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Abstract

In this paper, a new definition of observability is introduced for
PDEs. It is a quantitative measure of partial observability. The quan-
tity is proved to be consistent if approximated using well posed ap-
proximation schemes. A first order approximation of an unobservabil-
ity index using empirical gramian is introduced. For linear systems
with full state observability, the empirical gramian is equivalent to the
observability gramian in control theory. The consistency of the defined
observability is exemplified using a Burgers’ equation.

1 Introduction

Observability is a fundamental property of dynamical systems [6, 7] that has
an extensive literature. It is a measure of well-posedness for the estimation
of system states using both sensor information and non-sensor knowledge. It
is impossible in this paper to review all the main results on this subject while
some interesting work can be found in [3, 5, 13] for nonlinear systems, [15]
for PDEs, [11] for stochastic systems, and [14] for normal forms. For com-
plicated problems, the challenge is to define the concept so that it captures
the fundamental nature of observability, and meanwhile, it is practically
verifiable. In [8, 9], a definition of observability is introduced using dynamic
optimization as a tool. This concept is developed in a project of finding the
best sensor locations for data assimilation, a computational algorithm widely
used in numerical weather prediction. Different from traditional definitions
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of observability, the one in [8, 9] is able to collectively address several is-
sues in a unified framework, including quantitatively measure observability,
determine partial observability, accommodate both sensor and non-sensor
information, etc. Moreover, computational methods of dynamic optimiza-
tion provide practical tools to numerically approximate the observability of
complicated systems that cannot be treated using an analytic approach.

To extend the defintion of observability in [8, 9] to systems defined by
PDEs, several fundamental issues must be addressed. A partial observ-
ability makes perfect sense for infinite dimensional systems such as PDEs.
However, its computation must be carried out using finite dimensional ap-
proximations. It is known in the literature that an ODE approximation of a
PDE may not preserve the property of observability, even if the approxima-
tion scheme is convergent and stable [15, 2]. Therefore, to apply the concept
of observability to PDEs, it is important to understand its consistency in
ODE approximations.

In Section 2, some examples from existing literature are introduced to
illustrate the issues being addressed in this paper. Observability is defined
for PDEs in Section 3. In Section 4, a theorem on the consistency of observ-
ability is proved. The relationship between the unobservability index and
an empirical gramian is addressed in Section 5, which serves as a first order
approximation of the observability. In Section 6, the concept is extended
to nonlinear systems and a theorem of consistency is proved. The theory is
verified using a Burgers’ equation in Section 7.

2 Some issues on observability

Consider the initial value problem of a heat equation

ut(x, t) = uxx(x, t), x ∈ [0, L], t ∈ [0, T ]
u(0, t) = u(L, t) = 0
u(x, 0) = f(x)

Suppose the measured output is

y(t) = u(x0, t)
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for some x0 ∈ [0, L]. In this example, we assume L = 2π, T = 10, and
x0 = 0.5. Suppose the solution and its output has the following form

u(x, t) =
∞
∑

k=1

ūk(t) sin

(

kπx

L

)

y(t) =

∞
∑

k=1

ūk(t) sin

(

kπx0
L

)

Then the Fourier coefficients satisfy the following ODE

dūk
dt

= −
(

kπ

L

)2

ūk

Define

uN =
[

ū1 ū2 · · · ūN
]T

AN = diag

([

(π

L

)2
(

2π

L

)2

· · ·
(

Nπ

L

)2 ])

CN =

[

sin
(πx0

L

)

sin

(

2πx0
L

)

· · · sin

(

Nπx0
L

) ]

A Nth order approximation of the original initial value problem with output
is defined by a system of ODEs

duN

dt
= −ANuN

uN (0) = uN0
y = CNuN

(2.1)

A gramian matrix [7] can be used to measure the observability of uN0 . More
specifically, given N > 0 the observability gramian is

W =

∫ T

0
e(−AN )′t(CN )′CNe−AN tdt

Its smallest eigenvalue, σN
min, measures the observability of uN0 . A small

value of σN
min implies weak observability. If the maximum sensor error is ǫ,

then the worst estimation error of uN0 is

ǫ
√

σN
min

(2.2)
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The system has infinitely many modes in its Fourier expansion. However,
it has a single output. The computation shows that the output can make
the first mode observable. However, when the number of modes is increased,
their observability decreases rapidly. From Figure 1, for N = 1 we have
σN
min = 1.216, which implies a reasonably observable ū1(0). However, when

N is increased, the observability decreases rapidly. For N = 8, σN
min is

almost zero, i.e
[

ū1(0) ū2(0) · · · ū8(0)
]T

is extremely weakly observable, or practically unobservable. According to
(2.2), a small sensor noise results in a big estimation error.

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dimension

σ m
in

1.216e−1

3.820e−2

3.588e−3
4.810e−6 9.367e−76.341e−53.994e−4

Figure 1: Observability of heat equation

The family of solutions of a PDE is an infinite dimensional space. Finite
many sensors may not provide adequate information to accurately estimate
all modes in an initial state. In the example of heat equation, a single
output makes the first two or three modes observable. All other modes are
practically unobservable. On the other hand, in practical applications a
finite number of modes is enough to provide accurate approximations. All
we need is the observability of the finite modes. This is the reason we would
like to measure a system’s partial observability. The concept is useful not
only for PDEs. In large scale systems with high (finite) dimensions, it may
not be possible or necessary to make the entire state space observable. A
partial observability is all we need.

