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1. Introduction 

The term "hybrid systems" was first used in 1966 Witsenhausen introduced a hybrid model 
consisting of continuous dynamics with a few sets of transition. These systems provide both 
continuous and discrete dynamics have proven to be a useful mathematical model for 
various physical phenomena and engineering systems. A typical example is a chemical 
batch plant where a computer is used to monitor complex sequences of chemical reactions, 
each of which is modeled as a continuous process. In addition to the discontinuities 
introduced by the computer, most physical processes admit components (eg switches) and 
phenomena (eg collision), the most useful models are discrete. The hybrid system models 
arise in many applications, such as chemical process control, avionics, robotics, automobiles, 
manufacturing, and more recently molecular biology. 
The control design for hybrid systems is generally complex and difficult. In literature, 
different design approaches are presented for different classes of hybrid systems, and 
different control objectives. For example, when the control objective is concerned with issues 
such as safety specification, verification and access, the ideas in discrete event control and 
automaton framework are used for the synthesis of control. 
One of the most important control objectives is the problem of stabilization. Stability in the 
continuous systems or not-hybrid can be concluded starting from the characteristics from 
their fields from vectors. However, in the hybrid systems the properties of stability also 
depend on the rules of commutation. For example, in a hybrid system by commutation 
between two dynamic stable it is possible to obtain instabilities while the change between 
two unstable subsystems could have like consequence stability. The majority of the results 
of stability for the hybrid systems are extensions of the theories of Lyapunov developed for 
the continuous systems. They require the Lyapunov function at consecutive switching times 
to be a decreasing sequence. Such a requirement in general is difficult to check without 
calculating the solution of the hybrid dynamics, and thus losing the advantage of the 
approach of Lyapunov. 
In this chapter, we develop tools for the systematic analysis and robust design of hybrid 
systems, with emphasis on systems that require control algorithms, that is, hybrid control 
systems. To this end, we identify mild conditions that hybrid equations need to satisfy so 
that their behavior captures the effect of arbitrarily small perturbations. This leads to new 
concepts of global solutions that provide a deep understanding not only on the robustness 
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properties of hybrid systems, but also on the structural properties of their solutions. 
Alternatively, these conditions allow us to produce various tools for hybrid systems that 
resemble those in the stability theory of classical dynamical systems. These include general 
versions of theorems of Lyapunov stability and the principles of invariance of LaSalle.  

2. Hybrid systems: Definition and examples 

Different models of hybrid systems have been proposed in the literature. They mainly differ 
in the way either the continuous part or the discrete part of the dynamics is emphasized, 
which depends on the type of systems and problems we consider. A general and commonly 
used model of hybrid systems is the hybrid automaton (see e.g. (Dang, 2000) and (Girard, 
2006)). It is basically a finite state machine where each state is associated to a continuous 
system. In this model, the continuous evolutions and the discrete behaviors can be 
considered of equal complexity and importance. By combining the definition of the 
continuous system, and discrete event systems hybrid dynamical systems can be defined: 

Definition 1 A hybrid system H is a collection : ( , , , , , )H Q X U F R= Σ , where 

• Q is a finite set, called the set of discrete states; 

• nX ⊆ℜ is the set of continuous states; 

• Σ is a set of discrete input events or symbols; 

• mX ⊆ ℜ is the set of continuous inputs; 

• : nF Q X U× × →ℜ is a vector field describing the continuous dynamics; 

• :R Q X U Q X× × × → ×Σ describes the discrete dynamics. 
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Fig. 1. A trajectory of the room temperature. 

Example 1 (Thermostat). The thermostat consists of a heater and a thermometer which 
maintain the temperature of the room in some desired temperature range (Rajeev, 1993). The 
lower and upper thresholds of the thermostat system are set at mx  and Mx  such that 

m Mx x≺ . The heater is maintained on as long as the room temperature is below Mx , and it 
is turned off whenever the thermometer detects that the temperature reaches Mx . Similarly, 
the heater remains off if the temperature is above mx  and is switched on whenever the 
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temperature falls to mx  (Fig. 1). In practical situations, exact threshold detection is 
impossible due to sensor imprecision. Also, the reaction time of the on/off switch is usually 
non-zero. The effect of these inaccuracies is that we cannot guarantee switching exactly at 
the nominal values mx  and Mx . As we will see, this causes non-determinism in the discrete 
evolution of the temperature. 
Formally we can model the thermostat as a hybrid automaton shown in (Fig. 2). The two 
operation modes of the thermostat are represented by two locations 'on' and 'off'. The on/off 
switch is modeled by two discrete transitions between the locations. The continuous 
variable x models the temperature, which evolves according to the following equations. 
 

[ ]εε +−∈ MM xxx ,  

[ ]εε +−∈ mm xxx ,

Off 
),(2 uxfx =ɺ

On 
),(1 uxfx =ɺ

 ε+≤ Mxx
ε−≥ mxx

 

Fig. 2. Model of the thermostat. 

