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Abstract

In this paper, a quantitative measure of partial observability is de-
fined for PDEs. The quantity is proved to be consistent if the PDE is
approximated using well-posed approximation schemes. A first order
approximation of an unobservability index using an empirical Gramian
is introduced. Several examples are presented to illustrate the con-
cept of partial observability, including Burgers’ equation and a one-
dimensional nonlinear shallow water equation.

1 Introduction

Observability is a fundamental property of dynamical systems [8, 9] with an
extensive literature. It can be considered as a measure of well-posedness for
the estimation of system states using sensor information as well as additional
user knowledge about the system. We do not give a review of the huge
literature here on this subject. Some interesting work can be found in [5, 7,
18] for nonlinear systems, [20] for partial differential equations (PDEs), [16]
for stochastic systems, and [19] for normal forms.
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For some models of high dimensional systems, the traditional concept
of observability is not applicable. For instance, models used in numeri-
cal weather prediction have millions of state variables. Some variables are
strongly observable while some others are extremely weakly observable. It
is known that the sparse sensor network cannot make the entire system uni-
formly observable. These types of problems call for a partial observability
analysis in which we study the observability of finite many modes (or state
variables) that are important for weather prediction and ignore the modes
that are less important. In addition, it is desirable to measure the observ-
ability of a system quantitatively. It is not good enough to just tell that a
set of variables is observable or not. It is important to tell how strong or
weak the observability is. In the large amount of data collected for weather
prediction, only 5% or less are actually useful for each prediction. Find-
ing a high-value data set that improves the level of observability requires
a quantitative measure of observability. When moving sensors are used,
a quantitative measure of observability is fundamental in finding optimal
sensor locations. Another issue about models of high dimensional systems
is how to practically verify their observability when a model is given as a
numerical input-output function, such as a code, rather than a set of differ-
ential equations. The definition of observability should be computational so
that one can numerically verify the concept.

In [12, 13], a definition of observability is introduced using dynamic op-
timization. This concept is developed in a project of finding the best sensor
locations for data assimilations, a computational algorithm widely used in
numerical weather prediction. Different from traditional definitions of ob-
servability, the one in [12, 13] is able to collectively address several issues
in a unified framework, including a quantitative measure of observability,
partial observability, and improving observability by using user knowledge.
Moreover, computational methods of dynamic optimization provide prac-
tical tools of numerically approximating the observability of complicated
systems that cannot be treated using an analytic approach.

In this paper we extend the definition of observability in [12, 13] to
systems defined by PDEs. A quantitative measure of partial observability
makes perfect sense for infinite dimensional systems such as PDEs. However,
its computation is carried out using finite dimensional approximations. It
is known in the literature that an approximation of a PDE using ordinary
differential equations (ODEs) may not preserve the property of observability,
even if the approximation scheme is convergent and stable [20, 3]. Therefore,
to develop the concept of partial observability for PDEs, it is important to
understand its consistency in ODE approximations. In Section 2, some
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examples from the literature are introduced to illustrate the issues being
addressed in this paper. Observability is defined for PDEs in Section 3.
In Section 4, a theorem on the consistency of observability is proved. The
relationship between the unobservability index and an empirical Gramian is
addressed in Section 5, which serves as a first order approximation of the
observability. The theory is verified using several examples in Section 6.

2 Some issues on observability

The theory in this paper is developed for problems that are so large and
complicated that the traditional method of analysis does not apply. Before
we introduce the concept and theorems, we first use a few simple examples to
illustration some issues to be addressed. Consider the initial value problem
of a heat equation

ut(x, t) = uxx(x, t), x ∈ [0, L], t ∈ [0, T ]
u(0, t) = u(L, t) = 0
u(x, 0) = f(x)

Suppose the measured output is

y(t) = u(x0, t)

for some x0 ∈ [0, L]. In this example, we assume L = 2π, T = 10, and
x0 = 0.5. The solution and its output have the following form

u(x, t) =

∞
∑

k=1

ūk(t) sin

(

kπx

L

)

y(t) =
∞
∑

k=1

ūk(t) sin

(

kπx0
L

)

where the Fourier coefficients satisfy an ODE

dūk
dt

= −
(

kπ

L

)2

ūk

Define

uN =
[

ū1 ū2 · · · ūN
]T

AN = diag

([

(π

L

)2
(

2π

L

)2

· · ·
(

Nπ

L

)2 ])

CN =

[

sin
(πx0

L

)

sin

(

2πx0
L

)

· · · sin

(

Nπx0
L

) ]
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A Nth order approximation of the original initial value problem with output
is defined by a system of ODEs

duN/dt = −ANuN

uN (0) = uN0
y = CNuN

(1)