Another issue to be addressed in this paper is consistency. In general
the observability for PDEs is numerically computed using a system of ODEs
as an approximation. However, it is not automatically guaranteed that the
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observability of the ODEs is consistent with the observability of the original
PDE. In fact, a convergent discretization of a PDE may not preserve its
observability. Take the following wave equation as an example

utt − uxx = 0, 0 < x < L, 0 < t < T
u(0, t) = u(L, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L

(2.3)

It is known that the total energy of the system can be estimated by using
the energy concentrated on the boundary. However, in [15] it is proved that
the discretized ODEs do not have the same observability. The energy of
solutions is given by

E(t) =
1

2

∫ L

0

(

|ut(x, t)|2 + |ux(x, t)|2
)

dx

This quantity is conserved along time. It is know that, when T > 2L, the
total energy of solutions can be estimated uniformly by means of the energy
concentrated on the boundary x = L. More precisely, there exists C(T ) > 0
such that

E(0) ≤ C(T )

∫ T

0
|ux(L, t)|2dt (2.4)

Now consider the discretized system using a finite difference method,

u′′j (t) =
uj+1(t) + uj−1(t)− 2uj(t)

h2
, 0 < t < T, j = 1, 2, · · · , N

u0(t) = uN+1(t) = 0, 0 < t < T
uj(0) = u0j , u

′
j(0) = u1j , j = 0, 1, · · · , N + 1

(2.5)

The total energy of the ODEs is given by

Eh(t) =
h

2

N
∑

j=0

(

|u′j(t)|2 +
∣

∣

∣

∣

uj+1(t)− uj(t)

h

∣

∣

∣

∣

2
)

This quantity is conserved along the trajectories of the ODEs. The energy
on the boundary is defined by

∫ T

0

∣

∣

∣

∣

uN (t)

h

∣

∣

∣

∣

2

dt

Because the solutions of (2.5) converges to the solutions of (2.3), we expect
that the total energy of (2.5) can be uniformly estimated using the energy
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concentrated along a boundary, i.e. the following inequality similar to (2.4)
holds for some C(T ) uniformly in h,

Eh(0) ≤ C(T )

∫ T

0

∣

∣

∣

∣

uN (t)

h

∣

∣

∣

∣

2

dt

However, it is proved in [15] that this inequality is not true. In fact, the ratio
between the total energy and the energy along the boundary is unbounded
as h → 0. To summarize, the observability of a PDE is not necessarily
preserved in its discretizations.

In this paper, we introduce a quantitative measure of partial observabil-
ity for PDEs. Sufficient conditions are proved for the consistency of the
observability for well posed discretization schemes.

3 Problem formulation

Following [1], we formulate a linear evolution problem

ut + Lu = g, in Ω× (t0, t1]
Bu = 0 on ∂Ωb × (t0, t1]
u = u0 in Ω× {t = 0}
y(t) = H(u(·, t))

(3.1)

where Ω is an open set in IRn, L is a linear operator, bounded or unbounded,
in its domain D(L), which is a subspace of a Banach space (X, ||·||X ). In the
following, u(t) represents u(·, t) ∈ D(L). The boundary condition is defined
by a set of linear boundary operators on a part of ∂Ω, denoted by ∂Ωb. To
take into consideration of the boundary condition, we define

DB(L) = {v ∈ D(L)| Bv = 0 on ∂Ωb}

We consider the family of solutions, in either strict or weak sense, generated
by u(0) ∈ DB(L). The right-hand side g is a continuous function of the
variable t with values in X, i.e g ∈ C([t0, t1],X). A solution u(t) for this
problem is a X valued function that is continuous in [t0, t1], du/dt exists and
is continuous for all t ∈ (t0, t1], satisfying u(0) = u0, and u(t) ∈ DB(L) for
all t ∈ (0, t1]. We assume that (3.1) is a well posed problem in the Hadamard
sense ([4, 12]). More specifically,

• For any u0 ∈ DB(L), (3.1) has a solution.

• The solution for u0 ∈ DB(L) is unique.
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• The solution of (3.1) depends continuously on its initial value.

In (3.1), y(t) = H(u(·, t)) represents the output of the system in which H is
a linear operator from X to IRp. The output y(t) ∈ C([t0, t1]) has a norm
denoted by ||y||Y . Rather than the entire state space, the observability is
defined in a finite dimensional subspace. Let

W = span{e1, e2, · · · , es}

be a subspace of DB(L) generated by a basis {e1, e2, · · · , es}. In the follow-
ing, we analyze the observability of u(0) using estimates from W . Therefore
W is called the space for estimation.