• If the thermostat is on, the evolution of the temperature is described by: 

 1( , ) 4x f x u x u= = − + +�  (1) 

• When the thermostat is off, the temperature evolves according to the following 
differential equation: 

2( , )x f x u x u= = − +�
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Fig. 3. Two different behaviors of the temperature starting at 0x . 

The second source of non-determinism comes from the continuous dynamics. The input 
signal u  of the thermostat models the fluctuations in the outside temperature which we 
cannot control. (Fig. 3 left) shows this continuous non-determinism. Starting from the initial 
temperature 0x , the system can generate a “tube” of infinite number of possible trajectories, 
each of which corresponds to a different input signal u . To capture uncertainty of sensors, 
we define the first guard condition of the transition from 'on' to 'off' as an interval 

[ ],M Mx x− ε + ε  with 0ε ; . This means that when the temperature enters this interval, the 
thermostat can either turn the heater off immediately or keep it on for some time provided 
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that Mx x≤ + ε . (Fig. 3 right) illustrates this kind of non-determinism. Likewise, we define 
the second guard condition of the transition from 'off' to 'on' as the interval [ ],m mx x− ε + ε . 
Notice that in the thermostat model, the temperature does not change at the switching 
points, and the reset maps are thus the identity functions. 
Finally we define the two staying conditions of the 'on' and 'off' locations as Mx x≤ + ε and 

Mx x≥ − ε respectively, meaning that the system can stay at a location while the 
corresponding staying conditions are satisfied. 
Example 2 (Bouncing Ball). Here, the ball (thought of as a point-mass) is dropped from an 
initial height and bounces off the ground, dissipating its energy with each bounce. The ball 
exhibits continuous dynamics between each bounce; however, as the ball impacts the 
ground, its velocity undergoes a discrete change modeled after an inelastic collision. A 
mathematical description of the bouncing ball follows. Let 1 :x h= be the height of the ball 
and 2 :x h= � (Fig. 4). A hybrid system describing the ball is as follows: 

 
2

0
( ) :

.
g x

x

⎡ ⎤
= ⎢ ⎥−γ⎣ ⎦

, { }1 2: : 0,  0D x x x= = ≺ 2( ) :
x

f x
g

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, { }1: : 0 \C x x D= ≥ . (2) 

This model generates the sequence of hybrid arcs shown in (Fig. 5). However, it does not 
generate the hybrid arc to which this sequence of solutions converges since the origin does 
not belong to the jump set D . This situation can be remedied by including the origin in the 
jump set D . This amounts to replacing the jump set D  by its closure. One can also replace 
the flow set C by its closure, although this has no effect on the solutions. 
It turns out that whenever the flow set and jump set are closed, the solutions of the corresponding 
hybrid system enjoy a useful compactness property: every locally eventually bounded sequence of 
solutions has a subsequence converging to a solution. 
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Fig. 4. Diagram for the bouncing ball system 
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Fig. 5. Solutions to the bouncing ball system 

Consider the sequence of hybrid arcs depicted in (Fig. 5). They are solutions of a hybrid 

“bouncing ball” model showing the position of the ball when dropped for successively 
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lower heights, each time with zero velocity. The sequence of graphs created by these hybrid 

arcs converges to a graph of a hybrid arc with hybrid time domain given by 

{ }0 × {nonnegative integers} where the value of the arc is zero everywhere on its domain. If 

this hybrid arc is a solution then the hybrid system is said to have a “compactness” 

property. This attribute for the solutions of hybrid systems is critical for robustness 

properties. It is the hybrid generalization of a property that automatically holds for 

continuous differential equations and difference equations, where nominal robustness of 

asymptotic stability is guaranteed.  

Solutions of hybrid systems are hybrid arcs that are generated in the following way: Let C  

and D be subsets of nℜ and let f , respectively g , be mappings from C , respectively D , 

to nℜ . The hybrid system : ( , , , )H f g C D= can be written in the form 

 
( )       

( )     

x f x x C

x g x x D+

= ∈

= ∈

�
 (3) 

The map f is called the “flow map”, the map g is called the “jump map”, the set C is called 

the “flow set”, and the set D is called the “jump set”. The state x  may contain variables 

taking values in a discrete set (logic variables), timers, etc. Consistent with such a situation is 

the possibility that C D∪ is a strict subset of nℜ . For simplicity, assume that f and g are 

continuous functions. At times it is useful to allow these functions to be set-valued 

mappings, which will denote by F and G , in which case F  and G should have a closed 

graph and be locally bounded, and F should have convex values.  
In this case, we will write 

 
       

    

x F x C

x G x D+

∈ ∈

∈ ∈

�
 (4) 

A solution to the hybrid system (4) starting at a point 0x C D∈ ∪ is a hybrid arc x with the 

following properties: 
1. 0(0,0)x x= ; 

2. given ( , )  s j dom x∈ , if there exists sτ ; such that ( , )  j dom xτ ∈  , then, for all [ ],t s∈ τ , 

( , )x t j C∈ and, for almost all [ ],t s∈ τ , ( , ) ( ( , ))x t j F x t j∈� ; 
3. given ( , )  t j dom x∈ , if ( , 1)  t j dom x+ ∈ then ( , )x t j D∈ and ( , 1) ( ( , ))x t j G x t j+ ∈ . 