A Gramian matrix [9] can be used to measure the observability of uN0 . More
specifically, given N > 0 the observability Gramian is

W =

∫ T

0
e(−AN )′t(CN )′CNe−AN tdt

Its smallest eigenvalue, σN
min, measures the observability of uN0 . A small

value of σN
min implies weak observability. If the maximum sensor error is ǫ,

then the worst estimation error of uN0 is bounded by

ǫ
√

σN
min

(2)

The system has infinitely many modes in its Fourier expansion. However,
it has a single output. The computation shows that the output can make
the first mode observable. However, when the number of modes is increased,
their observability decreases rapidly. From Figure 1, for N = 1 we have
σN
min = 1.216×10−1, which implies a reasonably observable ū1(0). However,

when N is increased, the observability decreases rapidly. For N = 8, σN
min

is almost zero, i.e
[

ū1(0) ū2(0) · · · ū8(0)
]T

is extremely weakly observable, or practically unobservable. According to
(2), a small sensor noise results in a big estimation error. For this problem,
it is not important to achieve observability for the entire system. All we
need is the partial observability for the critical modes.

For a simple system like the heat equation, we already know that the
high modes do not affect the solution. Their observability is not important.
One may choose a discretization scheme based on the important modes only
so that the observability is achieved using a simplified model. However, for
large and highly nonlinear systems with tens of thousands or even millions of
state variables, such as in a process of numerical weather prediction or power
network control, model reduction or changing the scheme of discretization
is almost impossible because the models are already packaged in the form
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σ m
in

1.216e−1
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3.588e−3
4.810e−6 9.367e−76.341e−53.994e−4

Figure 1: Observability of heat equation

of software and copyright issues are likely involved. For these types of ap-
plications, a quantitative measure of partial observability is useful for several
reasons. If a finite number of modes is enough to achieve accurate state
approximates, guarantee the observability of these finite modes is a practi-
cal solution. In large-scale networded systems with a very high dimension,
operators may focus on a local area at a given period of time. In this case,
the observability of the entire system is irrelevant. It is useful to achieve a
partial observability just for the states directly related to the area of focus.
For moving sensors, a quantitative measure of observability can be used as
a cost function in finding optimal sensor locations in which the observability
is maximized.

Another issue to be addressed in this paper is consistency. In general
the observability for PDEs is numerically computed using a system of ODEs
as an approximation. However, it is not automatically guaranteed that the
observability of the ODEs is consistent with the observability of the original
PDE. In fact, a convergent discretization of a PDE may not preserve its
observability. Take the following wave equation as an example

utt − uxx = 0, 0 < x < L, 0 < t < T
u(0, t) = u(L, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L

(3)

It is known that the total energy of the system can be estimated by using
the energy concentrated on the boundary. However, in [20] it is proved that
the discretized ODEs do not have the same observability. The energy of
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solutions is given by

E(t) =
1

2

∫ L

0

(

|ut(x, t)|2 + |ux(x, t)|2
)

dx

This quantity is conserved along time. It is known that, when T > 2L, the
total energy of solutions can be estimated uniformly by means of the energy
concentrated on the boundary x = L. More precisely, there exists C(T ) > 0
such that

E(0) ≤ C(T )

∫ T

0
|ux(L, t)|2dt (4)

Now consider the discretized system using a finite difference method,

u′′j (t) =
uj+1(t) + uj−1(t)− 2uj(t)

h2
, 0 < t < T, j = 1, 2, · · · , N

u0(t) = uN+1(t) = 0, 0 < t < T
uj(0) = u0j , u

′
j(0) = u1j , j = 0, 1, · · · , N + 1

(5)

The total energy of the ODEs is given by

Eh(t) =
h

2

N
∑

j=0

(

|u′j(t)|2 +
∣

∣

∣

∣

uj+1(t)− uj(t)

h

∣

∣

∣

∣

2
)

This quantity is conserved along the trajectories of the ODEs. The energy
on the boundary is defined by

∫ T

0

∣

∣

∣

∣

uN (t)

h

∣

∣

∣

∣

2

dt

Because the solutions of (5) converges to the solutions of (3), we expect
that the total energy of (5) can be uniformly estimated using the energy
concentrated along a boundary, i.e. the following inequality similar to (4)
holds for some C(T ) uniformly in h,

Eh(0) ≤ C(T )

∫ T

0

∣

∣

∣

∣

uN (t)

h

∣

∣

∣

∣

2

dt

However, it is proved in [20] that this inequality is not true. In fact, the ratio
between the total energy and the energy along the boundary is unbounded
as h → 0. To summarize, the observability of a PDE is not necessarily
preserved in its discretizations.

