691 research outputs found

    Sense-based biomedical indexing and retrieval

    Get PDF
    International audienceThis paper tackles the problem of term ambiguity, especially for biomedical literature. We propose and evaluate two methods of Word Sense Disambiguation (WSD) for biomedical terms and integrate them to a sense-based document indexing and retrieval framework. Ambiguous biomedical terms in documents and queries are disambiguated using the Medical Subject Headings (MeSH) thesaurus and semantically indexed with their associated correct sense. Experimental evaluation carried out on the TREC9-FT 2000 collection shows that our approach of WSD and sense-based indexing and retrieval is promising

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Dealing with Uncertainty in Lexical Annotation

    Get PDF
    We present ALA, a tool for the automatic lexical annotation (i.e.annotation w.r.t. a thesaurus/lexical resource) of structured and semi-structured data sources and the discovery of probabilistic lexical relationships in a data integration environment. ALA performs automatic lexical annotation through the use of probabilistic annotations, i.e. an annotation is associated to a probability value. By performing probabilistic lexical annotation, we discover probabilistic inter-sources lexical relationships among schema elements. ALA extends the lexical annotation module of the MOMIS data integration system. However, it may be applied in general in the context of schema mapping discovery, ontology merging and data integration system and it is particularly suitable for performing “on-the-fly” data integration or probabilistic ontology matching

    Automated Deductive Content Analysis of Text: A Deep Contrastive and Active Learning Based Approach

    Get PDF
    Content analysis traditionally involves human coders manually combing through text documents to search for relevant concepts and categories. However, this approach is time-intensive and not scalable, particularly for secondary data like social media content, news articles, or corporate reports. To address this problem, the paper presents an automated framework called Automated Deductive Content Analysis of Text (ADCAT) that uses deep learning-based semantic techniques, ontology of validated construct measures, large language model, human-in-the-loop disambiguation, and a novel augmentation-based weighted contrastive learning approach for improved language representations, to build a scalable approach for deductive content analysis. We demonstrate the effectiveness of the proposed approach to identify firm innovation strategies from their 10-K reports to obtain inferences reasonably close to human coding

    Delving into the uncharted territories of Word Sense Disambiguation

    Get PDF
    The automatic disambiguation of word senses, i.e. Word Sense Disambiguation, is a long-standing task in the field of Natural Language Processing; an AI-complete problem that took its first steps more than half a century ago, and which, to date, has apparently attained human-like performances on standard evaluation benchmarks. Unfortunately, the steady evolution that the task experienced over time in terms of sheer performance has not been followed hand in hand by adequate theoretical support, nor by careful error analysis. Furthermore, we believe that the lack of an exhaustive bird’s eye view which accounts for the sort of high-end and unrealistic computational architectures that systems will soon need in order to further refine their performances could lead the field to a dead angle in a few years. In essence, taking advantage of the current moment of great accomplishments and renewed interest in the task, we argue that Word Sense Disambiguation is mature enough for researchers to really observe the extent of the results hitherto obtained, evaluate what is actually missing, and answer the much sought for question: “are current state-of-the-art systems really able to effectively solve lexical ambiguity?” Driven by the desire to become both architects and participants in this period of pondering, we have identified a few macro-areas representatives of the challenges of automatic disambiguation. From this point of view, in this thesis, we propose experimental solutions and empirical tools so as to bring to the attention of the Word Sense Disambiguation community unusual and unexplored points of view. We hope these will represent a new perspective through which to best observe the current state of disambiguation, as well as to foresee future paths for the task to evolve on. Specifically, 1q) prompted by the growing concern about the rise in performance being closely linked to the demand for more and more unrealistic computational architectures in all areas of application of Deep Learning related techniques, we 1a) provide evidence for the undisclosed potential of approaches based on knowledge-bases, via the exploitation of syntagmatic information. Moreover, 2q) driven by the dissatisfaction with the use of cognitively-inaccurate, finite inventories of word senses in Word Sense Disambiguation, we 2a) introduce an approach based on Definition Modeling paradigms to generate contextual definitions for target words and phrases, hence going beyond the limits set by specific lexical-semantic inventories. Finally, 3q) moved by the desire to analyze the real implications beyond the idea of “machines performing disambiguation on par with their human counterparts” we 3a) put forward a detailed analysis of the shared errors affecting current state-of-the-art systems based on diverse approaches for Word Sense Disambiguation, and highlight, by means of a novel evaluation dataset tailored to represent common and critical issues shared by all systems, performances way lower than those usually reported in the current literature

    D6.1: Technologies and Tools for Lexical Acquisition

    Get PDF
    This report describes the technologies and tools to be used for Lexical Acquisition in PANACEA. It includes descriptions of existing technologies and tools which can be built on and improved within PANACEA, as well as of new technologies and tools to be developed and integrated in PANACEA platform. The report also specifies the Lexical Resources to be produced. Four main areas of lexical acquisition are included: Subcategorization frames (SCFs), Selectional Preferences (SPs), Lexical-semantic Classes (LCs), for both nouns and verbs, and Multi-Word Expressions (MWEs)

    Chinese WordNet Domains: Bootstrapping Chinese WordNet with Semantic Domain Labels

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Entity Linking meets Word Sense Disambiguation: A Unified Approach

    Get PDF
    Entity Linking (EL) and Word Sense Disambiguation (WSD) both address the lexical ambiguity of language. But while the two tasks are pretty similar, they differ in a fundamental respect: in EL the textual mention can be linked to a named entity which may or may not contain the exact mention, while in WSD there is a perfect match between the word form (better, its lemma) and a suitable word sense. In this paper we present Babelfy, a unified graph-based approach to EL and WSD based on a loose identification of candidate meanings coupled with a densest subgraph heuristic which selects high-coherence semantic interpretations. Our experiments show state-ofthe-art performances on both tasks on 6 different datasets, including a multilingual setting. Babelfy is online at http://babelfy.orgEntity Linking (EL) and Word Sense Disambiguation (WSD) both address the lexical ambiguity of language. But while the two tasks are pretty similar, they differ in a fundamental respect: in EL the textual mention can be linked to a named entity which may or may not contain the exact mention, while in WSD there is a perfect match between the word form (better, its lemma) and a suitable word sense. In this paper we present Babelfy, a unified graph-based approach to EL and WSD based on a loose identification of candidate meanings coupled with a densest subgraph heuristic which selects high-coherence semantic interpretations. Our experiments show state-ofthe-art performances on both tasks on 6 different datasets, including a multilingual setting. Babelfy is online at http://babelfy.or
    • 

    corecore