Solutions from a given initial condition are not necessarily unique, even if the flow map is a 

smooth function.  

3. Approaches to analysis and design of hybrid control systems 

The analysis and design tools for hybrid systems in this section are in the form of Lyapunov 

stability theorems and LaSalle-like invariance principles. Systematic tools of this type are the 

base of the theory of systems for purely of the continuous-time and discrete-time systems. 

Some similar tools available for hybrid systems in (Michel, 1999) and (DeCarlo, 2000), the 

tools presented in this section generalize their conventional versions of continuous-time and 

discrete-time hybrid systems development by defining an equivalent concept of stability 

and provide extensions intuitive sufficient conditions of stability asymptotically. 
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3.1 LaSalle-like invariance principles 
Certain principles of invariance for the hybrid systems have been published in (Lygeros et 
al., 2003) and (Chellaboina et al., 2002). Both results require, among other things, unique 
solutions which is not generic for hybrid control systems. In (Sanfelice et al., 2005), the 
general invariance principles were established that do not require uniqueness. The work in 
(Sanfelice et al., 2005) contains several invariance results, some involving integrals of 
functions, as for systems of continuous-time in (Byrnes & Martin, 1995) or (Ryan, 1998), and 
some involving nonincreasing energy functions, as in work of LaSalle (LaSalle, 1967) or 
(LaSalle, 1976). Such a result will be described here. 

Suppose we can find a continuously differentiable function : nV ℜ →ℜ such that 

 
( ) : ( ), ( ) 0               

( ) : ( ( )) ( ) 0             

c

d

u x V x f x x C

u x V g x V x x D

= ∇ ≤ ∀ ∈

= − ≤ ∀ ∈
 (5) 

Consider ( , )x ⋅ ⋅  a bounded solution with an unbounded hybrid time. Then there exists a value r  in the 
range V  so that x  tends to the largest weakly invariant set inside the set 

 ( )( )1 1 1 1: ( ) (0) (0) ( (0))r c d dM V r u u g u− − − −= ∩ ∪  (6) 

where 1(0)du− : the set of points x  satisfying ( ) 0du x = and 1( (0))dg u− corresponds to the set of 

points ( )g y where 1(0)dy u−∈ . 
The naive combination of continuous-time and discrete-time results would omit the 
intersection with 1( (0))dg u− . This term, however, can be very useful for zeroing in set to 
which trajectories converge. 

3.2 Lyapunov stability theorems 

Some preliminary results on the existence of the non-smooth Lyapunov function for the hybrid 
systems published in (DeCarlo, 2000). The first results on the existence of smooth Lyapunov 
functions, which are closely related to the robustness, published in (Cai et al., 2005). These 
results required open basins of attraction, but this requirement has since been relaxed in (Cai et 
al. 2007). The simplified discussion here is borrowed from this posterior work. 

Let O be an open subset of the state space containing a given compact set A  and let 

0: ≥ω →ℜO  be a continuous function which is zero for all x A∈ , is positive otherwise, 
which grows without limit as its argument grows without limit or near the limit O . Such a 
function is called a suitable indicator for the compact set A in the open set O . An example of 
such a function is the standard function on nℜ which is an appropriate indicator of origin. 
More generally, the distance to a compact set A is an appropriate indicator for all A on nℜ . 
Given an open set O , an appropriate indicator ω and hybrid data ( , , , )f g C D , a function 

0:V ≥→ℜO is called a smooth Lyapunov function for ( , , , , , )f g C D ω O  if it is smooth and 
there exist functions 1 2,α α belonging to the class- ∞K , such as 

 
1 2

1

( ( )) ( ) ( ( ))

( ), ( ) ( )

( ( )) ( )

x V x x

V x f x V x

V g x e V x−

α ω ≤ ≤ α ω

∇ ≤ −

≤

x

x C

x D

∀ ∈

∀ ∈

∀ ∈

∩

∩

O

O

O

 (7) 

Suppose that such a function exists, it is easy to verify that all solutions for the hybrid 
system ( , , , )f g C D from ( )C D∩ ∪O satisfied 
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 ( )1
1 2( ( , )) ( ( (0,0)))                     ( , )  t jx t j e x t j dom x− −−ω ≤ α α ω ∀ ∈  (8) 

In particular, 

• (pre-stability of A ) for each  0ε ;  there exists  0δ ; such that (0,0)x A B∈ + δ  implies, 

for each generalized solution, that ( , )x t j A B∈ + ε  for all ( , )  t j dom x∈ , and 

• (before attractive A on O ) any generalized solution from ( )C D∩ ∪O  is bounded and if 

its time domain is unbounded, so it converges to A . 

