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Abstract— This paper presents an output feedback shared-
control algorithm for fully-actuated, linear, mechanical systems.
The feasible configurations of the system are described by
a group of linear inequalities which characterize a convex
admissible set. The properties of the shared-control algorithm
are established with a Lyapunov-like analysis. Simple numerical
examples demonstrate the effectiveness of the strategy.

I. INTRODUCTION

Shared-control, as the name implies, is an algorithm to unite
more than one control signals. For simplicity, in this paper,
we consider two inputs, an external human input uh and
an output-feedback control input uof . The human operator
is in charge of the system most of the time and uof is
active only in emergency cases, for example when the sys-
tem evolves towards ”dangerous” situations (to be formally
defined). Shared-control is of great importances because a
large number of systems involve human operators. These
systems integrate the adaptive, interactive and inventive task
execution skills of human beings and the reliable, precise,
inexhaustible and fast task execution capability of automated
controllers.

The technique of human-in-the-loop has been significantly
developed in the last two decades and it is still an active
research area. Typical applications of shared-control are med-
ical devices [1], mobility assistance [2] [3], tele-operation [4]
[5], driving [6] [7], robotics [8], training systems [9] [10] and
transportation systems [11] [12]. A shared-control strategy
is used in [13] to help a disabled person to safely operate a
wheelchair. By setting the level of support the operator can
achieve obstacle avoidance, smooth speed and turn around
functions.

A vivid metaphor of shared-control is horse riding [14]:
”When people loose the rein, the horse would run automat-
ically while by slightly increasing the force on the rein, the
control authority is shifted from the horse to the human being
smoothly.”

A method to combine the human operator’s input and the
feedback control input through a hierarchical structure has
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been given in [15], while [16] has presented a Lyapunov-like
solution of the shared-control problem.

As stated at the beginning of this section our shared-control
is designed mainly for safety issues, among which obstacle
avoidance is the most common one. Obstacle avoidance
problems have been solved in various ways. The Vector Field
Histogram method is an often used way to solve the problem
for mobile robots [17]. This method suffers from various
limitations, similarly to the Virtual Force Field method [18],
such as the occurrence of local minima and the insurgence of
oscillations while passing through narrow areas [18]. Fuzzy
control is another commonly used method. For example, [19]
gives a group of fuzzy control rules combing ”negative”
rules (obstacle avoidance) and ”positive” rules (directing the
robot to the target). The system controlled by these fuzzy
rules suffers from stability problems: no theoretical proof of
stability can be given.

Shared control problems have been studied in [20], where
a sharing rule based on a discrete event framework has
been given, and in [21] where a continuous scalar function
to guarantee the smooth transition from the human input
to the control input has been designed. A scheme to dis-
tribute control authority among several inputs by introducing
an augmented signal based on input’s magnitude and rate
saturation levels has been constructed in [22]. In [23], the
shared-control problem has been studied using some of the
ideas of [22] and [24] for fully-actuated, linear, mechanical
systems for which the whole state is measurable. In this
paper we extend the results in [23] to the case in which
only the generalized positions of the mechanical system are
measurable.

The rest of the paper is organized as follows. In Section II,
the shared-control problem is formulated. Section III intro-
duces a solution to the problem followed by several formal
properties of the controlled system. The shared-control algo-
rithm is illustrated via two simple examples and simulation
results are given in Section IV. Finally, Section V gives some
conclusions and discusses future work.

II. PROBLEM STATEMENT

In this section we formulate the shared-control problem for
fully-actuated, linear, mechanical systems by partial state
feedback.

Consider a fully-actuated, linear, mechanical system, the
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dynamics of which are described by the equation

Mp̈+Kṗ+ Gp = us, (1)

where p(t) ∈ Rn describes the generalized positions, us(t) ∈
Rn is the control input,M =M′ > 0 denotes the (constant)
inertia matrix, K = K′ ≥ 0 is the (constant) Coulumb
friction coefficient and G = G′ models the potential force.

Suppose the output of the system (1) is given by the equation

y = C

[
p
ṗ

]
(2)

and assume the system (1)-(2) is observable. Let p̂ and v̂
denote the estimates of p and ṗ, respectively and define the
estimation error as e(t) = [p(t)− p̂(t), v(t)− v̂(t)]T .

The estimates are obtained from measurements of y and us,
via a dynamical system of the form[

˙̂p
˙̂v

]
= A

[
p̂
v̂

]
+ Bus +Hy. (3)

The shared-control input us is defined as

us(p̂, v̂, t) = [1− k(p̂, v̂)]uof (p̂, v̂, t) + k(p̂, v̂)uh(p̂, v̂, t),
(4)

where uof denotes the output-feedback control input, uh
denotes the operator’s input and k ∈ [0, 1] quantifies how
the input is shared between uof and uh.

