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Abstract

We consider the problem of designing network cost-sharing protocols with good equilibria
under uncertainty. The underlying game is a multicast game in a rooted undirected graph with
nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity
with the root. The social optimum is the Minimum Steiner Tree. We study situations where
the designer has incomplete information about the input. We propose two different models, the
adversarial and the stochastic. In both models, the designer has prior knowledge of the under-
lying graph metric, but the requested subset of the players is not known and is activated either
in an adversarial manner (adversarial model) or is drawn from a known probability distribution
(stochastic model).

In the adversarial model, the goal of the designer is to choose a single, universal cost-sharing
protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The
main question we address is: to what extent can prior knowledge of the underlying graph metric
help in the design? We first demonstrate that there exist classes of graphs where knowledge of
the underlying graph metric can dramatically improve the performance of good network cost-
sharing design. For outerplanar graph metrics, we provide a universal cost-sharing protocol with
constant PoA, in contrast to protocols that, by ignoring the graph metric, cannot achieve PoA
better than Ω(log k). Then, in our main technical result, we show that there exist graph metrics,
for which knowing the underlying graph metric does not help and any universal protocol has
PoA of Ω(log k), which is tight. We attack this problem by developing new techniques that
employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in
high dimensional hypercubes.

Then we switch to the stochastic model, where the players are activated according to some
probability distribution that is known to the designer. We show that there exists a randomized
ordered protocol that achieves constant PoA. If further each player is activated independently
with some probability, by using standard derandomization techniques, we produce a determin-
istic ordered protocol that achieves constant PoA. We remark, that the first result holds also for
the black-box model, where the probabilities are not known to the designer, but she is allowed
to draw independent (polynomially many) samples.

1 Introduction

Network Cost-Sharing Games We study a multicast game in a rooted undirected graph G =
(V,E) with a nonnegative cost ce on each edge e ∈ E. A set of k terminal vertices or players
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s1, . . . , sk need to establish connectivity with the root t. Each player selects a path Pi and the
outcome produced is the graph H = ∪iPi. The global objective is to minimize the cost,

∑
e∈H ce,

of this graph, which is the Minimum Steiner Tree.
The cost of an edge may represent infrastructure cost for establishing connectivity or renting

expense, and needs to be covered by the players that use that edge in the solution. There are
several ways to split the edge costs among the users and this is dictated by a cost-sharing protocol.
Naturally, it is in the players’ best interest to choose paths that charge them with small cost, and
therefore the solution will be a Nash equilibrium (NE). Algorithmic Game Theory provides tools
to analyse the quality of the equilibrium solutions; this can be measured with the Price of Anarchy
(PoA) [48] (or Price of Stability (PoS) [5]) that compares the worst-case (or the best-case) cost
in a NE with the cost of the minimum Steiner tree. This is a fundamental network design game
that was originated by Anshelevich et al. [5] and has been extensively studied since. [5] studied the
Shapley cost-sharing protocol, where the cost of each edge is equally split among its users. They
showed that the quality of equilibria can be really poor1.

Cost-Sharing Protocol Design Different cost-sharing protocols result in different quality of
equilibria. In this work, we are interested in the design of protocols that induce good equilib-
rium solutions in the worst-case, therefore we focus on protocols that guarantee low PoA. Chen,
Roughgarden and Valiant [23] were the first to address design questions for network cost-sharing
games. They gave a characterization of protocols that satisfy some natural axioms and they thor-
oughly studied their PoA for the following two classes of protocols, that use different informational
assumptions from the perspective of the designer.

Non-uniform protocols. The designer has full knowledge of the instance, that is, she knows both
the network topology given by G and the costs ce, and in addition the set of players’ requests
s1, . . . , sk. They showed that a simple priority protocol (see Example 1) has a constant PoA;
the NE induced by the protocol simulate Prim’s algorithm for the Minimum Spanning Tree
(MST) problem, and therefore achieve constant approximation.

Uniform protocols. The designer needs to decide how to split the edge cost among the users without
knowledge of the underlying graph. They showed that the PoA is Θ(log k); both upper and
lower bound comes from the analysis of the Greedy Algorithm for the Online Steiner Tree
problem.

Cost-Sharing Design under Uncertainty Arguably, there are situations where the former
assumption is too optimistic while the latter is too pessimistic. We propose a model that lies in
the middle-ground as a framework to design network cost-sharing protocols with good equilibria,
when the designer has incomplete information.

We assume that the designer has prior knowledge of the underlying graph metric, (given by the
graph G and the shortest path metric induced by the costs ce), but is uncertain about the requested
subset of players. We consider two different models, the adversarial model and the stochastic model.
In the former, the designer knows nothing about the number or the positions of the si’s and has
as goal to process the graph and choose a single, universal cost-sharing protocol that has low PoA
against all possible requested subsets. Here, no distributional assumptions are made about arrivals

1Even for simple networks the PoA grows linearly with the number of players, k. The PoS is not well-understood.
It is a big open question to determine its exact value that is between constant and O(log k/ log log k) [50].
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(a) (b) (c)

Figure 1: Figure (a) illustrates the worst-case graph for the Online Steiner Tree problem. Figure
(b) is a variation of (a) that serves as the worst-case graph for the universal protocols network
cost-sharing game. In edges with no written cost, we consider the unit cost; note that both graphs
can be easily generalized so that the number of vertices is arbitrarily big (for (a) see also [43] for
more details). In (a) and (b) we assume two orders on the vertices, denoted by qi or pi. The q-order
is adversarially chosen and results to high PoA of Ω(log k). The p-order results to constant PoA.
Figure (c) shows an example where both the best ordered protocol and the Shapley protocol have
PoA ≥ 5/4, whereas there is an intermediate protocol with PoA= 1; we set ε > 0 arbitrarily small.

of players, instead the worst-case approach is used similarly to Competitive Analysis. Once the
designer selects the protocol, then an adversary will choose the requested subset of players and
their positions in the graph (the si’s), in a way that maximizes the PoA of the induced game. In
the stochastic model, the players/vertices are activated according to some probability distribution
which is given to the designer. The goal is now to choose a universal protocol where the expected
worst-case cost in the NE is not far from the expected optimal cost.

The following two examples demonstrate how the knowledge of the underlying graph metric
can help in the protocol design resulting in improvements on the PoA.

Example 1. (Ordered protocols). In this example, we restrict ourselves to a specific class
of protocols, called ordered protocols, and show that knowing the underlying graph metric can
dramatically improve the PoA even for this strict class of protocols. Ordered protocols consist an
important special class with interesting properties. The designer decides a total order of the users,
and when a subset of players uses some edge, the full cost is covered by the player who comes first
in the order. Any NE of the induced game corresponds to the solution produced by the Greedy
Algorithm for the MST: each player is connected, via a shortest path, with the component of the
players that come before him in the order. The analysis of the PoA in the uniform model boils down
to the analysis of the Greedy Algorithm for the Online Steiner Tree problem, where the worst-case
order is considered.

The following instance demonstrates that even this special class of ordered protocols becomes
very rich, once the designer has prior knowledge of the underlying metric space. Uniform protocols
throw away this crucial component, the structure of the underlying graph metric, that universal
protocols can use in their favour in order to come up with better PoA guarantees.

Uniform protocols. The designer chooses an order of the players 1, . . . , k without prior knowledge
of the graph. The adversary constructs a worst-case graph by simulating the adversary for the
Greedy Algorithm of the Online Steiner Tree problem [43] and places the players accordingly.
See for example Figures 1(a),(b), the q labels. There is a Nash equilibrium that is formed
by the bold edges, whereas the optimum solution is the path (t, q3, q2, q4, q1) for 1(a) and the
path (t, q1, q6, q4, q7, q3, q8, q5, q9, q2) for 1(b). Therefore, the PoA of uniform ordered protocol
is Ω(log k) [23].
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Universal protocols. The designer takes into account the graph; consider again the graphs of
Figures 1(a),(b). For the graph of Figure 1(a), order the vertices according to their distance
from t (p labels). For the graph of Figure 1(b), choose the linear order dictated from the path
p1, . . . , p9 (say from left to right). The adversary will choose k and the positions of the players
(s1, . . . , sk). In both cases, it is not hard to see that, no matter which subset of players the
adversary chooses, the PoA remains constant as k grows.

Example 2. (Generalized weighted Shapley). In [23], it was shown that ordered protocols
are essentially optimal among uniform protocols. Optimality of ordered protocols is no longer true
in the case where the underlying graph metric is known in advance. Figure 1(c) shows an instance
where Shapley cost-sharing protocol and ordered protocols have PoA at least 5/4, while there exists
a (generalized weighted Shapley) protocol that achieves PoA= 1.

By using Shapley cost-sharing the adversary can choose to activate {v1, v2, v3} and it is a NE if
v1, v3 connect directly to t and v2 connects through v1. Regarding any ordered protocol, the square
defined by the vi’s contains a path of length 2 where the middle vertex comes last in the order. The
adversary will select this triplet of players, say v1, v2, v3. In the NE, v1 connects directly to t, v3

and v2 connect through v1. In both cases, (by ignoring ε) the cost of the NE is 5 and the minimum
Steiner tree that connects those vertices with t has cost 4 and therefore, PoA ≥ 5/4.

However, the following (generalized weighted Shapley) protocol, has PoA= 1. Partition the
players into two sets S1 = {v1, v2}, S2 = {v3, v4}. If players from both partitions appear on some
edge, then the cost is charged only to players from S1. Players that belong to the same partition
share the cost equally. One can verify that for all possible subsets of players this protocol produces
only optimal equilibria.

Results We propose a framework for the design of (universal) network cost-sharing protocols
with good pure Nash equilibria, in situations where the designer has incomplete information about
the input. We consider two different models, the adversarial and the stochastic. In both models,
the designer has prior knowledge of the underlying graph metric but the requested subset of players
is not known and is activated either in an adversarial manner (adversarial model) or is drawn from
a known probability distribution (stochastic model). The central question we address is: to what
extent does prior knowledge of the graph metric help in good network design under uncertainty?

For the adversarial model, we first demonstrate that there exist classes of graph metrics where
prior knowledge of the underlying graph metric can dramatically improve the performance of good
network cost-sharing design. For outerplanar graph metrics, we provide a universal ordered cost-
sharing protocol with constant PoA, against any choice of the adversary. This is in contrast to
uniform protocols that ignore the graph and cannot achieve PoA better than Ω(log k) in outerplanar
graph metrics.

Open Question Can the design of universal protocols for planar graph metrics or even the grid
graph improve the PoA guarantees compared to uniform protocols that ignore the underlying graph
metric?

Our main technical result shows that there exist graph metrics, for which knowing the underlying
graph metric does not help the designer, and any universal protocol has PoA of Ω(log k). This
matches the upper bound of O(log k) that can be achieved without prior knowledge of the graph
metric [43, 23].

Then we switch to the stochastic model, where the players (terminal vertices) are activated ac-
cording to some probability distribution that is known to the designer. We show that there exists a
randomized ordered protocol that achieves constant PoA. If each player is activated independently
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with some probability, by using standard derandomization techniques [58, 54], we produce a deter-
ministic ordered protocol that achieves constant PoA. We remark, that the first result holds also
for the black-box model, where the probability distribution is not known to the designer, but is
allowed to draw independent (polynomially many) samples.

Our results for the adversarial model motivate the following question that is left open.

Open Question For which metric spaces can one design universal protocols with constant PoA?
What sort of structural graph properties are needed to obtain good guarantees?

Techniques We prove our main lower bound for the adversarial model in two parts. In the first
part (Section 4) we bound the PoA achieved by any ordered protocol. Our origin is a well-known
“zig-zag” ordered structure that has been used to show a lower bound on the Greedy Algorithm
of the Online Steiner Tree problem (see the labeled path (q1, q6, q4, . . . , q2) in Figure 1(b)). The
challenge is to show that high dimensional hypercubes exhibit such a distance preserving structure
no matter how the vertices are ordered. Section 4 is devoted to this task and we believe that this
is of independent interest.