Let u(t) be a solution of (3.1). Suppose uw(0) generate the best estima-
tion of u(0) in W in the sense that uw(t) minimizes the following output
error,

min ||H(uw)−H(u)||Y
subject to
duw/dt+ Luw = g
uw(t) ∈ DB(L) for all t ∈ (t0, t1]
uw(0) ∈ W

(3.2)

Let ur(t) = u(t)− uw(t) be the remainder, then

u(t) = uw(t) + ur(t) (3.3)

According to (3.2), the best estimate of u(0) in W is uw(0). The estima-
tion error, ||ur(0)||X , is not directly caused by the output noise, i.e. this
error of remainder cannot be reduced no matter how accurate the output is
measured. Therefore, the following partial observability is defined for uw(0)
only. Or equivalently, we assume u(0) ∈ W in the definition.

Definition 1 Given a nominal trajectory u of (3.1) with u(0) ∈ W . For a
given ρ > 0, define

ǫ = inf ||H(û)−H(u)||Y (3.4)

where û satisfies
ût + Lû = g
û(t) ∈ DB(L) for all t ∈ (t0, t1]
û(0) ∈ W
||û(0)− u(0)||X = ρ

(3.5)

Then ρ/ǫ is called the unobservability index of u(0) along the trajectory u(t).
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Remark. The ratio ρ/ǫ can be interpreted as follows: if the maximum error
of the measured output, or sensor error, is ǫ, then the worst estimation error
of u(0) is ρ. Therefore, a small value of ρ/ǫ implies strong observability of
u(0).

Remark. If u(0) is not in W , then the overall error in the estimation
of u(0) is bounded by the error of the estimate of uw plus the remainder,
or the truncation error, ||ur(0)||X . For u(0) to be strongly observable, it
requires a strong observability of uw(0) and a small remainder ur(0).

Remark. If u(0) = rw(0) + ur(0) is not in W , in order to compute the
observability of uw(0) one must solve (3.2) first to find uw(0). In fact, this
is not necessary. Given any solution of (3.5). It can be expressed as

û(t) = uw(t) + δu(t)

where δu(t) is a solution of the associated homogeneous PDE and

δu(0) ∈ W, ||δu(0)||X = ρ

Therefore,
û(t) + ur(t) = uw(t) + ur(t) + δu(t)
= u(t) + δu(t)

Because
||H(û)−H(uw)||Y
= ||H(û+ ur)−H(uw + ur)||Y
= H(u+ δu)−H(u)||Y

the dynamic optimization (3.4)-(3.5) is equivalent to

ǫ = inf ||H(û)−H(u)||Y
subject to
ût + Lû = g
û(t) ∈ DB(L) for all t ∈ (t0, t1]
û(0) ∈ u+W
||û(0)− u(0)||X = ρ

(3.6)

In (3.6), it is not necessary to compute uw(t).

Remark. It can be shown that, for linear problems, ρ/ǫ is a constant.
The expressions in (3.4)-(3.5) can be simplified (See Section 5). However,
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we prefer the form adopted in Definition 1 because it can be easily general-
ized to nonlinear problems

To numerically compute a system’s observability, (3.1) is approximated
by ODEs. In this paper, we consider a general approximation scheme using
a sequence of ODEs,

duN/dt+ANuN = gN , uN ∈ IRN

uN (0) = uN0
(3.7)

where N ≥ N0 for some integer N0. The approximation is constructed using
two linear mappings

PN : D(L) → IRN

ΦN : IRN → X
(3.8)

In addition, a norm, || · ||N , is defined on IRN . The approximation scheme
is said to be well posed if it satisfies the following conditions.

• Given any solution u(t) : [t0, t1] → DB(L), of (3.1). Suppose uN (t) is
a solution of (3.7) satisfying uN (0) = PN (u(0)), then

lim
N→∞

||ΦN (uN (t))− u(t)||X = 0 (3.9)

converges uniformly on [t0, t1].

• For any u ∈ X, the sequence defined by uN = PNu satisfies

lim
N→∞

||uN ||N = ||u||X (3.10)

Given the space for estimation W , we define a sequence of subspaces,
WN ⊆ IRN , by

WN = PN (W )

They are used as the space for estimation in IRN . If {e1, e2, · · · , es} is a basis
of W , then their projections to WN are denoted by

eNi = PN (ei), i = 1, 2, · · · , s

So WN = span{eN1 , eN2 , · · · , eNs }.

Example. For a spectral method, approximate solutions can be expressed
in terms of an orthonormal basis

{qN (x) : N = 0, 1, 2, · · ·}

9



For any function,

v(x) =
∞
∑

k=0

vkqN(x) ∈ D(L)

one can define
PN (v) =

[

v0 v1 · · · vN
]T

Obviously, ΦN is defined by

ΦN (
[

v0 v1 · · · vN
]T

) =

N
∑

k=0

vkqN

Because the basis is orthonormal, the l2 norm and the inner product in IRN

is consistent with those in L2(Ω). �

Example. Some approximation methods, such as finite difference and finite
element, are based on a grid defined by a set of points in space,

