training dataset (n = 36) was used for the calculation of
models separately (Figure 4b). During the modeling phase, the appropriate combinations
of the parameters of the data set were tested. The scatter plots with model predictions
and observed DM values were compared to the 1:1 line, and their corresponding variable
importance values are shown in Figures 7 and 8.
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Figure 7. Regression plots of 1YC and 2YC fields based on RFR, SVR, and ANN methods in 11DB flight. The plots
correspond to (a) 1YC11DB and (b) 2YC11DB. The horizontal bar plots on the right side of each graph shows the variable
importance estimation based on the models. The horizontal axis in the scatter plots describes the predicted DM yield
acquired from the model, and the vertical axis stands for the field-observed DM yield. The R2 = coefficient of determination,
NRMSE = normalized root means squared error, and the black dotted line exemplifies the 1:1 slope.

Figure 7 shows three red clover-grass mixture DM models across the 1YC and 2YC
fields where the images were captured eleven days before harvesting (11DB). The results
indicate that, in 1YC11DB (Figure 7a), the ANN model had the lowest prediction errors
(NRMSE = 0.12) and the highest R2 value (0.90). RFR had a similar performance, but with
higher NRMSE. Although the three models performed well, a slight uniform underes-
timation of DM yield appeared in both the RFR and ANN models. On the other hand,
a non-uniform bias appeared in the SVR model, which overestimated small DM values
and underestimated large DM values. According to the ranking of variable importance,
GDVI and MSR provided higher contributions to the RFR and ANN models. Concerning
the SVM model, larger contributions were found for SR and GDVI. The results of 1YC38DB
(Figure 7b) show that the three models performed relatively well (R2 from 0.84 to 0.88).
The slope of RFR was closest to the 1:1 line, with the smallest NRMSE (0.11) and highest
R2 value (0.88); ANN and SVR had similar predictive capabilities. With regard to variable
importance ranking, SVR showed similar results compared to 11DB with the highest con-
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tribution of SR, while in the results of RFR and ANN, the contribution of VIs did not show
obvious similarity with the highest ranking in MSR and NDVI, respectively.

Figure 8. Regression plots of 1YC and 2YC fields based on RFR, SVR, and ANN methods in 38DB flight. The plots
correspond to (a) 1YC38DB and (b) 2YC38DB. The horizontal bar plots on the right side of each graph shows the variable
importance estimation based on the models. The horizontal axis in the scatter plots describes the predicted DM yield
acquired from the model, and the vertical axis stands for the field observed DM yield. The R2 = coefficient of determination,
NRMSE = normalized root means squared error, and the black dotted line exemplifies the 1:1 slope.

Figure 8 shows the behavior of predictive models using the thirty-eight days before
harvest (38DB) datasets. The 1YC38DB results (Figure 8a) showed that SVR had the
highest R2 (0.89) and the smallest NRMSE (0.11), where the slope was close to the 1:1 line.
In contrast, ANN and RFR relatively had weaker performances. However, the overall
performance of the models for the 2YC dataset was slightly inferior to the result of 1YC,
showing a higher bias of the slopes. In terms of 2YC38DB results (Figure 8b), ANN had the
best performance among the three algorithms (R2 = 0.89, NRMSE = 0.15). In the ranking
of predictor variables in 1YC and 2YC, the GNDVI, MSR, NDVI, and SRre played crucial
roles in both RFR and ANN models. Besides, the GNDVI was the most important variable
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in both 1YC and the model of ANN in the 2YC field. In contrast, SR stably ranked as the
most important in the models of SVR, regardless of flight dates or regions.

Based on the evaluation of models (Figures 7 and 8) and their suitability for differ-
ent periods (Figure 6), we generated prediction maps (Figure 9) of DM yield for both
experimental sites.

Figure 9. The spatial testing (prediction) site mapping output of DM yields (kg ha−1) in 1YC and 2YC fields based on
11DB and 38DB flights by machine learning techniques at the plot level: (a) 1YC11DB, (b) 2YC11DB, (c) 1YC38DB, and
(d) 2YC38DB. The best performing algorithm was chosen for each of the four categories, as shown in the previous results.

3.4. The Response of DM and VIs to Different Soil Tillage Methods (STM), Cultivation Method
(CM), and Manure (MA) Treatments

To understand the detection capability of the relationship between VIs and DM
yields under the influence of different soil tillage methods (STM), cultivation method
(CM), and manure treatment (MA), three models were trained from previous 11DB datasets
(Figure 4d). Testing sites were stratified sampling based on the three different farming oper-
ations to evaluate the predictive ability and sensitivity of detecting DM yields. The NRMSE
and the R2 values were performed for the goodness-of-fit measurement in 1YC (Table 4)
and 2YC(Table 5) fields. Table 4 shows that, based on STM, the three models performed
well in the DP, P, and R treatments, with the overall R2 value ranging from 0.85 to 0.94, and
NRMSE ranging from 0.19 to 0.37. In contrast, in CM, the performance of the three models
showed lower accuracy in Cmin and Omin+. SVR had the worst performance with R2 (0.62
and 0.74, respectively) and NRMSE (0.48 and 0.26). While in MA, the prediction ability of
the three models was satisfactory. As Table 5 shows, the predictive ability of STM remained
steady in the 2YC field. The R2 ranges from 0.71 to 0.96, and NRMSE ranges from 0.08 to
0.33 in three models. In CM, Omin+ showed the worst R2 and NRMSE values among other
treatments with RFR (0.70 and 0.84, respectively) and, SVR (0.81 and 0.25) and ANN (0.49
and 0.35). In terms of the prediction ability of MA treatments, M- performed better than
M+ with the R2 values higher than 0.95, and the NRMSE values were less than or equal to
0.11 in all three models.
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Table 4. The evaluation of the models between observed and predicted DM yields under different
experimental factors in 1YC11DB, the corresponding models for use was equivalent to Figure 7a.
n = number of testing samples; R2 = coefficient of determination; NRMSE = normalized root mean
square error.

1YC11DB RFR SVR ANN

Treatments n R2 NRMSE R2 NRMSE R2 NRMSE

STM DP 12 0.85 0.26 0.81 0.34 0.92 0.29
P 12 0.94 0.29 0.90 0.31 0.92 0.37
R 12 0.90 0.20 0.85 0.23 0.90 0.19

CM Cmin 12 0.75 0.31 0.62 0.48 0.80 0.31
Omin+ 12 0.69 0.31 0.74 0.26 0.60 0.47
Omin− 12 0.89 0.18 0.85 0.27 0.82 0.20

MA M+ 18 0.88 0.19 0.82 0.21 0.86 0.23
M− 18 0.91 0.21 0.84 0.22 0.88 0.24

Table 5. The evaluation of the models between observed and predicted DM yields under different
experimental factors in 2YC11DB, the corresponding models for use was equivalent to Figure 8a.
n = number of testing samples; R2 = coefficient of determination; NRMSE = normalized root mean
square error.

2YC11DB RFR SVR ANN

Treatments n R2 NRMSE R2 NRMSE R2 NRMSE

STM DP 12 0.93 0.14 0.92 0.13 0.96 0.08
P 12 0.85 0.20 0.89 0.20 0.71 0.33
R 12 0.91 0.16 0.94 0.16 0.87 0.24

CM Cmin 12 0.92 0.19 0.96 0.19 0.76 0.25
Omin+ 12 0.70 0.24 0.81 0.25 0.49 0.35
Omin− 12 0.90 0.14 0.93 0.12 0.91 0.15

MA M+ 18 0.79 0.17 0.81 0.16 0.69 0.24
M− 18 0.95 0.10 0.95 0.11 0.96 0.11

4. Discussion

This study has presented a rapid, non-destructive, low-cost framework for field-
based red-clover DM yield modeling. The outputs have the potential to markedly assist
agronomists and farmers in developing precise farming systems and increase the effective
monitoring of environmental conditions.

4.1. Applicability of the Method

The prediction models covered three different agricultural operations (STM, CM, and
MA) to represent the variable conditions in a practical farming system, which provided
varied dry mass data to identify the robustness of the derived ML models. Acquisition of
data conducted during two different periods offered a wider range of suitable monitoring
capabilities. Three machine learning techniques (RFR, SVM, and ANN) were conducted to
explore the DM yield prediction ability in legume pasture fields. All VI information was
derived from four multispectral bands. Utilizing various Vis, which calculate the relative
values or ratio among wavelengths can reduce the impact of radiance effects caused by
individual reflectance spectra [67]. Besides, high-resolution multispectral imaging produces
continuous and accurate indices in contrast to simple visual scores and rankings [68].
Consequently, no additional sensors were needed, which reduced measurement errors
and increased cost-efficiency. It is important to consider that the eBee platform used in
this study is potentially less practical for small farm area investigation (when compared
to multi-rotor drones) [69]. The flexibility, however, in sensor systems, environmental
capabilities, and increased flight durations could expand application to meet a diverse
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range of requirements [15] (e.g., larger-scale farmland or coverage area with shorter tasks
duration); whilst still providing precise yield prediction accuracy required in our study.

4.2. The Impact of the Cultivated Period, Flight Times, and Farming Operations

The first specific objective was the development of red-clover biomass prediction
models for one- and two-year cultivation periods, following common farming schedules
in Northern Europe. Despite the results of the established models (Figures 7 and 8), the
prediction accuracy of 1YC (R2 ranges from 0.81 to 0.90, NRMSE ranges from 0.11 to 0.15)
and 2YC (R2 ranges from 0.84 to 0.89, NRMSE ranges from 0.11 to 0.15) were both adequate.
Nevertheless, the combination of clover-grass resulted in a heterogeneous canopy with the
coverage of the two components. A previous mixed clover-grass study focused on canopy
height (CH) modelling for DM yield prediction and showed the models performed better
when established separately among the two species, and cannot be easily shifted to other
grassland types owing to their structural characteristics [33]. Another study indicated
that in terms of legume cover crops, the performance of NIR-based VIs did not perform
much better than CH at the end of its crop cycle in terms of DM yield estimation [70].
This limitation of applying VIs in the mature growth stage of legumes does not necessarily
impair the detection capacity, as forage biomass is usually harvested during the vegetative
growth cycle [71]. A previous study found that although measurements performed at the
ground-level were more accurate, the use of aerial systems was preferred since species
identification was irrelevant when predicting the biomass of mixed-grass [72]. Therefore,
these species-dependent VI phenomena seem to be a minor concern within the results
presented in our study. We can infer that NIR-based VIs are suitable for the estimation of
DM yields in one- and two-year cultivation periods in this study.

The second objective was to compare the impact of different pre-harvest flight dates
on model estimation capabilities. The choice of flight timing was crucially matched with
the spectral reflectance data during various growth periods. A previous study showed
that the ideal period for forage crop assessment was one day before harvesting [32],
whereas another study suggested that the targeted silage harvesting stage was favored [34].
Interestingly, studies focusing on other crop species have identified optimum monitoring
periods in the case of maize yield prediction. The choice of performing a flight 100 days
before harvest times had the best accuracy [73], whereas, for rice grain, it was optimal
around the booting stage of growth [74]. In the case of our study on clover-grass mixes, the
LOOCV and ML analysis demonstrate that the NRMSE average values from three models
of 11DB were typically lower than those of 38DB (Figure 6). However, when compared to
the bias of the slope of 11DB and 38DB from 1YC with the 1:1 line, 38DB provided a better
model fit whilst at the same time being less prone to the under- or over-estimation of DM
yield (Figures 7a and 8a). Although the 11DB flight was in the red clover flowering stage,
it seemed insignificantly influenced by the multispectral reflectance values since the flower
size was small and normally less than 0.25 pixel in our study. Thus, the results indicate
that in clover-grass mixture fields, the estimation ability is improved when UAS imagery is
collected closer to the harvest period, but not later than the yellowing stage. Moreover, the
results also indicate that the VIs derived from UAS images captured earlier than 38 days
before harvest also have sufficient DM-yield estimation capacity and provide the potential
to estimate DM earlier, while the accuracy might be partially lost.

The third objective was to explore, in detail, selected ML sensitivity regarding different
farming operations. Relative research on the relationship between STM, CM, MA, and
forage crop DM yields are still scarce in remote sensing studies. We redivided the testing site
and stratified sampling the plots based on the differences in farming operations (Figure 4d),
and the evaluation results of prediction ability based on STM was generally better in
both 1YC and 2YC, followed by MA and CM treatments. Recently, remotely-sensed soil
tillage quality evaluation on the bare soil level has contributed to compare several tillage
techniques to increase the quality of farming work and energy conservation [75]. However,
there are still few applications of the assessment of tillage methods and yield performance
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during the growth period of forage crops. The results of this study, which considered
crop growth period when measuring DM yield, will assist farmers in making comparisons
between several tillage methods for covering their basic agricultural needs.

On the other hand, a study confirmed that a biomass coverage index of 43.8% rep-
resents the best performance of disking operations [76]. Similarly in our study, a higher
DM of 2YC red clover in DP treatment was observed (Figure 5b) and could be accurately
predicted. However, the general predictive ability of CM was low, especially in the Omin+
treatment group, which may be attributed to the larger DM and spectral reflectance diver-
gence of this area. In terms of tillage modeling results, previous studies have shown the
non-tillage (NT) fields had more vigorous and abundant crops than conventional tillage
(CT) methods, and the NIR-based VIs showed better discrimination performance than
RGB-based VIs [26,77]. In our research, we have also found that the reduced tillage (R)
areas yielded better accuracies, in comparative terms. A study of grassland DM yield
estimation by a UAV-RGB camera showed different nitrogen fertilizer levels with its R2

ranging from 0.57 to 0.70 [78]. Currently, adequate fertilizer estimation remains challenging
in heterogeneous plant communities such as grasslands [32]. However, legume crops could
provide more positive N balance input than mineral fertilization under various tillage
conditions [79]. Although the input of N is not effectively quantified in this study, the
DM yields of the various N input combinations could still be effectively predicted, which
increases the viability of using non-destructive methods to quantify a range of, and distinct,
N sources in future fertilizer management decisions.

4.3. The Machine Learning Methods

Machine learning techniques are still deemed to be novel in the realm of estimating
grassland biomass [80]. The predictive ability of three broadly adopted and reliably imple-
mented ML methods in clover-grass DM yield was promising in this study. ANN showed
better predictive accuracy eleven days prior to harvest (11DB). This result is consistent with
the LOO cross-validation results. The practicality and flexibility of ANN has previously
been demonstrated in studies of grassland biomass estimation [81,82], and nitrogen and
phosphorus concentration modeling in mixed-species environments [83,84]. Interestingly,
within our study, RFR and SVR were shown to have increased predictive capability at
38DB; which is farther from the harvest period. Both RFR and SVR were also shown to
have a promising potential in clover-grass biomass prediction applications, since they are
fast and require fewer training samples, when compared to the ANN [80,85]. The overall
accuracy of the three ML methods provided R2 ranges from 0.81 to 0.90, and the NRMSE
ranges from 0.11 to 0.15. These findings further support the asserted dominant ability
of MLs as a perennial forage crop biomass estimator; demonstrated in this study for
mixed-grass species.