We show the existence proof by employing powerful tools from Extremal Combinatorics and in
particular Ramsey Theory [39]. We are inspired by a Ramsey-type result due to Alon et al. [4],
in which they show that for any given length ` ≥ 5, any r-edge coloring of a high dimensional
hypercube contains a monochromatic cycle of length 2`. Unfortunately, we cannot immediately
use their results, but we show a similar Ramsey-type result for a different, carefully constructed
structure; we assert that every 2-edge coloring of high dimensional hypercubes Qn contains a
monochromatic copy of that structure. Then, we prescribe a special 2-edge-coloring that depends
on the ordering of Qn, so that the special subgraph preserves some nice labeling properties. A
suitable subset of the subgraph’s vertices can be 1-embedded into a hypercube of lower dimension.
Recursively, we show existence of the desired distance preserving “zig-zag” structure.

In the second part (Section 5), we extend the lower bound to all universal cost-sharing protocols,
by using the characterization of [23]. At a high level, we use as basis the construction for the
ordered protocol and create “multiple copies”2. The adversary will choose different subsets of
players, depending on whether the designer chose protocols “closer” to Shapley or to ordered. In
the latter case, we use arguments from Matching Theory to guarantee existence of ordered-like
players in one of the hypercubes.

For the stochastic model (Section 6), we construct an approximate minimum Steiner tree over
a subset of vertices which is drawn from the known probability distribution. This tree is used as
a base to construct a spanning tree, which determines a total order over the vertices. We finally
produce a deterministic order by applying standard derandomization techniques [58, 54].

Related Work Following the work of [5, 6], a long line of research studies network cost-sharing
games, mainly focusing on the PoS of the Shapley cost-sharing mechanism. [5] showed a tight
Θ(log k) bound for directed networks, while for undirected networks several variants have been
studied [15, 16, 17, 22, 24, 32, 33, 50] but the exact value of PoS still remains a big open problem.
For multicast games, an improved upper bound of O(log k/ log log k) is known due to Li [50], while
for broadcast games (where every vertex is a terminal of some player) a series of work [33, 49] lead

2Note that the standard complexity measure, to analyze the inefficiency of equilibria, is the number of participants,
k, and not the total number of vertices in the graph (see for example [5, 23]).
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finally to a constant due to Bilò et al. [17]. The PoA of some special equilibria has been also studied
in [20, 21].

Chen, Roughgarden and Valiant [23] initiated the study of network cost-sharing design with re-
spect to PoA and PoS. They characterized a class of protocols that satisfy certain desired properties
(which was later extended by Gopalakrishnan, Marden and Wierman, in [37]), and they thoroughly
studied PoA and PoS for several cases. Recently, Christodoulou, Leonardi and Sgouritsa [26] stud-
ied the Bayesian network design showing a lower bound of Ω(

√
k) for any cost-sharing protocol

satisfying the same properties. von Falkenhausen and Harks [57] studied singleton and matroid
games with weighted players, while Gkatzelis, Kollias and Roughgarden [35] focus on weighted con-
gestion games with polynomial cost functions. The very recent work of Harks, Huber and Surek [42]
is very similar to our work in the sense that the designer has some knowledge of the underlying
graph; they thoroughly characterized the topological properties of the underlying graph so that the
optimum solution is a pure Nash equilibrium.

Close in spirit to universal cost-sharing protocols is the notion of Coordination Mechanisms [25]
that provides a way to improve the PoA in cases of incomplete information. The designer has to
decide in advance local scheduling policies or increases in edge latencies, without knowing the exact
input, and has been used for scheduling problems [1, 2, 8, 13, 19, 25, 30, 44, 47] as well as for simple
routing games [14, 27].

As discussed in Example 1, the analysis of the equilibria induced by ordered protocols corre-
sponds to the analysis of the Greedy Algorithm for the MST. In the uniform model, this corresponds
to the analysis of the Greedy Algorithm [7, 43] for the (Generalized) Online Steiner Tree problem
[3, 9, 56], which was shown to be Θ(log k)-competitive by Imase and Waxman [43] (O(log2 k)-
competitive for the Generalized Online Steiner Tree problem by [7]). The universal model is closely
related to universal network design problems [45], hence our choice for the term “universal”. In the
universal TSP, given a metric space, the algorithm designer has to decide a master order so that
tours that use this order have good approximation [10, 12, 29, 38, 41, 45, 52].

Much work has been done in stochastic models and we only mention the most related to our
work. Karger and Minkoff [46] showed a constant approximation guarantee for the maybecast
problem, where the designer needs to fix (before activation) some path for every vertex to the root.
Garg et al. [34] gave bounds on the approximation of the stochastic online Steiner tree problem.
A line of works [11, 38, 53, 54] has studied the a priori TSP. Shmoys and Talwar [54] assumed
independent activations and demonstrated randomized and deterministic algorithms with constant
approximations.

2 Model and definitions

Universal Cost-Sharing Protocols A multicast network cost-sharing game, is specified by a
connected undirected graph G = (V,E), with a designated root t and nonnegative weight ce for
every edge e, a set of players S = {1, . . . , k} and a cost-sharing protocol. Each player i is associated
with a terminal3 si, which she needs to connect with t. We say that a vertex is activated if
there exists some requested player associated with it. In the adversarial model the designer knows
nothing about the set S of activated vertices, while in the stochastic model, the vertices are activated
according to some probability distribution Π which is known to the designer.

For any set, N , of players, a cost-sharing method ξe : 2N → R|N |+ is a function of the set of
players, R ⊆ N , using edge e and decides the cost-share for each player i ∈ N .4 A natural rule is

3We abuse notation and use S to refer both to the players and their associated vertices.
4We do not define the cost-sharing method for the set S, since in our setting the designer is not aware of S.

6



that the shares for players not included in R should always be 0. We use the notation ξe(i, R) to
denote the cost-share of player i under input R; note that if i /∈ R, then ξ(i, R) = 0. For any graph
G and any set of players N , a cost-sharing protocol Ξ assigns, for every e ∈ E, some cost-sharing
method ξe.

Following previous work [23, 42, 57], we focus on cost-sharing protocols that satisfy the following
natural properties:

(1) Budget-balance: For every network game induced by the cost-sharing protocol Ξ, and every
outcome of it,

∑
i∈R ξe(i, R) = ce, for every edge e with cost ce.

(2) Separability: For every network game induced by the cost-sharing protocol Ξ, the cost-shares
of each edge are completely determined by the set of players using it.

(3) Stability: In every network game induced by the cost-sharing protocol Ξ, there exists at least
one pure Nash equilibrium, regardless of the graph structure.

Under the assumption that each player is associated with a distinct vertex, which can be done
w.l.o.g.5, we call a cost-sharing protocol Ξ universal, if it satisfies the above properties for any graph

G, and it assigns the cost-sharing method6 ξe : 2V → R|V |+ to any edge e based only on knowledge
of G (without any knowledge of S) for the adversarial model, while in the stochastic model the
method can in addition depend on Π.

Note that in the way that we define the Stability property, we require that the protocol admits
a pure Nash equilibrium regardless of the graph structure. This is because the network may evolve
over time and it is essential that existence of pure Nash equilibrium is always guaranteed. As
we discuss next, due to the work of [23] we may consider only the generalized weighted Shapley
protocols. If one drops the requirement of pure Nash equilibrium existence regardless of the graph
structure and requires only the existence of a pure Nash equilibrium on a specific network, then
other protocols may exist; see for example the work of Marden and Wierman [51] for the case of
parallel links.

Generalized Weighted Shapley Protocol (GWSP) The generalized weighted Shapley pro-
tocol (GWSP) is defined by the players’ weights (parameters) {w1, . . . , wn} and an ordered par-
tition of the players Σ = (U1, . . . , Uh). An interpretation of Σ is that for i < j, players from
Ui appear before players from Uj and therefore Uj are charged zero cost for their common edges
with Ui. More formally, for every edge e of cost ce, every set of players Re that uses e and for
s = arg minj{Uj |Uj ∩Re 6= ∅}, the GWSP assigns the following method to e:

ξe(i, Re) =

{
wi∑

j∈Us∩Re
wj
ce, if i ∈ Us ∩Re

0, otherwise

In the special case that each Ui contains exactly one player, the protocol is called ordered. The
order of the Ui sets indicates a permutation of the players, denoted by π.

In this paper we restrict ourselves to the family of generalized weighted Shapley protocols which
is justified due to the characterization of Chen, Roughgarden and Valiant [23]. Next we restate
their Theorem 3.8 by using their proof of Lemma 4.4.

Instead, we define it for the set of all potential players.
5To see this, if there are two players with s1 = s2 = v, for some v ∈ V , we modify the graph by connecting a new

vertex v′ with v via a zero-cost edge and then we set s1 = v and s2 = v′. Neither the optimum solution, nor any NE
is affected by this modification.

6The methods should be defined on V , since every vertex is potentially associated with some player.
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Theorem 3. (Theorem 3.8 of [23]). A cost-sharing protocol satisfies budget-balance, separability
and stability in any multicast game with unit edge costs if and only if it is a generalized weighted
Shapley protocol.

(Pure) Nash Equilibrium (NE) We denote by Pi the strategy space of player i, i.e. the set of
all the paths connecting si to t. P = (P1, . . . , Pk) denotes an outcome or a strategy profile, where
Pi ∈ Pi for all i ∈ S. As usual, P−i denotes the strategies of all players but i. Let Re be the
set of players using edge e ∈ E under P. The cost-share of player i induced by ξe’s is equal to
ci(P) =

∑
e∈Pi

ξe(i, Re). The players’ objective is to minimize their cost-share ci(P). A strategy
profile P = (P1, . . . , Pk) is a Nash equilibrium (NE) if for every player i ∈ S and every strategy
P ′i ∈ Pi, ci(P) ≤ ci(P−i, P ′i ).

Price of Anarchy (PoA) The cost of an outcome P = (P1, . . . , Pk) is defined as c(P) =∑
e∈∪iPi

ce, while O = (O1, . . . , Ok) ∈ arg minP c(P) is an optimum solution. The Price of Anarchy
(PoA) is defined as the worst-case ratio of the cost in a NE over the optimal cost in the game
induced by S. In the adversarial model the worst-case S is chosen, while in the stochastic model S
is drawn from a known distribution Π. Formally, in the adversarial model we define the PoA of a
protocol Ξ on G as

PoA(G,Ξ) = max
S⊆V \{t}

maxP∈ N c(P)

c(O)
,

where N is the set of all NE of the game induced by Ξ and S on G.
In the stochastic model, the PoA of Ξ, given G and Π is

PoA(G,Ξ,Π) =
ES∼Π [maxP∈ N c(P)]

ES∼Π[c(O)]
.

In both models the objective of the designer is to come up with protocols that minimize the
above ratios. Finally, the Price of Anarchy for a class of graph metrics G, is defined in the two
models, respectively, as

PoA(G) = max
G∈G

min
Ξ(G)

PoA(G,Ξ); PoA(G) = max
G∈G

min
Ξ(G,Π)

max
Π

PoA(G,Ξ,Π).

Graph Theory For every graph G, we denote by V (G) and E(G) the set of vertices and edges
of G, respectively. For any v, u ∈ V (G), (v, u) denotes an edge between v and u and dG(v, u)
denotes the shortest distance between v and u in G; if G is clear from the context, we simply write
d(v, u). A graph G is an induced subgraph of H, if G is a subgraph of H and for every v, u ∈ V (G),
(v, u) ∈ E(G) if and only if (v, u) ∈ E(H). G is a distance preserving (isometric) subgraph of H,
if G is a subgraph of H and for every v, u ∈ V (G), dG(v, u) = dH(v, u).

3 Outerplanar Graphs

In this section we show that there exists a class of graph metrics, prior knowledge of which can dra-
matically improve the performance of good network cost-sharing design. For outerplanar graphs,
we provide a universal cost-sharing protocol with constant PoA. In contrast, we stress that uniform
protocols cannot achieve PoA better than Ω(log k), because the lower bound for the greedy algo-
rithm of the Online Steiner Tree problem can be embedded in an outerplanar graph (see Figure 2
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for an illustration). An outerplanar graph is a planar graph where all the vertices belong to the
outer face. For a biconnected7 outerplanar graph the outer face forms a (unique) Hamiltonian cycle.

We next define an ordered universal cost-sharing protocol, Ξtour, and we show that it has
constant PoA. We describe Ξtour only for metric spaces that are defined by biconnected outerplanar
graphs. In order to define Ξtour for an outerplanar graph G that is not biconnected, we first turn it
into an equivalent8 biconnected graph G∗, by appropriately adding edges of sufficiently high cost h.
In order to do this, we can set h to be a value strictly greater than

∑
e∈E(G) ce. Then, equivalence is

obvious since we only add edges that cannot be used in either any NE or the minimum Steiner tree
outcome. Hence, it is w.l.o.g. to consider only biconnected outerplanar graphs. It is known that
every biconnected outerplanar graph admits a unique Hamiltonian cycle [55] that can be found in
linear time [31].