{xk}Nk=1

and a basis {qk} satisfying

qk(xj) =

{

1 k = j
0, otherwise

In this case, the mappings in the approximation scheme is defined as follows

PN (v) =
[

v(x1) v(x2) · · · v(xN )
]T

ΦN (
[

v1 v2 · · · vN
]T

) =

N
∑

k=1

vkqk

The inner product in IRN can be induced from the L2 space, i.e. for u, v ∈
IRN ,

< u, v >N=<
N
∑

k=1

ukqk,
N
∑

k=1

vkqk >

If the functions in D(L) are uniformly continuous, then ΦN (PN (v)) con-
verges to v uniformly. It can be shown that < ·, · >N is consistent with the
inner product in L2(Ω).�

Following [8], we define the observability for ODE systems.
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Definition 2 Given ρ > 0 and a trajectory uN (t) of (3.7) with uN (0) ∈
WN . Let

ǫN = inf ||H ◦ΦN (ûN )−H ◦ ΦN (uN )||Y
where ûN satisfies

dûN/dt+AN ûN = gN

ûN (0) ∈ WN

||ûN (0) − uN (0)||N = ρ
(3.11)

Then ρ/ǫN is called the unobservability index of uN (0) in the space WN .

4 The consistency of observability

In this section, we address the consistency of observability. The theorem is
based on a continuity assumption. In the problem formulation, the output
mapping H is not required to be bounded. However, in the proof of the
consistency theorem we require H be continuous in the following subspace
of X extended from W

WE = span
{

{e1, e2, · · · , es} ∪ {ΦN (eN1 ), · · · ,ΦN (eNs )}∞N=N0

}

Output Continuity Assumption: Given a sequence

{vk(t)}∞k=k0 ⊂ C1([t0, t1],WE)

If vk(t) converges to v(t) in WE uniformly on [t0, t1], then

lim
k→∞

H(vk) = H(v)

This assumption is automatically satisfied if H is a bounded linear op-
erator. Or if WE has a finite dimension, then this assumption is satisfied
even if the operator is unbounded in X.

Theorem 1 Suppose the initial value problem (3.1) and its approximation
scheme (3.7)-(3.8) are well posed. Suppose H satisfies Output Continuity
Assumption. Then,

lim
N→∞

ǫN = ǫ (4.1)

To prove this theorem, we need the following lemma.

Lemma 1 Given a sequence ûN (t), N ≥ N0, satisfying (3.11). Then there
exists a subsequence, ûNk(t), so that {ΦNk(ûNk(t))}∞k=1 converges uniformly
to a solution of (3.5).
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Proof . Let ū(t) be a solution of the original PDE with initial value

ū(0) = 0

and let hi(t), i = 1, 2, · · · , s, be the solution of the associated homogeneous
PDE with initial value ei, i.e.

∂hi/∂t+ Lh = 0, in Ω× (t0, t1]
Bu = 0 on ∂Ωb × (t0, t1]
u = ei in Ω× {t = 0}

(4.2)

Then any solution of the nonhomogeneous PDE with an initial value in W
has the form

ū+

s
∑

i=1

aihi (4.3)

For each N , define ūN (t) be the solution of an approximating ODE satisfying

ūN (0) = 0

We know that ΦN (ūN ) approaches ū uniformly as N → ∞. Let hNi (t),
i = 1, 2, · · · , s, be the solution of the associated homogeneous ODE with
initial value eNi , i.e.

dhNi /dt+ANhNi = 0
hNi (0) = eNi

(4.4)

Then ΦN (hNi (t)) approaches hi(t) uniformly as N → ∞. For each ûN (t) in
Lemma 1, it can be expressed as

ûN (t) = ūN (t) +
s
∑

i=1

aNi hNi (t)

and

ûN (0) =

s
∑

i=1

aNi eNi

From the initial condition in (3.11), we know that the set

{||
s
∑

i=1

aNi eNi ||N , N ≥ N0}

12



is bounded. Because the norms are consistent, we can prove that the se-
quence {(aN1 , aN2 , · · · , aNs )T }∞N=N0

has a bounded subsequence which con-

verges under the standard norm || · ||2. Let {(aNk

1 , aNk

2 , · · · , aNk
s )T }∞k=1 be the

convergent subsequence with a limit (a1, a2, · · · , as)T . Then

lim
k→∞

ΦNk(ûNk(t))

= lim
k→∞

(ΦNk(ūNk(t)) +

s
∑

i=1

aNk

i ΦNk(hNk

i (t)))

= ū(t) +
s
∑

i=1

aihi(t)

, û(t)

The limit converges uniformly. From (4.3), û(t) must be a solution of the
PDE in (3.5). Because

||ûNk(0)− uNk(0)||Nk
= ρ

and because of the consistency of the norms, we have

||û(0) − u(0)||X

= lim
k→∞

||
s
∑

i=1

aie
Nk

i − uNk(0)||Nk

= lim
k→∞

||
s
∑

i=1

aNk

i eNk

i − uNk(0)||Nk

= ρ

Therefore, {ΦNk(ûNk)}∞k=1 converges uniformly to a solution of (3.5). �

Proof of Theorem 1. First, we prove

lim inf ǫN ≥ ǫ (4.5)

Suppose this is not true, then lim inf ǫN < ǫ. There exists α > 0 and a
subsequence Nk → ∞ so that

