61 research outputs found

    Identifying Product Features from Customer Reviews using Lexical Concordance

    Get PDF
    Abstract: Automatic extraction of features from unstructured text is one of the challenging problems of Opinion Mining. The trend of getting products and services reputation from online resources such as web blogs and customer feedback is increasing day by day. Therefore efficient system is required to automatically extract products features and the opinion of consumers about all aspects of the products. In this study our focus is on extraction of product features from customer reviews. We have proposed a concordance based technique for automatic extraction of features of product from customer reviews. In our proposed technique we extract patterns of lexical terms using concordance for candidate features extraction and identify features by grouping. The proposed grouping algorithm is used to remove irrelevant features. We conducted experiments on different products reviews and compared our results with existing methods. From empirical results we proved the validity of the proposed method

    Combining granularity-based topic-dependent and topic-independent evidences for opinion detection

    Get PDF
    Fouille des opinion, une sous-discipline dans la recherche d'information (IR) et la linguistique computationnelle, fait référence aux techniques de calcul pour l'extraction, la classification, la compréhension et l'évaluation des opinions exprimées par diverses sources de nouvelles en ligne, social commentaires des médias, et tout autre contenu généré par l'utilisateur. Il est également connu par de nombreux autres termes comme trouver l'opinion, la détection d'opinion, l'analyse des sentiments, la classification sentiment, de détection de polarité, etc. Définition dans le contexte plus spécifique et plus simple, fouille des opinion est la tâche de récupération des opinions contre son besoin aussi exprimé par l'utilisateur sous la forme d'une requête. Il y a de nombreux problèmes et défis liés à l'activité fouille des opinion. Dans cette thèse, nous nous concentrons sur quelques problèmes d'analyse d'opinion. L'un des défis majeurs de fouille des opinion est de trouver des opinions concernant spécifiquement le sujet donné (requête). Un document peut contenir des informations sur de nombreux sujets à la fois et il est possible qu'elle contienne opiniâtre texte sur chacun des sujet ou sur seulement quelques-uns. Par conséquent, il devient très important de choisir les segments du document pertinentes à sujet avec leurs opinions correspondantes. Nous abordons ce problème sur deux niveaux de granularité, des phrases et des passages. Dans notre première approche de niveau de phrase, nous utilisons des relations sémantiques de WordNet pour trouver cette association entre sujet et opinion. Dans notre deuxième approche pour le niveau de passage, nous utilisons plus robuste modèle de RI i.e. la language modèle de se concentrer sur ce problème. L'idée de base derrière les deux contributions pour l'association d'opinion-sujet est que si un document contient plus segments textuels (phrases ou passages) opiniâtre et pertinentes à sujet, il est plus opiniâtre qu'un document avec moins segments textuels opiniâtre et pertinentes. La plupart des approches d'apprentissage-machine basée à fouille des opinion sont dépendants du domaine i.e. leurs performances varient d'un domaine à d'autre. D'autre part, une approche indépendant de domaine ou un sujet est plus généralisée et peut maintenir son efficacité dans différents domaines. Cependant, les approches indépendant de domaine souffrent de mauvaises performances en général. C'est un grand défi dans le domaine de fouille des opinion à développer une approche qui est plus efficace et généralisé. Nos contributions de cette thèse incluent le développement d'une approche qui utilise de simples fonctions heuristiques pour trouver des documents opiniâtre. Fouille des opinion basée entité devient très populaire parmi les chercheurs de la communauté IR. Il vise à identifier les entités pertinentes pour un sujet donné et d'en extraire les opinions qui leur sont associées à partir d'un ensemble de documents textuels. Toutefois, l'identification et la détermination de la pertinence des entités est déjà une tâche difficile. Nous proposons un système qui prend en compte à la fois l'information de l'article de nouvelles en cours ainsi que des articles antérieurs pertinents afin de détecter les entités les plus importantes dans les nouvelles actuelles. En plus de cela, nous présentons également notre cadre d'analyse d'opinion et tâches relieés. Ce cadre est basée sur les évidences contents et les évidences sociales de la blogosphère pour les tâches de trouver des opinions, de prévision et d'avis de classement multidimensionnel. Cette contribution d'prématurée pose les bases pour nos travaux futurs. L'évaluation de nos méthodes comprennent l'utilisation de TREC 2006 Blog collection et de TREC Novelty track 2004 collection. La plupart des évaluations ont été réalisées dans le cadre de TREC Blog track.Opinion mining is a sub-discipline within Information Retrieval (IR) and Computational Linguistics. It refers to the computational techniques for extracting, classifying, understanding, and assessing the opinions expressed in various online sources like news articles, social media comments, and other user-generated content. It is also known by many other terms like opinion finding, opinion detection, sentiment analysis, sentiment classification, polarity detection, etc. Defining in more specific and simpler context, opinion mining is the task of retrieving opinions on an issue as expressed by the user in the form of a query. There are many problems and challenges associated with the field of opinion mining. In this thesis, we focus on some major problems of opinion mining

