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Abstract
Collective social media provides a vast amount of geo-tagged social posts, which con-
tain various records on spatio-temporal behavior. Modeling spatio-temporal behavior
on collective social media is an important task for applications like tourism recom-
mendation, location prediction and urban planning. Properly accomplishing this task
requires amodel that allows for diverse behavioral patterns on each of the three aspects:
spatial location, time, and text. In this paper, we address the following question: how to
find representative subgroups of social posts, for which the spatio-temporal behavioral
patterns are substantially different from the behavioral patterns in the whole dataset?
Selection and evaluation are the two challenging problems for finding the exceptional
subgroups. To address these problems, we propose BNPM: a Bayesian non-parametric
model, to model spatio-temporal behavior and infer the exceptionality of social posts
in subgroups. By training BNPM on a large amount of randomly sampled subgroups,
we can get the global distribution of behavioral patterns. For each given subgroup of
social posts, its posterior distribution can be inferred by BNPM. By comparing the
posterior distribution with the global distribution, we can quantify the exceptionality
of each given subgroup. The exceptionality scores are used to guide the search process
within the exceptional model mining framework to automatically discover the excep-
tional subgroups. Various experiments are conducted to evaluate the effectiveness and
efficiency of our method. On four real-world datasets our method discovers subgroups
coinciding with events, subgroups distinguishing professionals from tourists, and sub-
groups whose consistent exceptionality can only be truly appreciated by combining
exceptional spatio-temporal and exceptional textual behavior.

Keywords Subgroup discovery · Exceptional model mining · Spatio-temporal
analytics · Collective social media · Bayesian non-parametric model
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1268 X. Du et al.

1 Introduction

Popular social media platforms such as Twitter and Instagram have millions of users
who share their photos, stories and geo-locations. This allows the collective social
media to reflect diverse human behavioral patterns. The behavioral patterns in social
posts are represented by distributions of spatial locations, time, and word topics (Hong
et al. 2012). Specific deviations across any combination of these three distributions can
indicate interesting, exceptional behavior of the population; one can for instance see
such deviations surrounding large events, such as sports games and concerts (Zheng
et al. 2018). In this paper, instead of social posts for individuals, we are interested in
finding social posts for subgroups restricted by descriptions, for which the behavioral
patterns are substantially different compared to the behavioral patterns in the whole
dataset. Discovering and understanding these behavioral patterns on collective social
media is a task of predominant importance, since properly accomplishing this task can
benefit applications such as tourism recommendation, location prediction, and urban
planning (Kim et al. 2016).

To contribute to this behavioral understanding, instead of finding outlying social
posts far from themain activity areas, we are looking for exceptional subgroups: coher-
ent subsets for which we can formulate concise descriptions in terms of conditions
on attributes of the data (Herrera et al. 2011; Atzmueller 2015), e.g., ‘Age < 25 ∧
gender = Female’. The most challenging problems for finding exceptional subgroups
are: how to model the spatio-temporal behavior and quantify the exceptionality of the
subgroups? Before proposing the solution, we discuss the challenges which need to
be overcome at first:

Spatio-temporal modeling Difficulties stem from two aspects. On the one hand,
unlike modeling behavior of individuals, where the records are grouped by certain
subjects (Yuan et al. 2017), in our problem setting, the candidate subgroups are apriori
unknown. We cannot model the spatio-temporal behavior of all the subgroups either,
because of the pattern explosion problem (Meeng et al. 2014). This means that we can-
not directlymodel the global distribution of behavioral patterns over thewhole dataset.
On the other hand, collective social activities typically contain uncertain spatial, tem-
poral, and text information on diverse scales (Jankowiak andGomez-Rodriguez 2017).
To properly overcome these challenges, we need a model that can handle the diverse,
uncertain, large scale, and high-dimensional information in collective social posts and
induce the global distribution of behavioral patterns in the whole dataset.

Exceptionality evaluation Our aim is to identify exceptional behavioral patterns of
social posts in subgroups. The general method would be to learn the distributions of
spatial locations, time, and texts empirically byprobabilitymass (Giannotti et al. 2016),
followed by comparing the distributions in subgroups with the global distributions in
the whole dataset. However, this method is not applicable for the research problem of
this paper. The reasons are two-fold. On the one hand, given limited records, we cannot
be confident whether a subgroup is exceptional or not in long term behavior only by
comparing the empirical distributions. On the other hand, because of the uncertainty
and diversity of social posts in collective social media, it is difficult to simply assume
a distribution for the behavioral pattern and build a null hypothesis to test (Hooi et al.
2016).
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Exceptional spatio-temporal behavior mining 1269

Fig. 1 Comparison between Bayesian posterior distribution and point estimate. Contours represent the
distribution of μ (mean of spatial locations) following a multivariate Gaussian distribution; solid points
represent point estimates of μ

To overcome these challenges, we propose BNPM: a Bayesian non-parametric
model for spatio-temporal behavior modeling on the subgroup level. In BNPM, we
randomly sample arbitrarily large numbers of subgroups as the training samples in
order to estimate the global behavior. We employ a Chinese Restaurant Process (CRP)
to gather those randomly sampled subgroups into several components. In this process,
the behavioral pattern of each subgroup is assumed to follow a prior distribution. Sub-
groups in oneCRPcomponent are allowed to have variations in distribution, but similar
kinds of behavior ought to aggregate within every single component. Hence, the CRP
model allows for modelingmultiple types of normal behavior to occur simultaneously,
which more accurately represents real life than if we assume one monolithic kind of
normal behavior. The ‘non-parametric’ in our model means that there are infinitely
many parameters indicating the distributions of behavioral patterns. We estimate the
global distribution of behavioral patterns in the whole dataset by the mixture of behav-
ioral patterns with mixture coefficients of the components [cf. Eq. (19)]. Specifically,
for each given subgroup, we can calculate its posterior distribution with the learned
BNPM, according to the information of spatial locations, time, and texts. The excep-
tionality score of the given subgroup is derived by computing the distance between
the posterior distribution and the global distribution. We employ a variant of weighted
KL-divergence (van Leeuwen and Knobbe 2012) for multi-variate distribution (Soch
and Allefeld 2016), to calculate the distance between the posterior distribution of the
subgroup and the global distribution. Finally, we aggregate the exceptionality scores
in the aspects of spatial locations, time, and texts as the final exceptionality score of
the candidate subgroup.