Similarly to [23], we use the name s-control to denote
the shared-control action, the name h-control to denote the
human action, the name f-control to denote the output-
feedback control action, and the name sharing function to
denote the function k. In addition, we use the name s-closed-
loop to represent the system described by (1), (2), (3) and (4),
and the name h-closed-loop to represent the system described
by the equations (2), (3) and

Mp̈+Kṗ+ Gp = uh.

The h-closed-loop and the s-closed-loop share the same state
space, namely P×V×P̂×V̂ = Rn×Rn×Rn×Rn where P
denotes the configuration set, P̂ = P , V denotes the velocity
set, and V̂ = V . Let Pa ⊂ P be a closed, compact set
and assume it is the set of admissible configurations. Then
the output-feedback shared-control problem can be stated as
follows.

Given a system (1)-(2) with an h-control uh(p̂, v̂, t) and an
admissible configuration set Pa, find (if possible)

• matrices A,B and H;
• a f-control uof ;
• a sharing function k;
• a safe set Rs(t): Rs(t) , P̂s × V̂s ⊆ Pa × V̂s ⊂
Pa × V̂ , R and such that1 lim

t→∞
Rs(t) = Pa × V̂s;

1The limit of a set S(t), denoted as lim
t→∞

S(t), equals to Q if and only
if

∀ε > 0,∃tε > 0 : Qε− ⊂ S(t) ⊂ Qε+ for all t ≥ tε,

such that the following properties of the s-closed-loop system
hold.

(P0) The estimation error system

ė =

([
0 I

−M−1G −M−1K

]
−HC

)
e

+

([
0
M−1

]
− B

)
us −HC

[
p̂
v̂

]
−

(
A−

[
0 I

−M−1G −M−1K

])[
p̂
v̂

]
has an equilibrium at e = 0 which is exponentially
stable.

(P1) The set R is forward invariant.
(P2) Let Ωs (Ωh, resp.) be the Ω-limit set of the s-closed-

loop (h-closed-loop, resp.). Then

Ωs =

Ωh if Ωh ⊂ Rs,

ΠRs
(Ωh) if Ωh 6⊂ Rs,

where ΠRs
(Ωh) is a projection of Ωh into Rs, which

will be defined in Section III-A.
(P3) us = uh if (p̂, v̂) ∈ Rs.

III. DESIGN OF THE OUTPUT-FEEDBACK
S-CONTROL

In this section a shared-control strategy to solve the problem
stated in Section II in the case in which Pa is described
by a group of linear inequalities is given. For simplicity, we
assume that only position sensors are available, which means
p(t) is measurable but ṗ(t) is not.

The state-space representation of system (1) is given by{
ṗ = v,
v̇ =M−1(−Kv − Gp+ us),

(5)

with output2

y =
[
I 0

] [ p
v

]
. (6)

Without loss of generality, select

A =

[
0 I

−M−1G −M−1K

]
−H

[
I 0

]
,

B =

[
0
M−1

]
,

with H such that λ(A) ⊂ C−. As a result (P0) holds and
the signal e(t) is exponentially converging to zero, i.e.

∃ α > 0, β > 0 : |ei(t)| ≤ E , ∀i ∈ {1, . . . , 2n},

where Qε+ = {Bε(x), x ∈ Q}, Qε− = ((Q̄)ε+), Bε(x) is the ball
centered at x with radius ε > 0 and Q̄ denotes the complement of the set
Q.

2I and 0 denote the identity and zero matrix of appropriate dimensions.



where E = αe−βt max
1≤i≤2n

|ei(0)|.

Similarly to [23], assume Pa is defined by a group of linear
inequalities, namely

Pa = {p ∈ Rn |Sp+ T ≤ 0}, (7)

where S = [sT1 , s
T
2 , . . . , s

T
m]T ∈ Rm×n and T =

[t1, t2, . . . , tm]T ∈ Rm.

Assumption 1: If m > n then the matrices S and T satisfy
the condition

rank(

 sr1
...
srl

) < rank(

 sr1 tr1
...

...
srl trl

),

for all l ∈ [n+ 1,m] and r1, r2, . . . , rl ∈ {1, 2, . . . ,m}.

In what follows we assume that Assumption 1 holds and Pa
is not empty.

A. Design of the f-control

Without loss of generality, as detailed in [23], we design the
f-control in the case m = n. Note also that, as discussed
again in [23], Nc f-controls, with Nc ≤

(
m
n

)
have to be

designed. Consider the ith group of constraints which is
described by

Sip+ T i ≤ 0, (8)

where Si = [si1
T
, si2

T
, . . . , sin

T
]T and T = [ti1, t

i
2, . . . , t

i
n]T .