ǫNk < ǫ− α

for all Nk. From the definition of ǫN , there exist ûNk(t) satisfying (3.11)
such that

||H ◦ ΦNk(ûNk)−H ◦ ΦNk(uNk)||Y < ǫ− α

13



From Lemma 1, we can assume that ΦNk(uNk) converges to û uniformly and
û satisfies (3.5). From Output Continuity Assumption,

lim
k→∞

||H ◦ ΦNk(ûNk)−H ◦ ΦNk(uNk)||Y = ||H(û)−H(u)||Y ≤ ǫ− α

However, from the definition of ǫ, we know

ǫ ≤ ||H(û)−H(u)||Y

A contradiction is found. Therefore, (4.5) must hold.
In the next step, we prove

lim sup ǫN ≤ ǫ (4.6)

It is adequate to prove the following statement: for any α > 0, there exists
N1 > 0 so that

ǫN < ǫ+ α (4.7)

for all N ≥ N1. From the definition of ǫ, there exists û satisfying (3.5) so
that

||H(û)−H(u)||Y < ǫ+ α (4.8)

Let ûN be a solution of the ODE

dûN/dt+AN ûN = gN

with the initial value
ûN (0) = PN (û(0))

Then the following limit converges uniformly

lim
N→∞

||ΦN (ûN (t))− û(t)||X = 0 (4.9)

A problem with ûN (0) is that its distance to uN (0) may not be ρ, which is
required by (3.11). Let us define

ūN (t) = γN (ûN (t)− uN (t)) + uN (t)

γN =
ρ

||ûN (0)− uN (0)||N

Then ū(t) satisfies (3.11). Due to the consistency of the norms and the fact
||û(0)− u(0)||X = ρ, we know

lim
N→∞

γN = 1

14



From (4.9), we have

ΦN (ūN (t))− ΦN (uN (t)) = γN (ΦN (ûN (t))− ΦN (uN (t)))

converges uniformly to û − u. Output Continuity Assumption and (4.8)
imply

lim
N→∞

||H ◦ ΦN(ūN )−H ◦ ΦN (uN )||Y
= ||H(û)−H(u)||Y
< ǫ+ α

This implies that there exits N1 > 0 so that

||H ◦ ΦN (ūN )−H ◦ ΦN(uN )||Y < ǫ+ α

for all N ≥ N1. From the definition of ǫN , we know

ǫN ≤ ||H ◦ ΦN (ūN )−H ◦ΦN (uN )||Y < ǫ+ α

for all N > N1. Therefore, (4.6) holds.
To summarize, the inequalities (4.5) and (4.6) imply

lim
N→∞

ǫN = ǫ

�

5 Empirical gramian matrix

In this section, we assume that WN and the space of y(t) are both Hilbert
spaces with inner products <,>N and < ·, · >Y , respectively. Then ǫN/ρ
equals the smallest eigenvalue of a gramian matrix. More specifically, let

{eN1 , eN2 , · · · , eNs }

be a set of orthonormal basis of WN . For any ûN satisfying (3.11), we have

ûN (t)− uN (t)

= e−AN t(ûN (0)− uN (0))

=

s
∑

k=1

ake
−AN teNk

for some coefficients satisfying

s
∑

k=1

a2k = ρ
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Therefore,

< H ◦ ΦN (ûN (t)− uN (t)),H ◦ΦN (ûN (t)− uN (t)) >N

=<

s
∑

k=1

akH ◦ ΦN (e−AN teNk ),

s
∑

l=1

alH ◦ ΦN (e−AN teNl ) >N

=
[

a1 a2 · · · as
]

G
[

a1 a2 · · · as
]T

where G is the gramian

G =
[

Gij

]

s×s
, Gij =< H ◦ΦN (e−AN teNi ),H ◦ ΦN (e−AN teNj ) >Y

(5.1)
This matrix is the same as the observability gramian if WN is the entire
space and if y(t) lies in a L2 space. It is straightforward to prove

(ǫN )2 = min < H ◦ Φ(û(t)− u(t)),H ◦ Φ(û(t)− u(t)) >N

= min∑
a2
k
=ρ2

[

a1 a2 · · · as
]

G
[

a1 a2 · · · as
]T

= σminρ
2

where σmin is the smallest eigenvalue of the gramian G. To summarize, if
uN (0) and y(t) lie in Hilbert spaces, then the unobservability index of the
discretized system can be computed using the smallest eigenvalue of the
gramian (5.1)

ρ/ǫN =
1√
σmin

(5.2)

If {eN1 , eN2 , · · · , eNs } is not an orthonormal basis, then

(ǫN )2 = min
[

a1 a2 · · · as
]

G
[

a1 a2 · · · as
]T

subject to

ρ2 =
[

a1 a2 · · · as
]

S
[

a1 a2 · · · as
]T

where
Sij =< eNi , eNj >N (5.3)

Let σmin be the smallest eigenvalue of G relative to S, i.e.