In this paper, we introduce a quantitative measure of partial observabil-
ity for PDEs. Sufficient conditions are proved for the consistency of the
observability for well-posed discretization schemes.

6



3 Partial Observability

Consider a nonlinear initial value problem

ut = F (t, u, ux, · · ·), in Ω× (0, T ]
u = u0 in Ω× {t = 0}
yu(t) = H(u(·, t))

(6)

where Ω is an open set in IRn, F is a continuous function of t, u, and
its derivatives with respect to x. Let X be a Banach space of functions
defined on Ω. The initial condition, u0, lies in a subspace, V0, of X. In
the following, u(t) represents u(·, t). A solution u(t) of (6), in either strict
or weak sense, is a X-valued function in a subspace V of C0([0, T ],X). If
additional boundary conditions are required, we assume that all functions
in V satisfy the boundary conditions. We assume that (6) is locally well-
posed in the Hadamard sense ([6, 17]) around a nominal trajectory. More
specifically, let u(t) be an nominal trajectory. We assume that there is an
open neighborhood D0 ⊂ V0 that contains u(0), such that

• For any u0 ∈ D0, (6) has a solution.

• The solution is unique.

• The solution depends continuously on its initial value.

Proving the well-posedness of nonlinear PDEs is not easy. Nevertheless, for
well-posed problems the consistency of observability is guaranteed.

In (6), H(u(·, t)) or in short notation yu(t), represents the output of the
system associated with the solution u(x, t), where H is a mapping, linear or
nonlinear, from X to IRp. We assume that yu(·) stays in a normed space of
functions from [t0, t1] to IRp. Its norm is denoted by || · ||Y . We say that H
is continuous in a subset of C0([0, T ],X) if for any sequence {uk(t)}∞k=k0

in
the subset and function u(t) ∈ V ,

uk(t) → u(t) uniformly on [0, T ] implies lim
k→∞

||yuk
− yu||Y = 0 (7)

Instead of the entire state space, the observability is defined in a finite
dimensional subspace. Let

W = span{e1, e2, · · · , es}

be a subspace of V0 generated by a basis {e1, e2, · · · , es}. In the following,
we analyze the observability of a component of u(0) using estimates from
W . Therefore W is called the space for estimation.
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Let u(t) be a nominal trajectory satisfying (6). Suppose W
⋂

D0 6= ∅
and u(0) has a best estimate in W

⋂

D0, denoted by uw(0), in the sense that
uw(t) minimizes the following output error,

min ||yuw
− yu||Y

subject to
duw/dt = F (t, uw, · · ·), in Ω× (0, T ]
uw(0) ∈ W

⋂

D0

(8)

Let ur(t) = u(t)− uw(t) be the remainder, then

u(t) = uw(t) + ur(t) (9)

If the output yu(t) represents the sensor measurement, then it has noise.
The data that we use in a estimation process has the following form

yu(t) + d(t)

where d(t) is the measurement error. The observability addressed in this
paper is a quantity that defines the sensitivity of the estimation error relative
to d(t). From (9), the best estimate uw(t) has an error that is the remainder
||ur(0)||X . This error is not caused by d(t) because the remainder cannot be
reduced no matter how accurate the output is measured. This error is due to
the choice of W , not the observability of W . Therefore, the observability is
defined for uw(0) only, thus a partial observability. For a strongly observable
uw(0), its estimate may not be close to u(0) if the remainder, ur(0), is large.
If the goal is to estimate u(0), an observable uw(0) is useful only if the
value of ur(0) is either known or small. In the rest of the paper, we assume
ur(0) = 0 and u(0) ∈ W . In applications, the concept is applicable to u(0)
with a small ur(0), (see, for instance, [10]).

Definition 1 Given a nominal trajectory u of (6). Suppose

u(0) ∈ W
⋂

D0.

For a given ρ > 0, suppose the sphere in W of radius ρ centered at u(0) is
contained in D0. We define

ǫ = inf ||yû − yu||Y (10)

where û satisfies
ût = F (t, û, ûx, · · ·)
û(0) ∈ W

⋂

D0

||û(0) − u(0)||X = ρ
(11)

8



Then ρ/ǫ is called the unobservability index of u(0) along the trajectory u(t)
at the level of ρ.

Remark. The ratio ρ/ǫ can be interpreted as follows: if the maximum er-
ror of the measured output, or sensor error, is ǫ, then the worst estimation
error of u(0) is ρ. Therefore, a small value of ρ/ǫ implies strong observ-
ability of u(0). Different from most traditional definitions of observability,
W is a subspace of the state space. However, in the special case that W
equals the entire state space that has a finite dimension and if the system
is linear, ǫ2/ρ2 equals the smallest eigenvalue of the observability Gramiam
(See Section 5).

