80 research outputs found

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Uniting observers

    Get PDF
    International audienceWe propose a framework for designing observers possessing global convergence properties and desired asymptotic behaviours for the state estimation of nonlinear systems. The proposed scheme consists in combining two given continuous-time observers: one, denoted as global, ensures (approximate) convergence of the estimation error for any initial condition ranging in some prescribed set, while the other, denoted as local, guarantees a desired local behaviour. We make assumptions on the properties of these two observers, and not on their structures, and then explain how to unite them as a single scheme using hybrid techniques. Two case studies are provided to demonstrate the applicability of the framework. Finally, a numerical example is presented

    Quasi-optimal robust stabilization of control systems

    Full text link
    In this paper, we investigate the problem of semi-global minimal time robust stabilization of analytic control systems with controls entering linearly, by means of a hybrid state feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator noise

    Robust stabilization of chained systems via hybrid control

    No full text
    Published versio

    Robust Control of Hybrid Systems

    Get PDF

    Uniting Nesterov and Heavy Ball Methods for Uniform Global Asymptotic Stability of the Set of Minimizers

    Full text link
    We propose a hybrid control algorithm that guarantees fast convergence and uniform global asymptotic stability of the unique minimizer of a smooth, convex objective function. The algorithm, developed using hybrid system tools, employs a uniting control strategy, in which Nesterov's accelerated gradient descent is used "globally" and the heavy ball method is used "locally," relative to the minimizer. Without knowledge of its location, the proposed hybrid control strategy switches between these accelerated methods to ensure convergence to the minimizer without oscillations, with a (hybrid) convergence rate that preserves the convergence rates of the individual optimization algorithms. We analyze key properties of the resulting closed-loop system including existence of solutions, uniform global asymptotic stability, and convergence rate. Additionally, stability properties of Nesterov's method are analyzed, and extensions on convergence rate results in the existing literature are presented. Numerical results validate the findings and demonstrate the robustness of the uniting algorithm.Comment: The technical report accompanying "Uniting Nesterov and Heavy Ball Methods for Uniform Global Asymptotic Stability of the Set of Minimizers", submitted to Automatica, 2022. Revisions made according to first round reviewer feedbac

    Output-Feedback Shared-Control for Fully Actuated Linear Mechanical Systems

    Get PDF
    This paper presents an output feedback shared-control algorithm for fully-actuated, linear, mechanical systems. The feasible configurations of the system are described by a group of linear inequalities which characterize a convex admissible set. The properties of the shared-control algorithm are established with a Lyapunov-like analysis. Simple numerical examples demonstrate the effectiveness of the strategy
    • …
    corecore