Gξ = σminSξ

for some nonzero ξ ∈ IRs. Using Lagrange multipliers we can prove

(ǫN )2 = σminρ

Therefore, (5.2) still holds true.
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For the heat equation approximated using (2.1), the associated mappings
can be defined by

PN (u) =
[

uN1 , uN2 , · · · , uNN
]T

, uNk =
2

L

∫ 2π

0
u(x) sin

(

kπx

L

)

dx

ΦN (uN ) =

N
∑

k=1

uNk sin

(

kπx

L

)

If we want to find the observability of the first s modes, Definition 2 is
equivalent to the analysis using the traditional observability gramian for
N = s. In fact, for all N ≥ s, G is a constant matrix and

G =

∫ T

0
e(A

s)′t(Cs)′CseA
stdt

Therefore, ǫN = ǫs for all N ≥ s and ǫN is consistent.
The idea of gramian matrix can be applied to nonlinear systems as a

first order approximation of observability. Let u+i (t) and u−i (t) be solutions
of the ODE in (3.11) with initial value

u±i (0) = uN (0)± ρeNi

If the system is linear, we have

H ◦ ΦN(e−AN teNi )

=
1

2ρ

(

H ◦ ΦN (u+i (t))−H ◦ ΦN(u−i (t))
)

Therefore, if the ODE in (3.11) is nonlinear, we can define

Gij =
1

4ρ2
< H◦ΦN (u+i (t))−H◦ΦN (u−i (t)),H◦ΦN (u+j (t))−H◦ΦN (u−j (t)) >N

Let σmin be the smallest eigenvalue of G relative to S, then (5.2) is the first
order approximation of the unobservability index. In this case, G is called an
empirical gramian matrix. This approach is inspired by the computational
method in [10].

6 Nonlinear systems

Consider a nonlinear initial value problem

ut = F (t, u, ux, · · ·), in Ω× (t0, t1]
Bu = 0 on ∂Ωb × (t0, t1]
u = u0 in Ω× {t = 0}
y(t) = H(u(·, t))

(6.1)

17



where Ω is an open set in IRn, F is a continuous function of t, u, and its
derivatives with respect to x. The function u(·, t) belongs to D, which is a
subspace of a Banach space X. The boundary condition is defined by a set
of linear boundary operators on a part of ∂Ω, denoted by ∂Ωb. To take into
consideration of the boundary condition, we define

DB = {v ∈ D| Bv = 0 on ∂Ωb}

In the following, u(t) represents u(·, t) in DB . A solution u(t) for this prob-
lem is a X valued function that is continuous in [t0, t1], du/dt exists and is
continuous for all t ∈ (t0, t1], satisfying u(0) = u0, and u(t) ∈ DB for all
t ∈ (0, t1]. We assume that (3.1) is well posed. Proving the well-posedness
of nonlinear PDEs is not easy. Nevertheless, for well posed problems the
consistency of observability is guaranteed. In (3.1), y(t) = H(u(·, t)) repre-
sents the output of the system in which H is a mapping, linear or nonlinear,
from X to IRp. The output y(t) ∈ C([t0, t1]) has a norm denoted by ||y||Y .
Suppose

W = span{e1, e2, · · · , es}
is the space for estimation, which is a finite dimensional subspace of DB

generated by a basis {e1, e2, · · · , es}. For any solution, u, of (6.1), similar to
(3.3) we can define its best estimate uw ∈ W and its remainder ur. Following
Definition 1, the ratio ρ/ǫ represents the unobservability index of uw, where

ǫ = inf ||H(û)−H(uw)||Y (6.2)

and û satisfies
ût = F (t, u, ux, · · ·)
û(t) ∈ DB for all t ∈ (t0, t1]
û(0) ∈ W
||û(0) − uw(0)||X = ρ

(6.3)

The approximation scheme consists of a sequence of ODEs

duN/dt = FN (t, uN ), uN ∈ IRN

uN (0) = uN0
(6.4)

and two sequences of linear mappings

PN : D → IRN

ΦN : IRN → X
(6.5)
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The norm in IRN is represented by || · ||N . Similar to the previous section,
we assume that the approximation scheme is well posed. In each IRN , the
space for estimation is defined by

WN = PN (W )
= span{eN1 , eN2 , · · · , eNs }

For any trajectory uN (t) of (6.4) with uN (0) ∈ WN , its unobservability
index is defined by ρ/ǫN in which

ǫN = inf ||H ◦ΦN (ûN )−H ◦ ΦN (uN )||Y

subject to
dûN/dt = FN (t, uN )
ûN (0) ∈ WN

||ûN (0) − uN (0)||N = ρ
(6.6)

For nonlinear systems, we need an additional assumption to guarantee
the consistency.

Convergence Assumption for ΦN : Given any sequence

{ΦN (vN (t))}∞N=N0

where vN (t) is a solution of (6.4) with vN (0) ∈ WN . If ΦN (vN (0)) converges
to u(0) ∈ WE, where u(t) is a solution of (6.1), then ΦN (vN (t)) converges
to u(t) uniformly for t ∈ [t0, t1].