Definition of Ξtour: Ξtour orders the vertices according to the cyclic order in which they
appear in the Hamiltonian tour, starting from t and proceeding in a clockwise order π. In Figure
2, π(t) < π(q8) < π(q4) < π(q9) < . . . < π(q15).

In the following theorem we show that, for outerplanar graphs, the PoA of Ξtour is constant
and more precisely is upper bounded by 2.

Figure 2: The figure shows an example of an outerplanar graph where the order qi < qi+1 gives
PoA of Ω(log k).

Theorem 4. The PoA of Ξtour in outerplanar graphs is at most 2.

Proof. Let G = (V,E, t) be any biconnected outerplanar graph and S be the set of activated
vertices. Let T ∗ be the minimum Steiner tree that connects S ∪ {t} and suppose that is rooted at
t. We denote by PT ∗(i, i

′) the unique path from i to i′ in T ∗ and by T ∗v the subtree of T ∗ rooted at
vertex v.

We first show the following claims that will be useful to complete the proof.

Claim 5. For any i, i′, j, j′ ∈ V (T ∗) such that π(i) < π(j) < π(i′) < π(j′), the paths PT ∗(i, i
′) and

PT ∗(j, j
′) are not vertex-disjoint, (i.e. PT ∗(i, i

′) and PT ∗(j, j
′) share a common vertex) .

Proof. Consider the representation of G as a planar graph where the unique Hamiltonian tour of
G is the outer face, meaning that all the edges of PT ∗(i, i

′) and PT ∗(j, j
′) are either edges of the

Hamiltonian tour or chords of it. The Hamiltonian tour defines two paths between i and i′, one

7A graph is biconnected if, after removing any vertex, the graph remains connected.
8We mean that any NE outcome and the minimum Steiner tree solution remain unchanged after the transformation

and therefore the PoA of G is exactly the same with the one of G∗.
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containing j and the other containing j′. Hence, the paths PT ∗(i, i
′), PT ∗(j, j

′) have either crossing
edges or some common vertex. Due to the planarity of G the first case is excluded and the claim
follows.

Claim 6. For any two vertex-disjoint subtrees T ∗v and T ∗u of T ∗, rooted at vertices v and u, respec-
tively, either all the vertices of T ∗v precedes all the vertices of T ∗u , or the opposite.

Proof. Assume on the contrary that w.l.o.g. there exist i′ ∈ V (T ∗v ) and j, j′ ∈ V (T ∗u ) such that
π(j) < π(i′) < π(j′). Since T ∗v and T ∗u are vertex-disjoint subtrees, first t /∈ V (T ∗v ) and t /∈ V (T ∗u )
and further the paths PT ∗(t, i

′) and PT ∗(j, j
′) should also be vertex-disjoint. Notice, though, that

π(t) < π(j) < π(i′) < π(j′) and so, by Claim 5 we end up with a contradiction.

Claim 7. For any two vertices v, u ∈ V (T ∗) where v is an ancestor of u, then v either precedes or
follows all the vertices of the subtree T ∗u .

Proof. If v is the root then trivially v precedes all the vertices of T ∗u . Suppose now that v 6= t
and consider the case that v precedes u (the other case is similar). For the sake of contradiction,
assume that there exists a vertex u′ ∈ V (T ∗u ) such that u′ precedes v and therefore, π(t) < π(u′) <
π(v) < π(u). Note that PT ∗(t, v) and PT ∗(u, u

′) are vertex-disjoint and therefore, by Claim 5 we
end up with a contradiction.

For convenience, we next refer to the set of the activated vertices as S = {1, 2, ..., k}, based on
their order π, from smaller label to larger, i.e. vertex i has the ith smallest label among S. We
further adopt the convention that t = 0.

Consider any NE, P = (Pi)i∈N . We bound from above the cost-share of each player at vertex
i ∈ [k] by the cost of the path in T ∗ that connects her with i− 1, i.e.,

ci(P) ≤ c(PT ∗(i, i− 1)) =
∑

e∈PT∗ (i,i−1)

ce.

Then, by summing over S,

c(P) =
∑
i∈[k]

ci(P) ≤
∑
i∈[k]

c(PT ∗(i, i− 1)) =
∑
i∈[k]

∑
e∈PT∗ (i,i−1)

ce =
∑

e∈E(T ∗)

∑
i:e∈PT∗ (i,i−1)

ce.

We argue next that by Claims 6 and 7 we can infer that, for each edge e of E(T ∗), there exist at
most two paths PT ∗(i, i− 1) containing e, leading to:

c(P) ≤
∑

e∈E(T ∗)

2ce = 2c(T ∗).

To explain the last argument, consider any edge e = (v′, v) ∈ E(T ∗) and let v be the child of v′

in T ∗. For any vertex u /∈ V (T ∗v ), either T ∗v and T ∗u are vertex-disjoint, or u is an ancestor of v in
T ∗. In either case, by Claims 6 and 7, u either precedes or follows all vertices of T ∗v . Let `, h ∈ [k]
be the vertices of S∩V (T ∗v )9 with the lowest and the highest labels, respectively (it is possible that
` = h). It is easy to see that only the paths PT ∗(`, `− 1) and PT ∗(h+ 1, h) use edge e (the second
path exists only if h < k).

We next demonstrate that our analysis is tight.

9There should exist at least one activated vertex in T ∗v , otherwise e /∈ E(T ∗).
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Proposition 8. The PoA of Ξtour in outerplanar graphs is at least 2.

Proof. Consider a cycle graph C = (V,E, t) with 2k vertices and unit-cost edges. Let the vertices
V = {t = 0, 1, 2, ..., 2k − 1} be named based on their order π, from smaller to larger label. We
consider the set of the k activated vertices to be S = {k, k+ 1, . . . , 2k− 1}. It is a NE if the player
on vertex k connects with t through the path (0, 1, . . . , k) and each other player on vertex k+ i, for
i ∈ [k − 1], connects with the vertex k + i − 1 and follow their path to the root. The cost of this
NE is 2k − 1.

The optimum solution would be to connect S with t through the path (k, k + 1, . . . , 2k − 1, t)
with cost k. Therefore, PoA≥ 2k−1

k which for large k it converges to 2.

4 Lower Bound of Ordered Protocols

The main result of this section is that the PoA of any ordered protocol is Ω(log k) which is tight10.
We formally define (Definition 10) the ‘zig-zag’ pattern of the lower bounds of the Greedy Algorithm
of the Online Steiner Tree problem (see Example 1(b) and Figure 3). Then the main technical
challenge is to show that for any ordering of the vertices of high dimensional hypercubes, there
always exists a distance preserving path, such that the order of its vertices follows that zig-zag
pattern. Finally, by connecting any two vertices of the hypercube with a direct edge of suitable
cost, similar to the example in Figure 1(b), we get the final lower bound construction.

Before defining the zig-zag pattern, we give the definition of Classes (Definition 9), which is
a partition of the path’s vertices. Informally, given a path graph P = (v0, . . . , v2r), we define a
partition of its vertices into r + 1 classes, D0, D1, . . . , Dr, as described next. Suppose that we
construct P in r + 1 steps, where at each step j ∈ {0, . . . , r} we introduce the vertices of class Dj

as follows. At step 0 we connect the two endpoints v0, v2r via an edge and D0 = {v0, v2r}. At
step 1 we replace the edge (v0, v2r) by a two-length path (v0, v2r−1 , v2r), i.e. we place the vertex
of D1 = {v2r−1} between the existing vertices. Repeatedly, at each step j we replace each of the
current edges by a two-length path, in the middle of which we place a vertex of Dj . We next give
a formal definition of the vertices’ partition.

Definition 9 (Classes). For r > 0 and for a path graph P = (v0, . . . , v2r) of 2r+1 vertices, we define
a partition of the vertices into r+1 classes, D0, D1, . . . , Dr, as follows: Class 0 contains the endpoints
of P , D0 = {v0, v2r}. For every j ∈ [r], Dj = {vi| i ≡ 0

(
mod 2r−j

)
and i 6≡ 0

(
mod 2r−j+1

)
}.

As an example, consider the path P = (v0, v1, . . . , v8) of Figure 3, where r = 3. Then, D0 =
{v0, v8}, D1 = {v4}, D2 = {v2, v6} and D3 = {v1, v3, v5, v7}. Note that always |D0| = 2 and for
j 6= 0, |Dj | = 2j−1.

For j > 0 and vi ∈ Dj , we define the parents of vi as {w|dP (vi, w) = 2r−j}, i.e. the closest
vertices that belong to lower-labeled classes. For example, for the path of Figure 3, the parents of
v4, v5, v6 are respectively the sets {v0, v8}, {v4, v6}, {v4, v8}. Remark that for all v /∈ {v0, v2r}, v
has two parents belonging to lower-labeled classes than v and all vertices between v and any of its
parents belong to higher-labeled classes than v. We are now ready to define the “zig-zag” pattern.

Definition 10 (Zig-zag pattern). We call a path graph P = (v0, v1, . . . , v2r), with distinct integer
labels π, zig-zag, and we denote it by Pr(π), if for every v /∈ {v0, v2r}, v has greater label than both
its parents w1, w2, i.e. π(v) > π(w1) and π(v) > π(w2).

10We clarify that the result is with respect to the number of players, k, and does not indicate any lower bound
with respect to the number of vertices, n.
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An example of such a path for r = 3 is shown in Figure 3. Our main result of this section
is that there exist graphs, high dimensional hypercubes, such that for any order π, Pr(π) always
appears as a distance preserving subgraph. Our proof is existential and uses Ramsey theory.

1

v0

8

v1

6

v2

7

v3

3

v4

5

v5

4

v6

9

v7

2

v8

Figure 3: An example of a P3(π) path. The numbers correspond to the labels.

Example 11. In order to give some intuition, we will first use a Ramsey-type result due to Alon
et al. [4] to show that, for any π, P2(π) appears as a subgraph. Alon et al. [4] showed that for
any given integer ` ≥ 5, any edge-colouring of a sufficiently high dimensional hypercube contains a
monochromatic cycle of length 2`. Let Qn be the hypercube of [4] for ` = 5, and notice that it is
bipartite i.e. Qn = (A,B,E). For any ordering of vertices of Qn we define a colouring as follows:
for any edge (v, u), with v ∈ A and u ∈ B, if π(v) < π(u), we paint the edge blue, otherwise we
paint it red.

Suppose w.l.o.g. that the monochromatic cycle C10 of length 10 is blue (see also Figure 4 for
an illustration). Then, for any v ∈ A ∩ V (C10) (continuous circles), its neighbours in C10 should
have higher label (dashed circles). The vertices of A ∩ V (C10) can be 1-embedded into a cycle C5

of length 5 (dotted cycle). We appropriately choose three consecutive vertices of C5, such that the
middle one has higher label than the others in π ((5, 8, 1) in Figure 4). It is not hard to see that
such a triplet is guaranteed because C5 is a cycle. These three vertices with their intermediate ones
in C10 form a path isomorphic to P2(π); that path in Figure 4 is the (5, 10, 8, 9, 1).

3

4

2

7
1

9

8

10

5

6

Figure 4: An example of P2(π) by using the result of [4].

There are two limitations in using the results of [4] in our proof. a) The induced monochro-
matic cycle of any length can only be used in order to prove the existence of a zig-zag pattern of
length 4 and it doesn’t help for paths of higher lengths as required for our lower bound. b) The
induced zig-zag pattern is not necessarily distance-preserving, because the monochromatic cycle
derived by [4] is not distance preserving, which is a crucial property for our lower bound to hold.
Therefore, in order to overcome those limits, we prove a similar Ramsey-type result, but for a
different monochromatic subgraph which is distance preserving and has some special properties (to
be described in Section 4.1).

Proof Overview The proof is by induction and in the inductive step our starting point is the
n-th dimensional hypercube Qn. Given an ordering/labeling π of the vertices of Qn we first show

12



that Qn contains a subgraph W which is isomorphic to a ‘pseudo-hypercube’ Q2
m (m < n) where

the labeling of its vertices satisfies a special property (to be described shortly). Q2
m is defined by

replacing each edge of Qm by a 2-edge path (of length two)11.