In Fig. 1, we present an artificial example to show the advantage of our method.
From the perspective of a point estimate, both the red and the yellow subgroups
are exceptional compared with the global population (in blue). However, from the
perspective of Bayesian posterior distribution, the yellow one is muchmore suspicious
than the red one. The reason is that the point estimate uses limited data to estimate the
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1270 X. Du et al.

Fig. 2 Methodological pipeline involving BNPM

behavioral pattern, which might lead to biased results. The Bayesian non-parametric
method evaluates the exceptionality of behavioral patterns by comparing the posterior
distribution with the global distribution, which can help us effectively find exceptional
behavioral patterns and prevent false discoveries.

The training process of our model includes two iteration steps: assigning sub-
groups into components and updating hyper-parameters for the components. These
two processes influence each other iteratively. We integrate these two steps with the
collapsed Gibbs sampling (Porteous et al. 2008) algorithm. Having learned the well-
trained model over the whole dataset, we can calculate the posterior distribution for
any subgroup across the location distribution, time distribution, and text distribution.
This allows us to employ Exceptional Model Mining (EMM) to automatically dis-
cover subgroups with exceptional spatio-temporal behavior. The whole process of our
method is shown in Fig. 2. To demonstrate the effectiveness and scalability of our
method, we validate our model by conducting experiments on four real-world datasets
from New York, London, Tokyo, and Shenzhen.

The resulting subgroups illustrate the versatility of the method. In London, our
method discovers the spatially coherent subgroup of people attending a specific foot-
ball match. In Tokyo, it discovers a subgroup of people frequenting three locations in
a specific ward: two touristic attractions and a station where trains leave for a third
touristic attraction (identified by analyzing the texts of the tweets) which is located rel-
atively far away. The combination of spatio-temporal behavior and tweet text behavior
can benefit the uncovering of such a subgroup, which is where the added value of our
method lies. Finally, in another ward of Tokyo, two subgroups separate the profes-
sionals and the tourists by their combined spatio-temporal and tweet text behavior.

1.1 Main contributions

– We introduceBNPM: aBayesian non-parametricmodel for spatio-temporal behav-
ior modeling on the subgroup level. BNPM can handle diverse, uncertain, large
scale and multi-modal information in collective spatio-temporal data.
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Exceptional spatio-temporal behavior mining 1271

– We define a new evaluation method for exceptional model mining. The global
distribution is generated by the mixture of behavioral patterns in BNPM. By
comparing the posterior distribution of a candidate subgroup with the global dis-
tribution, we can quantify the exceptionality of subgroups.

– We conduct various experiments on four real-world datasets. The results show
that our method is effective and efficient for finding exceptional social posts on
the subgroup level.

2 Related work

Exceptional spatio-temporal behavior mining on the subgroup level is related to
three fields: anomaly detection (Chandola et al. 2009), exceptional model min-
ing (Duivesteijn et al. 2016) in the aspect of exceptionality metric; and spatio-temporal
modeling (Atluri et al. 2017) in the aspect of behavior modeling.

2.1 Anomaly detection

Anomaly detection is highly explored in online ratings (Hooi et al. 2016), reviews (Xie
et al. 2012), and social network analysis (Shin et al. 2017). In order to detect collec-
tive anomalies on spatio-temporal datasets with different distributions, densities and
scales, researchers have proposed amulti-source topicmodel for spatio-temporalmod-
eling (Wu et al. 2017; Zheng et al. 2015). Methods such as classification, statistical,
and regression models are used for modeling user behavior to discover anomaly pat-
terns (Shipmon et al. 2017).

Unlike anomaly detection, there is no labeled data for identifying anomalies in
exceptional model mining. This means that standard supervised learning cannot be
used directly for this task. The exceptional subgroups are identified by comparing the
performance of themodel in subgroupswith the performance of themodel in thewhole
dataset, for which the subgroups are restricted by the descriptive variables (Duivesteijn
et al. 2016). The whole process of exceptional model mining lies into the fields of
knowledge discovery. This formulates the main difference between the research of
anomaly detection and exceptional model mining.

2.2 Exceptional model mining

The aim of subgroup discovery (SD) (Atzmueller 2015) is to find subsets described
by combinations of attributes, in which the distribution of one predefined target col-
umn is significantly different from the distribution in the whole dataset. Exceptional
model mining (EMM) (Duivesteijn et al. 2016) can be seen as an extension of SD,
focusing on multiple target columns. In EMM, a measure of exceptionality is defined
that indicates how different a model fitted on the targets is within the subgroup, as
compared to that same model fitted on the targets in the whole dataset. Several model
classes (Kaytoue et al. 2017; Jorge et al. 2012) have been defined and explored; for
instance, Bayesian networks (Duivesteijn et al. 2010), and regression (Duivesteijn
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1272 X. Du et al.

et al. 2012). Though existing model classes can handle all kinds of targets, most
cannot model spatio-temporal behavior, which contains geo-spatial coordinates and
timestamps. Lemmerich et al. (2016) introduce first-order Markov chains as a model
class for sequence data, which can be used for mining exceptional transition behavior.
Bendimerad et al. (2016) employweighted relative accuracy to evaluate characteristics
in subgraphs of urban regions. However, they do not consider the text information,
especially the word topics. This information integration is the added value of our
model.