4.4. Importance of Variable Rankings

Variable importance ranking is essential for predictor selection and model simplifica-
tion normally. In our study, the results of ranking showed which VIs were able to capture
most of the variability in vegetation characteristics from the grass fields. Different VI
values at the level of leaf area indices were likely caused by the diverse canopy structures of
clover (horizontal) and grass leaves (vertically orientated) [71]. A recent study confirmed
that GNDVI is suitable as a biomass predictor for perennial forage crops, where R2 = 0.80
for freshly-cut, and 0.66 for dry yields [86], as well as in the grain yield estimation in
maize [87]. These results resemble the RFR and ANN modelling of this study, where the
GNDVI, GDVI, and MSR had the highest average contributions. The weight of SR was
generally low. A similar result was also found in a study of grass DM yield prediction
by Partial Least Square (PLS) and RF techniques, where the above-mentioned VIs were
relatively important variables, while SR yielded the worst prediction out of twelve VIs [22].

Other previous studies have indicated that NDVI is more commonly used for pasture
biomass measurements [88,89], as well as in larger-scale grassland followed by seasonal
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monitoring [90]. However, the findings of this study indicate that NDVI may not be the
most suitable VI, which was supported by a previous study [86]. This highlights the
importance of considering the saturation, sensitivity, stages of crop development, canopy
structure, and the type of environment when testing various vegetation indexes [15].
Our findings indicate that multispectral information based on NIR and the green band
may be more suitable for DM yield prediction using RFR and ANN modelling. The ex-
ception, however, is the SR indices, which have the highest contribution consistently
across all periods in the SVR modelling. This distinctive finding has yet to be found in
similar crop studies in other literature. It is clear from our findings that more tests of VI
should be conducted in studies to increase the collective understanding and improve the
knowledge base.

4.5. The Limitations in This Study

In this study, the results may be limited by the red-clover and grass varieties present,
and the study area investigated. This, however, can easily be addressed by including a
wider range of species, and study regions, in future investigations. Further limitations may
exist due to the inherent complexity and repeatability of field trial design, the small sample
size, and the potential interaction effects between treatments; none of which are fully
addressed through this study. Although RFR is known to be a suitable methodology for
measuring smaller sample sizes [91], basic tree learners within the RFR algorithm benefited
the performance of small datasets [62], whereas a higher number of sample points will
typically lead to more accurate predictions. However, to address the potential for model
over-fitting, we also implemented LOOCV in the training site. Here the results showed
that the stability and divergence of variance were in an acceptable range. Nevertheless,
increasing the number of samples will still be worth pursuing in future investigations,
despite it creating an increased burden for onsite sampling and measurement.

5. Conclusions

Agriculture is experiencing a reimagined technological revolution supported by re-
mote sensing technologies. In our study, UAS offers a significant sensor-based platform
that supports VPT to develop current and future smart farming trends to achieve the
assessment of eco-efficiency agriculture management practices and above-ground biomass
estimation. It offers scientists and practitioners the capability to distinguish and compare
trial changes, both spatially and temporally, for the monitoring and optimization of local
agricultural practices. Our study has highlighted the potential for innovative machine
learning methods to compensate for reduced sample sizes, reducing human efforts, and
maximizing the utilization of available resources when implementing and simulating the
actual activities in perennial clover-grass mixture trials.

We performed multispectral-UAS flights, under the one- and two-year cultivated red
clover-grass mixture performance trials, within 38 to 11 days before the harvesting, with
the GSD 10 cm and combined the resultant VI’s within multiple ML methods. Our find-
ings present a robust DM yield prediction method, which can operate at the farm-scale;
which is both non-destructive and cost-effective. The ML analysis results showed the best
performance for ANN in the 11DB (R2 = 0.90, NRMSE = 0.12), followed by RFR (R2 = 0.90
NRMSE = 0.15), and SVM (R2 = 0.86, NRMSE = 0.16). For VI performance, GNDVI and
GDVI, and MSR performed well as predictors in ANN and RFR. While the prediction
ability of models was being influenced by the farming operations, the stratified sampling
based on STM provided a better model performance than CM and MA. The results indicate
the potential of UAS to deal with complex experimental design development, such as
tillage methods and varying fertilizer inputs.

However, the robustness and applicability of fertilizer quantification, and the mixed
legume-grass species distribution detection, still remain to be addressed. Accurate and real-
time phenotypic information of crops under diverse agri-environment schemes and their
morphological and physiological states remains a further obstacle to be well-quantified by
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UAS, as well as providing theoretical and technical support for sustainable agricultural
development in response to forage crop biomass/yield estimation in the future. The pro-
posed methods in this study could also be improved further through the implementation
of other practical techniques; such as texture analysis, which could offer the potential to
measure spatial heterogeneity and improve accuracy [92]. In addition, further improve-
ment could be developed by employing other ML network systems, like deep learning
methods, to lower the misinterpretation rate [93]. However, this study does demonstrate
the effectiveness, and potential of, short-term forage crop management monitoring by
UAV to aid decision making, and presents a foundation on which to develop new pos-
sibilities for larger-scale UAV field-based phenotyping platforms to accelerate the crop
breeding process.
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Abstract: The recent trend of automated machine learning (AutoML) has been driving further
significant technological innovation in the application of artificial intelligence from its automated
algorithm selection and hyperparameter optimization of the deployable pipeline model for unrav-
eling substance problems. However, a current knowledge gap lies in the integration of AutoML
technology and unmanned aircraft systems (UAS) within image-based data classification tasks.
Therefore, we employed a state-of-the-art (SOTA) and completely open-source AutoML framework,
Auto-sklearn, which was constructed based on one of the most widely used ML systems: Scikit-learn.
It was combined with two novel AutoML visualization tools to focus particularly on the recognition
and adoption of UAS-derived multispectral vegetation indices (VI) data across a diverse range of
agricultural management practices (AMP). These include soil tillage methods (STM), cultivation
methods (CM), and manure application (MA), and are under the four-crop combination fields (i.e.,
red clover-grass mixture, spring wheat, pea-oat mixture, and spring barley). Furthermore, they have
currently not been efficiently examined and accessible parameters in UAS applications are absent for
them. We conducted the comparison of AutoML performance using three other common machine
learning classifiers, namely Random Forest (RF), support vector machine (SVM), and artificial neural
network (ANN). The results showed AutoML achieved the highest overall classification accuracy
numbers after 1200 s of calculation. RF yielded the second-best classification accuracy, and SVM and
ANN were revealed to be less capable among some of the given datasets. Regarding the classification
of AMPs, the best recognized period for data capture occurred in the crop vegetative growth stage
(in May). The results demonstrated that CM yielded the best performance in terms of classification,
followed by MA and STM. Our framework presents new insights into plant–environment interactions
with capable classification capabilities. It further illustrated the automatic system would become an
important tool in furthering the understanding for future sustainable smart farming and field-based
crop phenotyping research across a diverse range of agricultural environmental assessment and
management applications.

Keywords: unmanned aircraft system; automated machine learning; agricultural management
practices; image classification; precision agriculture; variety performance trials; crop breeding; crop
phenotyping; agriculture decision-making
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1. Introduction

Unmanned Aerial Systems (UAS) are considered one of the most significant tech-
nologies for the further development of precision agriculture (PA) [1] and sustainable
smart farming [2]. UAS are frequently employed for the surveillance of cultivated lands,
providing effective solutions for accurate decision support, increasing farming efficiency,
enhancing profitability, reducing environmental impacts, and driving further technological
innovation [1,3,4]. UAS equipped with various novel sensor types can be exploited to
improve agreement and synergy between imagery and field reference data. In addition,
these systems can also identify the regional monitoring requirements, such as disease
detection, growth observation, yield estimation, and weed management [5,6]. In PA, vege-
tation indices (VI) are one of the most widely used outputs from UAS imagery applications
and assist in the delivery of dependable spatial and temporal information across multiple
agricultural activities. VIs typically constitute mathematical combinations of individual or
groups of bands from the electromagnetic spectrum and are intended to minimize the effect
of external confounding factors while enhancing the detectability of vegetation character-
istics [5,7]. Currently, UAS-based remote sensing techniques offer a notable contribution
in field-based crop phenotyping investigations [8]. Immediate and accurate acquisition
of crop phenotypic information in various agri-environments supports the exploration
of genetic–environmental interactions from critical production traits to determine the in-
heritance information and expression patterns to increase crop yields and tolerance to
abiotic/biotic stresses [9,10]. However, it is crucial to take into account that field conditions
are notoriously diverse compared to experimental environments, such as greenhouses or
laboratories. Moreover, the outputs and findings collected from controlled environments
can be difficult to extrapolate onto field settings and can impair the interpretation and
application of research schemes [10].

Therefore, a common approach when identifying multiple crop management proce-
dures and their interaction with the environment involves a well-conducted randomized
experimental design, in which different agricultural management practices (AMP) are
imposed on crops [11]. Variety performance trials (VPT) are a valuable method to address
this issue. VPTs are regularly implemented in AMP research activities to improve the
understanding of diverse systems and develop environmental management recommenda-
tions for variety selection [12,13]. Concerning the AMPs trial criteria chosen and the recent
growth in environmental protection awareness under the concepts of sustainable agricul-
ture, the flexibility of environmentally friendly cultivation methods, such as reduced tillage
and the application of various minerals and organic fertilizers, are being developed [14].
For example, tillage reduction is an essential characteristic of agricultural management that
changes the soil either physically, chemically, mechanically, or biologically to create the
appropriate conditions for seedling sprouting and healthy plant growth [15,16], whereas or-
ganic additions, such as manure or organic fertilizers, are widely used methods to enhance
soil fertility [17]. Studying VPT datasets, however, provides unique analysis problems
due to the structure, nature, and husbandry variations of each trial. The evaluation of
differences in management practices could potentially be confounded due to their nested
structure (e.g., as opposed to controlled replicated treatments) [18]. These AMPs have been
increasingly proposed as an ecological method involving nutrient management, increased
water holding capacity, and recoupled C and N cycling in agricultural ecosystems to im-
prove sustainability [19,20]. Although the specification of weather, soil, and management
practices in current cropping systems are vital for robust model simulation and evaluation,
these data are usually inaccessible for most cropping systems with adequate geospatial
detail and lack of ability to replicate measured yields of field crops that received the best
possible AMPs across a broad range of environments [21]. Recently, the application of UAS
combined with popular machine learning (ML) systems drives a significant contribution to
VPT crop biomass estimation. These results deepen the possibility of applying machine
learning technology to diverse and complex AMP farmland classification applications.
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Incorporating multisensory computing science approaches provides a wide range of
valuable information for the expansion of precision farming practices [22]. ML techniques
may not provide a universal solution in precision farming; however, these approaches
enable better determination in verisimilitude scenarios with minimum human intervention.
They provide not only a powerful and flexible framework for decision-making but also
facilitate the integration of expert knowledge into the PA system [23]. Complexities become
a drawback in VPTs since desired models need to contain training and testing databases
and are often restricted by the number of pure line seeds, various AMPs (fertility test,
tillage category, disease resistance, etc.), and confined areas with small sampling sizes to
compensate for the labor-intensive fieldwork. Likewise, environmental factor interventions
enhance obstacles in parameter selection in ML systems owing to the differences in location,
climate, and soil properties [24]. Occasionally, even the same crop genotypes may not
express similar spectral characteristics in UAS, which renders the models invalid. If the
reference parameters exist to formulate relationship functions, the genuine implementation
results are frequently unsatisfactory owing to mismatches between concepts and realities.

As an alternative, the innovative concept of automated machine learning (AutoML)
has arisen to reduce these data-driven costs while becoming a significant topic as the expo-
nential growth of computing power continues [25]. AutoML is defined as a combination of
algorithm selection and hyperparameter optimization, which aims to recognize the mixture
of algorithm components with the best (cross-validated) performance by covering from raw
datasets to the deployable pipeline ML model to unravel substance problems [26]. AutoML
is built to decrease the time demands of data scientists and save time by empowering spe-
cialists to build ML applications automatically without requiring widespread knowledge
of ML [27] and entails the automated construction of an ML pipeline based on limited
computational constraints [28]. Recent advancements in AutoML systems, such as Auto-
WEKA [29] and Auto-sklearn, [30] are recommended as an artificial intelligence-based
solution for the expanding challenge of ML applications by combining a highly parametric
ML framework with a Bayesian optimization method for a given dataset, significantly
streamlining these steps for non-experts [30]. The standard procedure of ML modeling
involves data pre-processing, feature engineering, feature extraction, feature selection,
algorithm selection, and hyperparameter optimization to increase the model’s predictive
performance [31].

Although AutoML has promoted great achievements in computer science and recently
UAS applications, for example, the approximation of root-zone soil moisture [32] by
AutoML interface H2O AutoML [33] and RGB-based crop phenotyping [34] by neural
architecture search system AutoKeras [35], it has not been widely applied in multispectral
image analysis. A current gap persists in the knowledge base for multispectral-based AMP
analysis and agriculture land use studies in addition to the further understanding the
potential for remotely sensed solutions to field-based and multifunctional platforms for the
demands of plant phenotyping and smart farming management. To solve this knowledge
gap, this study employed a state-of-the-art (SOTA) and completely open-source AutoML
system, Auto-sklearn [30], which is constructed based on one of the most widely used ML
systems, Scikit-learn, in the scientific Python community [36], combined with two novel
AutoML visualization tools to explore UAS-derived multispectral vegetation indices (VI)
as an example for handling the AMPs classification tasks.

More precisely, the aims of this study were to (1) build an AutoML framework for
UAS classification tasks; (2) explore the applicability of UAS sensors to recognize multiple
AMP categories, namely soil tillage methods (STM), cultivation methods (CM), and manure
application (MA), which have currently not been efficiently examined and are absent of
accessible parameters in both UAS and ML fields; and (3) compare AutoML’s ability using
different ML classifiers to identify image-based AMPs for diverse crop categories and
its appropriate growth stages. To our knowledge, this paper is the first study to use an
AutoML system with UAS -derived multispectral VIs, for the agricultural classification task.
Moreover, this paper is the first to provide a novel AutoML framework, across multiple
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AMP activities, and present new insights into UAS and ML optimization methods for
future PA and crop phenotyping research.