Definition 12. (Labeling property): For the subgraph W we require that all such newly formed
2-edge paths, are P1(π) paths, i.e. the label of the middle vertex is greater than the labels of the
endpoints (Figure 5(a) shows such a labeling).

Next, we contract all such 2-edge paths of W into single edges, resulting in a graph isomorphic to
Qm; this is the hypercube used for the next step. Note that each contracted edge still corresponds
to a path in Qn. Therefore, after r recursive steps, each edge corresponds to a 2r path of Qn.
Further, note that such a path is a Pr(π) path, due to the labeling property that we preserve at
each step. We require that, at the end of the last inductive step, Qm = Q1 (a single edge), and (by
unfolding it) we show that this edge corresponds to a distance preserving subgraph of the original
graph/hupercube. At each step, we have m < n and the relation between n and m is determined
by a Ramsey-type argument.

We next describe the basic ingredients that we use to show existence of W . We apply a coloring
scheme to the edges of Qn that depends on the vertices’ order.

Definition 13. (Coloring Scheme): Consider Qn as a bipartite graph Qn = (A,B,E). For any
edge (v, u), with v ∈ A and u ∈ B, if the v’s label is smaller than u’s, we paint the edge blue,
otherwise we paint it red.

By a Ramsey-type argument we show that Qn has a monochromatic subgraph isomorphic to a
specially defined graph Gm; Gm is carefully specified in such a way that it contains at least two
subgraphs isomorphic to pseudo-hypercubes Q2

m. The special property of those two subgraphs is
described next.

Let H1 and H2 be the two half cubes12 of Qn and let V (H1) = A and V (H2) = B. Observe
that if Q2

m is a subgraph of Qn then the corresponding Qm is an induced subgraph of either H1

or H2. We carefully construct Gm such that it contains subgraphs W1 and W2 isomorphic to Q2
m,

whose corresponding Qm’s are induced subgraphs of H1 and H2, respectively. The color of Gm
determines which of the W1 and W2 will serve as the desired W . In particular, if the color is blue,
then for every edge (v, u), with v ∈ V (H1) and u ∈ V (H2), it should hold that v’s label is smaller
than u’s and therefore the labeling property is satisfied for W1; similarly, if the color is red, W2

serves as W .

Proof Roadmap The whole proof of the lower bound proceeds in several steps in the following
sections. In Section 4.1 we give the formal definition of the subgraph Gm. Section 4.2 is devoted to
show that every 2-edge coloring of a (suitably) high dimensional hypercube contains a monochro-
matic copy of Gm (Lemma 15), by using Ramsey theory. Then, in Section 4.3 we show that, for
any ordering of the vertices of Qn, we can define a special 2-edge-coloring, so that there exists a
Q2
m subgraph of Gm that preserves the Labeling property (Lemma 17). At last, in Section 4.4, by a

recursive application of the combination of the Ramsey-type result and the coloring, we prove the
existence of the zig-zag path in high dimensional hypercubes (Theorem 18). We then show how to
construct a graph that serves as lower bound for all ordered protocols (Theorem 20). This is done

11See Q2
m of Definition 16 and Figure 5(a) for an illustration

12The two half-cubes of order n are formed from Qn by connecting all pairs of vertices with distance exactly two
and dropping all other edges.
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by connecting any two edges of the hypercube with a direct edge of appropriate cost, similar to the
example in Figure 1(b).

Definitions and notation on Hypercubes We denote by [r, s] (for r ≤ s) the set of integers
{r, r + 1, . . . , s− 1, s}, but when r = 1, we simply write [s]. We follow definitions and notation of
[4]. Let Qn be the graph of the n-dimensional hypercube whose vertex set is {0, 1}n. We represent
a vertex v of V (Qn) by an n-bit string x = 〈x1 . . . xn〉 = 〈xj〉nj=1, where xi ∈ {0, 1}. By 〈xy〉 or xy
we denote the concatenation of an r-bit string x with an s-bit string y, i.e. xy = 〈x1 . . . xry1 . . . xs〉.
An edge is defined between any two vertices that differ only in a single bit. We call this bit, flip-
bit, and we denote it by ‘∗’. For example, x = 〈11100〉, y = 〈11000〉 are two vertices of Q5 and
(x, y) = 〈11 ∗ 00〉 is the edge that connects them. The distance between two vertices x, y is defined
by their Hamming distance, d(v, u) = |{j : xj 6= yj}|. For a fixed subset of coordinates R ⊆ [n], we
extend the definition of the distance as follows,

d(x, y,R) =

{
d(x, y), if ∀j ∈ R, xj = yj
∞, otherwise.

We define the level of a vertex x by the number of ‘ones’ it contains, w(x) =
∑n

i=1 xi. We
denote by Li the set of vertices of level i ∈ [0, n]. We define the prefix sum of an edge e = (x, y),
where the flip-bit is in the j-th coordinate, by p(e) =

∑j−1
i=1 xi. We represent any ordering π of

V (Qn), by labeling the vertices with labels 1, . . . , 2n, where label i corresponds to ranking i in π.

4.1 Description of Gm

For a positive integer m, we define a graph Gm = (Vm, Em) that is an induced subgraph of Q4m on
Vm = V1 ∪ V2 ∪ V3 ⊆ V (Q4m). A vertex of V1 is defined by 2m− 1 concatenations of pairs 〈01〉 and
〈10〉 and a single pair 〈00〉 that appears in the second half of the string. A vertex of V2 is defined by
2m concatenations of 〈01〉 and 〈10〉. A vertex of V3 is defined by 2m−2 concatenations of 〈01〉 and
〈10〉, one pair 〈11〉 that appears on the first half of the string, and one pair 〈00〉 that appears on
the second half. For example, for m = 2, 〈01 10 00 10〉 ∈ V1, 〈01 10 10 10〉 ∈ V2, 〈01 11 10 00〉 ∈ V3.
More formally, let A = {〈01〉, 〈10〉}, then the subsets V1, V2, V3 are defined as follows:

V1 := V1(m) = {〈ajbj〉2mj=1|∃i ∈ [m+ 1, 2m] s.t. 〈aibi〉 = 〈00〉 and ∀j 6= i, 〈ajbj〉 ∈ A},
V2 := V2(m) = {〈ajbj〉2mj=1|∀j, 〈ajbj〉 ∈ A},
V3 := V3(m) = {〈ajbj〉2mj=1|∃i1 ∈ [m],∃i2 ∈ [m+ 1, 2m] s.t.

〈ai1bi1〉 = 〈11〉, 〈ai2bi2〉 = 〈00〉 and ∀j 6= i1, i2, 〈ajbj〉 ∈ A}.

Observe that Gm is bipartite with vertex partitions V1 and V2 ∪ V3, as vertices of V1 belong to
level 2m− 1, while vertices of V2 ∪ V3 to level 2m.

Lemma 14. Every pair of vertices x, x′ ∈ V1(m) with d(x, x′, [2m + 1, 4m]) = 2, have a unique
common neighbor y ∈ V3(m). Also, every pair of vertices x, x′ ∈ V2(m), with d(x, x′, [2m]) = 2,
have a unique common neighbor y ∈ V1(m).

Proof. Recall that (by definition) if d(x, x′, R) 6=∞ then x, x′ should coincide in all R coordinates.
For the first statement, observe that the premises of the Lemma hold only if there exists s ∈ [m]
such that x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the other way around), in which case the required

vertex y from V3(m) has y2s−1y2s = 〈11〉; the rest of the bits are the same among x, x′, y. For the
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second statement, the premises of the Lemma hold only if there exists an s ∈ [m+ 1, 2m] such that
x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the other way around), in which case the required vertex

y from V1(m) has y2s−1y2s = 〈00〉 and the rest of the bits are the same among x, x′, y.

4.2 Ramsey-type Theorem

In the following lemma we showed that there exists a sufficiently large hypercube Qn such that,
no matter how we paint its edges with two colors, it contains a monochromatic copy of Gm. We
note here that the lemma holds for any n > g(m), where the value of g(m) is determined by a
Ramsey-type argument. Therefore, the proof is existential and it doesn’t provide any bounds on
g(m). Lemma 15 is only used in Lemma 17, but we believe that it is of independent interest.

Lemma 15. For any positive integer m, and for sufficiently large n ≥ n0 = g(m), any 2-edge
coloring χ of Qn, contains a monochromatic copy of Gm

13.

Proof. The proof follows ideas of Alon et al. [4]. Consider a hypercube Qn, with sufficiently large
n > 6m to be determined later, and some arbitrary 2-edge-coloring χ : E(Qn)→ {1, 2}. Let E∗ be
the set of edges between vertices of L4m−1 and L4m (recall that Li = {v|w(v) = i}).

Each edge e ∈ E∗ contains 4m−1 1’s, a flip-bit represented by ∗ and the rest of the coordinates
are 0. Moreover, e is uniquely determined by its 4m non-zero coordinates Re ⊆ [n] and its prefix
sum p(e) ∈ [0, 4m−1] (number of 1′s before the flip-bit). Therefore, the color χ(e) defines a coloring
of the pair (Re, p(e)), i.e. χ(e) = χ(Re, p(e)). For each subset R ⊂ [n] of 4m coordinates, we denote
by c(R) = (χ(R, 0), ..., χ(R, 4m − 1)) the color induced by the edge coloring. The coloring of all
subsets R defines a coloring of the complete 4m-uniform hypergraph of [n]14 using 24m colors.

By Ramsey’s Theorem for hypergraphs [39], there exists n0 = g(m) such that for any n ≥ n0

there exists some subset U ⊂ [n] of size 6m such that all 4m-subsets R ⊂ U have the same color
c(R) = c∗. Therefore, for every 4m-subsets R1, R2 ⊂ U and p ∈ [0, 4m − 1], it is χ(R1, p) =
χ(R2, p) = χ∗p. Since p takes 4m values and there are only two different colors, there must exist 2m
indices p0, . . . , p2m−1 ∈ [0, 4m− 1] with the same color χ(R, pi) = χ∗, for all R ⊂ U , |R| = 4m and
i ∈ [0, 2m− 1].

It remains to show that the graph formed by those monochromatic edges contain a copy of Gm.
We will show this by placing the bits of each edge from Em (the set of edges of Gm) to suitable
coordinates of [n] and filling the rest of the coordinates suitably by zeros and ones. More precisely,
we insert blocks of 1’s of suitable length among the bits of the edges of Em, and all those bits are
placed at the coordinates of U . The rest of the bits (n− |U |) are set to zero.

Let 1r be a string of r 1’s and define βi = 1pi−pi−1−1 for i ∈ [2m − 1], β0 = 1p0 and β2m =
14m−1−p2m−1 . For any edge e = 〈ajbj〉j ∈ Em, we insert β0 at the beginning of the string, for
j ∈ [m] we insert βj between aj and bj and for j ∈ [m+ 1, 2m] we insert the string βj after bj . The
following illustrates these insertions:

1 . . . 1︸ ︷︷ ︸
p0

a1 1 . . . 1︸ ︷︷ ︸
p1−p0−1

b1 a2 . . . am 1 . . . 1︸ ︷︷ ︸
pm−pm−1−1

bm am+1 bm+1 1 . . . 1︸ ︷︷ ︸
pm+1−pm−1

am+2 bm+2 . . . a2m b2m 1 . . . 1︸ ︷︷ ︸
4m−1−p2m−1

Recall that each edge of Em contains exactly 2m zero bits and 2m non-zero bits (one of which
is the flip bit). Also notice that

∑
j |βj | = p0 +

∑2m−1
i=1 (pi − pi−1 − 1) + 4m − 1 − p2m−1 =

13The result could be extended to any (fixed) number of colors, but we need only two for our application.
14A k-uniform hypergraph is a hypergraph such that all its hyperedges have size k.
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−(2m − 1) + 4m − 1 = 2m. Therefore, in total we have 6m bits (same as the size of U) and 4m
non-zero bits (same as the size of R). We place these 6m bits precisely at the coordinates of U .
The rest n− 6m of the coordinates are filled with zeros.

It remains to show that for such edges the prefix of the flip-bit is always one of the p0, . . . , p2m−1.
This would imply that all these edges are monochromatic. Furthermore, all but 4m coordinates are
fixed and the 4m coordinates form exactly the sets V1(m), V2(m), V3(m); therefore, the monochro-
matic subgraph is isomorphic to Gm.