The exceptionality measure in SD & EMM is called quality measure. Popular
examples include WRAcc (van Leeuwen and Knobbe 2011), z-score (Mampaey et al.
2015), and KL-divergence (van Leeuwen and Knobbe 2012). An efficient method to
find subgroups optimizing formultiple qualitymeasures at once can be found in Soulet
et al. (2011). In order to properly handle the noise inherent to spatial and temporal
data and prevent false positives, we introduce a quality measure under the Bayesian
framework.

2.3 Spatio-temporal modeling

There is a vast amount of literature about spatio-temporal data mining (Atluri et al.
2017; Lane et al. 2014; Wang et al. 2011; Yuan et al. 2017). Most work focuses on
modeling mobility patterns of individuals or groups aiming at location prediction or
period discovery. The basic assumption is that individuals or groups might have a
regular activity area, which indicates the inner similarity of social and geographic
closeness (Cranshaw et al. 2010). Becker et al. (2016) introduce a Bayesian approach
for comparing hypotheses about human trails on the web. Piatkowski et al. (2013)
present a graphical model designed for efficient probabilistic modeling of spatio-
temporal data, which can keep the accuracy as well as efficiency. Knauf et al. (2016)
propose a spatio-temporal kernel for multi-object scenarios. A branch of research
focuses on visual analytics for spatio-temporal modeling (Zheng et al. 2016). Inter-
active and human-guided methods are employed to discover the behavioral patterns
and understand the heterogeneous information in the urban data (Puolamäki et al.
2016; Chen et al. 2018). The differences between our work and the work before are
two-fold. On the one hand, the collective social posts on the subgroup level in our
research is constrained by the descriptions, which distinguishes our work from others
such as twitter stream clustering or user clustering (Chierichetti et al. 2014). On the
other hand, the exceptional subgroups and the components of behavioral distributions
are unobserved from the datasets, which means that we have to establish a model for
the modeling of global distribution of behavioral pattern as well as discovering the
exceptional subgroups comparing with this global distribution.

123
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3 Preliminaries

Assume a dataset Ω: a bag of m records r ∈ Ω of the form:

r = (a1, . . . as, b1, . . . bu),

where s and u are positive integers. We call a1, . . . , as the descriptive attributes or
descriptors of r , and b1, . . . , bu the target attributes or targets of r . The descriptive
attributes are taken from an unrestricted domainA.Mathematically, we define descrip-
tions as functions D : A → {0, 1}. A description D covers a record r j if and only if
D(a j

1 , . . . , a
j
s ) = 1.

Definition 1 (Subgroup) The subgroup corresponding to a description D is the bag of
records GD ⊆ Ω that D covers:

GD =
{
r j ∈ Ω

∣∣∣∣D(a j
1 , . . . , a

j
s ) = 1

}
.

Definition 2 (Quality measure) A quality measure is a function ϕ : D → R that
assigns a numeric value to a description D. Occasionally, we use ϕ(G) to refer to the
quality of the induced subgroup: ϕ(GD) = ϕ(D).

Typically, a quality measure assesses the subgroup at hand based on some concept
in terms of the targets. Hence, a description and a quality measure interact through
different partitions of the dataset columns; the former focuses on the descriptors, the
latter focuses on the targets, and they are linked through the subgroup.

A Chinese Restaurant process (CRP) (Blei et al. 2010) is a distribution on partitions
of integers obtained by imagining a process by which n − 1 customers sit down in a
Chinese restaurant with an infinite number of tables with infinite capacity. Whenever
a new customer arrives, customer n, she can either choose an existing table k with nk
seated customers or sit at an empty table, following distribution:

p(existing table k | previous customers) = nk
n − 1 + α

,

p(new table | previous customers) = α

n − 1 + α
.

In each step a new table is created with non-zero probability, which allows this process
to adapt to increasing complexity of the data.

4 Subgroup-level spatio-temporal modeling (BNPM)

We consider the spatio-temporal behavior of geo-tagged social posts on the level of
subgroups restricted by descriptive attributes. For notational purposes, we ignore that
these subgroups need to be generated somehow; instead, we assume that some process
has delivered us a list of subgroups, indexed i = 1, . . . , n, where subgroup i has di
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1274 X. Du et al.

Table 1 Notations used in the paper

Notation Description

n Number of subgroups

m Number of geo-tagged social media posts

di Number of posts belongs to subgroup i

D Description of a subgroup

ri j Social media post j in subgroup i

li j = (x, y) Spatial location of post j in subgroup i

ti j = t Time of post j in subgroup i

wi j = {w1, . . . , wq } Texts of post j in subgroup i

nk Number of subgroups in component k

zi Component assignment of subgroup i

K Number of components

V Vocabulary of the whole words

α Concentration parameter of CRP

βk Probability to choose component k

μi ,Σi Mean and covariance of spatial locations in subgroup i

υi , σi Mean and variance of time in subgroup i

θi Word distribution for posts in subgroup i

μ0zi , λzi ,Wzi , νzi Normal–inverse–Wishart (NIW) prior for μi ,Σi

υ0zi , κzi , ρzi , ψzi Normal-Gamma (NG) prior for υi , σ
2
i

θ0zi Dirichlet prior for θi

posts, indexed by j = 1, . . . , di . The posts in subgroup i are denoted by the variables
ri j ∈ {1, 2, . . . ,m}; posts may belong to multiple subgroups. Each post is a 3-tuple ri j
= (li j ,ti j ,wi j ), where li j = (x,y), ti j = t and wi j = {w1, . . . , wq} represent the spatial
location, time, and text in a geo-tagged post. Table 1 lists the notations used in the rest
of this paper. We now propose the problem of discovering subgroups with exceptional
spatio-temporal behavior as follows:

Problem 1 (Discovering subgroupswith exceptional spatio-temporal behavior)Given
a dataset of geo-tagged social postsΩ , descriptive attributes taken fromA, descriptions
D : A → {0, 1}, and a quality measure ϕ, our aim is to find a bag of subgroups
{SD1 , . . . , SDq }, where ∀D′ ∈ D \ {D1, . . . , Dq},∀D ∈ {D1, . . . , Dq}, ϕ(D′) ≤
ϕ(D).

