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The vibration signals analysis is a very effective and reliable method for detecting the gear failures. Because the vibration signals
acquired from the gear in the variable speed condition often containmore useful fault information, the analysis of the gear vibration
signals during the variable speed condition has been a hot research topic. In this paper, a method based on the multiscale chirplet
path pursuit (MSCPP) and the linear canonical transform (LCT) has been applied to diagnose the gear fault in the variable speed
condition for the first time. First, by using the MSCPP method to estimate the instantaneous meshing frequency, the suitable
signal segment approximation to the acceleration or deceleration process can be selected. Then, because the LCT is a novel and
efficient nonstationary signals analysis tool, the optimal LCT spectrum of the selected signal has been attainted to diagnose the
gear faults based on the properties of the LCT. In addition, the simulations and the experimental evaluation are provided to verify
the effectiveness of the proposed method.

1. Introduction

The gear is an important device and has a wide range of
applications in industry. However, owing to abrasion and
other reasons, the gears may have many kinds of faults,
such as pitting, chipping, and the serious crack [1–5]. When
the gear causes a local fault, the amplitude and phase of
the vibration signal of the gear are modulated [2, 3, 6, 7].
So the vibration signals obtained from the gear can reflect
the gear’s state very well. The vibration signals analysis also
has been the extremely effective and reliable method for
detecting the gear failures [8–11]. Meanwhile, on the one
hand, the gear vibration signals obtained from the variable
speed condition, that is, the acceleration or deceleration
processes, often can contain more fault information com-
pared to the stationary processes, which can detect the gear
faults earlier. On the other hand, the gear vibration signals
obtained from the acceleration or deceleration processes are
nonstationary signals, which have low signal-to-noise ratio
(SNR) in practice [11–14], which make it difficult to obtain

the gear vibration signals’ fault features. Hence, the diagnosis
of gear faults by analyzing the gear vibration signals obtained
from the variable speed condition has been a hot research
topic recently.

A number of failure diagnosis methods have been used
to diagnose the gear faults in variable speed condition, for
example, the traditional time frequency analysis methods,
self-adaptive signal processing methods, and data driven
methods [4–12, 15–25].The traditional time frequency analy-
sismethods, such as the short time Fourier transform [14], the
Wigner-Ville distribution [10, 12], and the wavelet transform
[2], will result in spectral aliasing, cross term interference,
and low resolution because the vibration signals obtained
from the fault gears in practice are nonstationary with low
SNR [4]. The self-adaptive signal processing methods, for
example, the empirical mode decomposition [5] and the local
mean decomposition [17], will lead to over envelope, end
effects, and distorted components, respectively. In addition,
the data driven methods, such as the Elman neural network
[24] and support vector machine [22], require a lot of data
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for training and classification. To solve these problems, some
other data driven methods have been introduced, such as the
self-organizing maps (SOM) method [26–28]. In [26], the
self-organizing feature map neural network has been used to
diagnose the faults of the wind turbine’s converter. In [27],
the SOM and minimum quantization error (MQE) method
have been selected to achieve degradation assessment and
fault localization. In [28], an intelligent approach based on
the SOMmethod has been presented to machine component
health prognostics. Although the SOMmethod does not need
a lot of data, it still needs some a priori knowledge.Therefore,
the diagnosis of gear faults in acceleration and deceleration
processes remains an open research field and new signal
analysis tools for nonstationary vibration signals are needed.

The linear canonical transform (LCT) is a generalization
of the Fourier transform (FT) and the fractional Fourier
transform (FRFT), which has four-parameter family of linear
integral transform [29, 30]. It performs an affine mapping of
the time frequency distribution of the signal because it has
additional degrees of freedom [31, 32]. So, the LCT is more
flexible and suitable for processing nonstationary signals,
particularly in the linear frequency modulated (LFM) signals
[33–37]. Simultaneously, the gear vibration signals obtained
from the variable speed condition can be approximated to
the multicomponent LFM signals within a short period of
time. From the above analysis, because the vibration signals
attained from the variable speed condition are nonstationary
and the LCT has advantages in nonstationary signals process-
ing, it is therefore worthwhile to explore the diagnosis of gear
faults by using the LCT.

