6 research outputs found

    Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordGearbox is the key functional unit in a mechanical transmission system. As its operating condition being complex and the interference transmitting from diverse paths, the vibration signals collected from an individual sensor may not provide a fully accurate description on the health condition of a gearbox. For this reason, a new method for fault diagnosis of gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps in this method. First, prior to feature extraction, two signal processing methods, i.e. the energy operator and time synchronous averaging, are applied to multi-sensor vibration signals to remove interference and highlight fault characteristic information, then the statistical features are extracted from both the raw and preprocessed signals to form an original feature set. Second, a coupled feature selection scheme combining the distance evaluation technique and max-relevance and min-redundancy is carried out to obtain an optimal feature set. Finally, the deep belief network, a novel intelligent diagnosis method with a deep architecture, is applied to identify different gearbox health conditions. As the multi-sensor data fusion technique is utilized to provide sufficient and complementary information for fault diagnosis, this method holds the potential to overcome the shortcomings from an individual sensor that may not accurately describe the health conditions of gearboxes. Ten different gearbox health conditions are simulated to validate the performance of the proposed method. The results confirm the superiority of the proposed method in gearbox fault diagnosis.National Natural Science Foundation of Chin

    Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    No full text
    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models
    corecore