2. Materials and Methods
2.1. Study Area and Experiment Layout

This study commenced at the Agricultural Research Centre (ARC) in Kuusiku
(58◦58′52.7”N 24◦42′59.1”E), Estonia (Figure 1a). The experimental area used in this
study covered 226 hectares, of which the 2.87-hectares variety performance trial (VPT)
area consists of two soil types: Calcaric Cambisol and Calcaric-Leptic Regosol [37]. The
experimental layout consisted of four types of common crop and their regular combi-
nations in Estonia, i.e., Field 1: red clover 75% (Trifolium pratense L.) with grass 25%
(Festuca pratensis) (RC + G). Field 2: spring wheat (SW), Field 3: pea and oat mixture
(P + O), and Field 4: spring barley with under-sowing red clover (SB + RC) in 2019
(Figure 1b). This experimental design was developed to facilitate the understanding of
the physiological conditions and yield performance capabilities of the chosen varieties
and their combinations under three types of AMPs. To assess the UAS-based AMP
detection capacity, the experiment was put together with three principal experimental
factors (Figure 1c), which included: (1) soil tillage methods (STM), considering reduced
tillage (R) (8–10 cm), ploughing (P) at a depth traditionally used in conventional tillage
(18–20 cm), and disking (DP) (8–10 cm) as treatments; (2) cultivation methods (CM),
considering conventional farming with mineral fertilizer application (Cmin+), organic
farming with mineral fertilizer application (Omin+), and organic farming without min-
eral fertilizer (Omin−); and (3) manure applications (MA). Each field comprised 72 plots,
which amounted to a total of 288 plots sampled within our study area.

2.2. UAS Image Acquisition

Figure 2 shows the workflow utilized to combine the UAS-based image collection,
processing, sampling, and AutoML framework modified from [30]. A fixed-wing UAS
eBee Plus (Sensefly Inc., Cheseaux–Lausane, Switzerland) equipped with GNSS post-
processed kinematic (PPK) capabilities was deployed with a Parrot Sequoia multispectral
sensor (version 1.2.1, Parrot, Paris, France). This UAS platform and sensor were used for
image acquisition and captured imagery across four spectral bands: green (530–570 nm),
red (640–680 nm), red-edge (730–740 nm), and near-infrared (770–810 nm). To facilitate
seasonal image processing and AMP recognition, UAS images were captured over three
timeslots in 2019 at the Kuusiku Research Center: 23 April (temperature: 16 ◦C, wind
speed: 11 km h−1 S, sunny), 30 May (temperature: 19 ◦C, wind speed: 12 km h−1 WSW,
overcast), and 10 July (temperature 20 ◦C, wind speed: 3.6 km h−1 NW, sun with minor
cloud cover). The weather conditions in the 6 days prior to the image acquisition are
displayed in Supplementary Figure S1. The originally designed flight time was 37 min
and 30 s per task over an area of 65.8 hectares (with areas of interest 2.87 hectares in this
study). However, depending on the weather conditions and wind speed of the day, the
eBee flight time might have been slightly different from the number of battery replacements
(the endurance of one battery was approximately 20–30 min). This data capture protocol
was designed to represent the reflectance spectrum characteristics of crops during different
growth stages. Flight-line overlap was set using a frontal image overlap of 80% and a
lateral overlap of 75% with a target altitude of 120 m above ground level (AGL), resulting
in a ground sampling distance (GSD) of 10 cm per pixel. All image data capture procedures
were undertaken between the hours of 10 a.m. to 2 p.m. to guarantee the consistency of
photo collection quality and to minimize lateral shading of crops within the VPT fields. An
Airinov radiometric calibration target (Airinov, Paris, France) and a one-point calibration
method [38] were used to enable post-flight radiometric correction of the multispectral
imagery before each flight to remove dark current and lens vignetting effects while post-
processing the image [39].
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Figure 1. (a) The study area located at the Kuusiku agriculture center, Estonia. (b) The RGB
orthomosaic image from 30 May of the experimental layout fields with four crop types, i.e., (F1.
(RC + G), F2. (SW), Field 3. (PO), and Field 4. (SB + RC)) (c) The VPT with three agricultural
management practices (AMP): cultivation method (CM) with three levels (Cmin+, NPK 5-10-25
291 kg ha−1 (N-14 kg ha−1, P-13 kg ha−1, and K-60 kg ha−1); Cmin−, mineral fertilizer 240 kg ha−1

(K-60 kg ha−1, S-41 kg ha−1, M-14 kg ha−1); and Omin−), manure application (MA) with two levels
(M+, manure 30,000 kg ha−1 (N-234 kg ha−1, P-20 kg ha−1, and K-216 kg ha−1), and M−), and soil
tillage method (STM) with three levels (DP, P, and R) were conducted in this study.
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Figure 2. The flowchart of the UAS and AutoML framework in this study. (a) The UAS framework, where (a1) Three
types of AMPs were processed for four crop categories. (a2) The eBee plus with Parrot Sequoia multispectral sensor with
the time series flight (April, May, and July) to collect spectral information from different crop periods. (a3) UAS image
post-processed in SenseFly eMotion with PPK corrections and orthomosaics in Pix4D. (a4) 19 VIs calculation, segmentation
and corresponding plot digital number (DN) extraction for AutoML modeling. (b) The Auto-sklearn framework constructed
ML pipelines automatically, which were proposed by the Bayesian optimization method with warm-started meta-learning
and joint with post hoc ensemble building approach to achieve robust performance (adapted from [30,40]). (c) Yellowbrick
visualization package was conducted for AutoML model evaluation. (d) PipelineProfiler was conducted for AutoML
interactive pipelines visualization tool allows the examination of the solution space of end-to-end ML pipelines.

2.3. UAS Image Processing

For pre-processing UAS images, we used SenseFly eMotion 3, applying differential
correction data (RINEX) provided by the GNSS CORS (Continuously Operating Reference
Station) of Estonia for post-processing kinematics (PPK) corrections [41]. PPK was reported
to increase the higher horizontal and vertical geotagging accuracy when compared to
ground control points (GCP) [42,43]. In our study, the UAS image corrections were de-
creased from 5 m error to under 0.06 m (less than one-pixel size). Pix4D v.4.3.31® (Pix4D
SA, 1015 Lausanne, Switzerland) software was utilized to process and radiometrically
correct (calibrated according to the variances between the measured value and target actual
reflectance [38]) the imagery, as well as to generate the multispectral orthomosaics. These
images were subsequently clipped with a one-meter inward buffer zone from each plot to
represent only the extent of the area of the VPTs.

2.4. Vegetation Indices Calculation

In this study, nineteen VIs were chosen and calculated to address the issues of het-
erogeneous crop classes, soil types, and the current absence of valuable UAS referenced
parameters in AMPs (see Table 1). More specifically, Datt4, SRre, NDVIre were selected
due to their positive correlation with chlorophyll content [44–46]; MTVI, MSR, MSRre,
RVIS, WDRVI [47–51] are known to be sensitive to variations in leaf area index (LAI); GDVI
was used for better lower vegetal land cover estimates and characterization [52]; GIPVI
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was calculated for its potential in grassland communities detection [53]; GNDVI, NDVI,
RTVIcore were utilized due to their high performance in crop above-ground biomass (AGB)
estimation [54,55]; GDI, GRDI, and RDVI were included due to their ability to compensate
for NDVI saturation problems, and the potential effects of soil and sun viewing geom-
etry [56,57]; GRVI was applied for its sensitivity to soil moisture [58], SR for strongly
correlated with comprehensive growth index (CGI) [59] and REGVI was included for its
sensitivity to deviations in senescence and vegetation stress [60].

Table 1. Descriptions and formulas of multispectral UAS derived VIs used in this study. The ρ R refers to the reflectance of
the red band, ρ G refers to the reflectance of the green band, ρ REG refers to the reflectance of the red edge, and ρ NIR refers
to the reflectance of the near-infrared.

Vegetation Index Equation Reference

Datt4 ρ R/(ρ G * ρ REG) [61]
Green Infrared Percentage Vegetation Index (GIPVI) ρ NIR/(ρ NIR + ρ G) [62]

Green Normalized Difference Vegetation Index (GNDVI) (ρ NIR − ρ G)/(NIR + ρ G) [63]
Green Difference Vegetation Index (GDVI) ρ NIR − ρ G [64]

Green Ration Vegetation Index (GRVI) ρ NIR/ρ G [64]
Green Difference Index (GDI) ρ NIR − ρ R + ρ G [65]

Green Red Difference Index (GRDI) (ρ G − ρ R)/(ρ G + ρ R) [65]
Normalized Difference Vegetation Index (NDVI) (ρ NIR − ρ R)/(ρ NIR + ρ R) [66]

Red-Edge Normalized Difference Vegetation Index
(NDVIre) (ρ NIR − ρ REG)/(ρ NIR + ρ REG) [46]

Red-Edge Simple Ratio (SRre) ρ NIR/ρ REG [46]
Renormalized Difference Vegetation Index (RDVI) ((ρ NIR − ρ R)/((ρ NIR + ρ R) ** (0.5))) [67]

Red-Edge Modified Simple Ratio (MSRre) ((ρ NIR − ρ REG) − 1)/(((ρ NIR + ρ REG) ** (0.5))
+ 1) [49]

Red-Edge Triangular Vegetation Index (RTVIcore) (100 * (ρ NIR − ρ REG)) − (10 * (ρ NIR − ρ G)) [55]
Red-Edge Vegetation Stress Index (RVSI) ((ρ R + ρ NIR)/2) − ρ REG [50]

Red-Edge Greenness Vegetation Index (REGVI) (ρ REG − ρ G)/(ρ REG + ρ G) [68]
Simple Ratio (SR) ρ NIR/ρ R [69]

Modified Simple Ratio (MSR) ((ρ NIR − ρ R) − 1)/(((NIR + ρ R) ** (0.5)) + 1) [48]
Modified Triangular Vegetation Index (MTVI) 1.2 * ((1.2 * (ρ NIR − ρ G)) − (2.5 * (ρ R − ρ G))) [47]

Wide Dynamic Range Vegetation Index (WDRVI) (((0.2 * ρ NIR) − ρ R)/((0.2 * ρ NIR) + ρ R)) [70]

2.5. Principal Component Analysis and VI Extraction

In this study, principal component analysis (PCA) was used to decrease the dimension-
ality of data through the calculation of a series of new variables, or principal components,
through linear combinations of the original parameters [71]. PCA was employed as an
exploratory data analysis (EDA) technique to describe the relationship between three
different agricultural management types (CM, MA, and STM) and multispectral UAS-VIs.
The PCA was used for testing whether or not it could improve the classification efficiency
of AMPs. PCA was conducted using R version 4.0.2 [72] and the FactoMineR package [73].
For extraction of the digital number (DN) values from each VIs of four experimental fields
(72 plots in each field), a total of 288 plots were digitized in ArcGIS Pro 2.6.3 [74]. As stated
previously, a one-meter buffer zone was extended inwards from each plot boundary to
address potential edge effects from agricultural management, and the average VIs were
isolated and calculated. These extracted values were further used in this study when
building ML algorithms and for AutoML assessment and evaluation.

2.6. AutoML Modeling with Auto-Sklearn

Auto-sklearn [30], a robust and efficient AutoML system first introduced in 2015 and
upgraded in 2020 [75], was utilized in this study. Auto-sklearn is developed on the Python
Scikit-learn machine learning package. It uses 15 classifiers, 14 feature pre-processing meth-
ods, and four data pre-processing methods, giving rise to a structured hypothesis space
with 110 hyperparameters [76]. It improves on existing AutoML methods by automatically
considering the previous performance on similar datasets, and by constructing ensembles
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from the models evaluated during the optimization process. At its core, this method com-
bines the highly parametric ML framework with automatically constructed ML pipelines
suggested by the Bayesian optimization method sequential model-based algorithm con-
figuration (SMAC) [77]. SMAC can automatically construct ML pipelines that include
feature selection (i.e., removing insignificant features), transformation (i.e., dimensionality
reduction), classifier selection comprising support vector machines (SVM) [78], Random
Forest (RF) [79], and other algorithms, hyperparameter optimization, etc. Subsequently, it
then utilizes a Random Forest technique for swift cross-validation by evaluating one-fold
at a time, while at the same time discarding poor-performing hyperparameter settings
during early stages. It achieves competitive classification accuracy, in addition to novel
pipeline operators that significantly increase classification accuracy on the datasets [80].
During the feature selection stage, any highly correlated VIs were removed to eradicate the
influence of collinearity. This step was omitted here since Auto-sklearn deals with the low
dimensional optimization problems [81].

In this study, all calculations were done in the open-source operating system LINUX
with Intel Core i5-1035G1 CPU (1.00 GHz) and 16 GB RAM. For the AutoML framework, the
steps described in [30] were followed, with some modifications for this study (Figure 2b).
First, the system used a supplementary approach of extensively applied meta-learning
methods to train machine learning models over statistical attributes of datasets and esti-
mated the parameter of models that yielded the best precision [82]. Second, the system
automatically built ensembles of the models considered by Bayesian optimization. Third,
the system constructed a highly parameterized ML framework from high-performing
classifiers and pre-processors implemented within the ML framework. Finally, the system
performed broad empirical analysis using a diverse collection of datasets to demonstrate
the resulting Auto-sklearn system outperformed preceding AutoML methods. The major
AutoML parameter settings of this study are described in Table 2. Due to computational
resource constraints and to test the efficiency of AutoML, we first limited the CPU time for
each run to 60 s and the running time for evaluating a single model to 10 s as an example
of rapid model selection. Subsequently, we then used a total of 1200 s with a 10-s single
model computing time as a representative of the better processing of AutoML models. The
data were analyzed separately according to the four crop fields (F1–F4), with each field
containing 72 plots (n = 72) with a split in the training site and validation site (0.6/0.4) for
classification modeling.

Table 2. The AutoML main parameters and descriptions used in this study.

Parameter Name Range Value Description

time_left_for_this_task 60–1200 s The time limit for the search of appropriate models.
per_run_time_limit 10 s The time limit for a single call to the machine learning model.

ensemble_size 50 (default) The number of models added to the ensemble built by Ensemble
selection from libraries of models.

ensemble_nbest 50 (default) The number of best models for building an ensemble model.
resampling_strategy CV; folds = 3 (CV = cross-validation); to handle overfitting

seed 47 Used to seed SMAC.
training/testing split (0.6; 0.4) Data partitioning way

The other parameters that are not listed on the table were run in default mode.

A recent review study of supervized ML methods applied in land-cover image classi-
fication disclosed that Random Forest (RF), support vector machine (SVM), and artificial
neural network (ANN) classifiers were among the most commonly used ML techniques
from 220 related articles [83]. Therefore, in this study, these popular ML classifiers were
selected for comparison against the accuracy performance of AutoML (with 60-s run,
and 1200-s run of Auto-sklearn). These algorithms were programmed in Python by
the robust ML library Scikit-learn (0.24.2) [76] with the perimeter setting as following:
sklearn.ensemble.RandomForestClassifier (100 trees; min_samples_split (2); leaf_node (1));
sklearn.svm.SVC (cost (C = 500); gamma (0.5); epsilon (0,01)), and sklearn.neural_network.
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MLPClassifier (alpha (0.00005); the maximum number of iterations (100,000)) The pa-
rameters not mentioned were computed as default settings from Scikit-learn, and for the
accuracy, calculation referring to Table 3.

Table 3. The confusion matrix-based accuracy evaluation equations used throughout this study.

