3,220 research outputs found

    Kalman Filtering with Unknown Noise Covariances

    Get PDF
    Since it is often difficult to identify the noise covariances for a Kalman filter, they are commonly considered design variables. If so, we can as well try to choose them so that the corresponding Kalman filter has some nice form. In this paper, we introduce a one-parameter subfamily of Kalman filters with the property that the covariance parameters cancel in the expression for the Kalman gain. We provide a simple criterion which guarantees that the implicitly defined process covariance matrix is positive definite

    Consensus image method for unknown noise removal

    Get PDF
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.This work is supported by the European Commission under Contract No. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by Project TIN 2010-15055 of the Spanish Ministry of Science

    Direction detector for distributed targets in unknown noise and interference

    Get PDF
    Adaptive detection of distributed radar targets in homogeneous Gaussian noise plus subspace interference is addressed. It is assumed that the actual steering vectors lie along a fixed and unknown direction of a preassigned and known subspace, while interfering signals are supposed to belong to an unknown subspace, with directions possibly varying from one resolution cell to another. The resulting detection problem is formulated in the framework of statistical hypothesis testing and solved using an ad hoc algorithm strongly related to the generalised likelihood ratio test. A performance analysis, carried out also in comparison to natural benchmarks, is presented

    Statistical Inference in Large Antenna Arrays under Unknown Noise Pattern

    Full text link
    In this article, a general information-plus-noise transmission model is assumed, the receiver end of which is composed of a large number of sensors and is unaware of the noise pattern. For this model, and under reasonable assumptions, a set of results is provided for the receiver to perform statistical eigen-inference on the information part. In particular, we introduce new methods for the detection, counting, and the power and subspace estimation of multiple sources composing the information part of the transmission. The theoretical performance of some of these techniques is also discussed. An exemplary application of these methods to array processing is then studied in greater detail, leading in particular to a novel MUSIC-like algorithm assuming unknown noise covariance.Comment: 25 pages, 5 figure

    On errors-in-variables estimation with unknown noise variance ratio

    No full text
    We propose an estimation method for an errors-in-variables model with unknown input and output noise variances. The main assumption that allows identifiability of the model is clustering of the data into two clusters that are distinct in a certain specified sense. We show an application of the proposed method for system identification
    • 

    corecore