Remark. The effectiveness of this concept is verified in [10] using Burg-
ers’ equation. A 4D-Var data assimilation, a method of state estimation in
weather prediction, is applied to several data sets from different sensor lo-
cations. The result shows that the estimation using sensor locations with a
smaller unobservability index results in more accurate estimates than those
using the data from other sensor locations with higher unobservability in-
dices.

To numerically compute a system’s observability, (6) is approximated
using ODEs. In this paper, we consider a general approximation scheme
using a sequence of ODEs,

duN/dt = FN (t, uN ), uN ∈ IRN

uN (0) = uN0
(12)

and two sequences of linear mappings

PN : V0 → IRN

ΦN : IRN → X
(13)

The norm in IRN is represented by ||·||N . We assume that the approximation
scheme is well-posed, more specifically

• For any bounded set B in D0, there exist M > 0 and α > 0 so that
any solution of (6) with u(0) ∈ B satisfies

||u(t)− ΦN (uN (t))||X ≤ M

Nα
(14)

uniformly in [0, T ], where PN (u(0)) = uN (0).
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• For any u ∈ W ,

||u||X = ||PN (u)||N + aN ||PN (u)||N
lim

N→∞
aN = 0 (15)

Given the space for estimation W , we define a sequence of subspaces,
WN ⊆ IRN , by

WN = PN (W )

They are used as the space for estimation in IRN . If {e1, e2, · · · , es} is a basis
of W , then their projections to WN are denoted by

eNi = PN (ei), i = 1, 2, · · · , s

So WN = span{eN1 , eN2 , · · · , eNs }.

Example. For a spectral method, approximate solutions can be expressed
in terms of an orthonormal basis

{qk(x) : k = 0, 1, 2, · · ·}

For any function,

v(x) =

∞
∑

k=0

vkqk(x)

one can define

PN (v) =
[

v0 v1 · · · vN
]T (16)

Obviously, ΦN is defined by

ΦN (
[

v0 v1 · · · vN
]T

) =
N
∑

k=0

vkqk (17)

In the case of l2-norm for all IRN , ||·||N is consistent with ||·||X ifX = L2(Ω).
Typically, the space for estimation consists of finite many modes

W = span{q1(x), q2(x), · · · , qs(x)} (18)

�

Example. Some approximation methods, such as finite difference and finite
element, are based on a grid defined by a set of points in space,

{xNk }Nk=0
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and a basis {qNk } satisfying

qNk (xNj ) =

{

1 k = j
0, otherwise

(19)

In this case, the mappings in the approximation scheme is defined as follows

PN (v) =
[

v(xN0 ) v(xN1 ) · · · v(xNN )
]T

ΦN (
[

v0 v1 · · · vN
]T

) =

N
∑

k=0

vkq
N
k

(20)

The inner product in IRN can be induced from L2(Ω), i.e. for u, v ∈ IRN ,

< u, v >N=<

N
∑

k=0

ukq
N
k ,

N
∑

k=0

vkq
N
k >

If
W = span{qN0 , qN1 , · · · , qNN }

then the norms || · ||N and || · ||X satisfy the consistency assumption (15).�

Following [12], we define the observability for ODE systems.

Definition 2 Given ρ > 0 and a trajectory uN (t) of (12) with uN (0) ∈ WN .
Denote ŷN (t) = H ◦ΦN (ûN (t)) and yN (t) = H ◦ ΦN (uN (t)). Let

ǫN = inf ||ŷN − yN ||Y

where ûN satisfies
dûN/dt = FN (t, ûN )
ûN (0) ∈ WN

||ûN (0) − uN (0)||N = ρ
(21)

Then ρ/ǫN is called the unobservability index of uN (0) in the space WN .

4 The consistency of observability

In this section, we prove the consistency of observability.

Theorem 1 (Consistency) Suppose the initial value problem (6) and its
approximation scheme (12)-(13) are well-posed. Suppose H satisfies the
continuity assumption (7) in C0([0, T ],

⋃∞
N=N0

ΦN (IRN )) for some integer
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N0 > 0. Consider a nominal trajectory u(t) of (6) and its corresponding tra-
jectory uN (t) of (12) with an initial value uN (0) = PN (u(0)). Assume that
the sphere in WN centered at uN (0) with radius ρ is contained in PN (D0).
Then,

lim
N→∞

ǫN = ǫ (22)

To prove this theorem we need two lemmas.