Indices Equations

Recall TP/(TP + FN)
Precision TP/(TP + FP)

Specificity TN/(TN + FP)
Accuracy TP/(TP + TN + FP + FN)
F1-score 2 * Precision * Recall/(Precision + Recall)

False Positive Rate (FPR) 1 − Specificity = FP/(FP + TN)
True Positive Rate (TPR) Sensitivity = TP/(TP + FN)

2.7. AutoML Model Evaluation and Visualization

For the visualization and evaluation of the Auto-sklearn model, the workflow in-
cluded, in general, multiple iterations through feature engineering, algorithm selection,
and hyperparameter tuning [84]. In this study, an open-source visual steering tool Yellow-
brick visualization package (essentially a wrapper for the Sklearn documentation) was
conducted for AutoML evaluation [85]. Yellowbrick contributes to assessing the stability
and predictive values of ML models and delivers visualizations for our AutoML classi-
fication models. The accuracy evaluation based on the confusion matrix system of the
AutoML classification parameters were defined as follows: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), which have been well described in [86].
The equations used in this study are described in Table 3. The derived receiver operating
characteristic curve (ROC) graph with the x-axis showing FPR and the y-axis showing TPR
was used in this study to show the relationship among specificity and sensitivity for each
possible cut-off [87] and the area under the curve (AUC) ranges from 0 to 1 to visualize
the trade-off between the classifier’s sensitivity and specificity [87,88]. Macro- and micro-
averaging ROC were calculated to evaluate overall classifier performance in multi-class
problems. In this approach, the ROC curve was calculated anew, based upon the true posi-
tive and false positive rates for all dataset (by weighting curves by the relative frequencies
of the dataset and then averaging them) [89,90]. In addition, the precision–recall curve
(PR) was calculated for different probability thresholds. PR curves were conducted in
cases where there was an imbalance in the observations between the classes [91] as another
classification evaluation standard to assist with the ROC curve. The prediction errors
(confusion matrix) and classification report that displays precision, recall, and F1-score [92]
(Table 3) per class as a heatmap in our study.

Alternatively, even though the AutoML framework facilitates the construction of
models, given their black-box nature, the complication of the underlying algorithms
and the large number of pipelines they derive leads to the reduced trust of AutoML
pipelines systems [93]. Therefore, in our study, PipelineProfiler [94] was conducted for
AutoML pipelines visualization. PipelineProfiler is a SOTA in visual analytics for AutoML
interactive visualization tool that allows the examination of the solution space of end-to-
end ML pipelines. It offers a recovering understanding of how the AutoML algorithms
are generated and the perceptions of how they can be optimized. As the outcome of the
interactive AutoML pipeline matrix plots, where illustrated Pipeline flowchart, primitives
used by the pipelines; one-hot-encoded hyperparameters for the primitive across pipelines;
the accuracy ranking; primitive contribution view; and the class balancing of correlation
score with accuracy. These calculations and expressions are clearly detail described in
the [94] article.
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3. Results
3.1. The AMPs Observation in VPTs and VIs Calculation

Figure 3 displays the observation of onsite crop VPTs (i.e., Field 1 (F1) (Figure 3a) and
Field 2 (F2) (Figure 3b) with CM treatments) and one of the VIs (NDVI; Figure 3c) captured
on 10 July from F1 and F2. It can be observed from the onsite AMPs treatment photographs
of F1 and F2 in July that it was not readily distinguishable. In addition, it can be seen from
the NDVI image that the heterogeneity within the plot may be caused by edge effects or
uneven fertilization. For this reason, we used the plot average value considering the pixels
inward boundary clipping to decrease the noise.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 25 
 

 

showing TPR was used in this study to show the relationship among specificity and 
sensitivity for each possible cut-off [87] and the area under the curve (AUC) ranges from 
0 to 1 to visualize the trade-off between the classifier’s sensitivity and specificity [87,88]. 
Macro- and micro-averaging ROC were calculated to evaluate overall classifier 
performance in multi-class problems. In this approach, the ROC curve was calculated 
anew, based upon the true positive and false positive rates for all dataset (by weighting 
curves by the relative frequencies of the dataset and then averaging them) [89,90]. In 
addition, the precision–recall curve (PR) was calculated for different probability 
thresholds. PR curves were conducted in cases where there was an imbalance in the 
observations between the classes [91] as another classification evaluation standard to 
assist with the ROC curve. The prediction errors (confusion matrix) and classification 
report that displays precision, recall, and F1-score [92] (Table 3) per class as a heatmap in 
our study. 

Alternatively, even though the AutoML framework facilitates the construction of 
models, given their black-box nature, the complication of the underlying algorithms and 
the large number of pipelines they derive leads to the reduced trust of AutoML pipelines 
systems [93]. Therefore, in our study, PipelineProfiler [94] was conducted for AutoML 
pipelines visualization. PipelineProfiler is a SOTA in visual analytics for AutoML 
interactive visualization tool that allows the examination of the solution space of end-to-
end ML pipelines. It offers a recovering understanding of how the AutoML algorithms 
are generated and the perceptions of how they can be optimized. As the outcome of the 
interactive AutoML pipeline matrix plots, where illustrated Pipeline flowchart, primitives 
used by the pipelines; one-hot-encoded hyperparameters for the primitive across 
pipelines; the accuracy ranking; primitive contribution view; and the class balancing of 
correlation score with accuracy. These calculations and expressions are clearly detail 
described in the [94] article. 

3. Results 
3.1. The AMPs Observation in VPTs and VIs Calculation 

Figure 3 displays the observation of onsite crop VPTs (i.e., Field 1 (F1) (Figure 3a) 
and Field 2 (F2) (Figure 3b) with CM treatments) and one of the VIs (NDVI; Figure 3c) 
captured on 10 July from F1 and F2. It can be observed from the onsite AMPs treatment 
photographs of F1 and F2 in July that it was not readily distinguishable. In addition, it can 
be seen from the NDVI image that the heterogeneity within the plot may be caused by 
edge effects or uneven fertilization. For this reason, we used the plot average value 
considering the pixels inward boundary clipping to decrease the noise. 

 
Figure 3. Interpretation diagrams representing onsite crop VPTs and the calculation of VIs per the 
image captured on 10 July (a) Field 1: red clove +grass (RC + G) with CM treatment. (b) Field 2: 

Figure 3. Interpretation diagrams representing onsite crop VPTs and the calculation of VIs per the
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image captured of F1 (RC + G) and F2 (SW) VPT.

3.2. Monthly PCA Analysis in Various Crop Growth Periods

PCA was conducted as the first step of data exploration in this study to gain an under-
standing of the relationship between VIs and different AMP categories during the three
flight periods (April, May, and July) with their corresponding growing stages (Figure 4).
The results showed that on 30 May and 10 July, the PC1 and PC2 captured most of the
variation from the F1 to F4 fields with 98.3%, 98.7%, 97.3%, and 97.6%, respectively, on
30 May (Figure 4b), and with 98.7%, 94.0%, 95.4%, and 95.4%, respectively, on 10 July
(Figure 4c); followed by 23 April (Figure 4a). In addition, during the three flight periods,
the PCA results in May and July provide better separation of the three AMP categories
throughout the four crop cultivation areas based on the colored concentration ellipses
where the sizes were determined by a 0.95-probability level. In terms of the AMP category,
the subclasses of CM (Cmin+ Cmin+ and the other two categories) and MA (M+ and M−)
seemed easier for non-overlapping AMP clustering, followed by STM. In terms of crop
types, F1 (SW) were better clustered in April, while F2 (SW), F3 (P + O), and F4 (SB + RC)
were better clustered in May or July. Given the better clustering performance in May,
follow-up AutoML analysis was conducted on the UAS-VIs data of this month. In general,
feature selection (finding the most relevant spectral bands) and extraction (reduced set
of new significant variables) are commonly used to solve the collinearity and overfitting
problems in the dimensionality reduction process [95]. However, after our test results,
using PCA, 95% feature extraction in our preliminary experiments could not significantly
improve the classification efficiency. Therefore, these PCA results were simply used as a
reference basis for AutoML classification.
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Figure 4. PCA biplot of 19 VI variables (n = 72) of each crop field on (a) 23 April, (b) 30 May, and (c) 10 July. Each biplot
shows the PCA individuals (three AMPs) (i.e., CM (Cmin, Omin+, Omin−), MA (M+, M−), STM (DP, P, R)) of the first (x-axis:
PC1 score) and second (y-axis: PC2 score) principal components (the variation explained by the dimensions are shown on
the axes); four crop categories (F1–F4) and its corresponding growing stage from top to bottom. Colored concentration
ellipses (size determined by a 0.95-probability level) show the observations grouped by marked AMP sub-classes.

3.3. AutoML ROC and AUC Evaluation of AMP Recognition in May

The different subclasses and average results of ROC/AUC were calculated for evalua-
tion of the AutoML performance for the AMP classification ability in UAS-VIs that were
captured in May (Figure 5), where AUC values were categorized in this study as AUC = 0.5:
no discrimination; 0.7 ≤ AUC ≤ 0.8 (acceptable discrimination); 0.8 ≤ AUC ≤ 0.9 (excellent
discrimination); 0.9 ≤ AUC ≤ 1.0 (outstanding discrimination) [87].
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Figure 5. ROC curves and AUC of the AutoML classification corresponding to the subclasses within the AMPs for the
acquisition of the UAS-VIs DN in May. From left to right, the ROC curves computed on (a) CM (Cmin+ (blue lines), Omin+
(green lines), Omin− (red lines)); (b) MA [M+ (blue lines), M− (green lines)]; (c) STM (DP (blue lines), P (green lines), R
(red lines)); and their micro (pink dotted line) and macro (dark blue dotted line) average performance. Four crop categories
(F1–F4) from top to bottom.

The AutoML results showed that the micro-average ROC of CM’s classification re-
sulted in F1 (RC + G) and F2 (SW) being higher (AUC = 0.95, and 0.92, respectively).
Especially in the subclass Omin−, the AUC both reached 0.99 for the micro-average ROC,
followed by F4, and F3 (P + O), with 0.86 and 0.75, respectively) (Figure 5a). On the contrary,
MA classification results showed that the micro-average AUC in F3 and F4 were higher
(AUC = 0.83, and 0.89, respectively), followed by F1 (AUC = 0.71). F2 performance for MA
was the worst (AUC = 0.51), with no discrimination ability (Figure 5b). In contrast, STM
classification results were generally poor, with better results only present in F3, while other
fields have larger divergence in classification results under the sub-class (DP, P, and R), as
shown in Figure 5c). Overall, the AutoML classification ability from UAS-VIs of CM was
the best, followed by MA and STM.
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3.4. AutoML Precision–Recall, Prediction Error, and Classification Report of CM Recognition

Among the classification results of AMPs in May (Figure 5) of four crop types, CM
yielded the best ROC/AUC overall performance. Therefore, we used the precision–recall
(PR) curves, prediction error, and classification report plots to gain an in-depth understand-
ing of the classification status of CM treatments (Figure 6).
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Figure 6. The evaluation of AutoML classification of AMPs from the acquisition of the UAS-VIs DN in May. (a) Precision–
recall, where the class 0, 1, 2 equals to Cmin+, Omin+, and Omin−, respectively (b) Prediction error (confusion matrix), the
X-axis represents the three subclass form CM result in May, and the Y-axis represents the type (with color), and the number
of correct or incorrect estimates., and (c) Classification report lists the precision, recall, and F1-score per class as a heatmap
for overall comprehensive evaluation results. The calculation methods used in this figure are shown in Table 3.

The PR curve of F4 CM shows the trade-off between a classifier’s precision perfor-
mance from UAS VIs in May (Figure 6a), where a model with perfect performance is
depicted at the coordinate of (1,1). A curve that tends towards the (1, 1) coordinate rep-
resents a well-performing model, whereas a no-skill classifier is depicted as a horizontal
line on the plot with a precision that is proportional to the number of positive examples
in the dataset. For a balanced dataset, this value ought to be 0.5 [96]. The results showed
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that the classifications of Fields 1 and 2 were promising, their average PR being 0.90 and
0.85, respectively, while the results of F3 and F4 were poor (0.50 and 0.49). We can further
discover from the prediction error graph (Figure 6b) in F3 and F4 that the judgment error
of Cmin+ was low, and the confusions of Omin+ and Omin− were more common. We
can also compare the precision, recall, and F1-score results of various cultivation method
sub-classes to evaluate the classification accuracy from the heatmap (Figure 6c).

3.5. AutoML Pipeline Visualization

An interactive AutoML visualization tool PipelineProfiler was used in this study.
Figure 6 shows the CM classification results across four crop fields in May with the accuracy
performance of AutoML pipelines running time set at 60 s, and the primitive comparison
against the others, and the real-time hyperparameter selection strategy (Figure 7). The
results demonstrated that the best classifier found for Field 1 was linear discriminant anal-
ysis (LDA) [97] (Figure 7a), for Field 2, it was the Extra Trees Algorithm [98] (Figure 7b),
for Field 3, it was LDA (Figure 7c), and Random Forest (RF) for Field 4 (Figure 7d), with
each of their hyperparameters found by AutoML also being represented in the figures.
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Figure 7. The interactive AutoML pipeline matrix plots with running time-limited setting 60 s sorted by accuracy perfor-
mance (a–d), (a) Field 1 pipeline matrix with the Top1 classifier LDA, where (a1) illustrated Primitives (in columns) used
by the pipelines (a2) (in rows, the blue line showed the best accuracy rank); (a3) one-hot-encoded hyperparameters (in
columns) for the primitive across pipelines, (a4) the AutoML pipeline with the accuracy ranking; (a5) Primitive contribution
view, showing the correlations between primitive usage and pipeline scores—in a5 displays that class balancing has the
highest correlation score with accuracy; (a6) Step by step AutoML Pipeline flowchart. The ML box before Output represents
the classifier used by this set of algorithms (in a6 LDA as the classifier) (b–d) Fields 2, 3, and 4 interactive pipeline matrix
sort by AutoML accuracy performance with the chosen hyperparameters (top 1 was listed).
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3.6. Comparison of Performance between AutoML and Other Machine Learning Technologies

Based on the large calculations and multiple classifier selections that were required
during the initial stage of AutoML computations, the processing time setting of 60 s
may not completely reflect the performance power of AutoML. To evaluate the effects of
AutoML processing time, we adjusted the times to 1200 s and 60 s (original running time)
and considered the AMPs’ classification accuracy with RF, SVM, and ANN algorithms
(Table 4). The results demonstrated that under the permutation and combination of ML
algorithms included in AutoML, classification accuracy did not perform well in 60 s of
computing time. Furthermore, performance was the worst in F1 CM, F2 STM, and F3 CM
classifications compared to RF, SVM, and ANN. However, as processing time was increased
to 1200 s, the classification accuracy of AutoML in AMPs was shown to improve. The
results also indicated that overall AutoML (1200 s) and RF classifiers produced 5 and 3 best
classification accuracy in AMPs, respectively (in black bold) and did not produce the worst
accuracy values (in bold red) in any instances. Regarding SVM and ANN, the classifiers
performed the best in 3 and 5 cases, respectively. However, these methods consistently
produced low-performing classifiers compared to other AMPs.

Table 4. The AMPs classification accuracy comparison of AutoML and three other popular applied
ML (RF, SYM, and ANN) algorithms in UAS.

