4,707 research outputs found

    Will at least one of the Higgs bosons of the next-to-minimal supersymmetric extension of the Standard Model be observable at LEP2 or the LHC?

    Get PDF
    We demonstrate that there are regions of parameter space in the next-to-minimal (i.e. two-Higgs-doublet, one-Higgs-singlet superfield) supersymmetric extension of the SM for which none of the Higgs bosons are observable either at LEP2 with s=192GeV\sqrt{s}=192 GeV and an integrated luminosity of L=1000inversepbL=1000 inverse pb or at the LHC with L=600inversefbL=600 inverse fb.Comment: 6 pages, full postscript file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/gunion/nmssm_sm96.ps To appear in ``Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics'

    Quantum coherence in the presence of unobservable quantities

    Full text link
    State representations summarize our knowledge about a system. When unobservable quantities are introduced the state representation is typically no longer unique. However, this non-uniqueness does not affect subsequent inferences based on any observable data. We demonstrate that the inference-free subspace may be extracted whenever the quantity's unobservability is guaranteed by a global conservation law. This result can generalize even without such a guarantee. In particular, we examine the coherent-state representation of a laser where the absolute phase of the electromagnetic field is believed to be unobservable. We show that experimental coherent states may be separated from the inference-free subspaces induced by this unobservable phase. These physical states may then be approximated by coherent states in a relative-phase Hilbert space

    Partial Observability and its Consistency for PDEs

    Get PDF
    In this paper, a quantitative measure of partial observability is defined for PDEs. The quantity is proved to be consistent if the PDE is approximated using well-posed approximation schemes. A first order approximation of an unobservability index using an empirical Gramian is introduced. Several examples are presented to illustrate the concept of partial observability, including Burgers' equation and a one-dimensional nonlinear shallow water equation.Comment: 5 figures, 25 pages. arXiv admin note: substantial text overlap with arXiv:1111.584

    Non Abelian gauge symmetries induced by the unobservability of extra-dimensions in a Kaluza-Klein approach

    Full text link
    In this work we deal with the extension of the Kaluza-Klein approach to a non-Abelian gauge theory; we show how we need to consider the link between the n-dimensional model and a four-dimensional observer physics, in order to reproduce fields equations and gauge transformations in the four-dimensional picture. More precisely, in fields equations any dependence on extra-coordinates is canceled out by an integration, as consequence of the unobservability of extra-dimensions. Thus, by virtue of this extra-dimensions unobservability, we are able to recast the multidimensional Einstein equations into the four-dimensional Einstein-Yang-Mills ones, as well as all the right gauge transformations of fields are induced. The same analysis is performed for the Dirac equation describing the dynamics of the matter fields and, again, the gauge coupling with Yang-Mills fields are inferred from the multidimensional free fields theory, together with the proper spinors transformations.Comment: 5 pages, no figures, to appear in Mod. Phys. Lett.

    The Consistency of Partial Observability for PDEs

    Get PDF
    In this paper, a new definition of observability is introduced for PDEs. It is a quantitative measure of partial observability. The quantity is proved to be consistent if approximated using well posed approximation schemes. A first order approximation of an unobservability index using empirical gramian is introduced. For linear systems with full state observability, the empirical gramian is equivalent to the observability gramian in control theory. The consistency of the defined observability is exemplified using a Burgers' equation.Comment: 28 pages, 3 figure

    Chern-kernels and anomaly cancellation in M-theory

    Get PDF
    This paper deals with magnetic equations of the type dH=J where the current J is a delta-function on a brane worldvolume and H a p-form field strength. In many situations in M-theory this equation needs to be solved for H in terms of a potential. A standard universality class of solutions, involving Dirac-branes, gives rise to strong intermediate singularities in H which in many physically relevant cases lead to inconsistencies. In this paper we present an alternative universality class of solutions for magnetic equations in terms of Chern-kernels, and provide relevant applications, among which the anomaly-free effective action for open M2-branes ending on M5-branes. The unobservability of the Dirac-brane requires a Dirac quantization condition; we show that the requirement of ``unobservability'' of the Chern-kernel leads in M-theory to classical gravitational anomalies which cancel precisely their quantum counterparts.Comment: LaTex, 39 pages, references and comments adde

    Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics

    Get PDF
    We present a procedure for reducing the number of continuous states of discrete-time linear switched systems, such that the reduced system has the same behavior as the original system for a subset of switching sequences. The proposed method is expected to be useful for abstraction based control synthesis methods for hybrid systems
    • …
    corecore