Lemma 1 Given any sequence {vN (t)}∞N=N0
where vN (t) is a solution of

(12) with vN (0) ∈ PN (D0)
⋂

WN and N0 > 0 is an integer. If {||vN (0)||N}∞N0

is bounded and if ΦN (vN (0)) converges to v(0) ∈ D0, where v(t) is a solution
of (6), then ΦN(vN (t)) converges to v(t) uniformly for t ∈ [0, T ].

Proof . Let ṽN (t) be the solution of the PDE (12) such that ṽN (0) ∈
D0
⋂

W and PN (ṽN (0)) = vN (0). Note that we do not assume ΦN (PN (ṽN (0))) =
ṽN (0), although this is the case in many approximation schemes. The set
{ṽN (0)} must be bounded in X because of (15) and the assumption that
{||vN (0)||N}∞N0

is bounded. Therefore, (14) implies

lim
N→∞

||ΦN (vN (t))− ṽN (t)||X = 0 (23)

converges uniformly. In particular,

lim
N→∞

||ΦN (vN (0))− ṽN (0)||X = 0

Because ΦN (vN (0)) converges to v(0) ∈ D0, we know that ṽN (0) converges
to v(0). Because the solutions of the PDE are continuously dependent on
their initial value (well-posedness),

||ṽN (t)− v(t)||X → 0 (24)

uniformly in t. Equations (23), (24) and the triangular inequality

||ΦN (vN (t))− v(t)||X ≤ ||ΦN (vN (t)) − ṽN (t)||X + ||ṽN (t)− v(t)||X

imply
||ΦN (vN (t))− v(t)||X → 0 as N → ∞

uniformly in t. �

Lemma 2 Given a sequence ûN (t), N ≥ N0, satisfying (21). There exists
a subsequence, ûNk(t) such that {ΦNk(ûNk(t))}∞k=1 converges uniformly to a
solution of (11) as Nk → ∞.

12



Proof . For each ûN (t), there exists a trajectory ûN (t) of the PDE (6)
satisfying ûN (0) ∈ D0

⋂

W and PN (ûN (0)) = ûN (0). From the consistency
of norms, (15), and the fact ||ûN (0)||N = ρ, we know that {ûN (t)}∞N0

is a
bounded set in W . The convergence assumption (14) implies

lim
N→∞

||ûN (0)− ΦN (ûN (0))||X = 0 (25)

As a bounded set in a finite dimensional space W , {ûN (t)}∞N0
has a con-

vergent subsequence {ûNk
(t)}∞k=1. Let û(0) be its limit and u(t) be the

corresponding trajectory of (6). From (25), we know

lim
N→∞

||ΦNk(ûNk(0))− û(0)||X = 0

From Lemma 1, {ΦNk(ûNk)}∞k=1 converges to û(t) uniformly in [0, T ]. Be-
cause of (15),

||û(0)− u(0)||X
= lim

k→∞
||ûNk

(0)− u(0)||X
= lim

k→∞
(||ûNk(0)− uN (0)||N + aN ||ûNk(0)− uN (0)||N )

= ρ

Therefore, û(t) satisfies (11) and {ΦNk(ûNk)}∞k=1 converges uniformly to a
solution of (11). �

Proof of Theorem 1. First, we prove

lim inf ǫN ≥ ǫ (26)

Suppose this is not true, then lim inf ǫN < ǫ. There exists α > 0 and a
subsequence Nk → ∞ so that

ǫNk < ǫ− α

for all Nk. From the definition of ǫN , there exist ûNk(t) satisfying (21) such
that

||ŷNk − yNk ||Y < ǫ− α

where
ŷNk(t) = H ◦ ΦNk(ûNk(t)), yNk(t) = H ◦ ΦNk(uNk(t))

From Lemma 2, we can assume that ΦNk(uNk(t)) converges to û(t) uni-
formly, where û(t) satisfies (11). From the continuity of H as defined in
(7),

lim
k→∞

||ŷNk − yNk ||Y = ||yû − yu||Y ≤ ǫ− α

13



However, from the definition of ǫ, we know

ǫ ≤ ||yû − yu||Y

A contradiction is found. Therefore, (26) must hold.
In the next step, we prove

lim sup ǫN ≤ ǫ (27)

It is adequate to prove the following statement: for any α > 0, there exists
N1 > 0 so that

ǫN < ǫ+ α (28)

for all N ≥ N1. From the definition of ǫ, there exists û satisfying (11) so
that

||yû − yu||Y < ǫ+ α (29)

Let ûN be a solution of the ODE

duN/dt = FN (t, uN )

with an initial value
ûN (0) = PN (û(0))