The main challenge for this problem is the subgroup selection process with regard
to the exceptionality compared with the global population. To accomplish this task, we
need a spatio-temporal model on the subgroup level, to model the behavioral patterns
in the global population and subgroups.
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4.1 The Bayesian non-parametric model

Several intuitions underpin our model:

1. The behavioral patterns of subgroups over the whole dataset can be captured by
several components. Each component follows a single triplet of prior distributions:
of spatial locations, time, and word topics. We assume that the social posts are
generated by themixtures of components withmixture coefficients, but the number
of components and the mixture coefficients are unobserved from the dataset.

2. Despite following the same prior distribution, subgroups within the same compo-
nent need not have the same distributions of spatial locations, posting time, and
texts.

3. Social posts are distributed in spatial regions, with time ranges as well as word
topics. These distributions indicate the spatio-temporal behavioral patterns of sub-
groups. The spatio-temporal behavioral pattern varies according to the center and
scale of the region and time, as well as the word topics.

Based on these intuitions, we assume that subgroups and social posts are governed by
a generative model. This model for spatio-temporal behavior on the subgroup level is
a mixture model in which each subgroup belongs to one of the components, in order
to capture different types of behavior. Each component represents a behavioral pattern
with specific prior distributions of location, time, and word topics. The spatial location
associated to each geo-tagged post is drawn from a multivariate Gaussian distribution,
as suggested by Gonzalez et al. (2008):

l = (x, y) ∼ N (l|μ,Σ).

For each component, we assume that a Normal-Inverse-Wishart (NIW) distribution is
the prior distribution that governs the generating of means and covariance matrices
(μ,Σ) for spatial locations, as suggested by Yuan et al. (2017):

(μ,Σ) ∼ NIW(μ,�|μ0, λ,W , ν).

Similarly, we can write down the generative process of time t from a univariate Gaus-
sian distribution, as suggested by Cho et al. (2011), as:

t ∼ N (t|υ, σ 2), (1)

where the mean υ and variance σ are drawn from a Normal-Gamma prior distribution,
as suggested by Yuan et al. (2017):

(υ, σ ) ∼ NG(υ, σ |υ0, κ, ρ, ψ). (2)

Each word w in {w1, . . . , wq} is drawn from a multinomial distribution, as suggested
by Jankowiak and Gomez-Rodriguez (2017):

w ∼ Mult(θ), (3)
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1276 X. Du et al.

Fig. 3 Graphical model representing subgroups with locations, time and texts of posts. Shaded rectangles
are hyper-parameters, blank circles are latent variables and shaded circles are observations

where θ is a distribution that represents proportions of words in vocabulary V , which
depends on the Dirichlet prior θ0 (Jankowiak and Gomez-Rodriguez 2017):

θ ∼ Dirichlet(θ0). (4)

By construction, the proposed generative model gathers the subgroups into several
components, which raises the question howmany components we should set. If we set
the number too high, spatio-temporal behavioral patterns of subgroups may vary too
much, which will impede proper evaluation of behavior exceptionality. Conversely,
if we set the number too low, exceptional subgroups may be mixed with normal
subgroups, which will lead to false positive errors. This is where we employ the
Chinese Restaurant Process (cf. Sect. 3). The full generative process (cf. Fig. 3) can
be summarized as follows:

1. Set the number of components K ← 0
2. For i = 1, . . . , n:

(a) Assign subgroup i to an existing component k ∈ {1, . . . , K } with probability
βk =

nk
i−1+α

, or to a new component k = K + 1 with probability α
i−1+α

.
(b) Draw (μi ,Σi )|zi = k ∼ NIW(μ0k, λk,Wk, νk).
(c) Draw (υi , σi )|zi = k ∼ NG(υ0k, κk, ρk, ψk).
(d) Draw θi |zi = k ∼ Dirichlet(θ0k).
(e) For j = 1,…,di :

(i) Draw li j ∼ N (l|μi ,Σi ).
(ii) Draw ti j ∼ N (t|υi , σ 2

i ).
(iii) Draw each wi jq ∈ {w1, . . . , wq} ∼ Mult(w|θi ).

(f) Update hyper-parameters in component k.
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4.2 Inferencemethod

As illustrated above, to conduct the whole generating process, we need to estimate the
latent variables, which cannot be observed directly from the datasets. We propose to
employ collapsed Gibbs sampling to infer the latent variables in the proposed gener-
ative model efficiently (Porteous et al. 2008). Given full observation of n subgroups,
the total likelihood is:

P(l, t,w, z|α,μ0, λ,W , ν, v0, κ, ρ, ψ, θ0)

=
∫

β

P(z|β)P(β|α)dβ ·
∫

μ

∫
�

P(l|μ,�)P(μ,�|μ0, λ,W, ν)dμd�

·
∫
v

∫
σ

P(t|υ, σ )P(υ, σ |v0, κ, ρ, ψ)dμdσ ·
∫

θ

P(w|θ)P(θ |θ0)dθ. (5)

We exploit the conjugacy between the multinomial and Dirichlet distributions, the
Gaussian and Normal-Inverse-Wishart distributions, and the Gaussian and Normal-
Gamma distributions. Hence we can analytically integrate out the parameters
β,μ,�, υ, σ , and θ , and only sample the component assignments z, which is done as
follows:

P(zi = k|z¬i, li, ti,wi, α, μ0k, λk,Wk, νk, υ0k, κk, ρk, ψk, θ0k) ∝
P(zi = k|z¬i, α) · P(li|l¬i, μ0k, λk,Wk, νk)

