12 research outputs found

    Unitals in PG(2,q2)PG(2,q^2) with a large 2-point stabiliser

    Get PDF
    Let \cU be a unital embedded in the Desarguesian projective plane \PG(2,q^2). Write MM for the subgroup of \PGL(3,q^2) which preserves \cU. We show that \cU is classical if and only if \cU has two distinct points P,QP,Q for which the stabiliser G=MP,QG=M_{P,Q} has order q2−1q^2-1.Comment: Revised version - clarified the case mu\neq\lambda^{q+1} - 7 page

    Characterising substructures of finite projective spaces

    Get PDF

    Desarguesian spreads and field reduction for elements of the semilinear group

    Get PDF
    The goal of this note is to create a sound framework for the interplay between field reduction for finite projective spaces, the general semilinear groups acting on the defining vector spaces and the projective semilinear groups. This approach makes it possible to reprove a result of Dye on the stabiliser in PGL of a Desarguesian spread in a more elementary way, and extend it to P{\Gamma}L(n, q). Moreover a result of Drudge [5] relating Singer cycles with Desarguesian spreads, as well as a result on subspreads (by Sheekey, Rottey and Van de Voorde [19]) are reproven in a similar elementary way. Finally, we try to use this approach to shed a light on Condition (A) of Csajbok and Zanella, introduced in the study of linear sets [4]

    A construction of one-dimensional affine flag-transitive linear spaces

    Get PDF
    AbstractThe finite flag-transitive linear spaces which have an insoluble automorphism group were given a precise description in [Francis Buekenhout, Anne Delandtsheer, Jean Doyen, Peter B. Kleidman, Martin W. Liebeck, Jan Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata 36 (1) (1990) 89–94], and their classification has recently been completed (see [Martin W. Liebeck, The classification of finite linear spaces with flag-transitive automorphism groups of affine type, J. Combin. Theory Ser. A 84 (2) (1998) 196–235] and [Jan Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Combin. Theory Ser. A 100 (2) (2002) 322–348]). However, the remaining case where the automorphism group is a subgroup of one-dimensional affine transformations has not been classified and bears a variety of known examples. Here we give a construction of new one-dimensional affine flag-transitive linear spaces via the André/Bruck–Bose construction applied to transitive line-spreads of projective space

    LDPC codes from semipartial geometries

    Get PDF
    A binary low-density parity-check (LDPC) code is a linear block code that is defined by a sparse parity-check matrix H, that is H has a low density of 1’s. LDPC codes were originally presented by Gallager in his doctoral dissertation [9], but largely overlooked for the next 35 years. A notable exception was [29], in which Tanner introduced a graphical representation for LDPC codes, now known as Tanner graphs. However, interest in these codes has greatly increased since 1996 with the publication of [22] and other papers, since it has been realised that LDPC codes are capable of achieving near-optimal performance when decoded using iterative decoding algorithms. LDPC codes can be constructed randomly by using a computer algorithm to generate a suitable matrix H. However, it is also possible to construct LDPC codes explicitly using various incidence structures in discrete mathematics. For example, LDPC codes can be constructed based on the points and lines of finite geometries: there are many examples in the literature (see for example [18, 28]). These constructed codes can possess certain advantages over randomly-generated codes. For example they may provide more efficient encoding algorithms than randomly-generated codes. Furthermore it can be easier to understand and determine the properties of such codes because of the underlying structure. LDPC codes have been constructed based on incidence structures known as partial geometries [16]. The aim of this research is to provide examples of new codes constructed based on structures known as semipartial geometries (SPGs), which are generalisations of partial geometries. Since the commencement of this thesis [19] was published, which showed that codes could be constructed from semipartial geometries and provided some examples and basic results. By necessity this thesis contains a number of results from that paper. However, it should be noted that the scope of [19] is fairly limited and that the overlap between the current thesis and [19] is consequently small. [19] also contains a number of errors, some of which have been noted and corrected in this thesis

    Desarguesian spreads and field reduction for elements of the semilinear group

    Get PDF
    The goal of this note is to create a sound framework for the interplay between field reduction for finite projective spaces, the general semilinear groups acting on the defining vector spaces and the projective semilinear groups. This approach makes it possible to reprove a result of Dye on the stabiliser in PGL of a Desarguesian spread in a more elementary way, and extend it to P Gamma L(n, q). Moreover a result of Drudge [5] relating Singer cycles with Desarguesian spreads, as well as a result on subspreads (by Sheekey, Rottey and Van de Voorde [18]) are reproven in a similar elementary way. Finally, we try to use this approach to shed a light on Condition (A) of Csajbok and Zanella, introduced in the study of linear sets [4]. (C) 2016 Elsevier Inc. All rights reserved
    corecore