According to one of the principal results in (Cai et al., 2006) there exists a smooth Lyapunov 

function for ( , , , , , )f g C D ω O if and only if the set A is pre-stable and pre-attractive on O and O  is 

forward invariant (i.e., ( )(0,0)x C D∈ ∩ ∪O implies ( , )x t j ∈O for all ( , )  t j dom x∈ ). 
One of the primary interests in inverse Lyapunov theorems is that they can be employed to 

establish the robustness of the asymptotic stability of various types of perturbations. 

4. Hybrid control application 

In system theory in the 60s researchers were discussing mathematical frameworks so to 
study systems with continuous and discrete dynamics. Current approaches to hybrid 
systems differ with respect to the emphasis on or the complexity of the continuous and 
discrete dynamics, and on whether they emphasize analysis and synthesis results or 
analysis only or simulation only. On one end of the spectrum there are approaches to hybrid 
systems that represent extensions of system theoretic ideas for systems (with continuous-
valued variables and continuous time) that are described by ordinary differential equations 
to include discrete time and variables that exhibit jumps, or extend results to switching 
systems. Typically these approaches are able to deal with complex continuous dynamics. 
Their main emphasis has been on the stability of systems with discontinuities. On the other 
end of the spectrum there are approaches to hybrid systems embedded in computer science 
models and methods that represent extensions of verification methodologies from discrete 
systems to hybrid systems.  Several approaches to robustness of asymptotic stability and 
synthesis of hybrid control systems are represented in this section. 

4.1 Hybrid stabilization implies input-to-state stabilization  
In the paper (Sontag, 1989) it has been shown, for continuous-time control systems, that 
smooth stabilization involves smooth input-to-stat stabilization with respect to input 
additive disturbances. The proof was based on converse Lyapunov theorems  for 
continuous-time systems. According to the indications of (Cai et al., 2006), and (Cai et al. 
2007), the result generalizes to hybrid control systems via the converse Lyapunov theorem. 
In particular, if we can find a hybrid controller, with the type of regularity used in sections 

4.2 and 4.3, to achieve asymptotic stability, then the input-to-state stability with respect to 

input additive disturbance can also be achieved.  

Here, consider the special case where the hybrid controller is a logic-based controller where 

the variable takes values in the logic of a finite set. Consider the hybrid control system 

 

( ) ( )( )       ,  q

:
( )                            ,  q

q q q q q

q q

f u d C Q

G D Q
q

+

⎧ξ = ξ + η ξ + υ ξ∈ ∈
⎪⎪= ⎨ ξ⎡ ⎤

∈ ξ ξ∈ ∈⎪ ⎢ ⎥
⎪ ⎣ ⎦⎩

�

Η  (9) 
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where Q  is a finite index set, for each q Q∈ , qf , : n
q qCη →ℜ  are continuous functions, 

qC and qD are closed and qG has a closed graph and is locally bounded. The signal qu is the 

control, and d is the disturbance, while qυ is vector that is independent of the state, input, 

and disturbance. Suppose H is stabilizable by logic-based continuous feedback; that is, for 

the case where 0d = , there exist continuous functions qk defined on qC such that, with 

 : ( )q qu k= ξ , the nonempty and compact set { }q Q qA A q∈= ×∪ is pre-stable and globally pre-

attractive. Converse Lyapunov theorems can then be used to establish the existence of a 

logic-based continuous feedback that renders the closed-loop system input-to-state stable 

with respect to d . The feedback has the form 

 : ( ) . ( ) ( )T
q q q qu k V= ξ − ε η ξ ∇ ξ  (10) 

where 0ε ; and ( )qV ξ is a smooth Lyapunov function that follows from the assumed 
asymptotic stability when 0d ≡ . There exist class- ∞K functions 1α and 2α such that, with 
this feedback control, the following estimate holds:                                               

 ( ) ( )( )( )
2

21 1
1 2 1( , ) (0,0)

max
( , ) max 2.exp . 0,0 ,

2.

q Q q

A t j Aq
t j t j d

∈− −
∞

⎧ ⎫⎛ ⎞υ⎪ ⎪⎜ ⎟ξ ≤ α − − α ξ α⎨ ⎬⎜ ⎟ε⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (11) 

where ( , ) dom : sup ( , )s i dd d s i∈∞ = . 