·P(ti|t¬i, υ0k, κk, ρk, ψk) · P(wi|w¬i, θ0k). (6)

The first term of Eq. (6) is governed by the CRP:

P(zi = k|z¬i, α) =
{ nk¬i

n−1+α
if k exists,

α
n−1+α

if k is new.
(7)

The second term is the posterior predictive distribution of li in component k, excluding
subgroup i . We assume that each post in subgroup i is generated equivalently, hence
the second term equals:

di∏
j=1

p(li j |lk¬i, μ0k, λk,Wk, νk)

=
di∏
j=1

τνnk−1

(
li j

∣∣∣∣μnk¬i ,
λnk + 1

λnk (νnk − 1)
Wnk¬i

)
. (8)

Here, lk¬i, nk¬i are locations, and the number thereof in component k after excluding
subgroup i ,

μnk¬i = λkμ0k + nk¬i l̄k¬i

λnk
, λnk = λk + nk¬i ,
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1278 X. Du et al.

Wnk¬i = Wk +
∑
l∈lk¬i

(l − l̄k¬i )(l − l̄k¬i )
T

+ λknk¬i

λk + nk¬i
(l̄k¬i − μ0k)(l̄k¬i − μ0k)

T , νnk = νk + nk¬i . (9)

The posterior predictive distribution of each li j follows a bivariate Student’s t-
distribution (Murphy 2007). Similarly, we can write down the posterior predictive
distribution of ti in the third term of Eq. (6):

di∏
j=1

τ2ρnk

(
ti j

∣∣∣∣υnk¬i ,
ψnk¬i (κnk + 1)

ρnkκnk

)
, where (10)

υnk¬i = κkμ0k + nk¬i t̄k¬i

κnk
, κnk = κk + nk¬i , ρnk = ρk + nk¬i/2

ψnk¬i = ψk + 1

2

∑
t∈tk¬i

(t − t̄k¬i )
2 + κknk¬i (t̄k¬i − υ0k)

2

2κnk
. (11)

The posterior predictive distribution of each ti j follows a univariate Student’s t-
distribution. For the fourth term of Eq. (6), each posterior predictive distribution of
wij for post j in subgroup i follows a Dirichlet-multinomial distribution (Tu 2014):

P(wij|θ0k) = Γ (ck¬i + V θ0k)
∏

w∈V Γ (cwk¬i + cw j + θ0k)

Γ (ck¬i + c j + V θ0k)
∏

w∈V Γ (cwk¬i + θ0k)
. (12)

Here, ck¬i is total number of words in component k so far excluding subgroup i , cwk¬i

is how often wordw occurs in component k so far excluding subgroup i , c j is the total
number of words in post i j , and cw j is how often word w occurs in post i j .

Our model assumes that each component has its own specific hyper-parameters. If
we fix all the assignments of z, we use random search for hyper-parameter optimiza-
tion (Bergstra and Bengio 2012) to choose μ0k, λk,Wk, νk , υ0k, κk, ρk, ψk , and θ0k .
Our goal ismaximizing themarginal likelihoodof the data in each component (Bergstra
et al. 2011):

argmax(μ0k ,λk ,Wk ,νk )
P(lk|μ0k, λk,Wk, νk), (13)

argmax(υ0k ,κk ,ρk ,ψk )
P(tk|υ0k, κk, ρk, ψk), (14)

argmaxθ0k
P(wk|θ0k). (15)

Now, we can build up the two iteration processes in our inference algorithm. The one
is iteratively optimizing hyper-parameters for fitting subgroups in associated compo-
nents. The other is iteratively sampling component assignments to assign subgroups.
These two steps influence each other: better hyper-parameter selection provides more
accurate posterior predictive distribution to assign subgroups; better assignments for
subgroups can provide more accurate likelihood estimation for hyper-parameter selec-
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Algorithm 1 Inference algorithm for BNPM.
Initialize z, μ0k , λk ,Wk , νk , υ0k , κk , ρk , ψk , θ0k
Initialize α

while not reach the maximum iterations do
for k = 1 to K do

Update μ0k , λk ,Wk , νk using Eq. (13)
Update υ0k , κk , ρk , ψk using Eq. (14)
Update θ0k using Eq. (15)

for i = 1 to n do
Exclude i from component zi
for k = 1 to K do

Compute P(zi = k|z¬i, α) using Eq. (7)
Compute P(li|lk¬i, μ0k , λk ,Wk , νk ) using Eq. (8)
Compute P(ti|tk¬i, υ0k , κk , ρk , ψk ) using Eq.(10)
Compute P(wi|wk¬i, θ0k ) using Eq. (12)
Compute P(zi = k|z¬i, .) using the preceding results

Compute P(zi = k∗|z¬i, α) using Eq. (7)
Compute P(li|μ0k∗ , λk∗ ,Wk∗ , νk∗ ) using Eq. (8)
Compute P(ti|υ0k∗ , κk∗ , ρk∗ , ψk∗ ) using Eq. (10)
Compute P(wi|θ0k∗ ) using Eq. (12)
Compute P(zi = k∗|z¬i, .) using the preceding results
Sample knew from P(zi |z¬i, .)
Update component zi = knew
if knew > K then

K = K + 1
if any component k is empty then

K = K − 1

tion. We iteratively run these two steps until a maximum number of iterations is
reached. See Algorithm 1 for details.