For any edge e = 〈ajbj〉j ∈ Em, let the flip-bit be at position:

• aj for j ∈ [m]. Its prefix is
∑j−1

i=0 |βi| + (j − 1) = pj−1, where the term j − 1 corresponds to
the number of pairs 〈asbs〉 with s < j, each of which contributes to the prefix with a single 1.

• bj for j ∈ [m]. Since j ≤ m, aj = 1. Then the prefix equals to
∑j

i=0 |βi|+ (j − 1) + 1 = pj .

• aj or bj for j ∈ [m+ 1, 2m]. For such j, 〈ajbj〉 ∈ {〈0∗〉, 〈∗0〉} and all other pairs belong to A.

Therefore, the prefix is equal to
∑j−1

i=0 |βi|+ (j − 1) = pj−1.

4.3 Coloring based on the labels

This part of the proof shows that for any ordering of the vertices of a hypercube Qn, there is a
2-edge coloring with the following property: in the monochromatic Gm, either all the vertices of
V1 or all the vertices of V2 have neighbors in Gm with only higher label. This implies a desired
labeling property for a Q2

m subgraph of Qn, the structure of which is defined next.

Definition 16. We define Qsn to be a subdivision of Qn, by replacing each edge by a path of length
s. Q1

n is simply Qn. We denote by Z(Qsn) the set of all pairs of vertices (x, x′), which correspond
to edges of Qn; P (x, x′) is the corresponding path in Qsn. For every (x, x′) ∈ Z(Q2

m), we denote by
θ(x, x′) the middle vertex of P (x, x′).
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Figure 5: Examples of (a) Q2
3 and (b) Q4

2. The labels on the nodes are examples of the labeling
property, (a) after one inductive step, (b) after two inductive steps.

In the next lemma we show that for any ordering of the vertices of Qn, there exists a subgraph
isomorphic to Q2

m, such that the ‘middle’ vertices have higher label than their neighbors (Labeling
Property). This lemma is only used in Theorem 18.

Lemma 17. For any positive integer m, for all n ≥ n0 = g(m) and for any ordering π of V (Qn),
there exists a subgraph W of Qn that is isomorphic to Q2

m, such that, for every (x, x′) ∈ Z(W ), it
is π(θ(x, x′)) > max{π(x), π(x′)}.
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Proof. Choose a sufficiently large n ≥ n0 = g(m) as in Lemma 15. Partition the vertices of Qn into
sets O, E of vertices of odd and even level, respectively. We color the edges of Qn as follows. For
every edge e = (z, z′) with z ∈ O and z′ ∈ E , if π(z) < π(z′), then paint e blue. Otherwise paint
it red. Therefore, for every blue edge, the endpoint in O has smaller label than the endpoint in E .
The opposite holds for any red edge.

Lemma 15 implies that Qn contains a monochromatic copy (blue or red) of Gm. Recall that
this monochromatic subgraph of Qn is bipartite between vertices of levels L4m−1 and L4m and that
V1 ⊂ L4m−1 ⊂ O and V2 ∪ V3 ⊂ L4m ⊂ E . Let R ⊂ [n] be the subset of the 4m coordinates that
correspond to vertices of Gm. Also let R1 and R2 be the subsets of the first 2m and the last 2m
coordinates of R, respectively.

First suppose that the subgraph isomorphic to Gm is blue. An immediate implication of our
coloring is that for every edge (z, z′) ∈ Em with z ∈ V1, z′ ∈ V2 ∪ V3 it must be π(z) < π(z′). Fix
a 2m-bit string s that corresponds to a permissible bit assignment to the R2 coordinates of some
vertex in V1 (see Section 4.1). Define Ws as the subset of vertices of V1 where the R2 coordinates
are set to s. Recall that each of the first m pairs 〈ajbj〉, j ∈ [m], of a vertex z ∈Ws, may take any
of the two bit assignments 〈01〉 and 〈10〉. Hence, |Ws| = 2m.

Observe that we can embed Ws into Qm with distortion15 1 and scaling factor 1/2, by mapping
the first m pairs of bits into single bits; map 〈01〉 to 1 and 〈10〉 to 0. Every two vertices with
distance d in Qm, have distance 2d in Qn. For every x, x′ ∈ Ws ⊂ V1 with d(x, x′) = 2, it holds
that d(x, x′, R2) = 2, since x, x′ have the same R2 coordinates. Lemma 14 implies that there exists
y = θ(x, x′) ∈ V3, such that d(x, y) = d(x′, y) = 1, and therefore, π(y) > max{π(x), π(x′)}. Take
the union Y = ∪y of all such vertices y, then Ws ∪ Y induces a subgraph W isomorphic to Q2

m,
that fulfills the labeling requirements.

The case of Gm being red is similar. We focus only on the vertices of V2. Fix now a 2m-bit
string s that corresponds to a permissible bit assignment of the R1 coordinates of a vertex in V2.
Define Ws as the subset of vertices of V2 where the R1 coordinates are set to s. Similarly, we can
embed Ws into Qm with distortion 1 and scaling factor 1/2.

For every x, x′ ∈Ws ⊂ V2 with d(x, x′) = 2, where the R1 coordinates are fixed to s, Lemma 14
implies that there exists y = θ(x, x′) ∈ V1, such that d(x, y) = d(x′, y) = 1, and therefore, π(y) >
max{π(x), π(x′)}. Take the union Y = ∪y of all such vertices y, then Ws ∪ Y induces a subgraph
W isomorphic to Q2

m, that fulfills the labeling requirements.

4.4 Lower Bound Construction

Now we are ready to prove the main theorem of this section.

Theorem 18. For every positive integer r, and for sufficiently large n = n(r), there exists a graph
Qn such that, for every ordering π of its vertices, it contains a zig-zag distance preserving path
Pr(π).

Proof. Let g be a function as in Lemma 15. We recursively define the sequence n0, n1, . . . , nr, such
that nr = 1 and ni−1 = g(ni), for i ∈ [r]. We will show that Qn0 (n0 = n(r)) is the graph we are
looking for.

Claim 19. For every i ∈ [0, r], and for any vertex ordering π of Qn0 , Qn0 contains a subgraph
isomorphic to Q2i

ni
, such that for every (x, x′) ∈ Z(Q2i

ni
), P (x, x′) is a zig-zag path Pi(π).

15We give the definition of distortion: Let (X, ρ) and (Y, σ) be metric spaces, and let D ≥ 1 be a real number.
A map f : X → Y is said to have distortion at most D if there exists a real number r > 0 (which is called scaling
factor) such that for all x, y ∈ X it holds that r · ρ(x, y) ≤ σ(f(x), f(y)) ≤ D · r · ρ(x, y).
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Proof. The proof is by induction on i. As a base case, Q20
n0

= Qn0 is the graph itself. An edge is

trivially a path P0(π), for any π. Suppose now that Qn0 contains a subgraph isomorphic to Q2i
ni

,

for some i < r, such that for every q ∈ Z(Q2i
ni

), P (q) is a zig-zag path Pi(π). It is sufficient to

show that Q2i
ni

contains a subgraph isomorphic to Q2i+1

ni+1
, such that for every q ∈ Z(Q2i+1

ni+1
), P (q) is

a zig-zag path Pi+1(π).
For every (x, x′) ∈ Z(Q2i

ni
), if we replace P (x, x′) with a direct edge e = (x, x′), the resulting

graph is a copy of Qni . Applying Lemma 17 on Qni , guarantees the existence of a subgraph W
isomorphic to Q2

ni+1
(ni = g(ni+1)), where for every (y, y′) ∈ Z(W ), π(θ(y, y′)) > max{π(y), π(y′)}.

Each of the edges (y, θ(y, y′)) and (y′, θ(y, y′)) of Q2
ni+1

are replaced by a path Pi(π) in Q2i
ni

.

Therefore, W is a copy of Q2i+1

ni+1
, with P (y, y′) being a zig-zag path Pi+1(π).

We now argue that the resulting Pr(π) is a distance preserving path. Our analysis indicates a
sequence of hypercubes Qn0 , Qn1 , . . . , Qnr . Recall that in Lemma 17, in order to get Qni+1 from
Qni we mapped 〈01〉 to 1 and 〈10〉 to 0 and the vertices of Qni+1 did not differ in any other bit
but the ones we mapped. Consider now the two vertices x, x′ of Qnr = Q1 with bit-strings 〈0〉 and
〈1〉, respectively. Their Hamming distance in their original bit representation (in Qn0) should be
2r, the same with their distance in Pr(π).

For instance, for r = 4, Table 1 shows the bit sequences in Qn3 , Qn2 , Qn1 and Qn0 that
correspond to the bits 〈0〉 and 〈1〉 of the vertices x, x′ of Qn4 = Q1. In any Qni , both bit sequences

Table 1: Example of unfolding the bit mapping.
Qn4 Qn3 Qn2 Qn1 Qn0

x 〈0〉 〈10〉 〈0110〉 〈10010110〉 〈0110100110010110〉
x′ 〈1〉 〈01〉 〈1001〉 〈01101001〉 〈1001011001101001〉

occupy exactly the same coordinates. The rest of the coordinates of x, x′ are occupied by identical
bits in all bit representations. Therefore, dQn0

(x, x′) = 16 = 2r.
Moreover, if any two vertices of Pr(π) are closer in Qn0 than in Pr(π), then this would contradict

the fact that dQn0
(x, x′) = 2r.

Finally we extend Qn so that for any order π of its vertices, a path Pr(π) exists along with the
shortcuts similar to the example of Figure 1(b).

Theorem 20. Any ordered universal protocol on undirected graphs admits a PoA of Ω(log k),
where k is the number of activated vertices.

Proof. Let k = 2r + 1 for some positive integer r. From Theorem 18, we know that for any vertex
ordering π of Qn(r) there is a distance preserving path Pr(π).

We use Qn(r) as a basis to construct the weighted graph Q̃n(r) with vertex set V (Q̃n(r)) =
Qn(r) ∪ {t}, where t is the designated root. We connect every pair of vertices x, y with a direct
edge of cost ce = 2r, if t is one of its endpoints, otherwise its cost is ce = dQn(r)

(x, y) (similar to
Figure 1(b)).

The adversary selects to activate the vertices of Pr(π), and the lower bound follows; in the NE
the players choose their direct edges to connect with one of their parents (see at the beginning of
Section 4 for the term “parent”).
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5 Lower Bound for all universal protocols

In this section, we exhibit a graph metric for which no universal cost-sharing protocol admits a PoA
better than Ω(log k). Due to the characterization of [23], we can restrict ourselves to generalized
weighted Shapley protocols (GWSPs). We refer the reader to Section 2 for the definition. We
remind the reader that ordered and Shapley protocols are the two extreme cases of the GWSPs.
So, we will distinguish between protocols that are closer to ordered protocols and protocols that
are closer to Shapley protocols.

We follow the notation of [23], and for the sake of self-containment we include here the most
related definitions and lemmas.

5.1 Cost-Sharing Preliminaries

A strictly positive function f : 2N → R+ is an edge potential on N , if it is strictly increasing, i.e.
for every R ⊂ S ⊆ N , f(R) < f(S), and for every S ⊆ N ,∑

i∈S

f(S)− f(S \ {i})
f({i})

= 1.

For simplicity, instead of f({i}), we write f(i). A cost-sharing protocol is called potential-based, if
it is defined by assigning to each edge of cost c, the cost-sharing method ξ, where for every S ⊆ N
and i ∈ S,

ξ(i, S) = c · f(S)− f(S \ {i})
f(i)

.

Let Ξ1 and Ξ2 be two cost-sharing protocols for disjoint sets of vertices U1 and U2, with methods
ξ1 and ξ2, respectively. The concatenation of Ξ1 and Ξ2 is the cost sharing protocol Ξ of the set
U1 ∪ U2, with method ξ defined as

ξ(i, S) =


ξ1(i, S ∩ U1) if i ∈ U1,
ξ2(i, S) if S ⊆ U2,
0 otherwise.

Note that the concatenation of two protocols for disjoint sets of vertices defines an order among
these two sets. The GWSPs are concatenations of potential-based protocols.

The following two lemmas from [23] give some bounds on the players’ cost-shares given a relation
of their edge potential values. Both lemmas will be used in Theorem 26 and more specifically
Lemma 21 will be used for the Shapley-like protocols and Lemma 22 for the ordered-like ones.