This assumption is stronger than the well-posedness assumption (3.9)
because vN (0) is not required to equal PN (u(0)). In many approximation
schemes, the error satisfies

||u(t)− ΦN (uN (t))|| ≤ M

Nα

for u(0) from a bounded set in W , where PN (u(0)) = uN (0) and α > 0
is a rate of convergence. In this case, it can be proved that Convergence
Assumption for ΦN is satisfied.

Lemma 2 Suppose ΦN satisfies Convergence Assumption. Given a se-
quence ûN (t), N ≥ N0, satisfying (6.6). There exists a subsequence, ûNk(t),
such that {ΦNk(ûNk)}∞k=1 converges uniformly to a solution of (6.3).
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Proof . For each ûN (t) in Lemma 2, we have

ûN (0) =
s
∑

i=1

aNi eNi

for some constants aN1 , aN2 , · · ·, aNs . From the condition on the initial value
in (6.6), we know that the set

{||
s
∑

i=1

aNi eNi ||N , N ≥ N0}

is bounded. Then it can be proved that the sequence {(aN1 , aN2 , · · · , aNs )T }∞N=N0

has a bounded subsequence that converges,

{(aNk

1 , aNk

2 , · · · , aNk

s )T }∞k=1 → (a1, a2, · · · , as)T

Therefore
lim
k→∞

ΦNk(ûNk(0))

= lim
k→∞

s
∑

i=1

aNk

i ΦNk(eNk

i ))

=

s
∑

i=1

aiei

, û(0)

From Convergence Assumption for ΦN , {ΦNk(ûNk)}∞k=1 converges to û(t), a
solution of the PDE in (6.3). The limit converges uniformly. Because

||ûNk(0)− uNk(0)||Nk
= ρ

and because of the consistency of the norms, we have

||û(0) − u(0)||X

= lim
k→∞

||
s
∑

i=1

aie
Nk

i − uNk(0)||Nk

= lim
k→∞

||
s
∑

i=1

aNk

i eNk

i − uNk(0)||Nk

= ρ

Therefore, {ΦNk(ûNk)}∞k=1 converges uniformly to a solution of (6.3). �
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Theorem 2 Suppose the initial value problem (6.1) and its approximation
scheme (6.4)-(6.5) are well posed. Suppose ΦN satisfies Convergence As-
sumption. Suppose H satisfies Output Continuity Assumption. Then,

lim
N→∞

ǫN = ǫ (6.7)

Proof. Most part of the proof is similar to that of Theorem 1 except for
a few places where the linearity property is used. First, we prove

lim inf ǫN ≥ ǫ (6.8)

Suppose this is not true, then lim inf ǫN < ǫ. There exists α > 0 and a
subsequence Nk → ∞ so that

ǫNk < ǫ− α

for all Nk. From the definition of ǫN , there exist ûNk(t) satisfying (6.6) such
that

||H ◦ ΦNk(ûNk)−H ◦ ΦNk(uNk)||Y < ǫ− α

From Lemma 2, we can assume that ΦNk(uNk(t)) converges to û(t) uni-
formly, where û(t) satisfies (6.3). From Output Continuity Assumption,

lim
k→∞

||H(ΦNk(ûNk)−H(ΦNk(uNk)||Y = ||H(û)−H(u)||Y ≤ ǫ− α

However, from the definition of ǫ, we know

ǫ ≤ ||H(û)−H(u)||Y

A contradiction is found. Therefore, (6.8) must hold.
In the next step, we prove

lim sup ǫN ≤ ǫ (6.9)

It is adequate to prove the following statement: for any α > 0, there exists
N1 > 0 so that

ǫN < ǫ+ α (6.10)

for all N ≥ N1. From the definition of ǫ, there exists û satisfying (6.3) so
that

||H(û)−H(u)||Y < ǫ+ α (6.11)

Let ûN be a solution of the ODE

duN/dt = FN (t, uN )
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with an initial value
ûN (0) = PN (û(0))

Then the following limit converges uniformly

lim
N→∞

||ΦN (ûN (t))− û(t)||X = 0 (6.12)

A problem with ûN (0) is that its distance to uN (0) may not be ρ, which is
required by (6.6). Let ū(t) be a solution of (6.4) with an initial value

ūN (0) = γN (ûN (0) − uN (0)) + uN (0)

γN =
ρ

||ûN (0)− uN (0)||N

Obviously
||ūN (0) − uN (0)||N = ρ

and ū(t) satisfies (6.6). Due to the consistency of the norms and the fact
||û(0)− u(0)||X = ρ, we know

limN→∞ γN = 1 (6.13)

From (6.12) and (6.13), we have

lim
N→∞

ΦN(ūN (0))

= lim
N→∞

(

γN (ΦN (ûN (0)) − ΦN (uN (0))) + ΦN(uN (0))
)

= û(0)

By Convergence Assumption for ΦN , the limit

lim
N→∞

ΦN (ūN (t)) = û(t)

converges uniformly on the interval t ∈ [t0, t1]. Then Output Continuity
Assumption implies

lim
N→∞

||H(ΦN (ūN ))−H(ΦN(uN ))||Y
= ||H(û)−H(u)||Y
< ǫ+ α

There exits N1 > 0 so that

||H(ΦN (ūN ))−H(ΦN (uN ))||Y < ǫ+ α
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for all N ≥ N1. From the definition of ǫN , we know