4.3 Subgroup evaluationmethod

Having learned the proposed model, we need to evaluate the exceptionality of a
subgroup. Behavioral patterns are gauged in terms of the location distribution, time
distribution, and text distribution. As an example, we use time distribution to explain
our method for exceptionality evaluation. Let ti denote a vector representing the post
time of collective social posts in subgroup i . Generally, people will assume a distri-
bution for P(t), e.g.,N (υ, σ ), and use the point estimate of υ and σ as the estimated
parameters of that distribution. The learned distribution is regarded as an estimation
about the temporal behavioral pattern of subgroup i . However, this distribution is not
sufficient to represent the real behavioral pattern of subgroup i , because we cannot
be confident about the behavior of that subgroup with limited records. Hence, in this
paper, instead of a point estimate for a distribution with limited data, we compute the
posterior distribution as our belief about the behavioral pattern of a subgroup. For each
given candidate subgroup i , we firstly estimate the component assignment zi on this
subgroup by using Eqs. (6), (7), (8), (10), and (12). Then, with BNPM, we calculate
the posterior distribution of subgroup i’s location distribution, time distribution, and
text distribution:
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P(μ,Σ |li) = NIW(μ,Σ |μ0zi , λzi ,Wzi , νzi ), (16)

P(υ, σ |ti) = NG(υ, σ |υ0zi , κzi , ρzi , ψzi ), (17)

P(θ |wi) = Dirichlet(θ |θ0zi ). (18)

Here we calculate the posterior parameters the same way as Eqs. (9), (11), and (12),
with the prior hyper-parameters in component zi . Having obtained the posterior dis-
tribution, the next step is to evaluate the exceptionality. In the training process, we
learn the mixture proportion of components denoted as β. The global distribution of
time is governed by both components and the mixture proportion of components. We
can calculate the distribution of time in the global population by Eq. (2) as:

P(υ, σ ) =
K∑

k=1

βk · NG(υ, σ |υ0k, κk, ρk, ψk). (19)

This distribution describes the temporal behavioral pattern averaged by the global
population. Now we can compare the posterior distribution of time conditioned on a
subgroup, with the global distribution of time. The more different they are, the more
exceptional the subgroup is. The difference indicates how difficult it is to generate
the time distribution in that subgroup under the global population. In order to quan-
tify this difference, we employ KL-divergence as the distance measure between two
distributions. For simplicity, we represent Eq. (17) with f (υ, σ ) and Eq. (19) with
g(υ, σ ) = ∑K

k=1 βk · gk(υ, σ ). The exceptionality score of a given subgroup i in the
time aspect is:

ϕti = di
m

DKL( f ||g) = di
m

∫
f (υ, σ ) log

f (υ, σ )

g(υ, σ )
d(υ, σ )

= di
m

∫
f (υ, σ ) log

f (υ, σ )∑K
k=1 βk · gk(υ, σ )

d(υ, σ ), (20)

where di
m represents the generality of subgroup i , which is a trade-off with exception-

ality. Note that g(υ, σ ) is a mixture of several distributions, with which it is difficult to
compute the KL-divergence efficiently. In order to overcome this problem, we propose
to compute the Goldberger approximation (Goldberger et al. 2003):

DGoldberger( f ||g) =
K∑

k=1

(DKL( f ||gk) − logβk). (21)

According to the properties of conjugate prior, the posterior distribution has the same
form as the prior distribution. Thanks to properties of the NG function (Soch and
Allefeld 2016),we can compute theKL-divergence of twoNG distributions as follows:
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Table 2 Datasets used in this paper

Dataset # Tweets # Users Timeframe # Attributes

London 169,033 48,232 April 2016 10

New York 210,820 87,510 April 2016 10

Tokyo 201,643 49,214 April 2016 10

Shenzhen 303,161 100,000 October 2016 8

DKLNG ( f ||gk) = 1

2
κ2
gk

ρ2
f

ψ2
f

(υ0gk − υ0 f )
2+
1

2

κ2
gk

κ2
f

− log
κgk

κ f
− 1

2

+ ρgk log
ψ f

ψgk
− log

Γ (ρ f )

Γ (ρgk )
+ (ρ f − ρgk )h(ρ f )

− (ψ f − ψgk )
ρ f

ψ f
, (22)

where h(x) is the digamma function. Combining this outcomewith Eqs. (20) and (21),
we compute the difference between the posterior distribution of time conditioned on
one subgroup and the distribution of time in thewhole dataset, denoted asϕti . Similarly,
we calculate ϕli and ϕwi . Then we aggregate these three exceptionality indicators after
normalizing to get the final exceptionality score:

ϕi = e
ϕ∗
li
+ϕ∗

ti
+ϕ∗

wi
−3

. (23)

5 Experiments

We evaluate the performance of our method on four real-world datasets from four
cities on three continents: Twitter datasets from London, Tokyo, and New York, and
a Weibo dataset from Shenzhen. The details of datasets are shown in Table 2. The
attributes of tweets contain: country, current living place, followers, following, listed,
language, favourites, retweets, bio, date, source, gender, hour, latitude, longitude, and
tweet text. We preprocess the tweets as follows:

1. Converting the date into weekdays from 1 to 7;
2. Extracting occupation from bio, such as student, driver, writer, editor, and so on;
3. Removing stop words;
4. Converting hours to float, from 1 to 24.

We use hour, latitude and longitude, and tweet text as the input values for temporal,
spatial, and text information, respectively. All other attributes are used as the descrip-
tors to generate subgroups. All the experiments are carried out on an Intel Core i7
2.60GHz laptop, 24GB RAM, Windows 10.1

1 The code and datasets of our work are available for reviewing purposes: https://www.dropbox.com/sh/
m8fb6iz29gq3r0l/AAABS7vMYFx-kS6S3t-9o0ZQa?dl=0.
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Table 3 Exceptional subgroups in Shenzhen

D ϕsd (D)
|D|
|Ω| High-frequency words

D1 0.79 0.04 New song, come on, music, support, like, rank

D2 0.64 0.04 Thailand, selfie, holiday, Weibo, tour, photography

D3 0.62 0.03 New song, come on, music, support, like, rank

D4 0.61 0.03 Team, investment, customer, finance, refine, ability

D5 0.51 0.04 Stadium, sports, run, insist, seaside, struggle

We translate the original Chinese words into English, for your convenience. Descriptions: D1: source ==
‘vivo’, D2: Gender == ‘m’∧ source == ‘other’, D3: source == ‘vivo’∧Gender != ‘m’, D4: source == ‘Mi’
∧ Gender == ‘m’, D5: Age >9 ∧ Gender == ‘m’. Higher ϕsd (D) indicates more exceptionality. Higher
|D|
|Ω| indicates more coverage of subgroup on the whole dataset