ML Algorithms

Field AMPs AutoML
(1200 s Run)

AutoML
(60 s Run) RF SVM ANN

F1
(RC + G)

CM 0.79 0.76 ** 0.79 0.83 0.86 *
MA 0.59 0.62 * 0.62 * 0.62 * 0.55 **
STM 0.57 * 0.31 0.48 0.38 ** 0.48

F2
(WS)

CM 0.79 0.79 0.79 0.83 * 0.72 **
MA 0.55 * 0.52 0.48 0.52 0.45 **
STM 0.52 * 0.45 ** 0.48 0.45 ** 0.52 *

F3
(P + O)

CM 0.55 * 0.41 ** 0.55 * 0.48 0.55 *
MA 0.66 0.72 0.76 * 0.62 ** 0.76 *
STM 0.66 0.69 * 0.69 * 0.57 ** 0.59

F4
(SB + RC)

CM 0.57 0.59 * 0.56 0.59 * 0.48 **
MA 0.85 * 0.78 0.67 0.78 0.63 **
STM 0.56 0.59 0.59 0.52 ** 0.63 *

(*) The bold black numerical value in the Table represents the highest accuracy classifier in the row; (**) the thin
red numerical value represents the worst accuracy in the row.

4. Discussion

This paper is the first study to use an auto-learning system, with UAS multispectral-
derived VIs, for agricultural classification purposes. The study provides a novel AutoML
framework across multiple AMP activities and presents a UAS and ML methodology
optimized for future PA and crop phenotyping research.

4.1. Applicability and the Impact of the AutoML Method in UAS

In this study, we employed a SOTA, open-sourced AutoML framework for automatic,
rapid multispectral image classification strategies and assistance in optimizing problematic
hyperparameter adjustments. This technology brings several benefits and enhances the
application of UAS for environmental and ecological research classification tasks.

First, UAS related classification research publications have significantly increased
within recent years, with over a hundred articles developed since 2017. This substan-
tial adoption of UAS related classification approaches demonstrates its impact and the
mounting interest in such research issues [99]. Our UAS-AutoML framework may also
be implemented in other UAS classification research, such as research employing multi-
sensors (i.e., thermal, visible light, hyperspectral, radar or light detection and ranging
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(Lidar) sensors) across a range of contemporary agriculture classification activities (i.e.,
weed management [100,101], crop phenotyping [9,102–104], disease monitoring [105,106],
etc.), as well as research focused on ecological classification schemes, multispectral-based
plant community mapping options [107], and coastal wetland vegetation classification
results [108].

Second, the AutoML framework quickly provided usable classifiers and hyperparam-
eter selections for unknown UAS classification tasks and parameter selection. For example,
in the current study, the parameters and applicable classifiers of AMPs were unknown a
priori. However, it provided a promising and efficient performance rating for classifiers
for inclusion in modeling selection. As the results of Figure 6 show, LDA (Figure 7a,c) and
Extra Trees (Figure 7b) were chosen as the best classifiers corresponding to the VPT fields
of the AMP recognition task. These ML methods have been less applied and referenced
in the field of UAS [83]. These findings clearly illustrate that AutoML has the potential to
locate alternative ML approaches that might customarily be ignored by investigators with
unknown classification subjects.

Third, the operational efficiency of AutoML classifiers can be given a time limit and
gives the researcher the flexibility to find the most suitable formula within the required time.
In general, a longer time setting allows for increasingly accurate results with additional
classifier combinations. Since our experiments did not involve substantially large datasets,
the focus was put on time setting close to the minimum limit of AutoML calculation
(60 s of total CPU operation (this can be up to 3000 s) and 10 s of a single ML algorithm
computation) to highlight the flexibility and rapid performance of AutoML.

Finally, within our research, the latest released AutoML interactive visualization
system PipelineProfiler was employed and assisted in the screening of classifiers and the
reference of fine-tuning parameters when analyzing UAS data. This interaction included
adjustable time, accuracy ranking, and selection of hyperparameters in response to the
requirement of customized UAS modeling. Our results showed that AutoML computations
within 60-s-run produced between 11 and 12 pipelines (Figure 7), which might offer
a beneficial foundation for providing adequate outcomes in most cases with minimal
attempts and time.

4.2. The Impact of Algorithm Selection, Cultivated Period, and Crop Types in AutoML
AMP Recognization

In terms of algorithm selection in our AMP classification results, different classifiers
were suggested by AutoML as the best performances even within the same AMP category
for different crop types (Figure 7). We can conclude that applying AutoML in UAS-derived
multispectral VI data allowed for the consideration of a variety of algorithm combinations
to meet the complexity of the VPT field. We also compared the three most used ML
algorithms (RF, SVM, and ANN) in the UAS classification fields with AutoML algorithms
(Table 4). The overall performance showed that AutoML (with 1200-s CPU duration)
provided the five best (or equal best) accuracy performances (shown in bold black in
Table 4). Interestingly, in all tests, the AutoML (1200) and RF methods were never found to
be the worst-performing methods (shown in bold red). Moreover, when using the ANN
method, despite providing five of the best classification accuracy results, this method also
included five of the worst performance results. Similar outcomes were observed regarding
the SVM and AutoML 60-s runs.

From our results, we can deduce that increasing the computing time has the potential
to improve the accuracy and stability of AutoML classification performance under certain
AMPs conditions. However, it also highlights the potential to include AutoML methods in
the computation of common classification problem-solving. Similar ranks were shown in a
study that compared the results of the numerous classifiers with Auto-sklearn, where the
RF classifier presented the strongest performance, and SVM showed robust performance
for some datasets [30]. Since the Auto-sklearn classifiers are based on Scikit-learn as a
blueprint, it should theoretically capture the hyperparameters of the RF algorithm on what
was selected for Table 4. Despite the strong performance of AutoML (1200 s), there were
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still several results that indicated the inferiority of AutoML (1200 s) when compared to the
RF classifier (i.e., Field 1 MA; Field 3 MA, and STM). Moreover, in a few cases, the accuracy
of AutoML (1200 s) was even lower than the calculation result of the 60-s set (i.e., Field
1 MA, Field 3 STM, and Field 4 CM). It may be that the algorithm computations involve
different factors other than accuracy, and the model it uses to tune the parameters actively
tries to avoid overfitting. This will possibly lead to the situation where the most accurate
model, on the testing or training data, will not be the one that can generalize the best on
real data. In addition, developers from the Auto-sklearn team have previously described
that during the ensemble selection phase, the methods can add numerous substandard
models to the final ensemble, and unregularized selection may lead to overfitting with
a small number of candidate models [40]. This result shows that there is still room for
improvement regarding AutoML calculation methods in the future.

In terms of cultivated period and crop type, according to the monthly performance of
different crop growth stages, the PCA results indicated that the VPT with better clustering
performance occurred during the flight in May, with a confidence level of 0.95 (Figure 4b).
In this regard, this flight period was further used for our AMPs’ classification study.
Conversely, in the case of more homogeneous crop types (Field 3 (WS)), and despite the
promising classification result in CM, the results of MA and STM were not as effective as
other crops (Figures 5 and 6). These results may suggest that even with higher heterogeneity
of cultivation within the plots (i.e., F1, F3, and F4), it appears not necessarily to affect the
classification ability. However, concerning the Field 3 results from the PCA in May (stage
of stem elongation) and July (stage of flowering), the MA clustering ability was better
with a 0.95 confidence level in both months, and the accuracy was later improved from
the classification analysis. The results of our study have demonstrated that, although the
feature selection stage of AutoML is a black box, we can still preliminarily determine the
potential predictive ability of the AutoML model based on PCA result and reduce the cost
of period selection as we did in this study. In addition, this study has contributed evidence
to the classification obstacles in the case of STM that may be caused by the orientation
of images taken over vegetation or soil with uniform texture and re-cursive pattern, sub-
optimal flight configuration [109], or unflavored VIs selection. Some studies also suggest
that the use of grey-level co-occurrence matrix (GLCM)-based texture information [100,110],
semantic segmentation [111], or edge computing [112] can improve the accuracy of UAS-
ML classification in the crop categories. This may be an applicable technology for AMPs
classification in the future. The applicability and optimization of this framework, and the
visualization of feature importance, required the optimization of the AutoML programmers
and UAS application feedback to improve.

Currently, multispectral indices have been effectively applied in some AMP image
analysis studies with the color, texture, and shape factors of the agricultural land at the
satellite level. These include conservation tillage methods identification [113] and agri-
culture landscapes with pixel-based or object-based classification tasks [114,115]. AMPs
application are indispensable for environmental monitoring and for facilitating the agri-
cultural decision-making process, regarding the adoption practices proposed by growing
conservation agriculture demand [116], and for its potential upscaling ability to accelerate
land cover classification studies. Recently, combining commonly adopted management
practice with UAS multispectral-VIs research has gradually gained attention and has been
applied to cotton and sorghum fields [117]. In our study, the effective application of
UAS sensors to recognize multiple AMP categories has been shown. More specifically, an
UAS-AutoML approach can improve the classification ability under specific crop AMPs,
highlighting that, in this study site, classification performed better in CM, with overall
classification performance followed by MA and STM.

4.3. The Limitations of Our Method

In this study, not all classifiers computed within the Auto-sklearn system were able to
be backtracked and reviewed to investigate the individual feature importance rankings
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of VIs, which has limitations in terms of their ability to assist in the selection of suitable
VIs for AMPs classification tasks. However, our efforts to achieve a wide-ranging and
well-considered predictor collection through a variety of VI combinations may lead to
performance improvements. This study may also be limited by the location, crop categories
selected, and varieties present at the study site. However, these issues can be simply
addressed by including a wider range of VPT at multiple study sites and across a greater
diversity of crop types in future investigations. Due to the characteristic complexity and
repeatability of VPT, we need to recognize that the small sample size, and the potential
interaction effects between trials, were not fully addressed. A potential solution worth
pursuing may be to increase the VPT sampling size and/or enhance the segmentation
number of each plot, ultimately increasing the training samples for AutoML calculation.
Currently, the applicability of the AutoML framework will still require more UAS-based
tests in the future to demonstrate its true potential and effectiveness.

5. Conclusions

First, our study demonstrated a novel UAS technology and a state-of-the-art Au-
toML framework across multiple AMP tasks through non-destructive and cost-effective
approaches. The scientific merit of this article lay in utilizing artificial intelligence to re-
place the judgment of the human for UAS classification analysis with its automated data
pre-processing, model selection, feature engineering, and hyperparameter optimization
capabilities. Furthermore, it provided innovative insights into agricultural management
practices and accelerated the intellectualized progress of the in-field monitoring UAS sys-
tem and established future crop phenotyping abilities. In our study, AutoML embodied
“learning how to learn” for any given UAS subject; and it is the first study of its kind
to apply an auto-learning system for AMP classification tasks in multispectral-derived
VI data.

Second, in this study, we employed an AutoML workflow combined with two innova-
tive visualization tools. We performed three multispectral-UAS flights at the farm-scale,
under the four crop types (RC + G, SW, PO, and SB + RC) of VPT within three AMPs (CM,
MA, and STM) treatments. In addition, we compared AutoML performance with those
of three widely used ML methods. The ML comparison analysis results showed AutoML
achieved the most overall classification accuracy numbers after 1200 s of calculation and
without any of the worst-performing classifications of the given datasets. In terms of AMPs
classification, the best recognized period for data capture occurred in the crop vegetative
growth stage (in May of Estonia). The result demonstrated that CM yielded the best per-
formance in terms of treatment, followed by MA, and STM; the last was shown to be the
worst-performing treatment. These conclusions may be attributed to the low heterogeneity
of the spectral reflectance value in the corresponding AMP treatment.

Third, the flexibility of fixed-wing imaging technology provides longer flight durations
and thus allows for larger applications, such as commercial farmland, grasslands, forests,
etc. Furthermore, the multispectral dataset produces various precise VIs without the
need for any supplementary sensors, which reduces measurement errors and significantly
reduces costs. In addition, given the AutoML’s open-sourced platform and the powerful
capabilities of automation, the complexities surrounding parameter selection in machine
learning are greatly reduced, while it also has the potential to select long-ignored but
highly efficient ML algorithms. Regarding the choice of AutoML systems or interfaces,
although many of them have been developed successively (i.e., Auto-sklearn, H2O AutoML,
AutoKeras), it is necessary to identify whether their subsequent updates and revisions keep
up to date with current times.

Lastly, this UAS-AutoML solution has the potential to be implemented across a
variety of other UAS classification research, such as contemporary agricultural classification
methods, multispectral-based plant community mapping, ecological or wetland plant
community recognition. Other remote sensing classification methods that lack algorithm
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and hyperparameter backgrounds may also be considered and benefited from our findings
and insights.

In summary, our study, the UAS application particularly focused on the adoption
and application of AutoML method across a diverse range of agricultural environmental
assessment and management applications. Our approach demonstrated that UAS based on
our AutoML framework, can recognize multiple agricultural management practices under
certain conditions and that the integration of UAS technologies, geoprocessing methods,
and automatic systems are vital tools for increasing the knowledge of plant–environment
interactions within the management of crops. The framework also considerably contributes
towards the simplified advancement of image-driven analytical pipelines for current
VPT systems used in most countries. At the end of preparing this study, the Google
Cloud AutoML also came out in 2019 for image-recognition use cases [118], showing that
automatic learning will drive a non-negligible impact in the UAS field and provide new
insight into the potential for remotely sensed solutions to field-based and multifunctional
platforms for the demands of precision agriculture in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13163190/s1, Figure S1: Daily climograph of the study area (Kuusiku) during the flying
period, including the previous 6 days (a. 17–23 April, b. 24–30 May, and c. 4–10 July) in 2019. Blue
bars and the red line represent the daily average of rainfall and temperature, respectively.
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Abstract: The incorporation of autonomous computation and artificial intelligence (AI) technologies
into smart agriculture concepts is becoming an expected scientific procedure. The airborne hyperspec-
tral system with its vast area coverage, high spectral resolution, and varied narrow-band selection is
an excellent tool for crop physiological characteristics and yield prediction. However, the extensive
and redundant three-dimensional (3D) cube data processing and computation have made the popular-
ization of this tool a challenging task. This research integrated two important open-sourced systems
(R and Python) combined with automated hyperspectral narrowband vegetation index calculation
and the state-of-the-art AI-based automated machine learning (AutoML) technology to estimate yield
and biomass, based on three crop categories (spring wheat, pea and oat mixture, and spring barley
with red clover) with multifunctional cultivation practices in northern Europe and Estonia. Our study
showed the estimated capacity of the empirical AutoML regression model was significant. The best
coefficient of determination (R2) and normalized root mean square error (NRMSE) for single variety
planting wheat were 0.96 and 0.12 respectively; for mixed peas and oats, they were 0.76 and 0.18 in
the booting to heading stage, while for mixed legumes and spring barley, they were 0.88 and 0.16 in
the reproductive growth stages. In terms of straw mass estimation, R2 was 0.96, 0.83, and 0.86, and
NRMSE was 0.12, 0.24, and 0.33 respectively. This research contributes to, and confirms, the use of
the AutoML framework in hyperspectral image analysis to increase implementation flexibility and
reduce learning costs under a variety of agricultural resource conditions. It delivers expert yield and
straw mass valuation two months in advance before harvest time for decision-makers. This study
also highlights that the hyperspectral system provides economic and environmental benefits and
will play a critical role in the construction of sustainable and intelligent agriculture techniques in the
upcoming years.