Lemma 21. (Lemma 4.10 of [23]). Let f be an edge potential on N and ξ the induced (by f)
cost-sharing method, for unit costs. For k ≥ 1 and a constant α, with 1 ≤ α2k ≤ 1+k−3, let S ⊆ N
be a subset of vertices with f(i) ≤ αf(j), for every i, j ∈ S. If |S| ≤ k, then for any i, j ∈ S,

ξ(i, S) ≤ α(ξ(j, S) + 2k−2).

Lemma 22. (Lemma 4.11 of [23]). Let f be an edge potential on N , and ξ be the cost-sharing
method induced by f , for unit cost. For any two vertices i, j ∈ N , such that f(i) ≥ βf(j),
ξ(i, {i, j}) ≥ β/(β + 1), and for every S ⊇ {i, j}, ξ(j, S) ≤ 1/(β + 1).

Remark 23. Consider a GWSP with Σ = (U1, . . . , Uh) as the ordered partition of the players. We
remark that Lemma 22 refers to players that belong to the same set Ua. However, the same bounds
hold for any two players i, j ∈ N that belong to different sets Ua, Ub respectively, i.e. for a < b,
ξ(i, {i, j}) = 1 > β/(β + 1) and for every S ⊇ {i, j}, ξ(j, S) = 0 < 1/(β + 1).
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5.2 Lower Bound

The following two technical lemmas will be used in our main theorem.

Lemma 24. Let X be a finite set of size msr2, and X1, . . . , Xm be a partition of X, with |Xi| = sr2,
for all i ∈ [m]. Then, for any coloring χ of X such that no more than r elements have the same
color, there exists a rainbow subset S ⊂ X (i.e. χ(v) 6= χ(u) for all v, u ∈ S), with |S ∩Xi| = s for
every i ∈ [m].

Proof. Given the partition X1, . . . , Xm of X and the coloring χ, we construct a bipartite graph
G = (A,B,E), where A is the set of colors used in χ. For every Xi we create a set Bi of size s;
then B = ∪Bi. If color j is used in Xi, we add an edge (j, l) for all l ∈ Bi.

Each color j ∈ A appears in at most r distinct Xi sets, and since for each Xi there are s vertices
(Bi), the degree of j is at most rs. On the other hand, each Xi has size r2s and hence, it has at
least rs different colors. Therefore, the degree of each vertex of B is at least rs.

Consider any set R ⊆ B, and let E(R) be the set of edges with at least one endpoint in
R. If N(R) denotes the set of neighbors of R, observe that E(R) ⊆ E(N(R)). By using the
degree bound on vertices of B, |E(R)| ≥ rs|R| and by using the degree bound on vertices of A,
|E(N(R))| ≤ rs|N(R)|. Therefore, |R| ≤ |N(R)|. By Hall’s Theorem there exists a matching
which covers every vertex in B. Each vertex in Bi is matched with a distinct color and therefore in
each Xi there exists a subset with at least s elements with distinct colors; let Wi be such a subset
with exactly s elements. In addition the colors in different Wi subsets should be distinct by the
matching. Then, S = ∪Wi.

Lemma 25. Let X = (X1, . . . , Xm) be a partition of [m2], with |Xi| = m, for all i ∈ [m]. Then,
there exists a subset S ⊂ [m2] with exactly one element from each subset Xi, such that no two
distinct x, y ∈ S are consecutive, i.e. for every x, y ∈ S, |x− y| ≥ 2.

Proof. For every i, let Xi = {xi1, . . . , xim}. W.l.o.g we can assume that the xij ’s are in increasing
order with respect to j and in addition that Xi’s are sorted such that xii < xji, for all j > i
(otherwise rename the elements recursively to fulfill the requirement). Then, it is not hard to see
that S = {xkk|k ∈ [m]} can serve as the required set.

Now we proceed with the main theorem of this section. We create a graph where every GWSP
has high PoA. At a high level, we construct a high dimensional hypercube with sufficiently large
number of potential players at each vertex (by adding many copies of each vertex connected via
zero-cost edges). Moreover, we add shortcuts among the vertices of suitable costs and we connect
each vertex with t via two parallel links with costs that differ by a large factor (see Figure 6).
If the protocol induces a large enough set of potential players with Shapley-like values in some
vertex, then it is a NE that all these players follow the most costly link to t. Otherwise, by using
Lemmas 24 and 25 we show that there exists a set of potential players with ordered-like values, one
at each vertex of the hypercube. Then, by using the results of Section 4, there exists a path where
the vertices are zig-zag-ordered.

The separation into these two extreme cases was first used in [23]. The crucial difference, is that
for their problem the protocol is specified independently of the underlying graph, and therefore the
adversary knows the case distinction (ordered or Shapley) and bases the lower bound construction
on that. However, our problem requires more work as the graph should be constructed in advance,
and should work for both cases.

Theorem 26. There exist graph metrics, such that the PoA of any universal cost-sharing protocol
is at least Ω(log k), where k is the number of activated vertices.
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Proof. Let k = 2r−1 + 1 be the number of activated vertices with r ≥ 4, (so k ≥ 9).
Graph Construction. We use as a base of our lower bound construction, a hypercube Q := Qn,
with edge costs equal to 1 and n = n(r) as in Theorem 18. Based on Q, for M = 16k1223n we
construct the following network with N = 2nM vertices, plus the designated root t. We add to Q
direct edges/shortcuts as follows: for every two vertices v, u of distance 2j , for j ∈ [r], we add an

edge/shortcut, (v, u), with cost equal to ĉj = 2j
(
k−1
k

)j
= Ω(2j). Moreover, for every vertex vq of

Q, we create M − 1 new vertices, each of which we connect with vq via a zero-cost edge. Let Vq
be the set of these vertices (including vq). Finally, we add a root t, which we connect with every
vertex vq of Q, via two edges eq1 and eq2, with costs 2k and 2k · k/6, respectively. We denote this
new network by Q∗ (see Figure 6).

Figure 6: An example of Q∗ for Q2 as the base hypercube.

We will show that any GWSP for Q∗ has PoA of Ω(log k). Any GWSP can be described by
concatenations of potential-based cost-sharing protocols Ξ1, . . . ,Ξh for a partition of the V (Q∗)
into h subsets U1, . . . , Uh, where Ξj is induced by some edge potential fj . Following the analysis
of Chen, Roughgarden and Valiant [23], we scale the fj ’s such that for every i, j, fj(i) ≥ 1. For

nonnegative integers s and for α =
(
1 + k−3

) 1
2k , we form subgroups of vertices Ajs, for each Uj , as

Ajs = {i ∈ Uj : fj(i) ∈
[
αs, αs+1

)
} (note that some of Ajs’s may be empty).

The adversary proceeds in two cases, depending on the intersection of the Ajs’s with the Vq’s.
Shapley-like cost-sharing. Suppose first that there exist Ajs and Vq such that |Ajs ∩ Vq| ≥ k,
and take a subset R ⊆ Ajs ∩ Vq with exactly k vertices. The adversary will request precisely the
set R. We argue that there is a NE where all players follow the edge eq2, with cost 2k · k/6.

Budget-balance implies that there exists some player i∗ ∈ R who is charged at most 1/k propor-
tion of the cost. Moreover, Lemma 21 implies that, all i ∈ R are charged at most α(1/k+ 2k−2) ≤
2 · (3/k) = 6/k proportion of the cost. Therefore, no player’s share is more than 2k and any alter-
native path would cost at least 2k. However, the optimum solution is to use the parallel link eq1 of
cost 2k. Hence, the PoA is Ω(k) for this case.
Ordered-like cost-sharing. If there is no such R with at least k vertices, then |Ajs ∩ Vq| < k
for all j, s and q, which means that each Ajs has size of at most k2n. For every j ∈ [h], we group
consecutive sets Ajs (starting from Aj0) into sets Bjl, such that each Bjl, (except perhaps from the
last one), contains exactly 4k5 nonempty Ajs’s. The last Bjl contains at most 4k5 nonempty Ajs
sets. Consider the lexicographic order among Bjl’s, i.e. Bjl < Bj′l′ if either j < j′ or j = j′ and
l < l′. Rename these sets based on their total order as Bi’s. The size of each Bi is at most 4k62n.

Now we apply Lemma 24 on the set V (Q∗) \ {t} = ∪qVq, for r = 4k62n and s = m = 2n,
by considering the subsets Vq as the partition of V (Q∗) \ {t} (recall that |Vq| = M = r2s). As a
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coloring scheme, we color all the vertices of each Bi with the same color and use different colors
among the sets Bi. Lemma 24 guarantees that for each Vq there exists V ′q ⊂ Vq of size 2n, such
that every v ∈ ∪qV ′q = V ′ belongs to a distinct Bi.

The order of Bi’s suggests an order of the vertices of V ′. Since the V ′q ’s form a partition of V ′,
Lemma 25 guarantees the existence of a subset C ⊂ V ′, such that C contains exactly one vertex
from each V ′q and there are no consecutive vertices in C. This means that C contains exactly one
vertex from each set Vq and all these vertices belong to different and non-consecutive sets Bi.

To summarize, so far we know that:

(i) for any pair of vertices v, u ∈ C, either v and u come from different Uj ’s or their fj(v) and

fj(u) values differ by a factor of at least α4k5 ≥ 8k+1 (since there exist at least 4k5 nonempty
sets Ajs between the ones that v and u belong to).

(ii) C is a copy of Qn (by ignoring zero-cost edges).

Let π be the order of vertices of C (recall that they are ordered according to the Bi’s they belong
to). Theorem 18 guarantees that there always exists at least one distance preserving path Pr(π)
(see Definition 10). Let S be the vertices of Pr(π) excluding the last class Dr (see Definition 9).
The adversary will activate precisely the set S (|S| = k). It remains to show that there exists a
NE, the cost of which is a factor of Ω(log k) away from optimum. We will refer to these vertices
as S = {s1, s2, . . . , sk}, based on their order π, from smaller label to larger, and let player i be
associated with si.

Let P∗ be the class of strategy profiles P = (P1, . . . , Pk) which are defined as follows:

• P1 = e11 and P2 = (s1, s2) ∪ P1, where (s1, s2) is the shortcut edge between s1 and s2.

• From i = 3 to k, let s` be any of si’s parents in the class hierarchy (we refer the reader to the
beginning of Section 4); then Pi = (si, s`) ∪ P`, where (si, s`) is the shortcut edge between si
and s`.

We show in Claim 27 that there exists a strategy profile P∗ ∈ P∗ which is a NE. P∗ has cost:

c(P∗) = c(e11) + ĉr +
r−1∑
j=1

|Dj | · ĉr−j = Ω(2r) + Ω(2r) +
r−1∑
j=1

2j−1 · Ω(2r−j) = Ω(r2r).

However, there exists the solution Pr(π) ∪ e11, which has cost of O(2r). Therefore, the PoA is
Ω(r) = Ω(log k).

Claim 27. There exists P∗ ∈ P∗ which is a NE.

Proof. We prove the claim by using better-response dynamics. Note that any GWSP induces a
potential game for which better-response dynamics always converge to a NE (see [23, 37]). We
start with some P1 ∈ P∗ and we prove that, after a sequence of players’ best-responses, we end up
in P2 ∈ P∗. Proceeding in a similar way we eventually converge to P∗, which is the required NE.

We next argue that for any P ∈ P∗, players 1 and 2, have no incentive to deviate from P1 (argu-
ment (a)) and P2 (argument (b)), respectively. We further show that, given any strategy profile P̂,
there exists some P ∈ P∗ such that: for every player i /∈ {1, 2}, if Pi = (P1, . . . , Pi−1, P̂i+1, . . . , P̂k)
are the strategies of the other players, i prefers Pi to P̂i (arguments (c)-(e)). We define the de-
sired P recursively starting from P̂ as follows: P1 = e11, P2 = (s1, s2) ∪ P1 and from i = 3 to k,
Pi ∈ Ai = arg minP ′i {ci(P

i, P ′i )|∃(P ′i+1, . . . , P
′
k) s.t. (P1, . . . , Pi−1, P

′
i , . . . , P

′
k) ∈ P∗}. If P̂i ∈ Ai

then we set Pi = P̂i, otherwise we choose a path from Ai arbitrarily.
We first give some bounds on players’ shares.

22



1. Let R ⊆ S be any set of players that use some edge e of cost ce and let i be the one with the

smallest label. The total share of players R\{i} is upper bounded by
∑|R|−1

i=1
1

(8k+1)i+1
·ce < ce

8k

(Lemma 22 and Remark 23). Moreover, i’s share is at least 8k+1
8k+2 >

8k−1
8k ce.

