426 research outputs found

    A Software Engineering Paradigm as a basis for Enterprise Integration in (Multi-) Client/Server Environments

    Full text link

    Glossarium BITri 2016 : Interdisciplinary Elucidation of Concepts, Metaphors, Theories and Problems Concerning Information

    Get PDF
    222 p.Terms included in this glossary recap some of the main concepts, theories, problems and metaphors concerning INFORMATION in all spheres of knowledge. This is the first edition of an ambitious enterprise covering at its completion all relevant notions relating to INFORMATION in any scientific context. As such, this glossariumBITri is part of the broader project BITrum, which is committed to the mutual understanding of all disciplines devoted to information across fields of knowledge and practic

    Gilbert Simondon: Causality, ontogenesis & technology

    Get PDF
    This PhD thesis focuses on the elucidation, development and application of Gilbert Simondon's realist philosophy of individuation. In particular the thesis has three main goals: First, to provide a developed account of Simondon's ontology. Second, to develop a coherent account of causality in line with Simondon's theorization of individuation. Third, to give a full account of Simondon's philosophy of technology and evaluate its relevance for the contemporary technological state of affairs.To answer the third of these questions it is necessary to address the others. A realist, non-anthropological account of technology necessarily requires the development of a robust ontology and a suitable theorization of causality.In this thesis this is achieved by developing the key concepts involved in Simondon's theory of individuation such as transduction, metastability and pre-individuality. Before developing an account of transductive operation in the three regimes of individuation which Simondon stipulates (physical, vital and psycho-social) we argue for Simondon's account of allagmatics (theory of operations) as consistent with and in some ways superior to some contemporary powers based theories of causality.Having established the broad scope of Simondon's axiomatic use of individuation it is then utilized in order to fully examine his philosophy of technology. This is achieved by bringing together Simondon's theorization of individuation in multiple domains (e.g. the image-cycle, transindividual) in relation to that of technology. In doing this we also develop other important aspects of Simondon's philosophy such as aesthetics, epistemology and ethics.By necessity the thesis has a broad scope in order to reflect the encyclopedic ambition which Simondon had for his genetic philosophy and without which his work is prone to be misunderstood. As such it describes a novel encounter between cybernetics, phenomenology and energetics

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Interdisciplinary elucidation of concepts, metaphors, theories and problems concerning INFORMATION

    Get PDF
    Terms included in this glossary recap some of the main concepts, theories, problems and metaphors concerning INFORMATION in all spheres of knowledge. This is the first edition of an ambitious enterprise covering at its completion all relevant notions relating to INFORMATION in any scientific context. As such, this glossariumBITri is part of the broader project BITrum, which is committed to the mutual understanding of all disciplines devoted to information across fields of knowledge and practice. This glossary pretends to make explicit the conflicts and agreements among use and meaning of terms related to information phenomena. Information is approached from opposing paradigms and also from competing and cooperating disciplines. Both in science and in ordinary life, conceptual, ethical, technical and societal problems regard information in an essential way. This glossary does not endorse or presuppose any paradigm or any theory, but rather locates into a public, explicit and commonly understandable space some of the crucial assumptions dividing informational concepts, theories, problems and metaphors. Moreover, we purport to embrace all distinct paradigms with a critical and comprehensive attitude. The glossary is the result of an original methodology, which places any entrance under the responsibility of its editor. Authors possibly distinct from the editor contribute to different articles with texts, comments or discussions. Since authors come from many distinct fields of knowledge, each article should reflect many perspectival but rigorous approaches. The glossary is an open work: the number and contents of all its entrances are updated and submitted to revision by editors and authors. For this reason, this first edition is only a first step in the active development of this collaborative methodology. Any interested reader wishing to contribute, may contact the general editors. This glossary is most indebted to the enthusiasm and work of José María Díaz Nafría. The editorial team, authors and correctors thank the Universidad de León and Caja España for their support to this initiative

    Technologies, texts and subjects: William S. Burroughs and post-humanism

    Get PDF
    This thesis addresses the twin questions of technology and the human, ultimately questioning the validity of either category and pointing toward their dissolution in transhumanism. Starting with a discussion of the question of technology in organization studies, the thesis takes issue with the way in which discussion has focused on the technology- object pole of a dualism at the neglect of the human subject that occupies the opposing pole. Following a methodological call for symmetry the thesis reconsiders the question of technology in light of its human other and visa versa. Working with the ideas of Friedrich Nietzsche and Deleuze and Guattari, the thesis suggests that there is a problem with maintaining a distinct conception of the human, separated a priori from questions of technology and language. In seeking to avoid an essentialism either of the (technological) object, or the (human) subject, the thesis reconsiders the question of the human, language and technics through an examination of the work of William S. Burroughs. Combining Burroughs' ideas with those of Deleuze and Guattari, a conception of the 'transhuman' is developed which, in opposition to a transcendental humanism, articulates the immanent implication of technology and language in the production of subjectivity, and points to the more radical potentials of new technology in figuring alternative modes of subjectivization and social organization
    corecore