Keywords: hyperspectral; automated machine learning; vegetation index; yield estimates; biomass
estimation; precision agriculture; narrowband; spring wheat; spring barley; pea and oat

1. Introduction

Fresh trends in precision agriculture (PA) and the development of automated sys-
tems for agricultural resource management have been widely explored and deployed in

Remote Sens. 2022, 14, 1114. https://doi.org/10.3390/rs14051114 https://www.mdpi.com/journal/remotesensing
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recent years [1]. The emergence of these techniques seeks to increase crop growth and
production, maximize profitability through empirical models and data assimilation, and
make a substantial contribution to food security [2,3], agricultural disasters risk manage-
ment [4], and, more importantly, address concerns relating to climate change mitigation [5].
Image-based remote sensing (RS) technologies are regarded as a vital instrument in this
context for providing valuable information that is currently unavailable or inaccurate for
achieving sustainable and efficient farming operations [6]. The use of RS technologies
provides timely, non-destructive, spatial estimates for measuring and tracking specific
vegetation attributes [7], as well as continuing to improve crop yield production and
quality, thereby assisting in future food security and reducing the negative impacts of
agricultural practices [5,8,9]. Moreover, agriculture management practices based on the
concept of sustainable cropping ideas (such as reduced tillage intensity [10–15], fertilizer
input [16], and organic farming [17,18]) combined with mixed cropping systems, particu-
larly legume-based, can effectively diminish greenhouse gas emissions by reducing the use
of inorganic nitrogen fertilizers and replacing them with symbiotically fixed nitrogen [19],
as well as carbon loss [5,20,21] and soil erosion [22] in cultivated soil. Furthermore, they
can contribute to productivity and economic appeal to Northern European farmers, which
is crucial for ensuring that these ecologically friendly systems can compete in terms of
profitability with more traditional or artificially generated systems [23]. Variety perfor-
mance trials (VPTs) with a well-designed randomized design, for example, are an excellent
technique to assess a variety of management procedures and their interactions with the
agri-environment [24–26]. However, owing to the variability in the structure, character,
and husbandry of each experiment, investigations of VPT datasets can provide diverse
outcomes [27].

Despite weather conditions, soil, and management in current trials with rigorous
model simulation, the challenge of sampling and model development is exacerbated
by landscape heterogeneity [28] and varied spatial distribution patterns of geographical
items [29]. To face these challenges, RS technology provides the opportunity to measure
biophysical indicators in research sites. In addition to detecting and quantifying their
geographical variability, it can potentially play a pivotal role in the provision of time-
specific information for decision supporting systems [1,6] and improve operations by
making them more cost-effective and time-efficient.

Currently, a primary objective of agronomic remote sensing is to identify those bands of
light-spectrum which are most sensitive to canopy reflectance, and the derived parameters
that distinguish vegetation features, identify growth status, and quantify the relationships
which exist between spectral properties and agronomic parameters [30]. Vegetation indices
(VIs) are one of the most extensively utilized precision farming tools for supplying reliable
spatial and temporal information on vegetation cover across a variety of agricultural oper-
ations. In visible/near-infrared imagery, vegetation has a distinct spectral signature that
permits it to be distinguished from other forms of land cover [31]. VIs utilize a mathematical
combination from at least two spectral bands of the electromagnetic spectrum, intending
to reduce confusing factors (i.e., soil disturbance and other environmental noises) while
increasing the importance of plant features [32,33]. As an example, a traditional agricultural
yield estimation methodology, such as the Normalized Difference Vegetation Index (NDVI),
calculates the difference between the red and near-infrared bands from multispectral sen-
sors and provides a measure of chlorophyll pigmentation. Furthermore, a variety of new
indicators were developed in the early years to correct for soil backgrounds and the effects
of climatic environments [34–37]. Multi-spectral, broadband-based remote sensing has
had longstanding success in established correlations between conventional indices with
yield and crop status. However, due to saturation in dense vegetation at larger leaf area
index (LAI) values, multilayered canopies, and various farming systems, the calculated
indices can occasionally produce inaccurate measurements and pose limits for quantitative
estimation of biochemical properties owing to lower spectral resolution [7,38–40].
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As an alternative technology, a high-spectral-resolution imaging system (i.e., hyper-
spectral imaging) creates the opportunity to enable increasingly sophisticated agricultural
applications. The necessity for research in identifying optimum wavebands to predict crop
biophysical characteristics is vital as hyperspectral remote sensing data becomes ever more
available and significant [41,42]. With the use of narrow spectral channels of less than
10 nm, hyperspectral remote sensing data has the potential to identify more nuanced differ-
ences in vegetation than multispectral data [43]. It has been suggested that hyperspectral
data analysis may present a format to provide a deeper understanding of the mechanisms
governing spectral reflectance from field scales and canopy levels [44,45]. These reduced-
range channels allow for the detection of detailed plant and crop characteristics that would
typically be obscured by broader-band multispectral channels. Innovative approaches for
analyzing spectral reflectance data are being established as a result of advances within
hyperspectral remote sensing technology [41,46]. Whilst hyperspectral sensors provide a
more detailed depiction of plant canopy reflectance than more traditional multispectral
sensors, they come with concerns regarding data redundancy and spectral autocorrela-
tion [31,47,48]. In an attempt to redress and resolve these challenges, the reduction of
data dimensionality is proposed, which can often be achieved via feature extraction, i.e.,
translating the spectra to a lower-dimensional representation, or selecting only a subset
of essential bands or spectral characteristics for analysis. [49]. One proposed technique to
investigate imaging spectroscopy via spectral characteristics is to use application-specific
optimal bands’ combination, i.e., narrowband VIs. These narrowband VIs have significantly
improved crop characteristics and deliver substantially advanced variability information
with a superior dynamic range and considerable improvements over broad bands [7]. There
is mounting evidence that narrowband VIs can improve biomass estimations for many
land-cover types [50]. Recently, a study regarding wheat grain yields also revealed that
when compared with broadband VIs, hyperspectral indices provided greater estimation
ability of grain production and biophysical factors [42]. As a result of the emergence of
hyperspectral systems, there now exists the possibility to both refine previous spectral
indices and build novel approaches that make use of the increased spectral resolution of
hyperspectral data. Alternatively, the analysis might suggest that narrow-band, continuous
reflectance data from a hyperspectral sensor are preferred and potentially more accurate
for certain remote sensing applications [31].

Hyperspectral data, when paired with popular machine learning (ML) algorithms,
have made a substantial contribution to crop biomass and yield estimation [51–53]. These
multimodal computing technologies broaden the application of ML to a wider range of
beneficial data collection and selection for the progression of agriculture practices [54]
These approaches will contribute to improved decision-making within complex systems,
with minimal human interaction, and provide a scalable framework for integrating expert
knowledge of the PA system [55]. Complexity can be seen as a disadvantage in crop trials
since the ML modelling includes training/testing databases, limited areas with insignificant
sampling sizes, time and space-specificity, and environmental factor interventions, which
raise problems in parameter selection and make use of a single empirical model for an
entire region impractical [56,57]. Instead, the robust artificial intelligence-based notion
of automated machine learning (AutoML) has emerged to minimize such data-driven
expenses and enables experts to build self-regulating machine learning applications [58,59].
AutoML is characterized as a combination of selecting an algorithm and hyperparameter
optimization based on the Bayesian optimization method that seeks to identify the optimum
(cross-validated) combination of algorithm components by encompassing data from raw
datasets to a deployable pipeline ML model, which greatly simplifies these stages for people
with limited expertise [60–62]. For improving the model’s prediction performance, the
common technique for ML modelling includes data pre-processing, feature and algorithm
selection, extraction, and engineering, as well as hyperparameter optimization [63].

However, although AutoML has made significant contributions to computer science
and, more recently, remote sensing applications, such as soil moisture monitoring and plant
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phenotyping [64,65], it has yet to be broadly adopted in the disciplines of hyperspectral
imaging and PA systems. This study used an open-source, cutting-edge Auto-Sklearn
algorithm to close the knowledge gap [62]. It is based on the widely-used ML system
Scikit-learn platform in Python [66] In addition, the hyperspectral data analysis (hsdar)
package [67] was utilized in software R [68] to address crop yield and biomass regression
tasks. To be more specific, our goals were to use a novel AutoML system to (1) construct
an AutoML framework for hyperspectral imaging regression tasks, and (2) explore the
applicability of the AutoML models to estimate spring wheat, spring barley, pea and
oat mixture grain yields and straw mass in regular mono- or mixed cropping systems
in Northern Europe and Estonia. In this study, we presented a comprehensive AutoML
infra-structure for a wider range of crop management practices tasks, as well as innovative
AutoML- hyperspectral fusion methodologies for future PA and crop phenotyping research.

2. Materials and Methods
2.1. Research Site and Experiment Layout

This experiment was conducted in the Agricultural Research Centre (ARC) in Kuusiku
(58◦58′52.7′′N 24◦42’59.1′′E), Estonia (Figure 1a), which is the division of the Estonian
Ministry of Agriculture. Over 2.1 hectares of the variety performance trial (VPT) area were
involved in this study, and the area consisted of two soil types: Calcaric Cambisol and
Calcaric-Leptic Regosol [69]. The ARC experimental area had a temperate climate with an
average annual temperature of 5.3 ◦C, where the average daytime temperature was 9.5 ◦C,
and 0.8 ◦C as night temperature. The annual precipitation was 75 cm. The daily climograph
of the study area (see Figure A1) shows precipitation and temperature fluctuations for the
crop growing period from April to August 2019. The experimental fields consisted of three
commonly cultivated crop categories and their regular cropping combinations in Estonia
(Figure 1b), i.e., Field 1: spring wheat (SW) (Figure 1c), as representative of the uniform
variety planting field; Field 2: pea and oat mixture (P + O); and Field 3: spring barley with
under-sowing red clover (SB + RC) (Figure 1b) as representative of the mixed planting fields.
All three fields are part of common crop rotation with a spatial and temporal arrangement.

The experimental strategy was established to aid in the recognition of physiological
parameters and comparison of yield abilities of the selected varieties and their combinations
under three forms of agriculture management practices (AMP): (1) soil tillage methods
(STM); (2) cultivation methods (CM); and (3) manure applications (MA), as well as to
demonstrate appropriate farming methods to local farmers. Figure 2 shows the AMPs
and their specific arrangement in SW, P + O, and SB + RC fields. Every field comprised
72 plots, with a total of 216 plots. Based on considerations of budget limitations, labor
shortages, excessive scope, and repetitiveness, the sampling of grain yield was taken from
56 out of 72 plots (n = 56), and straw biomass was sampled from 24 out of 72 plots (n = 24)
specific from the disking and ploughing (DP) area (Figure 2). The harvesting took place on
5 August 2019 in field SB + RC and on 16 August 2019 in fields SW and P + O. The fresh
grain and biomass were weighed by plot and dried to verify the dry grain yield and fresh
straw mass measured in kilograms per hectare. However, regarding the mixture P + O
field, the total weight of the two crops was calculated, while in the SB + RC field only the
SB grain yield and straw mass.

2.2. Hyperspectral Image Data Collection

Airborne measurements were carried out in Kuusiku Agricultural Research Centre on
18 June 2019 using hyperspectral imager HySpex (Norsk Elektro Optikk AS (NEO), Oslo,
Norway) owned by Estonian Marine Institute and operated by the Estonian Land Board.
HySpex was flown at an altitude of 900 m which resulted in a spatial resolution of 40 cm
(Figure 1a). The spectral resolution of HySpex is approximately 2.69 nm (216 spectral bands
ranging from visible to near-infrared with centers between 409 nm and 989 nm). The day
was sunny with a wind speed of 2.6 m/s, average air temperature of 10 ◦C. Regarding the
growth stages of the main crops on the flight date, spring wheat, spring barley, and oat
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were approximately in the booting to heading stage. The mixed crops, i.e., field pea and
red clover were in the reproductive growth stages and the flowing stage, respectively.

Raw HySpex image data were converted into units of spectral radiance (W m−2 nm−1 sr−1)
using Rad software developed by the NEO. PARGE (Parametric Geocoding, ReSe Applica-
tions Schäpfler, University of Zurich) geo-coding software was used for geo correction of the
flight lines utilizing accurate altitude and location measurements provided by the GPS/INS
unit. The captured Hyspex flight line used in this study is shown in Figure 2. Atmo-
spheric influence at such a low altitude was considered minimal and therefore atmospheric
correction was not applied to the imagery.
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Figure 1. Airborne push-broom hyperspectral image in the Agricultural Research Centre (ARC), Ku-
usiku, Estonia. (a) Hyperspectral image with the band combination: band 83 (630 nm), band 47 (532 nm),
and band 22 (465 nm) light in. (b) The experiment fields of this study, where Field 1 (F1): spring wheat
(SW), Field 2 (F2): pea and oat mixture (P + O), and Field 3 (F3): spring barley with under-sowing
red clover (SB + RC). The interpretation diagrams represent on-site (c) single variety planting SW, and
(d) mixed planting SB + RC.
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Erdas Imagine, ENVI, or the MATLAB hyperspectral toolbox [70]. These technologies are 
often expensive and can have limited statistical analysis capabilities. Therefore, we em-
ployed a new package that was built on the open-source software R in 2019. The hyper-
spectral data analysis (Hsdar) package incorporates several important hyperspectral capa-
bilities from the HyperSpec package [71], with an emphasis on the analysis of large data 
sets collected in the field for vegetation remote sensing. It is available at https://CRAN.R-

Figure 2. The structure of agriculture management practices (AMPs) and the sampling method of
grain yield and straw mass in the SW, P + O, and SB + RC fields. The AMPs contain three treatments:
1. soil tillage method (STM), 2. cultivation method (CM), and manure application (MA), where
the grain yield (n = 56) (black striped rectangle box) and straw mass (n = 24) (grey rectangle box).
To guarantee that the training area contained all combinations of AMPs, each field was split into
training and testing areas equally from the center. The special arrangements of AMP categories and
the sampling method were the same in the three fields.

2.3. Hyperspectral Image Processing

Most hyperspectral processing techniques now employ commercial software such
as Erdas Imagine, ENVI, or the MATLAB hyperspectral toolbox [70]. These technologies
are often expensive and can have limited statistical analysis capabilities. Therefore, we
employed a new package that was built on the open-source software R in 2019. The
hyperspectral data analysis (Hsdar) package incorporates several important hyperspectral
capabilities from the HyperSpec package [71], with an emphasis on the analysis of large
data sets collected in the field for vegetation remote sensing. It is available at https:
//CRAN.R-project.org/package=hsdar (accessed on 20 July 2021) on the Comprehensive R
Archive Network (CRAN).