Define the new coordinate xi as3

xi = Sip̂+ T i + E |Sia|,

where a = [1, 1, . . . , 1]T and

pir = Si−1(xir − T i − E |Sia|),
vir = Si−1(ẋir + βE |Sia|).

(9)

From (8), we know that xi ≤ 0. However, this constraint is
stronger than the original constraint (8) and it can be removed
by changing the coordinate xi to zi = [zi1, z

i
2, . . . , z

i
n]T with

zij = log
xij + εij
xirj + εirj

, ∀j ∈ {1, 2, . . . , n}, (10)

where xirj (to be defined) describes the desired evolution of
the coordinate xij and

εij =

0, if xij < 0,

< 0, otherwise,
εirj =

0, if xirj < 0,

< 0, otherwise.

The reference signal xir, related to xi, is given by

xir = [xir1 , x
i
r2 , . . . , x

i
rn ]T

3For a vector b = [b1, b2, . . . , bn]T ∈ Rn, |b| = [|b1|, |b2|, . . . , |bn|]T .

with xirj defined by

xirj (t) =

{
0, if hij(t) ≥ 0,

hij(1− eγh
i
j ), if hij(t) < 0,

(11)

where γ > 0, hij(t) = sijpd(t)+tij+E (t)|sija| and pd denotes
the reference configuration in the space P . Note that xirj is
a non-positive smooth signal for all j ∈ {1, 2, . . . , n}. In
addition, by (9), (pir, v

i
r) ∈ Pa × Rn.

Let (pd, ṗd) be a point of Ωh in the (p, v) space. The
projection of (pd, ṗd) into Rs related to the ith group of
constraints, denoted as Πi

Rs
(pd, ṗd), is defined as

Πi
Rs

(pd, ṗd) = (pir, v
i
r),

where pir and vir are given by equations (11) and (9). Then
the projection of Ωh into Rs related to the ith group of
constraints is defined as

Πi
Rs

(Ωh) = {s ∈ Rs|s = Πi
Rs

(pd, ṗd), ∀(pd, ṗd) ∈ Ωh}.

Finally, given pir and vir, the reference input is calculated as

uir =Mv̇ir +Kvir + Gpir. (12)

Using the variable zi, the f-closed-loop system can be written
as

żi = diag(
e−z

i
1 − 1

xir1 + εir1
, . . . ,

e−z
i
n − 1

xirn + εirn
)(Sivir − βE |Sia|)

+diag(
e−z

i
1

xir1 + εir1
, . . . ,

ez
i
n

xirn + εirn
)Siv̂ie,

˙̂vie = M−1(−Kv̂ie − Gp̂ie + uiof − uir),
(13)

where

p̂ie = (Si)−1
 (xir1 + εir1)ez

i
1 − εi1 − xir1−
. . .

(xirn + εirn)ez
i
n − εin − xirn

 .
Let v̂i∗e = (v̂i∗e1 , . . . , v̂

i∗
en)T be the solution of the equations

Siv̂i∗e = zi + diag(ez
i
1 − 1, . . . , ez

i
n − 1)(Sivir − βE |Sia|).

Consider the Lyapunov function, associated to the ith group
of constraints,

Li(zi, v̂ie) =
1

2
[zi

T
zi + (v̂ie − v̂i∗e )T (v̂ie − v̂i∗e )], (14)

and choose uid such that Li(zi, v̂ie) < 0 for all zi 6= 0 and
v̂ie 6= v̂i∗e . One such a choice is given by

uiof = M( ˙̂vi∗e − Si
T

[
zi1e
−zi1

xir1 + εir1
, . . . ,

zine
−zin

xirn + εirn
]T )

−η M(v̂ie − v̂i∗e ) +Kv̂ie + Gp̂ei,
(15)

with η > 0.



Lemma 1: Consider the f-closed-loop (5)-(13) with us =
uiof given by (15), uir given by (12) and xir given by (11).
Assume p(0) ∈ Pa and Sip̂(0) +T i+E (0)|Sia| ≤ 0 for all
i ∈ [1, Nc]. Then the system has the following properties:

lim
t→∞

(p(t)− pr(t)) = 0, where pr(t) is given by (9);

p(t) ∈ Pa, for all t ≥ 0.