2. The total cost of any Pi under Pi, is at most 8k. This is true because, for every player
i′ with i′ ≤ i, the first edge of Pi′ is a shortcut to reach one of si′ ’s parents, with cost at
most 2r−j , where Dj is the hierarchical class that si′ belongs to (we refer the reader to the
beginning of Section 4 for the definition of classes). Therefore, the cost of Pi is at most
2k +

∑r−1
l=0 2r−l < 8k.

3. By combining the above two arguments, under Pi, the total share of player i for the edges of
Pi at which she is not the first according to π, is at most 1

8k · 8k ≤ 1.

Here, we give the arguments for players 1 and 2.

(a) The share of player 1 under P ∈ P∗ is at most 2k and any other path would incur a cost
strictly greater than 2k.

(b) The share of player 2 under P ∈ P∗ is at most 2r + 1 = 2k − 1 (argument 3), whereas if she
doesn’t connect through s1, her share would be at least 2k. Moreover, if she connects to t
through s1 but by using any other path p rather than the shortcut (s1, s2), the cost of each

edge of p is 2w
(
k−1
k

)w
for some w ≤ r−1, so it holds that it is at least 2w

(
k−1
k

)r−1
. Given that

the distance between s1 and s2 in Pr(π) is 2r, the total cost of p is at least 2r
(
k−1
k

)r−1
. Player

2 is first according to π at p and by argument 1, her share is at least 2r 8k−1
8k

(
k−1
k

)r−1
> ĉr.

We next give the required arguments in order to show that Pi is a best response for player i 6= {1, 2}
under Pi. In the following, let si ∈ Dj and let s` be the parent of si such that Pi = (si, s`) ∪ P`.
Also let si′ be the predecessor of si, according to π, that is first met by following P̂i from si to t.

(c) Suppose that si′ = s`.

• Assume that P̂i doesn’t use the shortcut (si, s`). The subpath of P̂i from si to s` contains

edges at which i is first according to π of total cost at least 2r−j
(
k−1
k

)r−j−1
. By argument

1, her share is at least 2r−j 8k−1
8k

(
k−1
k

)r−j−1
> ĉr−j .

• Assume that P̂i doesn’t use P`. The subpath of P̂i from s` to t contains edges at which
i is first according to π of total cost at least ĉ1 (the minimum distance between two
activated vertices). By argument 1, her share is at least 2k−1

k
8k−1

8k > 1, for k ≥ 3, where
1 is at most her share for P` (argument 3).

In both cases, ci(P
i, Pi) < ci(P

i, P̂i).

(d) Suppose that si′ is si’s other parent. If P̂i 6= (si, si′)∪Pi′ , the above arguments still hold and
so ci(P

i, Pi) < ci(P
i, P̂i). Otherwise, by the definition of Pi, either Pi = P̂i, or ci(P

i, Pi) <
ci(P

i, P̂i).

(e) Suppose that si′ is not a parent of si. Player i’s share in Pi is at most ĉr−j for her first
edge/shortcut and at most 1 for the rest of her path (argument 3). Let p be the path from
si to si′ in P̂i. We consider three cases for p and we will show that the cost-share of player i
for p is at least ĉr−j + 1. Recall that between si and its parents there are only players that
follow i in π, therefore the distance between si and si′ in Pr(π) is at least 2r−j + 2.
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• If c(p) ≥ ĉr−j+1 then player i has a cost-share of at least 8k−1
8k ĉr−j+1 (argument 1). But

for k ≥ 6 and j < r, 8k−1
8k ĉr−j+1 > ĉr−j + 1.

• If c(p) < ĉr−j+1 and p contains a shortcut edge of cost ĉr−j , then this edge will only be
used by player i. This is true because due to the bound on c(p) the shortcut edge of cost
ĉr−j should have an endpoint between si and any of its parents (excluding them) and
the only such edges that may be used by other players in Pi is the ones with endpoints
at si and any of its parents. Obviously, such an edges cannot belong to p because then
si′ would be one of si’s parents. This further means that p should contain another edge
of cost at least ĉ1. Therefore, (by argument 1) i’s has a cost-share for p of at least
ĉr−j + 2k−1

k
8k−1

8k > ĉr−j + 1, for k ≥ 3.

• If c(p) < ĉr−j+1 and p does not contain a shortcut edge of cost ĉr−j , then each edge
of p has cost 2w

(
k−1
k

)w
for some w ≤ r − j − 1. Suppose that the distance between

si and si′ in Pr(π) is 2r−j + a, where 2 ≤ a < 2r−j , then it holds that p contains an
edge whose endpoints have distance in Pr(π) at most a.16 Let ĉy be the cost of that

edge, where 1 ≤ y ≤ r − j − 1. Then the total cost of p is at least 2r−j
(
k−1
k

)r−j−1
+

2y
(
k−1
k

)y
. Player 2 is first according to π at p and by argument 1, her share is at least

2r−j
(
k−1
k

)r−j−1 8k−1
8k + 2y

(
k−1
k

)y 8k−1
8k > ĉr−j + 1, for k ≥ 3.

We now describe a sequence of best-responses from some P̂ ∈ P∗ to P (P is constructed based
on P̂ as described above). We follow the π order of the players and for each player we apply her
best response. First note that players 1 and 2 have no better response, so P1 = P̂1 and P2 = P̂2.
When we process any other player i, we have already processed all her predecessors in π and so,
the strategies of the other players are Pi. Therefore, Pi is the best response for i (it may be that
Pi = P̂i, where no better response exists for i). The order that we process the vertices guarantees
that P ∈ P∗. Best-response dynamics guarantee that eventually, no player could perform any
best-response, resulting in the desired NE.

6 Stochastic Network Design

In this section we study the stochastic model, where the set of the activated vertices is no longer
picked adversarially, but it is drawn from some probability distribution Π; however, Π itself is
chosen adversarially. The cost-sharing protocol is decided by the designer without the knowledge
of the activated set and the designer may have knowledge of Π or access to some oracle of Π.
We next design randomized and deterministic protocols with constant PoA. We note that both
protocols can be determined in polynomial time.

6.1 Randomized Protocol

We show that there exists a randomized ordered protocol that achieves constant PoA. This result
holds even for the black-box model [54], meaning that the probability distribution is not known to
the designer, however she is allowed to draw independent (polynomially many) samples.

16Since there are only shortcut edges between vertices of distance in Pr(π) that is a power of 2, we can express the
distance between si and si′ in Pr(π) as

∑
i 2xi , with 1 ≤ xi < 2r−j . Then

∑
i 2xi = 2r−j + a. Let x∗ be the smallest

value among xi’s, then 2x∗ divides all the terms on the left-hand side and 2r−j , therefore it should divide a, meaning
that 2x∗ ≤ a.
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This problem is closely related to the a priori TSP problem. The result of Shmoys and Talwar
[54] on the a priori TSP immediately implies a protocol with a PoA of at most 8. However,
by following their analysis for multicast games we can improve this upper bound to 6.78. For
completeness we give here the whole proof.

The protocol’s design highly relies on approximation algorithms for the minimum Steiner tree
problem and therefore, the resulting PoA upper bound (Corollary 29) depends on known approxi-
mation ratios for this problem. More precisely, given an α-approximate minimum Steiner tree, we
show an upper bound of 2(α+ 2) (Theorem 28). The approximate tree is used in our algorithm as
a base in order to construct a spanning tree, which finally determines an order of all vertices; the
detailed algorithm is given in Algorithm 1. This algorithm and its slight variants have been used in
different contexts: rent-or-buy problem [40], a priori TSP [54] and, stochastic Steiner tree problem
[34].

Algorithm 1 Randomized order protocol Ξrand
Input: A rooted graph G = (V,E, t) and an oracle for the probability distribution Π.
Output: Ξrand.

• Choose a random set of vertices R by drawing from distribution Π and construct an α-
approximate minimum Steiner tree, Tα(R), over R ∪ {t}.

• Connect all other vertices V \ V (Tα(R)) with their nearest neighbor in V (Tα(R)) (by
breaking ties arbitrarily).

• Double the edges of that tree and traverse some Eulerian tour starting from t. Order the
vertices based on their first appearance in the tour.

Theorem 28. Given an α-approximate solution of the minimum Steiner tree problem, Ξrand has
PoA at most 2(α+ 2).

Proof. Let π be the order of V , defined by Ξrand, and S be the random set of activated vertices that
require connectivity with t. For the rest of the proof we denote by MST (S) a minimum spanning
tree over the vertices S ∪ {t} on the metric closure17 of G.

Let s1, . . . , sr be the vertices of S as appeared in π and the strategy profile PR(S) = (P1, . . . , Pr)
be a NE of set S. Under the convention that s0 = t, csi(PR(S)) ≤ dG(si, si−1) for all si ∈ S. We
construct a tree TR,S from the Tα(R) of Algorithm 1, by connecting only all vertices of S\V (Tα(R))
with their nearest neighbor in V (Tα(R)) (by breaking ties in accordance to Algorithm 1). Note
that, by doubling the edges of TR,S , there exists an Eulerian tour starting from t, where the order of
the vertices S (based on their first appearance in the tour) is π restricted to the set S18. Therefore,∑

si∈S dTR,S
(si, si−1) + dTR,S

(s0, sr) = 2c(TR,S). By combining the above,

c(PR(S)) =
∑
si∈S

csi(PR(S)) ≤
∑
si∈S

dG(si, si−1) (1)

≤
∑
si∈S

dTR,S
(si, si−1) ≤ 2c(TR,S).

17The metric closure of an undirected graph G is the complete undirected graph on the vertex set V (G), where the
edge costs equal the shortest path distances in G.

18This Eulerian tour matches the tour constructed by shortcutting the Eulerian tour of Algorithm 1 to contain
only the vertices R ∪ S ∪ {t}.
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Let Dv(R) be the distance of v from its nearest neighbor in (R∪{t})\{v}. In the special case that
v = t, we define Dv(R) = 0 Then,

c(TR,S) = c(Tα(R)) +
∑
v∈S\R

Dv(R) ≤ c(Tα(R)) +
∑

v∈S Dv(R). (2)

We use an indicator I(v ∈ S) which is 1 when v ∈ S and 0 otherwise; then∑
v∈S

Dv(R) =
∑
v

I(v ∈ S)Dv(R).

By taking the expectation over R and S,

E
R

[E
S

[c(TR,S)]] ≤ E
R

[c(Tα(R))] + E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]].

Since S and R are independent samples we can bound the second term as:

E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]] =
∑
v∈V

E
S

[I(v ∈ S)]E
R

[Dv(R)] =
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)]

= E
S

[
∑
v∈V

I(v ∈ S)Dv(S)] = E
S

[
∑
v∈S

Dv(S)] ≤ E
S

[c(MST (S))]. (3)

The third equality holds since Dv(S) is the distance of v from its nearest neighbor in (S∪{t})\{v}
and it is independent of the event I(v ∈ S). For the inequality, note that Dv(S) is upper bounded
by the distance of v from its parent in the MST (S).

Let T ∗S be the minimum Steiner tree over S∪{t}, then it is well known that c(MST (S)) ≤ 2c(T ∗S).
Overall,

E
R

[E
S

[c(PR(S))]] ≤ 2E
R

[E
S

[c(TR,S)]] ≤ 2(E
S

[c(Tα(S))] + E
S

[c(MST (S))]) ≤ 2(α+ 2)E
S

[c(T ∗S)].

By applying the 1.39-approximation algorithm of [18] we get the following corollary.

Corollary 29. Ξrand has PoA at most 6.78.

6.2 Deterministic Protocol

We now consider that each vertex v is activated independently with probability pv; the set of
the activated vertices is sampled based on the probabilities pv’s, i.e., the probability that set S is
activated is Π(S) =

∏
v∈S pv ·

∏
v/∈S(1 − pv). The probabilities pv’s (and therefore Π), are chosen

adversarially. We additionally assume that the probabilities pv’s are known to the designer. We
show that there exists a deterministic ordered protocol that achieves constant PoA.

Theorem 30. There exists a deterministic ordered protocol with PoA at most 16.