However, in variable speed condition, the gear vibration
signals contain many different components, which are not
approximated to the LFM signals. The vibration signals
acquired from the acceleration or deceleration processes of
the gears are often a short period of the gear vibration signals
in variable speed condition. In order to apply the LCTmethod
to diagnosis of the gear faults in variable speed condition,
the vibration signals acquired from the acceleration or decel-
eration processes should be selected at first. In practice, it
is difficult to only obtain the gear vibration signals during
acceleration or deceleration processes directly. Nevertheless,
the shaft rotational frequency (SRF) is time varying in the
acceleration or deceleration processes, which can be seen
as an indicator to select the acceleration or deceleration
processes [1]. Hence, we can obtain the acceleration or
deceleration time by estimating the instantaneous frequency
(IF) of the gear vibration signals in variable speed condition.
In addition, the optimal LCT parameters of the LFM signals
are also determined by gradient of the IF [30]. For these
reasons, we need to estimate the IF of the gear vibration
signals in variable speed condition at first.

In this paper, the multiscale chirplet path pursuit
(MSCPP) has been used in the estimation of the IF of the
gear vibration signals, which is a widely used and efficient
method for IF estimation [38]. The MSCPP method divides
the time length of the analysis signal into a series of dynamic
time support areas in binary form, finding atom with the
largest correlation in each dynamic support region from
the defined chirplet atom library, and the selected chirplet
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Figure 1: The block diagram of the proposed method.

atoms are connected one by one by using the principle of
the best connection [38, 39]. Thus, it can adaptively find the
instantaneous frequency trend line with the largest correla-
tion in the signal [39]. Compared with other instantaneous
frequency methods, the MSCPP method can choose shorter
chirplet atoms flexibly and can effectively suppress noise
interference. In addition, the MSCPP method does not have
any a priori knowledge. So the instantaneous frequency
of the vibration signals obtained from the variable speed
condition can be estimated by the MSCPP method. Based on
this, the vibration signals obtained from the acceleration or
deceleration processes in a short period of time can be picked
out.

In this paper, the MSCPP method and the LCT have
been applied to analyze the vibration signals to diagnose
the gear faults in variable speed condition for the first time.
First, by using the MSCPP, the IF of the vibration signals
obtained from the variable speed condition can be estimated.
Then, based on the IF of the vibration signals, we can
choose the suitable signal segment, which can be seen as the
acceleration or deceleration processes. In addition, according
to the gradient of the instantaneous frequency of the selected
signal segment, the optimal LCT parameters can be obtained
based on the properties of the LCT [30]. Finally, the optimal
LCT spectrum of the selected signal is presented, which can
be used to diagnose the gear fault. The block diagram of the
proposed method is presented in Figure 1 vividly.

The remaining parts of this article are organized as
follows. In Section 2, the preliminaries of the MSCPP and
the LCT are introduced. In Section 3, the application of
the MSCPP and the LCT to the simulated vibration signal
is presented, which shows that the proposed method is
effective. The experimental evaluations have been provided
in Section 4. Section 5 concludes this paper.
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2. Preliminaries

2.1.TheMultiscale Chirplet Path PursuitMethod. TheMSCPP
method was first introduced in [38]; in this method, if
the IF of chirplet atoms is linear, they can be used to
adaptively piecewise approximate the nonstationary signals.
For example, the nonstationary signal in the following is
considered.

𝑦 (𝑡) = 𝐴 cos [𝑤 (𝑡) + 𝜑] + 𝑛 (𝑡) , (1)

where𝐴, 𝜑, 𝑛(𝑡), and𝑤(𝑡) represent the amplitude, the initial
phase, the noise, and the successive and derivable instanta-
neous phase of the signal, respectively. In this algorithm, the
chirplet atoms are obtained from the chirplet dictionary that
can be written as a set of functions as follows [38].