4.2 Control Lyapunov functions  
Although the control design using a continuously differentiable control-Lyapunov function 
is well established for input-affine nonlinear control systems,  it is well known that not all 
controllable input-affine nonlinear control system function admits a continuously 
differentiable control-Lyapunov function. A well known example in the absence of this 
control-Lyapunov function is the so-called "Brockett", or "nonholonomic integrator". 
Although this system does not allow continuously differentiable control Lyapunov function, 
it has been established recently that admits a good "patchy" control-Lyapunov function. 
The concept of control-Lyapunov function, which was presented in (Goebel et al., 2009), is 
inspired not only by the classical control-Lyapunov function idea, but also by the approach 
to feedback stabilization based on patchy vector fields proposed in (Ancona & Bressan, 
1999). The idea of control-Lyapunov function was designed to overcome a limitation of 
discontinuous feedbacks, such as those from patchy feedback, which is a lack of robustness 
to measurement noise. In (Goebel et al., 2009) it has been demonstrated that any 
asymptotically controllable nonlinear system admits a smooth patchy control-Lyapunov 
function if we admit the possibility that the number of patches may need to be infinite. In 
addition, it was shown how to construct a robust stabilizing hybrid feedback from a patchy 
control-Lyapunov function. Here the idea when the number of patches is finite is outlined 
and then specialized to the nonholonomic integrator. 

Generally , a global patchy smooth control-Lyapunov function for the origin for the control 
system ( , )x f x u=� in the case of a finite number of patches is a collection of functions qV and 
sets qΩ and q′Ω where { }:  1, ,  q Q m∈ = … , such as 

a. for each q Q∈ , qΩ and q′Ω are open and 

• { }: \ 0n
q Q q q Q q∈ ∈ ′= ℜ = =Ω Ω∪ ∪O  

• for each q Q∈ , the outward unit normal to q∂Ω is continuous on ( )r q\q r′∂Ω Ω;∪ ∩O , 
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• for each q Q∈ , q q′ ⊂Ω Ω∩O ; 

b. for each q Q∈ , qV is a smooth function defined on a neighborhood (relative to O ) 

of qΩ . 

c. there exist a continuous positive definite functionα and class- ∞K functions γ and 

γ such that 

• ( ) ( )( )qx V x xγ ≤ ≤ γ          qV q Q∀ ∈ , ( )\q r q rx ′∈ Ω Ω;∪ ∩O ; 

• for each q Q∈ and ( )\q r q rx ′∈ Ω Ω;∪ there exists ,x qu such that 

( ), ( , , ) ( )q xV x f x u q x∇ ≤ −α
 

• for each q Q∈ and ( )\q r q rx ′∈ Ω Ω;∪ ∩O there exists ,x qu such that 

( ), ( , , ) ( )

( ), ( , , ) ( )

q x

q x

V x f x u q x

n x f x u q x

∇ ≤ −α

≤ −α
 

where ( )qx n x6 denotes the outward unit normal to q∂Ω . 

From this patchy control-Lyapunov function one can construct a robust hybrid feedback 

stabilizer, at least when the set { }, . ( , )  u f x u cυ ≤ is convex for each real number c and every 

real vector υ , with the following data 

 : ( )q qu k x= , ( )\q q r q rC ′= Ω Ω;∪ ∩O  (12) 

where qk is defined on qC , continuous and such that 

 

( )
( ), ( , ( )) 0.5 ( )                 

( ), ( , ( )) 0.5 ( )                    \

q q q

q x q r k r

V x f x k x x x C

n x f x k x x x

∇ ≤ − α ∀ ∈

′≤ − α ∀ ∈ ∂Ω Ω;∪ ∩O

 (13) 

The jump set is given by 

 ( ) ( )\q q r q rD ′= Ω Ω;∪ ∪ ∩O O  (14) 

and the jump map is 

 
{ } ( )
{ }
 :          

( )
 :                                        \

r r q r q

q

r q

r Q x r q x
G x

r Q x x

⎧ ′ ′∈ ∈ ∈⎪= ⎨
′∈ ∈ ∈⎪⎩

Ω Ω Ω

Ω Ω

;∩ ; ∪ ∩ ∩

∩

O, O

O O

 (15) 

With this control, the index increases with each jump except probably the first one. Thus, the 
number of jumps is finite, and the state converges to the origin, which is also stable. 

4.3 Throw-and-catch control 

In ( Prieur, 2001), it was shown how to combine local and global state feedback to achieve 

global stabilization and local performance. The idea, which exploits hysteresis switching 

(Halbaoui et al., 2009b), is completely simple. Two continuous functions, globalk  and localk  

are shown when the feedback ( )globalu k x=  render the origin of the control system 

( , )x f x u=�  globally asymptotically stable whereas the feedback ( )localu k x=  makes the 
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origin of the control system locally asymptotically stable with basin of attraction containing 

the open set O , which contains the origin. Then we took localC  a compact subset of the O  

that contains the origin in its interior and one takes globalD  to be a compact subset of localC , 

again containing the origin in its interior and such that, when using the controller localk , 

trajectories starting in globalD  never reach the boundary of localC  (Fig. 6). Finally, the hybrid 

control which achieves global asymptotic stabilization while using the controller qk  for 

small signals is as follows  

 
{ }
{ }

: ( )                      :  :

( , ) : toggle ( )     D :  :

q q

q

u k x C (x,q) x C

g q x q (x,q) x D

= = ∈

= = ∈
 (16) 

In the problem of uniting of local and global controllers, one can view the global controller 
as a type of "bootstrap" controller that is guaranteed to bring the system to a region where 
another controller can control the system adequately. 
A prolongation of the idea of combine local and global controllers is to assume the existence 
of continuous bootstrap controller that is guaranteed to introduce the system, in finite time, 
in a vicinity of a set of points, not simply a vicinity of the desired final destination (the 
controller doesn’t need to be able to maintain the state in this vicinity); moreover, these sets 
of points form chains that terminate at the desired final destination and along which 
controls are known to steer (or “throw”) form one point in the chain at the next point in the 
chain. Moreover, in order to minimize error propagation along a chain, a local stabilizer is 
known for each point, except perhaps those points at the start of a chain. Those can be 
employed “to catch” each jet.  
 