B. Shared-control Algorithm

As stated in Section II the safe set Rs(t) needs to be defined
before designing the sharing function k. With reference to
the ith group of constraints, three subsets, the safe set Ris(t),
the hysteresis set Rih(t) and the dangerous set Rid(t), are
defined in equations (16) (top of the next page), where4 X ia =
SiPa + T i + E |Sia| and b2 > b1 > 0.

To eliminate confusions on the set definitions for different
groups of constraints, it is important to pull the subsets given
in (16) back into the (p̂, v̂) coordinates. This can be done
using the equations

R̄is = diag(S i−1,S i−1)(Ri
s − col(T i, 0n)+

diag(S i−1,S i−1)col(−E a, βE a)),

R̄ih = diag(S i−1,S i−1)(Ri
h − col(T i, 0n)+

diag(S i−1,S i−1)col(−E a, βE a)),

R̄id = diag(S i−1,S i−1)(Ri
d − col(T i, 0n)+

diag(S i−1,S i−1)col(−E a, βE a)),

where col(a, b) is a column vector obtained by stacking the
vector b under a. By construction the sets R̄is, R̄ih and R̄id,
have the following properties:

• R̄is ∪ R̄ih ∪ R̄id ⊆ R, and lim
t→∞

(R̄is ∪ R̄ih ∪ R̄id) =

R, ∀i ∈ {1, 2, . . . , Nc};
• R̄is∩R̄id = {(p̂, v̂)|Sip̂+T i+E |Sia| = 0, v̂ = 0}, ∀i ∈
{1, 2, . . . , Nc};

• R̄id ∩ R̄
j
d = ∅, ∀i 6= j and i, j ∈ {1, 2, . . . , Nc}.

Similarly to [23], the sharing function, based on the three
subsets R̄is, R̄ih and R̄id, is defined as

ki(p̂, v̂) =


1, (p̂, v̂) ∈ R̄is \ R̄id,
li(p̂, v̂), (p̂, v̂) ∈ R̄ih,
0, (p̂, v̂) ∈ R̄id,

(17)

where

li(p̂, v̂) =

{
1, if (p̂, v̂) enters R̄ih from R̄is,
0, if (p̂, v̂) enters R̄ih from R̄id.

4The set SiPa + T i + E |Sia|, with Si ∈ Rn×n, T i ∈ Rn, a =
[1, 1, . . . , 1]T and Pa ∈ Rn is defined as

SiPa + T i + E |Sia| = {x ∈ Rn |x = Siy + T i + E |Sia|, y ∈ Pa}.

Note that the set X ia is a time-dependent set, since E is a function of time.

The f-controller relative to the ith group of constraints, given
by (15), can be rewritten in the (p̂, v̂) coordinates as

uiof = −η M(v̂ − vir − v̂i∗e ) +K(v̂ − vir) + G(p̂− pir)

M( ˙̂vi∗e − Si
T

[

log
mi

1

ri1
mi

1

, . . . ,

log
mi
n

rin
mi
n

]T ),

(18)

where v̂i∗e = γE a + Si−1[

log
mi

1

ri1
mi

1

, . . . ,

log
mi
n

rin
mi
n

]T +

diag(
mi

1

ri1
− 1, . . . ,

mi
n

rin
− 1)vi

r, m
i
j = sij p̂+ tij + E |sija|+ εij

and rij = sijp
i
r + tij + εirj for all j ∈ {1, 2, . . . , n}.

Finally, the s-control input can be written in the (p̂, v̂)
coordinates as

us(p̂, v̂) = min
1≤i≤Nc

ki(p̂, v̂) uh+

Nc∑
i=1

[(1−ki(p̂, v̂))uiof (p̂, v̂)].

(19)

Note that, as in [23], for each time instant the condition
ki(p̂, v̂) = 0 is satisfied for at most one i ∈ {1, 2, . . . , Nc}.

Theorem 1: Consider the system (5)-(6) with the shared-
control action (17), (18) and (19). Assume that p(0) ∈ Pa,
Sip̂(0) + T i + E (0)|Sia| ≤ 0 for all i ∈ [1, Nc] and Ωh is
feasible. Then there exist η > 0 and b2 > b1 > 0 such that
the s-closed-loop has the following properties.

(1) p(t) ∈ Pa for all t ≥ 0.

(2) Ωs = Ωh.

(3) us(t) = uh(t) for all t ≥ 0 and (p̂(t), v̂(t)) ∈ Rs \Rd.

