1,452 research outputs found

    Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling

    Get PDF
    Collective social media provides a vast amount of geo-tagged social posts, which contain various records on spatio-temporal behavior. Modeling spatio-temporal behavior on collective social media is an important task for applications like tourism recommendation, location prediction and urban planning. Properly accomplishing this task requires a model that allows for diverse behavioral patterns on each of the three aspects: spatial location, time, and text. In this paper, we address the following question: how to find representative subgroups of social posts, for which the spatio-temporal behavioral patterns are substantially different from the behavioral patterns in the whole dataset? Selection and evaluation are the two challenging problems for finding the exceptional subgroups. To address these problems, we propose BNPM: a Bayesian non-parametric model, to model spatio-temporal behavior and infer the exceptionality of social posts in subgroups. By training BNPM on a large amount of randomly sampled subgroups, we can get the global distribution of behavioral patterns. For each given subgroup of social posts, its posterior distribution can be inferred by BNPM. By comparing the posterior distribution with the global distribution, we can quantify the exceptionality of each given subgroup. The exceptionality scores are used to guide the search process within the exceptional model mining framework to automatically discover the exceptional subgroups. Various experiments are conducted to evaluate the effectiveness and efficiency of our method. On four real-world datasets our method discovers subgroups coinciding with events, subgroups distinguishing professionals from tourists, and subgroups whose consistent exceptionality can only be truly appreciated by combining exceptional spatio-temporal and exceptional textual behavior

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Intelligent Tourist Routes

    Get PDF
    A maior parte das pessoas gosta de viajar e o Porto foi eleita a cidade da Europa mais interessante para visitar em 2019. Com grande potencial de atratividade, o Porto conta com infindáveis opções de rotas turísticas. Investigações recentes mostram que um operador eficiente de viagens não só deve ter em conta as necessidades e constrangimentos do utilizador, mas também permitir algum grau de livre exploração da cidade, adaptando a oferta de acordo com as preferências do utilizador. A imagem global do contexto é um bom ponto de partida para uma viagem memorável. Nesta dissertação pretende-se desenvolver sistema inteligente capaz de maximizar a satisfação do visitante, criando percursos dinâmicos e personalizados em função de preferências e interesses dos utilizadores. Estes serão aferidos diretamente através de técnicas modernas de segmentação e descoberta de perfil e indiretamente através da pontuação atribuída pelos utilizadores a sets de fotografias (normais e 360) dos locais de interesse. Ao longo do percurso o utilizador poderá dar feedback sobre os locais de interesse sugeridos por forma a potenciar a aprendizagem do sistema

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    SpectralDiff: A Generative Framework for Hyperspectral Image Classification with Diffusion Models

    Full text link
    Hyperspectral Image (HSI) classification is an important issue in remote sensing field with extensive applications in earth science. In recent years, a large number of deep learning-based HSI classification methods have been proposed. However, existing methods have limited ability to handle high-dimensional, highly redundant, and complex data, making it challenging to capture the spectral-spatial distributions of data and relationships between samples. To address this issue, we propose a generative framework for HSI classification with diffusion models (SpectralDiff) that effectively mines the distribution information of high-dimensional and highly redundant data by iteratively denoising and explicitly constructing the data generation process, thus better reflecting the relationships between samples. The framework consists of a spectral-spatial diffusion module, and an attention-based classification module. The spectral-spatial diffusion module adopts forward and reverse spectral-spatial diffusion processes to achieve adaptive construction of sample relationships without requiring prior knowledge of graphical structure or neighborhood information. It captures spectral-spatial distribution and contextual information of objects in HSI and mines unsupervised spectral-spatial diffusion features within the reverse diffusion process. Finally, these features are fed into the attention-based classification module for per-pixel classification. The diffusion features can facilitate cross-sample perception via reconstruction distribution, leading to improved classification performance. Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods. For the sake of reproducibility, the source code of SpectralDiff will be publicly available at https://github.com/chenning0115/SpectralDiff

    Building change detection from remotely sensed data using machine learning techniques

    Full text link
    As remote sensing data plays an increasingly important role in many fields, many countries have established geographic information systems. However, such systems usually suffer from obsolete scene details, making the development of change detection technology critical. Building changes are important in practice, as they are valuable in urban planning and disaster rescue. This thesis focuses on building change detection from remotely sensed data using machine learning techniques. Supervised classification is a traditional method for pixel level change detection, and relies on a suitable training dataset. Since different training datasets may affect the learning performance differently, the effects of dataset characteristics on pixel level building change detection are first studied. The research is conducted from two angles, namely the imbalance and noise in the training dataset, and multiple correlations among different features. The robustness of some supervised learning algorithms to unbalanced and noisy training datasets is examined, and the results are interpreted from a theoretical perspective. A solution for handling multiple correlations is introduced, and its performance on and applicability to building change detection is investigated. Finally, an object-based post processing technique is proposed using prior knowledge to further suppress false alarms. A novel corner based Markov random field (MRF) method is then proposed for exploring spatial information and contextual relations in changed building outline detection. Corners are treated as vertices in the graph, and a new method is proposed for determining neighbourhood relations. Energy terms in the proposed method are constructed using spatial features to describe building characteristics. An optimal solution indicates spatial features belonging to changed buildings, and changed areas are revealed based on novel linking processes. Considering the individual advantages of pixel level, contextual and spatial features, an MRF based combinational method is proposed that exploits spectral, spatial and contextual features in building change detection. It consists of pixel level detection and corner based refinement. Pixel level detection is first conducted, which provides an initial indication of changed areas. Corner based refinement is then implemented to further refine the detection results. Experimental results and quantitative analysis demonstrate the capacity and effectiveness of the proposed methods

    Sensing the Cultural Significance with AI for Social Inclusion

    Get PDF
    Social Inclusion has been growing as a goal in heritage management. Whereas the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL) called for tools of knowledge documentation, social media already functions as a platform for online communities to actively involve themselves in heritage-related discussions. Such discussions happen both in “baseline scenarios” when people calmly share their experiences about the cities they live in or travel to, and in “activated scenarios” when radical events trigger their emotions. To organize, process, and analyse the massive unstructured multi-modal (mainly images and texts) user-generated data from social media efficiently and systematically, Artificial Intelligence (AI) is shown to be indispensable. This thesis explores the use of AI in a methodological framework to include the contribution of a larger and more diverse group of participants with user-generated data. It is an interdisciplinary study integrating methods and knowledge from heritage studies, computer science, social sciences, network science, and spatial analysis. AI models were applied, nurtured, and tested, helping to analyse the massive information content to derive the knowledge of cultural significance perceived by online communities. The framework was tested in case study cities including Venice, Paris, Suzhou, Amsterdam, and Rome for the baseline and/or activated scenarios. The AI-based methodological framework proposed in this thesis is shown to be able to collect information in cities and map the knowledge of the communities about cultural significance, fulfilling the expectation and requirement of HUL, useful and informative for future socially inclusive heritage management processes
    corecore