267,402 research outputs found

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ī©(logā”k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Entangled q-convolutional neural nets

    Get PDF
    We introduce a machine learning model, the q-CNN model, sharing key features with convolutional neural networks and admitting a tensor network description. As examples, we apply q-CNN to the MNIST and Fashion MNIST classification tasks. We explain how the network associates a quantum state to each classification label, and study the entanglement structure of these network states. In both our experiments on the MNIST and Fashion-MNIST datasets, we observe a distinct increase in both the left/right as well as the up/down bipartition entanglement entropy (EE) during training as the network learns the fine features of the data. More generally, we observe a universal negative correlation between the value of the EE and the value of the cost function, suggesting that the network needs to learn the entanglement structure in order the perform the task accurately. This supports the possibility of exploiting the entanglement structure as a guide to design the machine learning algorithm suitable for given tasks

    GR-136 - Students Certification Management (SCM): Hyperledger Fabric-Based Digital Repository

    Get PDF
    Abstract: The higher education sector has been heavily impacted financially by the economic downturn caused by the pandemic that has resulted a decline in student enrollments. Finding cost-effective novel technology for storing and sharing student\u27s credentials among academic institutions and potential employers is a demand. Within the current conventional approach, ensuring authentication of a candidateā€™s credentials is costly and time-consuming which gives burdens to thousands of prospective students and potential employees. As a result, candidates fail to secure opportunities for either delay or non-submission of credentials all over the world. Blockchain technology has the potential for students\u27 control over their credentials; degrees and transcripts for instance that will allow seamless streamlining of the sharing of educational records during changing and transferring schools, higher education, or even employment processes when need to show credentials. To implement the novel idea, we conduct a preliminary survey, study the existing applications, and investigate the feasibility of a Blockchain-based system to exploit the potential. Based on our findings, we propose a Students Certification Management System (SCM) by adopting Emerging Hyperledger Fabric that will offer a universal, tamper-evident, immutable, and secure educational certificate storing and sharing network. Our primary aim is to construct the proposed system into an educational certificate repository network using consortium blockchain for different entities including, (i) educational institutes to manage the network (ii) students and authorized third parties to access verifiable digital certificates and transcripts. Initially, we introduce an advanced architectural framework of the proposed system that has the potential in improving data flow between academic institutions, students, and potential employers. For ensuring transparency, each attempt in storing, sharing, and accessing credentials by the authenticated users within the proposed network shall be stored in the ledger which is secure and non-corruptible. Our future direction is to implement the architectural framework into an educational certification repository network within a private blockchain network.Department: Software Engineering and Game Design and DevelopmentSupervisor: Dr. Hossain Shahriar Dr. Maria ValeroTopics: Software Engineerin

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of kk terminal vertices or players needs to establish connectivity with the root. The social optimum is the minimum Steiner tree. We study situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying graph metric, but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the goal of the designer is to choose a single, universal cost-sharing protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is, to what extent can prior knowledge of the underlying graph metric help in the design? We first demonstrate that there exist classes of graphs where knowledge of the underlying graph metric can dramatically improve the performance of good network cost-sharing design. For outerplanar graph metrics, we provide a universal cost-sharing protocol with constant PoA, in contrast to protocols that, by ignoring the graph metric, cannot achieve PoA better than Ī©(logā”k)\Omega(\log k). Then, in our main technical result, we show that there exist graph metrics for which knowing the underlying graph metric does not help and any universal protocol has PoA of Ī©(logā”k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey theory in high-dimensional hypercubes. Then we switch to the stochastic model, where the players are activated according to some probability distribution that is known to the designer. We show that there exists a randomized ordered protocol that achieves constant PoA. If, further, each player is activated independently with some probability, by using standard derandomization techniques, we produce a deterministic ordered protocol that achieves constant PoA. We remark that the first result holds also for the black-box model, where the probabilities are not known to the designer, but she is allowed to draw independent (polynomially many) samples. Read More: https://epubs.siam.org/doi/10.1137/16M109669

    Health Care Cost Containment and Coverage Expansion

    Get PDF
    Examines the relationship between expanding insurance coverage and controlling medical costs. Analyzes combinations of cost containment options and coverage expansion models for their compatibility and implications for the feasibility of proposed reforms
    • ā€¦
    corecore