Then the following limit converges uniformly

lim
N→∞

||ΦN (ûN (t))− û(t)||X = 0 (30)

A problem with ûN (0) is that its distance to uN (0) may not be ρ, which is
required by (21). Let ū(t) be a solution of (12) with an initial value

ūN (0) = γN (ûN (0) − uN (0)) + uN (0)

γN =
ρ

||ûN (0)− uN (0)||N
Obviously

||ūN (0) − uN (0)||N = ρ

and ū(t) satisfies (21). Due to the consistency of the norms and the fact
||û(0)− u(0)||X = ρ, we know

limN→∞ γN = 1 (31)
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From (30) and (31), we have

lim
N→∞

ΦN(ūN (0))

= lim
N→∞

(

γN (ΦN (ûN (0)) − ΦN (uN (0))) + ΦN(uN (0))
)

= û(0)

By Lemma 1, the limit

lim
N→∞

ΦN (ūN (t)) = û(t)

converges uniformly on the interval t ∈ [0, T ]. Let ȳN (t) = H(ΦN (ūN (t)))
and yN (t) = H(ΦN (uN (t))). Then output continuity assumption (7) implies

lim
N→∞

||ȳN − yN ||Y = ||yû − yu||Y < ǫ+ α

There exits N1 > 0 so that

||ȳN − yN ||Y < ǫ+ α

for all N ≥ N1. From the definition of ǫN , we know

ǫN ≤ ||ȳN − yN ||Y < ǫ+ α

for all N > N1. Therefore, (27) holds.
To summarize, the inequalities (26) and (27) imply

lim
N→∞

ǫN = ǫ

�

5 The empirical Gramian

In this section, we assume that WN and the space of y(t) are both Hilbert
spaces with inner products <,>N and < ·, · >Y , respectively. The ratio,
ǫN/ρ, is approximately equal to the smallest eigenvalue of a Gramian matrix.
More specifically, let

{eN1 , eN2 , · · · , eNs }
be a set of orthonormal basis of WN . Let u+i (t) and u−i (t) be solutions of
(12) satisfying

u±i (0) = uN (0)± ρeNi

15



Define
∆ui = u+i (t)− u−i (t)
∆yi(t) = H ◦ ΦN(∆ui(t))

The empirical Gramian is defined by

G = [Gij ]

Gij =
1

4ρ2
< ∆yi,∆yj >Y

For a small value of ρ, the unobservability index is approximated by

ρ/ǫN ≈ 1√
σmin

(32)

where σmin is the smallest eigenvalue of G. For linear ODEs, this approxi-
mation is accurate because it can be shown that

(ǫN )2 = min∑
a2
k
=ρ2

[

a1 a2 · · · as
]

G
[

a1 a2 · · · as
]T

= σminρ
2

Comparing to the linear control theory, G is the same as the observability
Gramian if WN is the entire space and if y(t) lies in a L2-space.

If {eN1 , eN2 , · · · , eNs } is not an orthonormal basis, we can modify the ap-
proximation as follows. Define

Sij =< eNi , eNj >N (33)

Let σmin be the smallest eigenvalue of G relative to S, i.e.

Gξ = σminSξ

for some nonzero ξ ∈ IRs. Then

ρ/ǫN ≈ 1√
σmin

The approximation is accurate for linear systems.
For the heat equation approximated using (1), the associated mappings

can be defined by

PN (u) =
[

uN1 , uN2 , · · · , uNN
]T

, uNk =
2

L

∫ 2π

0
u(x) sin

(

kπx

L

)

dx

ΦN (uN ) =

N
∑

k=1

uNk sin

(

kπx

L

)

16



If we want to find the observability of the first s modes, Definition 2 is
equivalent to the analysis using the traditional observability Gramian for
N = s. In fact, for all N ≥ s, G is a constant matrix and

G =

∫ T

0
e(A

s)′t(Cs)′CseA
stdt

Therefore, ǫN = ǫs for all N ≥ s and ǫN is a consistent.

6 Examples

In this section, some examples are used to illustrate Definition 1. In the
literature, a measure of controllability for linear systems is defined based
upon the radius of matrices [1, 4, 14]. Using duality, we can define the
observability radius, γo, as the distance between the system and the set of
unobservable systems. This radius is defined primarily for the measure of the
robustness of observability, although it agrees with the partial observability
defined above in some filtering problems. Using the following example, we
illustrate the sameness and differences between γo and the unobservability
index.