𝑓𝑚,𝑛,𝐼 (𝑡) = |𝐼|−1/2 𝑒𝑖(𝑚𝑡2/2+𝑛𝑡)𝐿𝐼 (𝑡) , (2)

where𝑚 is the slope coefficient and 𝑛 is the offset coefficient.
According to (2), we can easily have that the IF of a chirplet
is linear and equal to𝑚𝑡+𝑛. Based on the sampling theorem,
we know that𝑚𝑡+𝑛 should be less than a half of the sampling
rate 𝑓𝑠. 𝐼 is the dyadic time span, which has the binary scale
division and can be defined as 𝐼 = {𝐼𝑗,𝑘 | 𝑗 = 0, 1, . . . , log2𝑁−
1, 𝑘 = 0, 1, . . . , 2𝑗−1}. In this equation, 𝐼𝑗,𝑘 = [𝑘2−𝑗𝑇, (𝑘 +
1)2−𝑗𝑇]. 𝑇 and𝑁 are the total sampling time and the number
of samples, respectively. 𝑗 is the scale coefficients and 𝑗 =0, 1, . . . , log2𝑁 − 1, 𝑘 = 0, 1, . . . , 2𝑗−1. 𝐿𝐼(𝑡) is a rectangular
window function, which is 1 when 𝑡 ∈ 𝐼 and 0 when 𝑡 ∉ 𝐼.|𝐼|−1/2 is the normalization factor that makes ‖𝑓𝑚,𝑛,𝐼(𝑡)‖2 = 1.

In each time interval, by computing the maximum pro-
jection coefficient 𝐶𝐼𝑗,𝑘 , where 𝐶𝐼𝑗,𝑘 equals 𝐶𝐼𝑗,𝑘 = max⟨𝑥,𝑓𝑚,𝑛,𝐼𝑗,𝑘(𝑡)⟩ (⟨⋅⟩ stands for the interior product) and includes
the amplitude and initial phase information of the signal
component in the time interval 𝐼𝑗,𝑘, the chirplet atom which
has the highest correlation to signal𝑦(𝑡) can be obtained from
the chirplet dictionary. Suppose 𝑆𝐼𝑗,𝑘 is the signal component
expressed by 𝐶𝐼𝑗,𝑘 in the time interval 𝐼𝑗,𝑘, then 𝑆𝐼𝑗,𝑘 can be
written in the following [38]:

𝑆𝐼𝑗,𝑘 (𝑡) = 󵄨󵄨󵄨󵄨󵄨󵄨𝐶𝐼𝑗,𝑘 󵄨󵄨󵄨󵄨󵄨󵄨 𝑒−𝑖(𝑚𝑡
2+𝑛𝑡)+∠𝐶𝐼𝑗,𝑘 𝐼𝑗,𝑘. (3)

2.2. The Linear Canonical Transform. The LCT of a signal𝑓(𝑡) with parameter 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑), represented as 𝐿𝐴𝑓(𝑢), is
defined by [29]

𝐿𝐴𝑓 (𝑢) =
{{{{{{{
∫∞
−∞

𝑓 (𝑡)𝐾𝐴 (𝑢, 𝑡) 𝑑𝑡 𝑏 ̸= 0
√𝑑𝑒𝑗(𝑐𝑑𝑢2/2)𝑓 (𝑑𝑢) 𝑏 = 0,

(4)

where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers satisfying 𝑎𝑑 − 𝑏𝑐 = 1. In
addition, the kernel 𝐾𝐴(𝑢, 𝑡) is given by

𝐾𝐴 (𝑢, 𝑡) = 𝐶𝐴𝑒𝑗((𝑎/2𝑏)𝑡2−𝑢𝑡/𝑏+(𝑑/2𝑏)𝑢2) (5)

and𝐶𝐴 = √1/𝑗2𝜋𝑏. According to (4), it can easily be obtained
that the LCT has three degrees of freedom and when the

LCT parameters are certain, the kernel 𝐾𝐴(𝑢, 𝑡) of the LCT
is a LFM signal; thus the LCT of a LFM signal with suitable
parameters can be a dirac function [31]. Therefore, the LCT
is more flexible and suitable for processing nonstationary
signals, especially for the LFM signals.