Remark 1: The shared-control algorithm presented above
can also be applied to noncovex admissible regions defined
via linear inequalities and logical ”statements”. The only
difference is the way in which the three subsets Rs, Rh
and Rd are defined. In fact, as shown in [25], any concave
polygons can be partitioned by c lines (virtual bounds) into d
convex polygons, where c and d are positive integers. Hence,
any concave polygons can be defined by d groups of convex
polygons complemented with logic statements (related to the
virtual bounds). Let iRs, iRh and iRd denote the three
subsets related to the ith convex sub-polygon. Then the
overall safe, hysteresis and dangerous subsets are defined
as

Rs = 1Rs ∪ 2Rs ∪ · · · ∪ dRs,
Rh = 1Rh ∪ 2Rh ∪ · · · ∪ dRh,
Rd = 1Rd ∪ 2Rd ∪ · · · ∪ dRd,

and we could apply the same construction described for the
case of a convex admissible region.



Ris =

{
(xi, ẋi) ∈ X ia × Rn : ẋij ≤

1

xij + b2
− 1

b2
if xij ≥ −b2 for all j ∈ {1, 2, . . . , n}

}

Rih =


(xi, ẋi) ∈ X ia × Rn : ∃j ∈ {1, 2, . . . , n} such that ẋij >

1

xij + b2
− 1

b2
and xij ≥ −b2

and ẋik <
1

xik + b1
− 1

b1
if xik ≥ −b1 for all k ∈ {1, 2, . . . , n}

 (16)

Rid =


(xi, ẋi) ∈ X ia × Rn : ∃j ∈ {1, 2, . . . , n} such that ẋij ≥

1

xij + b1
− 1

b1
&− b1 ≤ xij < 0

or ∃j ∈ {1, 2, . . . , n} such that ẋij >
1

xij + b1
− 1

b1
and xij = 0

or ∀j ∈ {1, 2, . . . , n} such that xij = ẋij = 0



IV. NUMERICAL EXAMPLES

In this section we consider a fully actuated, linear, mechan-
ical system with two degrees-of-freedom described by

ṗ1 = v1,
ṗ2 = v2,
v̇1 = −p1 − 0.5p2 − v1 − 0.3v2 + u1,
v̇2 = −0.4p1 − 2p2 − 0.3v1 + 0.5v2 + u2,

(20)

and two admissible sets: a convex one and a concave one.
The target trajectories in both cases are infeasible.

A. Convex Pa

Consider the system (20) with the admissible set described
by

Pa = {p = [p1, p2]T |p1 ≥ 0 and p2 ≥ 0}. (21)

Assume the output p of the system has to track the trajectory

pd(t) = [1.7− 0.1t, 1.8− 0.1t]T .

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

p
1

p 2

 

 

s−closed−loop
initial position
non−admissible region
h−closed−loop

Fig. 1. Trajectories of the system (20) for the set Pa given in (21): h-
closed-loop (red, dashed) and s-closed-loop (green, solid).

Figure 1 shows that the output trajectory of the s-closed-
loop system coincides with that of the h-closed-loop system
for small values of t. This is because the trajectory is far
away from the boundaries of the admissible set. However,
the output trajectory of the h-closed-loop system tracks the
reference signal pd and enters the non-admissible region
(the gray, shaded region) as time increases, while that of
the s-closed-loop system stays in the admissible region and
converges to (p1, p2, v1, v2) = (0, 0, 0, 0) which is ΠRs

(Ωh).

B. Concave Pa

Consider again the system (20) and the admissible set

Pa =

{
p = [p1, p2]T

∣∣∣∣ p2 ≥ 0, if p1 ≥ 0,
and p1 ≤ 0, if p2 ≤ 0

}
. (22)

Suppose the desired trajectory spans a circle of radius one
centered at the origin and given by

pd(t) = [sin 0.1t, cos 0.1t]T .
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s−closed−loop
initial position
non−admissible set
h−closed−loop

Fig. 2. Trajectories of the system (20) for the set Pa given in (22): h-
closed-loop (red, dashed) and s-closed-loop (green, solid).



Simulation results are displayed in Figure 2 and show the
effectiveness of the shared-control algorithm. Note that there
is a significant overshoot around the ”corner” (p = [0, 0]T )
as a consequence of the ”discontinuity” caused by the
concavity of Pa. This is due to the definition of pr in (9)
and (11).

V. CONCLUSIONS

This paper presents a solution to the output-feedback shared-
control problem for fully-actuated, linear, mechanical sys-
tems. The algorithm is based on a hysteresis switch to com-
bine the human action uh and the output-feedback control
action uof . The theory is developed for convex admissible
sets Pa and then illustrated also on nonconvex sets Pa. With
the shared-control strategy the system configuration is able to
reach every point in Pa, including boundaries and to remain
in the admissible set. Two simple case studies are given
in Section IV to illustrate the effectiveness of the s-control
design. Future work will focus on the shared-control design
for classes of nonlinear systems.
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