To train BNPM by Algorithm 1, we must generate a set of input subgroups. To do
so, we randomly sample 100,000 subgroups for which the coverages are ranging from
10 to 50% of the posts in the original dataset. For the spatial part, we calculate the
mean coordinate and covariance from the data itself as the prior mean μ0 and prior
covariance W . The other hyper-parameters are initialized as follows: λ = 1, ν = 30.
For the temporal part, we calculate the prior mean of post time v0 and initialize other
hyper-parameters as follows: α = 0.1, κ = 0.1, ρ = 0.5, ψ = 0.1. Through these
settings and parametrizations, we train the BNPM model to capture the behavioral
patterns in the global dataset; for instance the time distribution can now be estimated
with Eq. (19).

Having captured the global behavior, we can now mine for subgroups exhibiting
exceptional behavior, by contrasting their behavior against the norm. We employ the
beam search algorithm given in Duivesteijn et al. (2016), Algorithm 1 for the subgroup
search process. In the quality measure step, we calculate the exceptionality score of a
subgroup by the method in Sect. 4.3. We set the beamwidth to 50 and the search depth
to 2. This last parameter setting is relatively narrow; it ensures that we find subgroups
expressed as a conjunction of at most two conditions on descriptive attributes. The
reason to not mine to a greater search depth is philosophical rather than technical:
computational complexity would allow us to mine deeper without prohibitive time
cost, but whenwe allow our resulting subgroups to be defined in terms of a conjunction
of more conditions on attributes, it becomes more and more opaque which of these
conditions are actually relevant, and it becomes less clear what to do with the resulting
information: mining deeper leads to subgroups which are no longer actionable.

5.1 London and Shenzhen

In Tables 3 and 4, we present the top 5 most exceptional subgroups found in Shenzhen
and London, respectively. High frequency words in those subgroups are presented to
show themain topics in the text of the tweets.We can see that the discovered subgroups
restricted by specific descriptions show specific topical behavior, which can help us
to further discover special events reflected by the group of social posts.
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Table 4 Exceptional subgroups in London

D ϕsd (D)
|D|
|Ω| High-frequency words

D1 0.95 0.03 London, Chelsea, Stamford, bridge, football, bar

D2 0.90 0.07 Stockmarket, trade, stock, intern, broker, forecast

D3 0.88 0.07 Street, kingcross, station, camdenlock, transport, driver

D4 0.86 0.05 Hackney, gym, class, image, orange, boss

D5 0.85 0.04 History, restaurant, sweet, healthy, cover, Paddington

Descriptions: D1: weekday: 6–7 ∧ Place == ‘Hammersmith’, D2: Place == ‘Camberwell’, D3: Place ==
‘Camden Town’, D4: Place == ‘Hackney’, D5: Place == ‘Kensington’

The top subgroup found in London encompasses the collective social posts
described by “weekday: 6–7∧ Place == Hammersmith London”. The spatio-temporal
behavior focuses on Saturday and Sunday in the borough of Hammersmith & Fulham
in west London, a map of which is shown in Fig. 4 with in red a heatmap of the spatial
locations of the tweets. We visualize the texts of the posts by generating a word cloud
shown in Fig. 5, which shows that the main keywords of the tweets frequently contain
Chelsea, Stamford, Football, VS, etcetera. It just so happens that on April 16, 2016, a
Premier League football match between Chelsea and Manchester City was played at
Stamford Bridge, which is the football stadium surrounding the green cross in Fig. 4.
Our model accurately captured this subgroup that has specific spatio-temporal behav-
ior with specific word topics. This shows that our method can discover and identify
meaningful exceptional collective behavior.

5.2 NewYork

Figure 6 displays subgroups found in New York. Our method discovers a subgroup of
people who live in Manhattan but do not speak English (D:Language != ‘en’ ∧ Place
== Manhattan). From the word topics in those social posts, we can see that they are
talking about the attractions and entertainments inManhattan. In addition, we discover
a subgroup of people discussing protest rallies in a suburb (D:Place == Yonkers), and
a group of French speakers (Language == ‘fr’) sending tweets about a famous French
restaurant, Aux Merveilleux de Fred. These findings show that characterizing groups
of the dataset by the defined descriptive variables such as ‘Language’ and ‘Place’
contains sufficient information to discover subgroups with exceptional behavior in
terms of spatial location, time, and texts.

5.3 Tokyo

The full versatility of results that one could find with BNPM is on display in Fig. 7,
featuring the top subgroups found in Tokyo.

The top subgroup (D:Place == Chiyoda-ku) concentrates on the centrally-located
ward of Chiyoda. The heatmap shows that the people in this specific subgroup are
mainly concentrated in three locations. The bottom-left location is the top attraction

123



1284 X. Du et al.

Fig. 4 Spatial locations of tweets covered by description: “weekday: 6–7 ∧ Place == Hammersmith Lon-
don”, plotted onto the map of London. The green cross highlights Stamford Bridge stadium
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Fig. 5 Word cloud generated from the texts of tweets covered by the subgroup plotted in Figure 4

in Chiyoda ward: the imperial palace. The top-right location is Akihabara, nicknamed
Akihabara Electric Town, which is a shopping district for video games, anime, manga,
and computer goods; its function as a cultural center for all things electronic makes
Akihabara a major touristic attraction in its own right. The bottom-right location is
Tokyo station, which is far from a touristic attraction. Its relevance becomes clearwhen
looking at the tweet texts, which include references to DisneySea. This is yet another
major touristic attraction of Tokyo, but it is located 15 kilometers away from Chiyoda
ward. However, the easiest way for tourists to reach this destination is by taking a
train on the Keiyo line, whose trains depart from Tokyo station. Hence, tourists that
visit the imperial palace and Akihabara also express interest through tweets in visiting
DisneySea, which is to be reached by a train departing from the ward in which the
other two attractions lie. This finding shows that the combination of spatio-temporal
behavior and word topics can benefit the discovery of such exceptional subgroups.
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Fig. 6 Most exceptional subgroups in New York; descriptions, maps, and high-frequency words