In our study, hyperspectral data were reconstructed into a class named ‘Speclib’ to offer
a framework for handling huge sets in R. This allows the user to store three-dimensional
(3D) cube data together with extra adding information into a matrix. This matrix, together
with the wavelength information can then be utilized in the Hsdar software and used to
manage subsequent calculations. A Savitz-ky-Golay filter (method “sgolay”) with a length
of 15 nm was used in the initial preprocessing stage to reduce noise from the spectra. By
fitting a polynomial function to the reflectance data, the filter minimizes noise and removes
minor discrepancies between adjacent bands. These noise-reduced hyperspectral data
were calculated zonal statistics and converted to a (216 (wavelength bands) multiplied by
216 (plot Shapefile)) table. This table was then subsequently used for preliminary correlation
analysis between grain yield and straw mass with the mean wavelength reflectance value
into plot level (Figure 3A). The correlation analysis results of each narrowband band can be
utilized as a consideration in the following selection of narrowband vegetation indexes.
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Figure 3. The flowchart of the hyperspectral image processing and AutoML framework was utilized
in this study. (A) The hyperspectral image processing framework where hyperspectral imager HySpex
was conducted and R Hsdar package was employed in the processing steps. (B) Field reference data
transformation, ARC field were digitized based on each field and following AMP treatments. The
grain yield and straw mass data were collected according to plots. Eight narrowband VIs were
selected and calculated and segmented into corresponding plot digital numbers (DN) for AutoML
modelling. (C) To achieve robust performance, the Auto-sklearn framework automatically built ML
pipelines that were provided by the Bayesian optimization method with warm-started meta-learning
and combined with a post hoc ensemble building strategy (Adapted with permission from ref. [62]
2019 Springer).

2.4. Narrowband Vegetation Index

Optical indices for chlorophyll estimation studies have focused on analyzing re-
flectance in specific narrow bands, ratios, combinations, and the properties of derivative
spectra to minimize extraneous factor changes and increase sensitivity to chlorophyll con-
tent [6]. In this study, we targeted VIs that were sensitive to canopy structure, biochemistry,
and physiology, and those that might potentially indicate variance in grain yields and
biomass in our study. Pigments (i.e., chlorophyll a, chlorophyll b, and carotenoids) exhibit
varied spectral behavior from an optical standpoint, with specific absorption properties
at different wavelengths [72]. Therefore, we employed pre-defined indices in the Hsdar R
package to automatically fit provided wave-length positions and compute corresponding
VIs to reduce the intricacy of computation and boost the repeatability of this research
(Table 1).
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During our study, the Normalized Difference Vegetation Index (NDVI) was adopted
based on it is sensitivity to green leaf area or green leaf biomass, and it can be used to
monitor photosynthetically active vegetation biomass distribution using linear combina-
tions of red and infrared radiances [73]. However, it is crucial to note that NDVI has a
saturation effect at richer vegetation covers [74]. To solve the probable saturation problem,
NDVI2 was applied with its ability to adequately determine chlorophyll in the presence of
a high-pigment concentration background [75]. The renormalized difference vegetation
index (RDVI) narrow band was employed in this study due to its capacity in identifying
mixture phytomass in grassland [76]. The prospect for using the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) in an operational remote sensing situation in
the context of precision agriculture was investigated. The R700/R670 ratio was chosen
to reduce the combined impacts of underlying soil reflectance and non-photosynthetic
materials. The changes in reflectance characteristics of background materials (soil and non-
photosynthetic components) and the R700/R550 ratio are strongly connected to differences
in background materials [6,77]. Soil-Adjusted Vegetation Index (SAVI) was conducted to
reduce soil-induced fluctuations in vegetations using a transformation approach to de-
crease soil brightness impacts by counting red and near-infrared wavelengths from spectral
data [78]. Optimized Soil-Adjusted Vegetation Index (OSAVI) with two types of reflectance
combinations (OSAVI and OSAVI2) was selected for its simplicity of use in the context of de-
ployable observations on agricultural landscapes, as its estimation requires no knowledge
of soil optical properties, and it also provided the best results for most crops [79], as well as
the distinction of tillage effects in an economically RGB UAV application [80]. In addition,
the choice of Simple Ratio (SR) narrow-band indices (R515/R550), different from chloro-
phyll pigment content detection, was based on its feasibility to predict carotene content on
hyperspectral imagery in heterogeneous canopies [81]. Carotenoid concentrations reveal
important information about plant physiological state [82], and offering a heterogeneous
VI source may improve model predictability and minimize collinearity.

Table 1. Descriptions and formulae of narrowband VIs were utilized in this study. Narrowband VIs
were calculated, which were closest to the wavelengths given in the original Hsdar R package references.

Vegetation Index Description Equation Reference

NDVI Normalized Difference Vegetation Index (R800 − R680)/(R800 + R680) [73]

NDVI2 Normalized Difference Vegetation Index 2 (R750−R705)/(R750 + R705) [75]

OSAVI Optimized Soil Adjusted Vegetation Index (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) [79]

OSAVI2 Optimized Soil Adjusted Vegetation Index 2 (1 + 0.16) × (R750 − R705)/(R750 + R705 + 0.16) [83]

RDVI Renormalized Difference Vegetation Index (R800 − R670)/
√

(R800 + R670) [84]

SR Simple Ratio R515/R550 [81]

SAVI Soil-Adjusted Vegetation Index (1 + L 1) × (R800 − R670)/(R800 + R670 + L) [78]

TCARI Transformed Chlorophyll Absorption
Reflectance Index ((R700 − R670) − 0.2 × (R700 − R550) × (R700/R670) [6]

1 L, a soil brightness adjustment factor (L) established as 0.5 to suit the majority of land cover types for the SAVI index.

These narrowband VIs were computed and saved in TIFF file format (https://www.
adobe.io/open/standards/TIFF.html accessed on 15 July 2021), which were then utilized to
extract spatial information in the SW, P + O, and SB + RC experimental fields. For extraction,
a total of 216 plots were digitized in ArcGIS Pro [85]. Average VIs across every plot were
extracted and determined at each plot at the research location, while one-meter buffer
zones were calculated inwards from each plot boundary to eliminate unexpected boundary
effects. Considering the potential variances in the treatment of each AMP, we divided the
field from the center of the area into training and testing areas equally, ensuring that the
training area contained all combinations of AMPs (Figure 2). These collected parameters
were then utilized in this study to create AutoML algorithms for estimating and evaluating
grain production and straw mass.
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2.5. AutoML Regression with Auto-Sklearn

This study employed the robust and frequently updated AutoML system, Auto-
sklearn, based on the scikit-learn ML library in Python [86]. It employs 15 classifiers, 14 fea-
ture processing, and four data pre-processing methods, yielding a 110-hyperparameter
structured hypothesis space [62,87]. It offers an advancement on existing AutoML ap-
proaches by incorporating prior performance on comparable datasets and generates en-
sembles from the models that were examined throughout the optimization procedure
(Figure 3C). This technique involves the largely configurable ML prototype with the auto-
matically generated ML pipelines, i.e., feature selection (deleting trivial features), transfor-
mation (reducing dimensionality), and hyperparameter optimization based on Bayesian
optimization strategy sequential model-based algorithm configuration (SMAC) [88]. Fol-
lowing that, a Random Forest [89] approach was utilized for fast cross-validation, assessing
one-fold at a time and eliminating poor-performing hyperparameter configurations during
the initial phases. The Random Forest approach delivers a superior accuracy rate, as well as
alternative pipeline operators that boost regression performance within the datasets [62,90].

All computations in this study were performed on an Intel Core i5-1035G1 CPU
(1.00 GHz) with 16 GB RAM utilizing the LINUX open-source operating system. The pro-
cesses outlined in [62] were executed for the AutoML framework. To begin with, the system
employs a supplemental technique based on widely used meta-learning procedures to train
machine learning models over the statistical features of datasets and evaluates the model
parameters that produce the greatest performance [91]. Second, the system creates ensem-
bles of the models that Bayesian optimization examined, using high-performing regressors
and pre-processors employed within the ML framework. Finally, the program works a
wide range of empirical examinations on a diverse set of data to determine whether the Au-
toML regression offers better outcomes than previous regressions. However, any strongly
correlated VIs should be eliminated during the feature selection step to avoid the effects of
collinearity. Since Auto-sklearn works with low-dimensional optimization issues [92], this
step was bypassed in this stage. Table 2 lists the principal AutoML regression parameters
employed in this study. To perform tests, as a demonstration of the practicability and
efficiency of AutoML model selection, CPU timing for each task was restricted to 30 s, and
the runtime for assessing a single model to 10 s. The analyses were performed separately
for each of the crop fields, with grain yield consisting of 56 plots (n = 56) and straw mass
divided in the training and test sites (0.5/0.5) for regression modelling (Figures 6 and 7).

Table 2. The AutoML regression parameters and descriptions that were employed in this study.

Parameter Name Range Value Description

time_left_for_this_task 30 s The time restriction for seeking suitable models.
per_run_time_limit 10 s The maximum amount of time a single call to the ML model could perform.

ensemble_size 50 (default) Several models were added to the ensemble from Ensemble libraries.
ensemble_nbest 50 (default) The amount of best models for building an ensemble model.

resampling_strategy CV; folds = 3 (CV = cross-validation); to deal with overfitting
seed 47 Used to seed SMAC.

training/testing split (0.5; 0.5) Data partitioning way

Note: Other options and parameters that aren’t shown in the table were set to default.

2.6. Model Evaluation

The assessment was carried out for the prediction of AutoML models (Figures 6 and 7).
Performance evaluation approaches proposed by [19,93] were utilized to evaluate each
model. The coefficient of determination (R2) (Equation (1) and normalized root means
square error (NRMSE) (Equation (2)) were used to evaluate the models’ accuracy. The
following are the equations that were used:

R2 = 1 − ∑(ŷi − yi)
2

∑(yi − y)2 (1)
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NRMSE =

√
∑((ŷi − yi)

2)/n

∆y
(2)

where: yi is the training dataset’s ith observation value represents the observation value;
y denotes the training dataset’s mean value; ŷi denotes the model predictions, n denotes
the number of observations; and ∆y represents the difference between the training dataset’s
lowest and highest values.

3. Results
3.1. The Field Observation DM Data Analysis

The average actual grain yield and above ground straw mass data (fresh and dry)
gathered from the SW, P + O, and SB + RC experimental regions are displayed in the
violin plot (Figure 4), where we exhibited the range of grain yield and straw mass data
and assembled them by fields since the treatments were interspersed within each plot. In
addition, we opted to examine at dry and fresh weight separately since the accumulated
rainfall of 4.1 mm (in SW and P + O fields) and 0.4 mm (in SB + RC fields) in the three days
before the two harvests (on 16 August 2019, and 5 August 2019, respectively) may have
contributed to increased fresh weight with additional water content.
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Figure 4. Violin plots of mean harvest results of fresh and dry (a) grain yield and (b) straw mass, 
grouped by spring wheat (SW), pea and oat mixture (P+O), and spring barley with under-sowing 
Figure 4. Violin plots of mean harvest results of fresh and dry (a) grain yield and (b) straw mass,
grouped by spring wheat (SW), pea and oat mixture (P + O), and spring barley with under-sowing
red clover (SB + RC) fields. White dots represent the median, while thick black bars in the center
demonstrate interquartile ranges, and black lines represent the remainder of the distribution. The
shape of the violins shows point density and data distribution as a whole.

3.2. The Hyperspectral Reflectance Signature under Various Agriculture Management Practises

Figure 4 displays a mean reflectance plot produced from hyperspectral data of SW,
P + O, and SB + RC fields, with enclosed subsets categorized by (Figure 5A) soil tillage
method (STM) and (Figure 5B) cultivation method (CM) agricultural operations. Regard-
ing agricultural management practices, the wavelength bands between 700–750 nm and
760–900 nm had significant identification capabilities, while the 400–700 nm region showed
little differentiation between management practices. The cultivation method (Figure 4B)
provides greater recognition ability (separation) in this range when compared with STM
spectral information (Figure 5A). In terms of crop types, spring wheat monocropping
seemed to give a better ability to recognize AMPs, followed by mixed cropping systems
SB + RC and P + O fields. However, since the focus of this study was on grain yield
and biomass prediction, we omitted the narrowband VIs wave range based on the strong
absorption bands near 760 nm and excluded them from subsequent AutoML analyses.
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3.3. Characterization of the Correlation Coefficient with Averaged Radiance Hyperspectral Data
and Field Observation

Correlation Coefficient (r) was used as exploratory analysis in our study and as a
reference for subsequent modelling. Figure 5 shows the correlation coefficients (r) between
each averaged hyperspectral narrow-band data with the dry mass (Figure 6A) and fresh
mass (Figure 6B) at the plot level. The pattern of positive r values was typically obtained
with reflectance between 750–940 nm wavelengths, whereas the strong negative corre-
lation with reflectance was between 500–700 nm. Moreover, we also observed that the
correlation of straw mass (red line) was stronger than grain yield (blue line) at all fields
in the 750–1000 nm range. By comparison, the results showed that, in the patterning of
r curves, SW was closely associated with highly positive and negative r values in dry
mass (Figure 6A), while with the lower correlation nearby the oxygen absorption peak
was 760 nm. This tendency was observed in our previous reflectance signature analysis
as well. Among the three fields, P + O had the least correlation. Regarding the fresh mass
(Figure 5B), the correlation and spectral characteristics were comparable to the weight of
the dry mass. Except for 740–750 nm, SW had overall the strongest correlation, followed by
SB + RC and P + O.

3.4. The AutoML Model Prediction and Evaluation

In this study, the narrowband VIs reflectance of grain yield (n = 56) and straw mass
(n = 24) based on training/testing (0.5/0.5) principles were used for AutoML modelling,
respectively. The AutoML framework was used to test the appropriate combinations of
data set parameters throughout the modelling process. Scatter plots representing model
predictions and observed weight values (kg ha−1) were compared to the coefficient of
the determination (R2) and normalized root means square error (NRMSE) along with the
1:1 line.

Figure 7 shows the regression plots of fresh (Figure 7A) grain yield (kg ha−1) and
(Figure 7B) straw mass (kg ha−1) in SW, P + O, and SB + RC fields based on narrowband
VIs and AutoML methods. The results indicated that, in fresh grain yield (Figure 7A),
the AutoML model had the lowest prediction errors (NRMSE = 0.13) and the highest
R2 value (0.95) in SW field, followed by SB + RC field (NRMSE = 0.16, R2 = 0.88) and
P + O (NRMSE = 0.16, R2 = 0.88). Even though the three models functioned well, there
was a minor non-uniform bias found within the models, with an underestimation of grain
yields in areas with higher output in SW and SB + RC fields. On the other hand, for
fresh straw mass, the SW field remains the best performing among the other fields with
(NRMSE = 0.16, R2 = 0.88) followed by the SB + RC field (NRMSE = 0.27, R2 = 0.77) with
uniform overestimation bias, and P + O (NRMSE = 0.25, R2 = 0.56) (Figure 7B). Among
them, P + O’s prediction ability was insufficient, and the reference data collected were
concentrated in the 3000 to 5000 (kg ha−1) interval, which makes the regression model
unable to be effectively extended.