Example 1. Consider a linear system
[

ẋ1
ẋ2

]

=

[

1 δ
0 1

] [

x1
x2

]

y = x1

(34)

where δ is a constant number. In [1], it is proved that using Euclidean norm
we have

γo = δ

For a small δ, the observability of the system can be qualitatively changed by
a small perturbation, i.e. the observability is not robust. This makes sense
because, when δ = 0, the system is unobservable. Consider the observability
of x(T ) for some fixed time T . The solution of (34) is

x1(t) = (x1(T ) + δx2(T )(t− T ))et−T

x2(t) = x2(T )e
t−T

y(t) = (x1(T ) + δx2(T )(t− T ))et−T

It it straightforward to derive the norm of y

||y||2 =
∫ T
0 y2(t)dt

=
[

x1(T ) x2(T )
]

[

α11 α12δ
α21δ α22δ

2

] [

x1(T )
x2(T )

]

(35)

17



where

α11 = 1− e−2T , α12 = α21 = (T +
1

2
)e−2T − 1

2
, α22 =

1

2
− (T 2 + T +

1

2
)e−2T

Therefore, the unobservability index of x(T ) is

ρ/ǫ = 1/σmin

where σ2
min is the smallest eigenvalue of the matrix in (35). It can be shown

that

σ2
min =

1
4 (e

−4T + 1)− (T 2 + 1
2)e

−2T

1− e−2T
δ2 +O(δ3)

If T is large, then

ǫ/ρ = σmin ≈ 1

2
δ +O(δ3) (36)

Because γo = δ, (36) implies that the observability of x(T ) defined in this
paper coincides with the radius of observability γo.

Although γo reflects the observability of the states at t = T , ρ/ǫ and γo
have some fundamental differences. The value of γo represents the radius of
observability which is a measure of observability robustness. It cannot tell
the observability of x(t) when t 6= T . In fact, for a small value of δ, the
initial state x(0) can still be strongly observable if T is large, assuming that
δ is a known constant. Another difference lies in the fact that ρ/ǫ is defined
for the partial observability of a large system, which is not reflected by γo.
�

In the following example we use Burgers’ equation to illustrate the partial
observability in a subspace based on the Fourier exansion.

Example 2. Consider the following Burgers’ equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= κ

∂2u(x, t)

∂x2
u(x, 0) = u0(x), x ∈ [0, L]
u(0, t) = u(L, t) = 0, t ∈ [0, T ]

(37)

where L = 2π, T = 5, and κ = 0.14. The output space consists of functions
representing data from three sensors that measure the value of u(x, t) at
fixed locations





y1(tk)
y2(tk)
y3(tk)



 =





u(L4 , tk)

u(2L4 , tk)

u(3L4 , tk)



 , tk = k∆t, k = 0, 1, 2, · · · , Nt (38)
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where ∆t = T/Nt, Nt = 20. Figure 2 shows a solution with discrete sensor
measurements marked by the stars. In the output space

||y||Y =

(

Nt
∑

k=0

(y21(k) + y22(k) + y23(k))

)1/2

Figure 2: A solution of Burgers’ equation with sensor measurements

The approximation scheme is based on equally spaced grid-points

x0 = 0 < x1 < · · · < xN = L,

where
∆x = xi+1 − xi = L/N.

System (37) is discretized using a central difference method

u̇N1 = −uN1
uN2 − uN0
2∆x

+ κ
uN2 − 2uN1

∆x2

u̇N2 = −uN2
uN3 − uN1
2∆x

+ κ
uN3 + uN1 − 2uN2

∆x2
...

u̇NN−1 = −uNN−1

uNN − uNN−2

2∆x
+ κ

uNN + uNN−2 − 2uNN−1

∆x2

(39)

19



where uN0 = uNN = 0. For any v(x) ∈ C([0, L]), we define

PN (v) =
[

v(x1) v(x2) · · · v(xN−1)
]

∈ IRN−1

For any vN ∈ IRN−1, define

ΦN (vN ) = v(x) ∈ C[0, L]

be the unique function of cubic spline determined by vN and (x0, x1, · · · , xN )
satisfying v(0) = v(L) = 0. We adopt L2-norm in C[0, L]. For any vector
vN ∈ IRN−1, its norm is defined as

||vN ||2N =
2π

N

N−1
∑

i=1

v2i

The space for estimation is defined to be

W =











α0/2 +

KF
∑

k=1

(

αk cos(
2kπ

L
x) + βk sin(

2kπ

L
x)

)

∣

∣

∣

∣

∣

∣

∣

αk, βk ∈ IR

α0/2 +

KF
∑

k=1

αk = 0











In this section, KF = 2. This means that we want to find the observability
for the first five modes in the Fourier expansion of u(0). Or equivalently, we
would like to find the observability of

[

α0 α1 β1 α2 β2
]