3. The Proposed Method of the
Simulated Vibration Signal

When the gear causes a partial failure, the amplitude and
phase of the vibration signal of the gear are modulated,
which are periodic with the gear’s rotation frequency [1]. The
vibration signal 𝑥(𝑡) attained from a pair of meshing gears
with tooth fault could be represented as [1]

𝑥 (𝑡) = 𝑀∑
𝑚=0

𝑋𝑚 (1 + 𝑎𝑚 (𝑡)) cos (2𝜋𝑚𝑘𝑓𝑠𝑡 + 𝜙𝑚)

= 𝑀∑
𝑚=0

𝑋𝑚 [1 + 𝑁∑
𝑛=0

𝐴𝑚𝑛 cos (2𝜋𝑛𝑓𝑠𝑡 + 𝜎𝑚𝑛)]
× cos (2𝜋𝑚𝑘𝑓𝑠𝑡 + 𝜙𝑚) ,

(6)

where 𝑎𝑚(𝑡) is the amplitude modulating function and 𝑀
represents the amount of tooth meshing harmonics. 𝑋𝑚
and 𝜙𝑚 indicate the 𝑚th meshing harmonic’s amplitude and
phase, separately [1]. 𝑘𝑓𝑠 is themeshing frequency, 𝑘 expresses
the gear teeth’s amount, and 𝑓𝑠 stands for the SRF [1]. 𝑁
represents sidebands’ amount around the tooth meshing
harmonics.𝐴𝑚𝑛 and 𝜎𝑚𝑛 are the amplitudes and phases at the𝑛th sidebands of the amplitudemodulated signals around the𝑚th meshing harmonic, separately [2, 4].

The SRF 𝑓𝑠 in (6) is time varying and the vibration
signal can be approximated to the LFM signal when the
instantaneous rotational speed is ascending and descending
straight in the acceleration and deceleration, respectively. To
verify the proposed algorithm is effective for the vibration
signals; next, a signal is considered to simulate the vibration
signal obtained from the acceleration process as follows based
on (6):

𝑥 (𝑡) = [1 + cos (2𝜋𝑓𝑚𝑡)] cos (2𝜋 ⋅ 10 ⋅ 𝑓𝑚𝑡) + 𝜑 (𝑡) , (7)

where𝑓𝑚 stands for the SRF in the simulated vibration signal,
which is chosen as 𝑓𝑚 = 2𝑡 + 30 when 0 ≤ 𝑡 < 1.5 and
equal to 33 when 1.5 ≤ 𝑡 ≤ 2. The sampling frequency
is 2000Hz and the number of the sample points is set as
4096. The time interval is set as 0 s to 2 s. Moreover, because
the vibration signals attained from the gear in variable speed
condition are usually with low SNR, 𝜑(𝑡) is selected as the
Gaussian white noise with the SNR is −4 dB. Based on the
above, Figure 2 depicts the signal shown in (7) without the
noise being depicted in it. The simulated vibration signal
based on (7) is presented in Figure 3. Figure 4 shows the
FT spectrum of the simulated vibration signal. According
to Figure 3, because the signal contains noise, any useful
information can not be obtained directly. Analogously, since
the simulated vibration signal is nonstationary and has noise,
this leads to the FT spectrum in Figure 4 that has spectral
aliasing and blurring.
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Figure 2: The simulated gear vibration signal without noise.
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Figure 3: The simulated gear vibration signal with noise.
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Figure 4: The FT of the simulated gear vibration signal with noise.