ǫN ≤ ||H(ΦN (ūN ))−H(ΦN (uN ))||Y < ǫ+ α

for all N > N1. Therefore, (6.9) holds.
To summarize, the inequalities (6.8) and (6.9) imply

lim
N→∞

ǫN = ǫ

�

7 Example

Consider the following Burgers’ equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= κ

∂2u(x, t)

∂x2
u(x, 0) = u0(x), x ∈ [0, L]
u(0, t) = u(L, t) = 0, t ∈ [0, T ]

(7.1)

where L = 2π, T = 5, and κ = 0.14. The following output represents three
sensors that measure the value of u(x, t) at fixed locations





y1(tk)
y2(tk)
y3(tk)



 =





u(L4 , tk)

u(2L4 , tk)

u(3L4 , tk)



 , tk = k∆t, k = 0, 1, 2, · · · , Nt (7.2)

where ∆t = T/Nt, Nt = 20. Figure 2 shows a solution with discrete sensor
measurements marked by the stars. In the output space

||y||Y =

(

Nt
∑

k=0

(y21(k) + y22(k) + y23(k))

)1/2

The approximation scheme is based on equally spaced grid-points

x0 = 0 < x1 < · · · < xN = L,

where
∆x = xi+1 − xi = L/N.

23



Figure 2: A solution of Burgers’ equation with sensor measurements

System (7.1) is discretized using a central difference method

u̇N1 = −uN1
uN2 − uN0
2∆x

+ κ
uN2 − 2uN1

∆x2

u̇N2 = −uN2
uN3 − uN1
2∆x

+ κ
uN3 + uN1 − 2uN2

∆x2
...

u̇NN−1 = −uNN−1

uNN − uNN−2

2∆x
+ κ

uNN + uNN−2 − 2uNN−1

∆x2

(7.3)

where uN0 = uNN = 0. For any v(x) ∈ C1([0, L]), we define

PN (v) =
[

v(x1) v(x2) · · · v(xN−1)
]

∈ IRN−1

For any vN ∈ IRN−1, define

ΦN (vN ) =
a0
2
+

N/2−1
∑

k=1

(

ak cos

(

2πk

L
x

)

+ bk sin

(

2πk

L
x

))

+
aN/2

2
cos

(

πN

L
x

)
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where

ak =
2

N

N−1
∑

j=1

vNj cos

(

2πk

L
xj

)

, k = 0, 1, 2, · · · , N/2

bk =
2

N

N−1
∑

j=1

vNj sin

(

2πk

L
xj

)

, k = 1, 2, · · · , N/2 − 1

(7.4)

We adopt L2-norm in C1[0, L]. For any vector vN ∈ IRN−1, we defined its
norm using the Fourier coefficients (7.4),

||vN ||N = (a20/2 +

N/2−1
∑

k=1

(a2k + b2k) + a2N/2/4)π

From the orthogonality of trigonometic functions,

||ΦN (vN )||L2 = ||vN ||N

The space for estimation is defined to be

W =











α0/2 +

KF
∑

k=1

(

αk cos(
2kπ

L
x) + βk sin(

2kπ

L
x)

)

∣

∣

∣

∣

∣

∣

∣

αk, βk ∈ IR

α0/2 +

KF
∑

k=1

αk = 0











In this section, KF = 2. This means that we want to find the observability
for the first five modes in the Fourier expansion of u(0). Or equivalently, we
would like to find the observability of

[

α0 α1 β1 α2 β2
]

Define
XN =

[

x1 x2 · · · xN−1

]T

then

WN =











α0/2 +

KF
∑

k=1

(

αk cos(
2kπ

L
XN ) + βk sin(

2kπ

L
XN )

)

∣

∣

∣

∣

∣

∣

∣

αk, βk ∈ IR

α0/2 +

KF
∑

k=1

αk = 0











For this simulation, the nominal trajectory has the following initial value

u0(x) = −2 + cos(x) + sin(x) + cos(2x) + sin(2x)

25



Its solution is shown in Figure 2. To approximate its observability, we apply
the empirical gramian method to (7.3) in the space WN . The consistency of
observability is verified by the results. The ratio ρ/ǫN is approximated for
N = 4k, 5 ≤ k ≤ 19. The value of unobservability index approaches (Figure
3)

ρ/ǫ = 11.83

20 30 40 50 60 70 80
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Grid−points

ρ/ε

Figure 3: Consistency for Burgers’ equation

8 Conclusions

A definition of observability using dynamic optimization is introduced for
PDEs. The advantage of this definition is to resolve several issues and con-
cerns about observability in a unified framework. More specifically, using the
concept one can achieve a quantitative measure of partial observability for
PDEs. Furthermore, the observability can be numerically approximated. A
practical feature of this definition for infinite dimensional systems is that the
observability can be numerically computed using well posed approximation
schemes. It is mathematically proved that the approximated observability
is consistent with the observability of the original PDE. A first order ap-
proximation is derived using empirical gramian matrices. The consistency
is verified using an example of a Burgers’ equation.
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