.
globalD  

localC  

Trajectory due to local 

controller

 

 

Fig. 6. Combining local and global controllers 

4.4 Supervisory control  

In this section, we review the supervisory control framework for hybrid systems. One of the 
main characteristics of this approach is that the plant is approximated by a discrete-event 
system and the design is carried out in the discrete domain. The hybrid control systems in 
the supervisory control framework consist of a continuous (state, variable) system to be 
controlled, also called the plant, and a discrete event controller connected to the plant via an 
interface in a feedback configuration as shown in (Fig. 7). It is generally assumed that the 
dynamic behavior of the plant is governed by a set of known nonlinear ordinary differential 
equations 

 ( ) ( ( ), ( ))x t f x t r t=�  (17) 
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where    nx ∈ ℜ is the continuous state of the system and   mr ∈ ℜ  is the continuous control 
input. In the model shown in (Fig. 7), the plant contains all continuous components of the 
hybrid control system, such as any conventional continuous controllers that may have been 
developed, a clock if time and synchronous operations are to be modeled, and so on. The 
controller is an event driven, asynchronous discrete event system (DES), described by a 
finite state automaton. The hybrid control system also contains an interface that provides 
the means for communication between the continuous plant and the DES controller. 
 

Discrete  
Envent system 

DES Supervisor 

Event 
recognizer 

Control 
Switch 

 

 

 

 

Controlled system 

Continuous variable 
system 

Interface 

 

 

Fig. 7. Hybrid system model in the supervisory control framework. 

 

)(1 xh  )(4 xh  

)(2 xh  )(3 xh  

X

 

Fig. 8. Partition of the continuous state space. 

The interface consists of the generator and the actuator as shown in (Fig. 7). The generator 
has been chosen to be a partitioning of the state space (see Fig. 8). The piecewise continuous 
command signal issued by the actuator is a staircase signal as shown in (Fig. 9), not unlike 
the output of a zero-order hold in a digital control system. The interface plays a key role in 
determining the dynamic behavior of the hybrid control system. Many times the partition of 
the state space is determined by physical constraints and it is fixed and given. 
Methodologies for the computation of the partition based on the specifications have also 
been developed. 
In such a hybrid control system, the plant taken together with the actuator and generator, 
behaves like a discrete event system; it accepts symbolic inputs via the actuator and 
produces symbolic outputs via the generator. This situation is somewhat analogous to the 
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time  ]1[ct  ]2[ct  ]3[ct  
 

Fig. 9. Command signal issued by the interface. 

way a continuous time plant, equipped with a zero-order hold and a sampler, “looks” like a 
discrete-time plant. The DES which models the plant, actuator, and generator is called the 
DES plant model. From the DES controller's point of view, it is the DES plant model which 
is controlled. 
The DES plant model is an approximation of the actual system and its behavior is an 
abstraction of the system's behavior. As a result, the future behavior of the actual continuous 
system cannot be determined uniquely, in general, from knowledge of the DES plant state 
and input. The approach taken in the supervisory control framework is to incorporate all the 
possible future behaviors of the continuous plant into the DES plant model. A conservative 
approximation of the behavior of the continuous plant is constructed and realized by a finite 
state machine. From a control point of view this means that if undesirable behaviors can be 
eliminated from the DES plant (through appropriate control policies) then these behaviors 
will be eliminated from the actual system. On the other hand, just because a control policy 
permits a given behavior in the DES plant, is no guarantee that that behavior will occur in 
the actual system. 
We briefly discuss the issues related to the approximation of the plant by a DES plant model. 
A dynamical system ∑  can be described as a triple ; ;T W B with T ⊆ℜ the time axis, W the 
signal space, and TB W⊂ (the set of all functions :f T W→ ) the behavior. The behavior of the 
DES plant model consists of all the pairs of plant and control symbols that it can generate. 
The time axis T represents here the occurrences of events. A necessary condition for the 
DES plant model to be a valid approximation of the continuous plant is that the behavior of 
the continuous plant model cB is contained in the behavior of the DES plant model, i.e. 

c dB B⊆ . 
The main objective of the controller is to restrict the behavior of the DES plant model in 
order to specify the control specifications. The specifications can be described by a 
behavior specB . Supervisory control of hybrid systems is based on the fact that if undesirable 
behaviors can be eliminated from the DES plant then these behaviors can likewise be eliminated from 
the actual system. This is described formally by the relation 

 d s spec c s specB B B B B B⊆ ⇒ ⊆∩ ∩  (18) 

and is depicted in (Fig. 10). The challenge is to find a discrete abstraction with behavior Bd 
which is a approximation of the behavior Bc of the continuous plant and for which is 
possible to design a supervisor in order to guarantee that the behavior of the closed loop 
system satisfies the specifications Bspec. A more accurate approximation of the plant's 
behavior can be obtained by considering a finer partitioning of the state space for the 
extraction of the DES plant. 
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specB  

sB  

dB  

cB  

 

Fig. 10. The DES plant model as an approximation. 