Proof. We use derandomization techniques similar to [54, 58] and for completeness we give the
full proof here. First we discuss how we can get a PoA of 6.78, if we drop the requirement of
determining the protocol in polynomial time. Similar to the proof of Theorem 28 we define the tree
TR,S for the random activated set S as follows: we construct TR,S from the Tα(R) of Algorithm
1, by connecting only all vertices of S \ V (Tα(R)) with their nearest neighbor in V (Tα(R)) (by
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breaking ties in accordance to Algorithm 1). We apply the standard derandomization approach
of conditional expectation method on TR,S . More precisely, we construct a deterministic set R̂ to
replace the random set R in Algorithm 1, by deciding for each vertex of V \{t}, one by one, whether
it belongs to R̂ or not. Assume that we have already processed the set Q ⊂ V and we have decided
that for its partition (Q1, Q2), Q1 ⊆ R̂ and Q2 ∩ R̂ = ∅ (starting from Q1 = {t} and Q2 = ∅).
Let v be the next vertex to be processed. From the conditional expectations and the independent
activations we know that

E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅] = E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R]pv

+ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R](1− pv),

meaning that

either E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R] ≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅],

or E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R] ≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅].

In the first case we add v in Q1 and in the second case we add v in Q2. Therefore, after processing
all vertices, Q1 = R̂ and ES [c(TR̂,S)] ≤ ES,R[c(TR,S)]. If we replace the sampled R of Algorithm 1

with the deterministic set R̂, we can get the same bound on the PoA with the randomized protocol
of Theorem 28.

However, the value of ES,R[c(TR,S)|Q1 ⊆ R,Q2 ∩ R = ∅] seems difficult to be computed in
polynomial time; the reason is that it involves the computation of ER[c(Tα(R))|Q1 ⊆ R,Q2∩R = ∅]
which seems hard to be handled. To overcome this problem we use an estimator EST (Q1, Q2) of
ES,R[c(TR,S)|Q1 ⊆ R,Q2∩R = ∅], which is constant away from the optimum ES [c(T ∗S)], where T ∗S is
the minimum Steiner tree over S∪{t}. Following [58, 54], we use the optimum solution of the relaxed
Connected Facility Location Problem (CFLP) on G in order to construct a feasible solution ȳ of
the relaxed Steiner Tree Problem (STP) for a given set R. We show that the objective’s value of the
fractional STP for ȳ is constant away from ES [c(T ∗S)] and that its (conditional) expectation over R
can be efficiently computed. This quantity is used in order to construct the estimator EST (Q1, Q2).
We apply the method of conditional expectations on EST (Q1, Q2) and after processing all vertices,
by using the primal-dual algorithm [36], we compute a Steiner tree on Q1 with cost no more than
twice the cost of the fractional solution.

In the rooted CFLP, a rooted graph G = (V,E, t) is given and the designer should select some
facilities to open, including t, and connects them via some Steiner tree T . Every other vertex is
assigned to some facility. The cost of the solution is M (M > 1) times the cost of T , plus the
distance of every other vertex from its assigned facility. Our analysis requires to consider a slightly
different cost of the solution, which is the cost of T , plus the distance of every other vertex v from
its assigned facility multiplied by the probability pv of activating v. In the following LP relaxation
of the CFLP, ze and xij are 0-1 variables indicate, respectively, if e ∈ E(T ) and whether the vertex
j is assigned to facility i. δ(U) denotes the set of edges with one endpoint in U and the other in
V \ U , d(i, j) denotes the minimum distance between vertices i and j in G and ce is the cost of
edge e.
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LP1: CFLP

min B + C
subject to

∑
i∈V xij = 1 ∀j ∈ V∑

e∈δ(U) ze ≥
∑

i∈U xij ∀j ∈ V,∀U ⊆ V \ {t}
B =

∑
e∈E ceze

C =
∑

j∈V pj
∑

i∈V d(i, j)xij
ze, xij ≥ 0 ∀i, j ∈ V and ∀e ∈ E

Let (z∗ = (z∗e )e,x
∗ = (x∗ij)ij , B

∗, C∗) be the optimum solution of LP1.

Claim 31. B∗ + C∗ ≤ 3ES [c(T ∗S)], where T ∗S is the minimum Steiner tree over S ∪ {t}.

Proof. Given a set S ⊆ V , for every edge e ∈ T ∗S , let ze = 1 and, for e /∈ T ∗S , let ze = 0. Moreover,
for every j ∈ V , let xij = 1, if i is j’s nearest neighbor in (S∪{t})\{j}. Set the rest of xij equal to 0.
Note that this is a feasible solution of LP1 with objective value BS +CS ≤ c(T ∗S) +

∑
v∈V pvDv(S).

By taking the expectation over S,

B∗ + C∗ ≤ E
S

[BS + CS ] ≤ E
S

[c(T ∗S)] +
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)]

= E
S

[c(T ∗S)] + E
S

[
∑
v∈S

Dv(S)] ≤ E
S

[c(T ∗S)] + E
S

[c(MST (S))] ≤ 3E
S

[c(T ∗S)].

By using the solution (z∗ = (z∗e )e,x
∗ = (x∗ij)ij , B

∗, C∗), we construct a feasible solution for the
following LP relaxation of the STP over some set R ∪ {t}.

LP2: STP over R ∪ {t}
min

∑
e∈E ceye

subject to
∑

e∈δ(U) ye ≥ 1 ∀U ⊆ V \ {t} : R ∩ U 6= ∅
ye ≥ 0 ∀e ∈ E

We define aij(e) = 1 if e lies in the shortest path between i and j and it is 0 otherwise. For
every edge e we set ȳe = z∗e +

∑
j∈R

∑
i∈V aij(e)x

∗
ij .

Claim 32. ȳ = (ȳe)e is a feasible solution for LP2.

Proof. The proof is identical with the one in [58] but we give it here for completeness. Consider
any set U ⊆ V \ {t} such that R ∩ U 6= ∅ and let ` ∈ R ∩ U . It follows that

∑
e∈δ(U)

ȳe ≥
∑
e∈δ(U)

z∗e +
∑
e∈δ(U)

∑
j∈R

∑
i∈V

aij(e)x
∗
ij ≥

∑
i∈U

x∗i` +
∑
e∈δ(U)

∑
i∈V

ai`(e)x
∗
i`

≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i`
∑
e∈δ(U)

ai`(e) ≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i` = 1.

For the last inequality, note that ai`(e) should be 1 for at least one e ∈ δ(U) since i /∈ U and
` ∈ U .
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Claim 33. Let c̄ST (R) be the cost of the objective of LP2 induced by the solution ȳ. Then
ER[c̄ST (R)] = B∗ + C∗.

Proof.

E
R

[c̄ST (R)] = E
R

[
∑
e∈E

ce(z
∗
e +

∑
j∈R

∑
i∈V

aij(e)x
∗
ij)] = B∗ + E

R
[
∑
j∈R

∑
i∈V

∑
e∈E

ceaij(e)x
∗
ij ]

= B∗ + E
R

[
∑
j∈R

∑
i∈V

d(i, j)x∗ij ] = B∗ +
∑
j∈V

pj
∑
i∈V

d(i, j)x∗ij = B∗ + C∗.

Observe that due to the expression of ȳ we can efficiently compute any conditional expectation

E
R

[c̄ST (R)|Q1 ⊆ R,Q2 ∩R = ∅];

this is because

E
R

[
∑
j∈R

∑
i∈V

aij(e)x
∗
ij |Q1 ⊆ R,Q2 ∩R = ∅] =

∑
j∈Q1

∑
i∈V

aij(e)x
∗
ij +

∑
j /∈Q1∪Q2

pj
∑
i∈V

aij(e)x
∗
ij .

We further define cC(R) =
∑

v∈V pvDv(R). We can also efficiently compute any conditional expec-
tation E[cC(R)|Q1 ⊆ R,Q2 ∩R = ∅] (Claim 2.1 of [58]). We are ready to define our estimator:

EST (Q1, Q2) = 2E
R

[c̄ST (R)|Q1 ⊆ R,Q2 ∩R = ∅] + E
R

[c̄C(R)|Q1 ⊆ R,Q2 ∩R = ∅].

Our goal is to define a deterministic set R̂ to replace the sampled R of Algorithm 1. We
process the vertices one by one and we decide if they belong to R̂ by using the model conditional
expectations on EST (Q1, Q2). More specifically, assume that we have already processed the sets
Q1 and Q2 (starting from Q1 = {t} and Q2 = ∅) such that Q1 ⊆ R̂ and Q2 ∩ R̂ = ∅. Let
v be the next vertex to be processed. From the conditional expectations and the independent
activations we know that EST (Q1, Q2) = pvEST (Q1 ∪ {v}, Q2) + (1 − pv)EST (Q1, Q2 ∪ {v}). If
EST (Q1 ∪ {v}, Q2) ≤ EST (Q1, Q2) we add v to Q1, otherwise we add v to Q2. After processing
all vertices and by using Claims 31 and 33,

EST (R̂, V \ R̂) ≤ EST ({t}, ∅) = 2E
R

[c̄ST (R)] + E
R

[c̄C(R)]

≤ 6E
S

[c(T ∗S)] +
∑
v∈V

pv E
R

[Dv(R)] = 6E
S

[c(T ∗S)] + E
R

[
∑
v∈V

I(v ∈ R)Dv(R)]

≤ 6E
S

[c(T ∗S)] + E
R

[c(MST (R))] ≤ 8E
S

[c(T ∗S)].

Let TPD(R̂) be the Steiner tree over R̂ ∪ {t} computed by the primal-dual algorithm [36]. Then,

EST (R̂, V \ R̂) = 2c̄ST (R̂) +
∑
v∈V

pvDv(R̂) ≥ c(TPD(R̂)) + E
S

[
∑
v∈S

Dv(R̂)].

By combining inequalities (1) and (2) (after replacing R by R̂ and Tα(R̂) by TPD(R̂)) with all the
above, we have that

E
S

[c(PR̂(S))] ≤ 2

(
c(TPD(R̂)) + E

S
[
∑
v∈S

Dv(R̂)]

)
≤ 2EST (R̂, V \ R̂) ≤ 16E

S
[c(T ∗S)].
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tion for steiner tree, in Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, 2010, pp. 583–592.

[19] I. Caragiannis, Efficient coordination mechanisms for unrelated machine scheduling, Algo-
rithmica, 66 (2013), pp. 512–540.

[20] M. Charikar, H. J. Karloff, C. Mathieu, J. Naor, and M. E. Saks, Online multicast
with egalitarian cost sharing, in SPAA 2008: Proceedings of the 20th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, Munich, Germany, June 14-16, 2008, 2008,
pp. 70–76.

[21] C. Chekuri, J. Chuzhoy, L. Lewin-Eytan, J. Naor, and A. Orda, Non-cooperative
multicast and facility location games, IEEE Journal on Selected Areas in Communications, 25
(2007), pp. 1193–1206.

[22] H. Chen and T. Roughgarden, Network design with weighted players, Theory Comput.
Syst., 45 (2009), pp. 302–324.

[23] H. Chen, T. Roughgarden, and G. Valiant, Designing network protocols for good equi-
libria, SIAM J. Comput., 39 (2010), pp. 1799–1832.

[24] G. Christodoulou, C. Chung, K. Ligett, E. Pyrga, and R. van Stee, On the price
of stability for undirected network design, in Approximation and Online Algorithms, 7th In-
ternational Workshop, WAOA 2009, Copenhagen, Denmark, September 10-11, 2009. Revised
Papers, 2009, pp. 86–97.

[25] G. Christodoulou, E. Koutsoupias, and A. Nanavati, Coordination mechanisms, The-
oret. Comput. Sci., 410 (2009), pp. 3327–3336.

[26] G. Christodoulou, S. Leonardi, and A. Sgouritsa, Designing cost-sharing methods for
bayesian games, Theory Comput. Syst., 63 (2019), pp. 4–25.

[27] G. Christodoulou, K. Mehlhorn, and E. Pyrga, Improving the price of anarchy for
selfish routing via coordination mechanisms, Algorithmica, 69 (2014), pp. 619–640.

31



[28] G. Christodoulou and A. Sgouritsa, Designing networks with good equilibria under un-
certainty, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, 2016, pp. 72–89.

[29] G. Christodoulou and A. Sgouritsa, An improved upper bound for the universal TSP
on the grid, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, 2017, pp. 1006–
1021.

[30] R. Cole, J. R. Correa, V. Gkatzelis, V. S. Mirrokni, and N. Olver, Inner product
spaces for minsum coordination mechanisms, in Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, 2011, pp. 539–548.
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