Now, to obtain the fault features from the simulated gear
vibration signal and diagnose the gear faults, the MSCPP and
the LCT are applied. According to the above analysis, we
first use the MSCPP method to estimate the instantaneous
frequency of the simulated gear vibration signal. Because
the sampling frequency is 2000Hz, we let the search range
and the search step lengths of the frequency slope be −100
to 100Hz/s and 1Hz/s, respectively. The search range and
the search step lengths of offset coefficients are 0 to 100Hz
and 1Hz, separately. The points of any dyadic time span
is 32. Therefore, we can obtain that 𝑗max = log2(𝑁/32),
which is equal to 7. Based on these, by applying the MSCPP
algorithm, the IF of the simulated gear vibration signal is
obtained in Figure 5. In Figure 5, the blue line and the red line
represent the actual and estimated instantaneous frequency
of the simulated gear vibration signal, respectively. The red
line is coincided with the blue line very well in Figure 5,
which shows that the MSCPP algorithm can be used to
estimate IF of the simulated gear vibration signal efficiently.
Based on Figure 6, we can know that the time interval
from 1 s to 1.5 s can be selected to approach the acceleration
process of the gear in a short period of time. Next, based
on the gradient of the signal segment from 1 s to 1.5 s and
the properties of the LCT [30], the optimal LCT spectrum
with parameters (0.93, 0.42, 0.34, 1.89) of the selected signal
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Figure 5: Estimated instantaneous frequency of the simulated gear
vibration signal.
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Figure 6:The LCT of the simulated gear vibration signal with noise.

segment is obtained in Figure 6. It is shown that Figure 6
has three peaks, which are (595, 1066), (661, 1915), and(727, 869.6), respectively.The highest peak is (661, 1915).The
LCT frequency distances of each of the two adjacent peaks are
66Hz. It is shown that the frequency of (661, 1915) is almost
ten times of the SRF associated with the LCT.Thismeans that
the peaks (595, 1066), (661, 1915), and (727, 869.6) are 9, 10,
and 11 times of the SRF associated with the LCT, separately.
From the results, we can know that it is very consistent with
the analysis of (7).

Moreover, since the results obtained in Figure 6 show that
the range of any two adjacent peaks are equal, hence the signal
presented in Figure 3 could be considered as the fault gear
vibration signal based on the description in [1, 4]. Thus, the
proposed method is an effective method to diagnose the gear
fault according to this simulation.
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Figure 7: Platform of experiment.
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Figure 8: The vibration signal obtained from the normal gear.
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Figure 9: The FT of the vibration signal obtained from the normal
gear.

4. Experimental Evaluation

In Section 3, the validity of the MSCPP and the LCT in gear
faults diagnosis has been verified by the signal presented in
(7). In order to further verify the correctness of the proposed
algorithm, in this part, the gear faults of experiment setup
presented in Figure 7 have been used. In this gear experiment
equipment, the output gear has 75 teeth and the input pinion
gear has 55 teeth. The sample frequency and the sample time
of the signals obtained from this experiment equipment are
4000Hz and 2 s, respectively.

Firstly, the vibration signal attained from a normal gear
in variable speed condition is presented in Figure 8. The
signal presented in Figure 8 is nonstationary since the gear
signals with low SNR are obtained from variable speed
condition. On this account, Figure 9 depicts the FT of the
signal shown in Figure 8 which has spectrum aliasing, and
it cannot be used to diagnose the gear fault. Next, by applying
the method we presented in this paper, we used the MSCPP
method to estimate the instantaneous frequency of the gear
vibration signal at first. In the MSCPP method, the seeking
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Figure 10: Estimated instantaneous frequency of the signal pre-
sented in Figure 13.
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Figure 11: The LCT of the selected signal segment.

scope of frequency offset coefficients and slope coefficient are
[0, 2000Hz] and [−100, 100Hz/s], respectively. The search
resolutions of these are chosen as 1Hz/s and 1Hz, separately.
The samples are 4096. Based on these, we can obtain the
maximum scales of 7.Thus, the IF of the gear vibration signal
is obtained in Figure 10. FromFigure 10, it is easy to know that
the time interval from 1 s to 1.4 s can be selected to approach
the acceleration process of the gear in a short period of time.
Subsequently, by utilizing the advantages of the LCT and
the properties of the selected signal segment, the optimal
LCT spectrum with parameters (−0.17, 1.53, −0.98, 2.93) of
the selected signal segment is shown in Figure 11. We can
easily know that Figure 11 has only one peak. That is to say,
the signal presented in Figure 8 has not amplitudemodulated.
Hence, the gear can be seen as a normal gear.