Define
XN =

[

x1 x2 · · · xN−1

]T

then

WN =











α0/2 +

KF
∑

k=1

(

αk cos(
2kπ

L
XN ) + βk sin(

2kπ

L
XN )

)

∣

∣

∣

∣

∣

∣

∣

αk, βk ∈ IR

α0/2 +

KF
∑

k=1

αk = 0











In this example, the nominal trajectory has the following initial value

u0(x) = −2 + cos(x) + sin(x) + cos(2x) + sin(2x)

Its solution is shown in Figure 2. To approximate its observability, we apply
the empirical Gramian method to (39) in the space WN . The ratio ρ/ǫN is
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Figure 3: The observability of Burgers’ equation

approximated for N = 4k, 5 ≤ k ≤ 21. The value of unobservability index
approaches (Figure 3)

ρ/ǫ = 6.87

�

The partial observability is defined for PDEs approximated using general
approximation schemes. Different from the finite difference method adopted
in Example 2, in Example 3 the partial observability is computed for a
shallow water model derived by using a finite element method.

Example 3. The shallow water equations are widely used in scientific com-
putation, numerical weather prediction, and oceanography as a testbed or
illustrative example. For the one dimensional case, the independent vari-
ables include time, t, and the space coordinate, x. The dependent variables
are the fluid depth, h(x,t), and the horizontal velocity u(x, t). The differen-
tial equations are

∂h

∂t
+

∂(uh)

∂x
= 0

∂(uh)

∂t
+

∂(u2h+ 1
2gh

2)

∂x
= 0

(40)

Assume that the sensors are located at x = 0.2, 0.5, and 0.8. More specifi-
cally





y1(tk)
y2(tk)
y3(tk)



 =





h(0.2, tk)
h(0.5, tk)
h(0.8, tk)



 , tk = k∆t, k = 0, 1, 2, · · · , Nt (41)
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where ∆t = 1.25 × 10−3 and Nt = 800. The initial surface height is defined
by a Gaussian curve (Figure 4)

h0(x) = 0.1 exp

(

−8(x− 1

2
)

)

+ 0.2

where x ∈ [−1, 1] and t ∈ [0, 1]. The height of the bottom topography is a
line (Figure 4)

hb(x) = 0.1(1 − x)
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Figure 4: The initial surface height (solid line) and the bottom topography
height (circle)

Based on the empirical Gramian method, the partial observability can
be approximated using a computer code that generates the states of (40).
The original differential equation is not directly used in the computation. In
this example, we adopt a code that discretizes (40) using a spectral element
method. More specifically, the space [−1, 1] is divided into finite many
subintervals or elements, I1, I2, · · ·, IN . In each element Ii, the solution is
approximated using Lagrange polynomials at the Legendre-Gauss-Lobatto
(LGL) nodes, xij , j = 0, 1, · · · , Np, where Np is the order of the polynomials
on the interval Ii. The approximate solution has the form

hij(tk) ≈ h(xij , tk), uij(tk) ≈ u(xij, tk)

For the mapping ΦN , we simply use the linear interpolation. Note that
this is different from the spectral element method in the discretization of
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the PDE. In fact, in the computation of observability the approximation
scheme can be different from the method used in the PDE discretization.
Suppose the initial height, h(x, 0), has a Fourier expansion. The space for
estimation is

W =

{

α0/2 +

KF
∑

k=1

(

αk cos(
2kπ

L
x) + βk sin(

2kπ

L
x)

)

|αk, βk ∈ IR

}

where KF = 6. We would like to compute the observability of αk, k =
0, 1, · · · , 6 and βk, k = 1, 2, · · · , 6. Under the L2 norm for both the initial
h(x, 0) and the output function, the unobservability index is shown in Figure
5. After the number of elements is increased to N = 54, the index is
stabilized at ρ/ǫ = 4.44.

20 25 30 35 40 45 50 55
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4.5

5

5.5
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6.5

7
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ρ /
 ε

Figure 5: The observability consistency of the Shallow Water Model

7 Conclusions

A definition of partial observability using dynamic optimization is intro-
duced for PDEs. The advantage of this definition is to resolve several issues
and concerns about observability in a unified framework. More specifically,
using the concept one can achieve a quantitative measure of partial observ-
ability for PDEs. Furthermore, the observability can be numerically approx-
imated. A practical feature of this definition for infinite dimensional systems
is that the observability can be numerically computed using well-posed ap-
proximation schemes. It is mathematically proved that the approximated
partial observability is consistent with that of the original PDE. A first order
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approximation is derived using empirical Gramian matrices. The concept is
illustrated using several examples.
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