An interesting aspect of the DES plant's behavior is that it is distinctly nondeterministic. 
This fact is illustrated in (Fig.11). The figure shows two different trajectories generated by 
the same control symbol. Both trajectories originate in the same DES plant state 1p� . (Fig.11) 
shows that for a given control symbol, there are at least two possible DES plant states that 
can be reached from 1p� . Transitions within a DES plant will usually be nondeterministic 
unless the boundaries of the partition sets are invariant manifolds with respect to the vector 
fields that describe the continuous plant. 
 

A  

B  

1

~
X

 

2

~
X

 

2
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P

 

3

~
P

 

1

~
P

 

 

Fig. 11. Nondeterminism of the DES plant model. 

There is an advantage to having a hybrid control system in which the DES plant model is 
deterministic. It allows the controller to drive the plant state through any desired sequence 
of regions provided, of course, that the corresponding state transitions exist in the DES plant 
model. If the DES plant model is not deterministic, this will not always be possible. This is 
because even if the desired sequence of state transitions exists, the sequence of inputs which 
achieves it may also permit other sequences of state transitions. Unfortunately, given a 
continuous-time plant, it may be difficult or even impossible to design an interface that 
leads to a DES plant model which is deterministic. Fortunately, it is not generally necessary 
to have a deterministic DES plant model in order to control it. The supervisory control 
problem for hybrid systems can be formulated and solved when the DES plant model is 
nondeterministic. This work builds upon the frame work of supervisory control theory used 
in (Halbaoui et al., 2008) and (Halbaoui et al., 2009a). 

5. Robustness to perturbations 

In control systems, several perturbations can occur and potentially destroy the good 
behavior for which the controller was designed for. For example, noise in the measurements 
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of the state taken by controller arises in all implemented systems. It is also common that 
when a controller is designed, only a simplified model of the system to control exhibiting 
the most important dynamics is considered. This simplifies the control design in general. 
However, sensors/actuators that are dynamics unmodelled can substantially affect the 
behavior of the system when in the loop. In this section, it is desired that the hybrid 
controller provides a certain degree of robustness to such disturbances. In the following 
sections, general statements are made in this regard. 

5.1 Robustness via filtered measurements 

In this section, the case of noise in the measurements of the state of the nonlinear system is 

considered. Measurement noise in hybrid systems can lead to nonexistence of solutions. 

This situation can be corrected, at least for the small measurement noise, if under global 

existence of solutions, cC  and cD always “overlap” while ensuring that the stability 

properties still hold. The "overlap" means that for every Oξ∈ , either ce Cξ + ∈ or ce Dξ + ∈  

all or small e . There exist generally always inflations of C and D that preserve the 

semiglobal practices asymptotic stability, but they do not guarantee the existence of 

solutions for small measurement noise. 

Moreover, the solutions are guaranteed to exist for any locally bounded measurement noise 

if the measurement noise does not appear in the flow and jump sets. This can be carried out 

by filtering measures. (Fig. 12) illustrates this scenario. The state x is corrupted by the noise 

e and the hybrid controller cH measures a filtered version of x e+ . 
 

Filter 

Hybrid system  

e  

+  
x  u  +

Controller k  fx  

 

Fig. 12. Closed-loop system with noise and filtered measurements. 

The filter used for the noisy output y x e= +  is considered to be linear and defined by the 

matrices fA , fB , and fL , and an additional parameter 0fε > . It is designed to be 

asymptotically stable. Its state is denoted by fx  which takes value in fn
R . At the jumps, fx  

is given to the current value of y . Then, the filter has flows given by 

 ,f f f f fx A x B yε = +�   (19) 

and jumps given by 

 1 .f f f f fx A B x B y+ −= +  (20) 

The output of the filter replaces the state x  in the feedback law. The resulting closed-loop 
system can be interpreted as family of hybrid systems which depends on the parameter fε . 
It is denoted by  f

clH
ε

 and is given by 
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 :f

clH
ε

       

1

( ( , ))

( , )

( )

( , )