Then, Figure 12 shows a gear vibration signal, which
is attained from the gear which has a broken tooth in
variable speed condition. The FT of the signal presented
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Figure 12: The vibration signal obtained from the fault gear.
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Figure 13: The FT of the vibration signal obtained from the fault
gear.
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Figure 14: Estimated instantaneous frequency of the signal pre-
sented in Figure 17.

in Figure 12 is presented in Figure 13, which shows that it
also has spectrum aliasing and cannot be used to diagnose
the gear fault. Now, by applying the proposed method,
the search range of frequency offset coefficients and slope
coefficient are also set as [0, 2000Hz] and [−100, 100Hz/s].
The search resolutions of these are also chosen as 1Hz/s
and 1Hz, separately. The samples are 4096. Based on these,
the estimated instantaneous frequency of the gear vibration
signal can been obtained in Figure 14 based on the MSCPP
method. From Figure 14, the time interval from 1 s to 1.5 s
can be selected to approach the acceleration process of the
gear in a short period of time. Subsequently, according to the
above analysis, the optimal LCT spectrum with parameters(−0.51, 0.87, −1.47, 0.56) of the selected gear vibration signal
segment can be obtained in Figure 15. We can know that
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−20
−10

0
10
20

A
m

pl
itu

de

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Time

Figure 16: Another vibration signal obtained from the fault gear.

Figure 15 has three peaks, that is, (613, 2403), (636, 3512),
and (659, 2524). Since (636, 3512) is the highest and there
are 55 teeth in the pinion gear, thus the input SRF associated
with the LCT can be expressed as 636Hz/55 = 11.56Hz [4],
which is equal to half of the frequency distance.That is to say,
the meshing frequency is twofold of the SRF. Based on the
above analysis, the gear should be considered to have fault
happened.

In addition, in order to further verify the correctness
of the proposed algorithm, Figure 16 presents another gear
vibration signal, which is attained from the fault gear in
different variable speed condition. The FT of the signal
presented in Figure 16 is presented in Figure 17, which also
shows that it cannot be used to diagnose the gear fault. Now,
by applying the proposed method, similar to the above cases,
the largest scale is also 7. Then, the estimated IF of the gear
vibration signal has been obtained in Figure 18 based on the
MSCPP method. From Figure 18, the time interval from 1 s
to 1.4 s can be selected to approach the deceleration process
of the gear in a short period of time. Then, the optimal
LCT spectrum with parameters (1.53, 0.57, 0.42, 0.81) of the
selected gear vibration signal segment can be obtained in
Figure 19. It is shown that Figure 15 also has three peaks(591, 2484), (613, 3543), and (635, 2103). Since (613, 3543) is
the highest and there are 55 teeth in the pinion gear, thus
the input SRF associated with the LCT can be expressed as
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Figure 17: The FT of the vibration signal presented in Figure 16.
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Figure 18: Estimated instantaneous frequency of the signal pre-
sented in Figure 16.

613Hz/55 = 11.14Hz. That is to say, the meshing frequency is
twofold of the SRF in the LCT domain. Thus, it can be said
that the gear also have fault that occurred.

Based on the normal case and two fault cases, it is shown
that the method proposed in this can diagnose the gear faults
in variable speed condition. However, the MSCPP and LCT
method only can show that the gear faults happened, and our
research directions will be the diagnosis of the types and the
severity of the gear faults.

5. Conclusion

In this paper, a method based on the MSCPP and the LCT
has been applied to diagnose the gear faults in the variable
speed condition for the first time. Firstly, the preliminaries
of the MSCPP and the LCT have been presented. Then, the
proposedmethod of the simulated gear vibration signals have
been showed. At last, in order to further verify the correctness
of the proposed algorithm, the diagnosis of actual gear
vibration signals also has been presented. It is indicated that
the proposedmethod candiagnose the gear faults availably. In
the future, the diagnosis of early gear faults, intermittent gear
faults, andmultiple gear faults also will be our future research
directions.
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Figure 19: The LCT of the selected signal segment presented in
Figure 16.
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