Figure 8 demonstrates the behavior of predictive models utilizing dry (A) grain
yield (kg ha−1) and (B) straw mass (kg ha−1) in SW, P + O, and SB + RC fields based
on narrowband VIs and AutoML methods. The results specified that, in summary, SW
yielded the best performance for dry grain yield (NRMSE = 0.12, R2 = 0.96) and straw mass
(NRMSE = 0.15, R2 = 0.89) among SB + RC, and P + O files (Figure 8A). Compared with
the fresh mass model, the dry performance was better in general, especially in the dry
straw model of SB + RC (NRMSE = 0.33, R2 = 0.86) and P + O (NRMSE = 0.24, R2 = 0.83)
(Figure 8B), although these two models had a larger degree of bias under the comparison
of 1:1 slope.
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Figure 5. Mean radiance plot derived from hyperspectral data of spring wheat (SW), pea and oat
mixture (P + O), and spring barley with under-sowing red clover (SB + RC) fields, grouped by (A) soil
tillage method (STM) and (B) cultivation method (CM) farming operations with contained subsets.
The wavelength ranges from the visible to near-infrared (VNIR, 400–1000 nm).
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Figure 7. Regression plots of (A) fresh grain yield (kg ha−1) and (B) fresh straw mass (kg ha−1) in
SW, P + O, and SB + RC fields based on narrowband VIs and AutoML methods. The horizontal axis
in the scatter plots represents the model’s projected grain yield or straw mass, while the vertical axis
represents field-observed data. Where the R2 = coefficient of determination, NRMSE = normalized
root represents the squared error, while the 1:1 slope is shown by the black dotted line.
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3.5. The AutoML Model Pipeline Visualization 
An interactive AutoML visualization tool PipelineProfiler [94] was used in this study 

(Figure 9). To simplify the description, we only list the best regression modelling results 
across two crop fields (SW and SB+RC) with the evaluation performance of AutoML pipe-
line execution times set at 30 s, the primitive comparison against other regressors in the 
same pipeline, and real-time hyperparameter selections. The results confirmed that the 
best regressor found for dry grain yield was automatic relevance determination (Ard) Re-
gression [95] for the SW field (Figure 9A), and for the SB+RC field, it was the Random 
Forest [89] (Figure 10A), while for dry straw mass, it was Gaussian Process [96] (Figure 

Figure 8. Regression plots of (A) dry grain yield (kg ha−1) and (B) dry straw mass (kg ha−1) in SW,
P + O, and SB + RC fields based on narrowband VIs and AutoML methods. The horizontal axis in
the scatter plots represents the model’s projected grain yield or straw mass, while the vertical axis
represents field-observed data. Where R2 = coefficient of determination, NRMSE = normalized root
means squared error, and the black dotted line exemplifies the 1:1 slope.

3.5. The AutoML Model Pipeline Visualization

An interactive AutoML visualization tool PipelineProfiler [94] was used in this study
(Figure 9). To simplify the description, we only list the best regression modelling results
across two crop fields (SW and SB + RC) with the evaluation performance of AutoML
pipeline execution times set at 30 s, the primitive comparison against other regressors
in the same pipeline, and real-time hyperparameter selections. The results confirmed
that the best regressor found for dry grain yield was automatic relevance determination
(Ard) Regression [95] for the SW field (Figure 9A), and for the SB + RC field, it was the
Random Forest [89] (Figure 10A), while for dry straw mass, it was Gaussian Process [96]
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(Figure 9B) for the SW field, and Ard Regression for the SB + RC field (Figure 10B), with all
hyperparameters found by AutoML also displayed in the figures.
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Figure 9. The interactive AutoML pipeline matrix plots with thirty-second running-time limits
sorted by coefficient of determination (R2) performance (A,B). (A) Spring wheat (SW) dry grain yield
pipeline matrix with the Top1 regressor, automatic relevance determination (Ard) regression, where
(A1) illustrated Primitives (in columns) used by the pipelines (A2) the blue line (in rows) showed the
best R2 rank); (A3) one-hot-encoded hyperparameters (in columns) for the primitive across pipelines,
(A4) R2 performance ranking of AutoML pipelines; (A5) Primitive contribution view demonstrating
the correlations between pipeline scores and primitive usage are displayed in A5. The Gaussian
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Process showed the highest correlation score regarding R2 performance; (A6) step-by-step AutoML
Pipeline algorithm flowchart, where the box before the output represents the regressor of the model
(in A6 Ard regression as the regressor). (B) Spring wheat (SW) dry straw mass field pipeline matrix
with the Top1 regressor, Gaussian Process.
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red clover (SB + RC) dry grain yield pipeline matrix with the Top1 regressor, Random Forest. The
rows display a blue line representing the best R2 rank followed by its hyperparameters settings;
(B) SB + RC dry straw mass pipeline matrix with the Top1 regressor, Ard regression, followed by its
hyperparameters settings.

3.6. The Field Observation DM Data Analysis

Based on the AutoML models provided above (Figures 7 and 8), a series of prediction
maps were generated (Figure 11) for dry grain yield and straw mass for SW, P + O,
and SB + RC experimental sites at the plot level. Furthermore, the SW and P + O fields’
prediction capabilities were 60 days before the harvest date (18 June–16 August), whereas
the SB + RC field’s estimating was 49 days before harvest (18 June–5 August).
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4. Discussion

This research demonstrated an automatic, open-sourced, rapid, and non-destructive
framework by using hyperspectral narrow-band vegetation indexes under regular mono-
and mixed cultivation for crop grain yield and straw mass modelling. Since the investiga-
tion was carried out under a diversity of agricultural management practices, the methods
and findings can profoundly aid agronomists and farmers in designing accurate cropping
systems to enhance environmental assessment.

4.1. The Effect of Hyperspectral Signatures and the Correlation between Crop Yield and Straw Mass

The initial goal of this study was to conduct an exploratory evaluation of the hy-
perspectral reflectance signature and determine the ideal narrowband VIs for modelling
common crop types and farming schedules in Northern Europe. To identify redundant
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bands and establish wavebands that could best help AutoML regression modelling, the
VIs were first chosen based on prior knowledge of the literature and then filtered by the
reflectance signature (Figure 5) and their Correlation Coefficients with yield and biomass
(Figure 6). Although there was no general focus on a formal classification analysis in our
current study, the characteristics of hyperspectral data under different agricultural practices
(i.e., STM, CM, and MA) are still worthy of attention.

Figure 5 reveals that, in general, because chlorophyll absorption is not limited to the
center wavelength but also affects adjacent bands, we can see that reflectance values in
the blue and red sections are significantly reduced, resulting in “absorption characteris-
tics” in the spectral signature of the reflectance in all spectral results. In addition, all the
reflection spectra showed obvious absorption peaks at 760 nm. This spectral region is
influenced by atmospheric oxygen [97,98] and, therefore, this region was avoided while
calculating VI’s. Additionally, from the results, the wavelength range 750–900 nm (NIR)
had strong recognition capabilities based on the variation of reflection intensity; however,
the 400–700 nm (visible bands) region was inefficient and offered little separation or dis-
cernment. The differentiation on spectra at the wavelength range of 750–900 nm suggested
that the interior leaf structure, biochemical concentration, and water content of the target
vegetation are different. A previous study pointed out that the diversity of NIR regions is
usually caused by differences in internal leaf structure [99]. However, reflectance variation
at the canopy level may be due to additional factors like LAI, canopy design, and backdrop
soil [100]. These results will be valuable for further classification activities in agriculture
management recognition.

The coefficients correlation (r) of each narrow-band with both grain yield and straw
mass exhibited a similar pattern of r curves for both dry (Figure 6A) and fresh weight
(Figure 6B) analysis, yet r in absolute values for the P + O field was observed to be less
correlated than those for grain yield and straw mass, especially in the fresh weight. This is
because the P + O field was mixed cultivation and the source of weight is the sum of the
two crops and the amount of precipitation before harvesting may indirectly bring about a
lower degree of correlation. Interestingly, while the findings of these linear correlation tests
all showed that the straw mass has a stronger link with the spectrum, it does not depend
on the empirical model’s degree of fit (see Figures 7 and 8). Hence, we discovered that
grain yield (R2) had a superior goodness-of-fit performance than straw mass in general,
with lower NRMSE.

4.2. The Hyperspectral Narrowband VIs and AutoML Modelling

Despite the opportunities afforded by hyperspectral systems to collect a multitude
of spectrum data, extracting the relevant important wavelengths from a data cube can be
challenging [101]. In our study, we used hyperspectral narrowband VIs as predictors for
AutoML modelling. However, we avoided selecting narrowband VIs with spectrums that
might be affected by atmospheric oxygen. With this in mind, the target VIs selected for
analysis were extracted, calculated, and processed in the modelling stage, which reduced
processing and storage demands.

Based on the empirical AutoML regression model, the estimation capacity of hy-
perspectral narrowband VIs was exceptional. The best coefficient of determination for
mono-cultivated wheat was 0.96, for mixed peas and oats was 0.76, and for mixed legumes
and spring barley was 0.88. In terms of straw mass estimation, they were 0.98, 0.83, and
0.86 respectively. We determined that the prediction ability of dry weight was typically
greater than that of fresh weight, especially in fields where mixed peas and oats, which
was 27 per cent higher. This demonstrated that the crop water content has an influence on
the model’s estimation outputs to a certain extent.

According to a previous study, spectral measurements were taken during the Tillering
II and Heading phases in wheat yielded the best results for estimating biophysical factors
using narrowband VIs [42]. This is consistent with our recommended flight time. In
addition, different band combinations can be effectively utilized since crop circumstances
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change according to factors such as management conditions and soil characteristics. Others
have demonstrated that piecewise multiple regression models on narrow bands provide
for greater flexibility in selecting the bands that provide the most information at a given
stage of crop development [102]. This viewpoint has also been confirmed in our research.

4.3. The AutoML Method’s Applicability and Impact in Hyperspectral Imaging

In this study, we employed an AutoML framework to assist in self-regulating, instinc-
tive regression operations, as well as enhancing challenging hyperparameter adjustments.
This method advances the use of hyperspectral imaging in farm-scaled environmental and
crop phenotypic activity and possesses several advantages.

Firstly, the flexibility of implementation. With the ever-increasing variability of remote
sensing systems and the requirement for empirical model choices, the constraints of ad-
justing unidentified background parameters are being addressed. This means that many
existing models that have been under-optimized in the past now have the chance to be
re-modelled using artificial intelligence-based machines to relearn the performance tasks.

Secondly, the alleviation of learning costs. Experience tells us that computer learning
for remote-sensed images frequently necessitates a large number of samples and a lengthy
learning period, i.e., deep learning [103–105]. This is incompatible with conventional
agricultural experimental sampling procedures, which are limited by personnel, the com-
plexity of the experiment design, and the number of repetitions. While, AutoML practices
the Random Forest (RF) method [89] for fast cross-validation, testing one-fold at a time
and weeding out underperformance hyperparameter choices, for example, the combined
algorithm selection and hyperparameter optimization (CASH) problems [62]. It boasts
novel pipeline operators that increase the goodness of fit of datasets significantly. The RF
approach is well-known for assessing lower sample sizes and increasing the performance of
small datasets. [89,106]. In addition, the AutoML framework quickly provided promising
regressors and hyperparameter selections. In our research, each run of the regression model
only took thirty seconds of learning time. This considerably improves learning efficiency,
the ability to find an appropriate formula in the time allotted, and reduces the requirement
for machine learning expertise [87,107].

Thirdly, the capacity of innovation. It is noticeable that random forest (RF), support
vector machine (SVM), and artificial neural network (ANN) algorithms are among the
most widely employed ML techniques in a wide range of recent remote sensing-based
studies [108]. Their practicality and performance have been confirmed by many, but equally,
there are still other similarly applicable ML methods that may have been shelved. As shown
in Figures 9 and 10, the Ard regressors [109,110] and Gaussian Processors [96] were chosen
as the best regressors for the grain yield and biomass tasks. These algorithms have received
less attention and reference in remote sensing studies. These results indicated that AutoML
can uncover alternative ML methods that would otherwise be overlooked by investigators
when working with regression subjects.

4.4. The Limitations in This Study

The location, soil types, chosen crop categories, and varieties present may be restricted
in this study. In addition, it is important to note that we did not address yield comparisons
under different agricultural management approaches since the intricacy of the experimental
design may have led to inadequate sampling numbers, as well as possible interaction effects.
However, we have presented a framework that can be applied to numerous test regions and
the necessity to moderately reduce the number of samples by using AutoML. In addition,
due to the limits of the current Auto-Sklearn system, not all regressors performed could be
backtracked in our research to explore the individual feature importance ranking, which
limits their capacity to aid in the selection of suitable VIs. However, our attempts to
provide a wide range of continuous and selectable narrow-band spectral information (over
216 spectral bands) resulted in improved performance.
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5. Conclusions

Our study highlights the capability of hyperspectral analysis for yield and biomass
prediction in complex design fields through the use of two significant open-sourced soft-
ware systems: the R language hyperspectral processing package and Python’s Auto-Sklearn
machine learning technology. The performance evaluation with several types of hyper-
spectral vegetation indicators we employed to characterize crop production and straw
mass was satisfactory. We suggest they can be further applied to other crop biophysical
characteristics. The VIs we suggest, as well as automatic narrowband VI calculation, might
minimize data redundancy and cleaning time, as well as the computational power hard-
ware requirements. It is also envisaged that further agricultural cultivation practices could
be classified using hyperspectral imaging in the NIR spectral region (750–900 nm) with
considerable discernible changes in reflectance spectra.

However, the aerial hyperspectral platform utilized in this study may be less cost-
effective than fixed-wing or rotary-wing drone systems, which may be more viable for
farm-scale exploration. Comprehensive and contemporaneous phenotypic information of
products under various agri-environment schemes, as well as their field-based biochemical
conditions, reminds us of further challenges which likely exist for remote sensing technol-
ogy to overcome. Nevertheless, hyperspectral imaging combined with complementary
modelling precision, the abundance of spectrum selection flexibility, and extensive flight
coverage still have an important role at this stage.

In conclusion, our research focused on the integration and implementation of the
hyperspectral imaging and AutoML framework approach with various crop types under
multifunctional agriculture management fields in response to crop biomass/yield esti-
mation. Under common crops and cultivation in most Nordic countries, it will provide
agricultural decision-makers with professional yield estimation and sustainable agricul-
tural management advice. The study also revealed that the anticipated yield may be
advanced two months before harvest. That is, spring wheat, spring barley, and oat were
approximately in the booting to heading stage, field pea was around the reproductive
growth stages, and the red clover field was in the flowering stage (49 days before in our
case). The emergence of the AutoML system has helped to increase the application and
effectiveness of remote sensing-based data analysis technology. However, more research
and experiments will be required in the future to advance and validate the automatic
learning framework’s true potential and usage.
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