Fig. 7 Most exceptional subgroups in Tokyo; descriptions, maps, and high-frequency words
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Fig. 8 Runtime of BNPM versus n

The second subgroup found in Tokyo (D:Language != ‘es’∧ Place == Shinjuku-ku)
contrasts with subgroups discussed so far: these clearly are not tourists. Shinjuku is
the major commercial and administrative center. Filtering out the people who tweet
in Spanish (we will discuss this group later, in the fourth subgroup), we are left with a
group of people discussing topics like job hiring and career. Spatial locations of these
people are strongly concentrated around Shinjuku train station (where big department
stores, electronic stores, banks, and city hall are located), which makes sense for
professionals.

The third subgroup (D:Place == Shibuya-ku) focuses on Shibuya ward, which is a
major destination for fashion and nightlife. Arguably its most famous attraction is the
Shibuya scramble crossing, a crosswalk at a busy intersection just outside of Shibuya
station, where pedestrians in all directions (including diagonal) get the green light at
the same time. The main spatial focus in this subgroup is located at that crossing. In
the tweet texts we find references to Tsutaya, which is a book store located on a corner
of that crossing. On the second floor of Tsutaya is a Starbucks coffee shop, whose
numerous window seats overlook the scramble crossing.

In contrast with the second subgroup, the fourth subgroup found in Tokyo
(D:Language == ‘es’ ∧ Place == Shinjuku-ku) concentrates on the same ward (Shin-
juku), but this time only on those people who tweet in Spanish. These are more likely
to be tourists. The spatial location of these people is concentrated a few blocks to the
west of Shinjuku station, where Tokyo Metropolitan Government Building is located.
This building is famous for its observation deck, which provides a view over all of
Tokyo and, if the weather is good, of Mount Fuji. This is the one place in Shinjuku
which is of specific interest to tourists, and our BNPMmodel manages to separate out
these from the professionals in the second subgroup. Notice also the interest expressed
in the tweet texts of the fourth subgroup for Disney, which is absent from the tweets
of the second subgroups.
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5.4 Scalability

In this paper, we consider the scalability of our BNPM method in the aspect of model
learning.According toAlgorithm1, the runtime isO(MAX×n×K̄ ).MAX represents
themaximumnumber of loopswe run randomsearch for hyper-parameter optimization
(K̄ time) and collapsedGibbs sampling (n× K̄ time). K̄ represents the average number
of latent components. n represents the number of input subgroups. Figure 8 shows the
relation between runtime behavior and n.

6 Conclusions

We propose a novel method for mining exceptional spatio-temporal behavior on col-
lective social media. Behavior in this setting can be exceptional in three distinct ways:
in terms of spatial locations, time, and texts. We develop a Bayesian non-parametric
model (BNPM) to automatically identify spatio-temporal behavioral patterns on the
subgroup level, explicitly modeling the three exceptional behavior types. Using a
Chinese Restaurant Process, our model can cater for several distinct forms of global
behavioral patterns, while also allowing for subgroup behavior that is exceptional w.r.t.
all the kinds of global behavior. This behavioral dissimilarity can manifest itself in
any subset of the three behavior types. The global distribution of the whole dataset
can be summarized by the mixture of behavioral patterns with mixture coefficients
in the components gathered by our model. We can also induce the distribution of a
candidate subgroup by calculating its posterior distribution with BNPM, according to
the behavioral data in that subgroup. The distance between the posterior distribution
of the candidate subgroup and the global distribution indicates the exceptionality of
that subgroup. This allows us to provide an effective evaluation method to measure
the exceptionality of a behavioral pattern and to employ it in finding exceptional sub-
groups with collective social behavior. We develop an efficient learning algorithm
based on collapsed Gibbs sampling to train the model.

We report results on datasets from various countries, continents, and cultures:
BNPMfinds exceptional subgroups in Shenzhen (cf. Table 3), London (cf. Table 4 and
Figs. 4 and 5 ), New York (cf. Fig. 6), and Tokyo (cf. Fig. 7). The results in London
illustrate how BNPM can discovery unusual spatio-temporal tweeting behavior that
coincides with a specific event: a Premier League football match of Chelsea F.C. (cf.
Figs. 4 and 5 ). But the capabilities of BNPM range far beyond event detection, as
illustrated by the top subgroup found in Tokyo (cf. Fig. 7, leftmost figure). Here, we
discover a subgroup whose spatial behavior mostly revolves around three locations:
two touristic attractions and a train station. The relevance of the train station becomes
apparent when analyzing the tweet text behavior of the subgroup: the involved people
frequently talk about a third touristic attraction 15 kilometers away, which is easiest
reached by a train that departs from the discovered station. Hence, the exceptionality of
this subgroup can only be properly appreciated by jointly analyzing the exceptionality
of spatio-temporal and tweet text behavior, which is precisely what BNPM is designed
to do. Similarly, contrasting the second and fourth most exceptional subgroups found
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in Tokyo, we can distinguish the professionals from the tourists in Shinjuku ward by
their exceptional joint spatial and tweet text behavior.

The four datasets analyzed in this paper stem from four countries on three conti-
nents. Hence, we illustrate that BNPM is effective across various languages, religions,
and cultures. In future work, it would be interesting to further investigate exactly how
the vastly varying language patterns affect the proposed model.
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