    Integration of feature subset selection methods for sentiment analysis

    Get PDF
    Feature selection is one of the main challenges in sentiment analysis to find an optimal feature subset from a real-world domain. The complexity of an optimal feature subset selection grows exponentially based on the number of features for analysing and organizing data in high-dimensional spaces that lead to the high-dimensional problems. To overcome the problem, this study attempted to enhance the feature subset selection in high-dimensional data by removing irrelevant and redundant features using filter and wrapper approaches. Initially, a filter method based on dispersion of samples on feature space known as mutual standard deviation method was developed to minimize intra-class and maximize inter-class distances. The filter-based methods have some advantages such as they are easily scaled to high-dimensional datasets and are computationally simple and fast. Besides, they only depend on feature selection space and ignore the hypothesis model space. Hence, the next step of this study developed a new feature ranking approach by integrating various filter methods. The ordinal-based and frequency-based integration of different filter methods were developed. Finally, a hybrid harmony search based on search strategy was developed and used to enhance the feature subset selection to overcome the problem of ignoring the dependency of feature selection on the classifier. Therefore, a search strategy on feature space using integration of filter and wrapper approaches was introduced to find a semantic relationship among the model selections and subsets of the search features. Comparative experiments were performed on five sentiment datasets, namely movie, music, book, electronics, and kitchen review dataset. A sizeable performance improvement was noted whereby the proposed integration-based feature subset selection method yielded a result of 98.32% accuracy in sentiment classification using POS-based features on movie reviews. Finally, a statistical test conducted based on the accuracy showed significant differences between the proposed methods and the baseline methods in almost all the comparisons in k-fold cross-validation. The findings of the study have shown the effectiveness of the mutual standard deviation and integration-based feature subset selection methods have outperformed the other baseline methods in terms of accuracy

    Identifying Roles in Social Networks using Linguistic Analysis.

    Full text link
    Social media sites have been significantly growing in the past few years. This resulted in the emergence of several communities of communicating groups, and a huge amount of text exchanged between members of those groups. In our work, we study how linguistic analysis techniques can be used for understanding the implicit relations that develop in on-line communities. We use this understanding to develop models that explain the processes that govern language use and how it reveals the formation of social relations. We study the relation between language choices and attitude between participants and how they may lead to or reveal antagonisms and rifts in social groups. Both positive (friendly) and negative (antagonistic) relations exist between individuals in communicating communities. Negative relations have received very little attention, when compared to positive relations, because of the lack of an explicit notion of labeling negative relations in most social computing applications. We alleviate this problem by studying text exchanged between participants to mine their attitude. Another important aspect of our research is the study of influence in discussions and how it affects participants’ discourse. In any debate or discussion, there are certain types of persons who influence other people and affect their ideas and rhetoric. We rely on natural language processing techniques to find implicit connections between individuals that model this influence. We couple this with network analysis techniques for identifying the most authoritative or salient entities. We also study how salience evolves over time. Our work is uniquely characterized by combining linguistic features and network analysis to reveal social roles in different communities. The methods we developed can find several interesting areas of applications. For example, they can be used for identifying authoritative sources in social media, finding influential people in communities, mining attitude toward events and topics, detecting rifts and subgroup formation, summarizing different viewpoints with respect to some topic or entity, and many other such applications.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86271/1/hassanam_1.pd

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Acquiring and Exploiting Lexical Knowledge for Twitter Sentiment Analysis

    Get PDF
    The most popular sentiment analysis task in Twitter is the automatic classification of tweets into sentiment categories such as positive, negative, and neutral. State-of-the-art solutions to this problem are based on supervised machine learning models trained from manually annotated examples. These models are affected by label sparsity, because the manual annotation of tweets is labour-intensive and time-consuming. This thesis addresses the label sparsity problem for Twitter polarity classification by automatically building two type of resources that can be exploited when labelled data is scarce: opinion lexicons, which are lists of words labelled by sentiment, and synthetically labelled tweets. In the first part of the thesis, we induce Twitter-specific opinion lexicons by training words level classifiers using representations that exploit different sources of information: (a) the morphological information conveyed by part-of-speech (POS) tags, (b) associations between words and the sentiment expressed in the tweets that contain them, and (c) distributional representations calculated from unlabelled tweets. Experimental results show that the induced lexicons produce significant improvements over existing manually annotated lexicons for tweet-level polarity classification. In the second part of the thesis, we develop distant supervision methods for generating synthetic training data for Twitter polarity classification by exploiting unlabelled tweets and prior lexical knowledge. Positive and negative training instances are generated by averaging unlabelled tweets annotated according to a given polarity lexicon. We study different mechanisms for selecting the candidate tweets to be averaged. Our experimental results show that the training data generated by the proposed models produce classifiers that perform significantly better than classifiers trained from tweets annotated with emoticons, a popular distant supervision approach for Twitter sentiment analysis

    Sentiment Analysis of Text Guided by Semantics and Structure

    Get PDF
    As moods and opinions play a pivotal role in various business and economic processes, keeping track of one's stakeholders' sentiment can be of crucial importance to decision makers. Today's abundance of user-generated content allows for the automated monitoring of the opinions of many stakeholders, like consumers. One challenge for such automated sentiment analysis systems is to identify whether pieces of natural language text are positive or negative. Typical methods of identifying this polarity involve low-level linguistic analysis. Existing systems predominantly use morphological, lexical, and syntactic cues for polarity, like a text's words, their parts-of-speech, and negation or amplification of the conveyed sentiment. This dissertation argues that the polarity of text can be analysed more accurately when additionally accounting for semantics and structure. Polarity classification performance can benefit from exploiting the interactions that emoticons have on a semantic level with words – emoticons can express, stress, or disambiguate sentiment. Furthermore, semantic relations between and within languages can help identify meaningful cues for sentiment in multi-lingual polarity classification. An even better understanding of a text's conveyed sentiment can be obtained by guiding automated sentiment analysis by the rhetorical structure of the text, or at least of its most sentiment-carrying segments. Thus, the sentiment in, e.g., conclusions can be treated differently from the sentiment in background information. The findings of this dissertation suggest that the polarity of natural language text should not be determined solely based on what is said. Instead, one should account for how this message is conveyed as well
    corecore