( )

p f f c

c c f f c

f f f f f

c c f f c

f f f

x f x L x x

x f L x x

x A x B x e

x x

x G L x x

x A B x e

+

+

+ −

⎧ ⎫= + κ
⎪ ⎪⎪=⎪ ⎬
⎪ ⎪ε = + +⎪ ⎪⎭⎪
⎨ ⎫=⎪ ⎪⎪ ⎪∈ ⎬⎪

⎪⎪
= − + ⎪⎪ ⎭⎩

�

�
�

   

( , )

( , )

f f c c

f f c c

L x x C

L x x D

∈

∈

 (21) 

5.2 Robustness to sensor and actuator dynamics 

This section reviews the robustness of the closed-loop clH when additional dynamics, 

coming from sensors and actuators, are incorporated. (Fig. 13) shows the closed loop clH  

with two additional blocks: a model for the sensor and a model for the actuator. Generally, 

to simplify the controller design procedure, these dynamics are not included in the model of 

the system ( , )px f x u=�  when the hybrid controller cH is conceived. Consequently, it is 

important to know whether the stability properties of the closed-loop system are preserved, 

at least semiglobally and practically, when those dynamics are incorporated in the closed 

loop. 

The sensor and actuator dynamics are modeled as stable filters. The state of the filter which 

models the sensor dynamics is given by sn
sx R∈  with matrices ( , , )s s sA B L  , the state of the 

filter that models the actuator dynamics is given by an
ax R∈ with matrices ( , , )a a aA B L , and 

0dε >  is common to both filters. 

Augmenting clH  by adding filters and temporal regularization leads to a family d
clH ε given 

as follows 

 

*

( , )

( , )

          ( , )   or   

( )

( , )    

:           

( , )                       

   

0

d

p a a

c c s s c

s s c c

d s s s s

d a a a a s s c

cl

c c s s c

s s

a a

x f x L x

x f L x x

L x x C

x A x B x e

x A x B L x x

H
x x

x G L x x

x x

x x

ε
+

+

+

+

+

= ⎫
⎪

= ⎪
⎪τ = −τ + τ ∈ τ ≤ τ⎬
⎪ε = + + ⎪
⎪ε = + κ
⎭
⎫=

∈

=

=

τ =

�

�

�
�
�

               

        ( , )   and   s s c cL x x D

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪ ⎪⎪ ⎪⎪ ⎪⎪ ∈ τ ≥ τ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎭⎩

(22) 

where *τ  is a constant satisfying *τ > τ .  

The following result states that for fast enough sensors and actuators, and small enough 

temporal regularization parameter, the compact set A  is semiglobally practically 

asymptotically stable. 

www.intechopen.com



 Robust Control, Theory and Applications 

 

40 
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k  sx  

 

Fig. 13. Closed-loop system with sensor and actuator dynamics. 

5.3 Robustness to sensor dynamics and smoothing 

In many hybrid control applications, the state of the controller is explicitly given as a 

continuous state ξ  and a discrete state { }: 1,...,q Q n∈ = , that is, : [  ]Tcx q= ξ . Where this is the 

case and the discrete state q chooses a different control law to be applied to the system for 

for various values of q , then the control law generated by the hybrid controller cH  can 

have jumps when q  changes. In many scenarios, it is not possible for the actuator to switch 

between control laws instantly. In addition, particularly when the control law (·,·, )qκ  is 

continuous for each q Q∈ , it is desired to have a smooth transition between them when q  

changes. 

 

Sensor Smoothing 

Hybrid system 
u  

Controller 
nk  

sx  
1k  q  

 

Fig. 14. Closed-loop system with sensor dynamics and control smoothing. 

(Fig. 14) shows the closed-loop system, noted that d
clH ε , resulting from adding a block that 

makes the smooth transition between control laws indexed by q and indicated by qκ . The 

smoothing control block is modeled as a linear filter for the variable q . It is defined by the 

parameter uε  and the matrices ( , , )u u uA B L . 
The output of the control smoothing block is given by 

 ( , , ) ( ) ( , , )c u u q u u c
q Q

x x L x L x x x q
∈

α = λ κ∑  (23) 

where for each , : [0,1]qq Q R∈ λ → , is continuous and ( ) 1q qλ = . Note that the output is 

such that the control laws are smoothly “blended” by the function qλ . 

In addition to this block, a filter modeling the sensor dynamics is also incorporated as in 

section 5.2. The closed loop f

clH
ε

can be written as 

www.intechopen.com



Robust Control of Hybrid Systems   

 

41 
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 (24) 

6. Conclusion 

In this chapter, a dynamic systems approach to analysis and design of hybrid systems has 
been continued from a robust control point of view. Stability and convergence tools for 
hybrid systems presented include hybrid versions of the traditional Lyapunov stability 
theorem and of LaSalle’s invariance principle.  
The robustness of asymptotic stability for classes of closed-loop systems resulting from 
hybrid control was presented. Results for perturbations arising from the presence of 
measurement noise, unmodeled sensor and actuator dynamics, control smoothing. 
It is very important to have good software tools for the simulation, analysis and design of 
hybrid systems, which by their nature are complex systems. Researchers have recognized 
this need and several software packages have been developed. 
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