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On a dit souvent que la géométrie
est l’art de bien raisonner
sur des figures mal faites.

– Henri Poincaré
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Preface

Finite geometry can be described as the study of any particular incidence structure
containing only a finite number of points. While there are many structures that
could be called finite geometries, attention is mostly paid to substructures of finite
projective and affine spaces. Such spaces may be constructed via linear algebra,
i.e. starting from a vector space V (n + 1, q) of rank n + 1 over a finite field Fq,
one can construct an n-dimensional projective space PG(n, q). The affine and
projective spaces so constructed are called Desarguesian. At the same time, finite
projective spaces can also be defined in a purely axiomatical way. However, while
for dimension two there do exist non-Desarguesian planes, for dimension three or
greater, any finite projective space arises from a vector space over a finite field.

In this branch of finite geometry, different objects of study include vector spaces,
incidence structures, affine and projective spaces and various substructures con-
tained in them. This area of research started with the seminal work of Beniamino
Segre considering algebraic characterisations of combinatorially defined objects.
From an algebraic point of view, a conic in a projective plane is an absolutely irre-
ducible algebraic curve of degree two. Segre’s celebrated characterisation theorem
from 1954 states that in the Desarguesian projective plane PG(2, q), with q odd,
every set of q + 1 points, no three of which are collinear (also called an oval), is
a conic. However, for q even, not all ovals in PG(2, q) are conics. Even more so,
there is still no known classification of ovals in the Desarguesian projective plane
of even order q, for q > 4. This problem has inspired the study of other classical
sets in projective spaces, such as for example ovoids, i.e. sets of q2 + 1 points in
PG(3, q), q > 2, no three of which are collinear. An elliptic quadric Q−(3, q) is
a particular example of an ovoid. For q odd, all ovoids in PG(3, q) correspond to
elliptic quadrics. However, for q > 32 even, the classification of ovoids remains an
open problem.

Generalised quadrangles (GQ) are point-line incidence structures that have connec-
tions with several other geometrical objects. In particular, ovals and ovoids lead
to translation generalised quadrangles. Starting from an oval O in PG(2, q) and
an ovoid O in PG(3, q), Tits (1959) constructed two GQ’s denoted by T2(O) and
T3(O). Payne derivation of T2(O), when q is even, yields a third non-isomorphic
GQ written as T ∗2 (O′), where O′ is the unique hyperoval extending O. A gen-
eralisation of this construction is the linear representation T ∗n(K) of a point set
K. Several interesting incidence structures, such as semipartial geometries and
(α, β)-geometries, but also interesting graphs, for instance semisymmetric graphs,
can be obtained from the linear representation of a well-chosen point set.
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Thas (1974) generalised T2(O) and T3(O) by considering the higher dimensional
equivalent of (hyper)ovals and ovoids, called pseudo-(hyper)ovals and pseudo-
ovoids, both are examples of eggs. One can construct a translation generalised
quadrangle T (E) from every egg E ; moreover, every translation generalised quad-
rangle arises as T (E) for some egg E . The concept of considering a projective
space over a smaller subfield is called field reduction, this means that points of
PG(n − 1, qt) correspond to (t − 1)-dimensional subspaces of PG(tn − 1, q). The
set consisting of all these induced subspaces forms a Desarguesian spread. Ap-
plying field reduction to ovals and ovoids leads to so called elementary examples
of pseudo-ovals and pseudo-ovoids. Of course, eggs obtained in this way do not
lead to new generalised quadrangles. Not all eggs are elementary, but a complete
classification is not yet attained.

A generalised linear representation T ∗n,t(K) is an incidence structure similar to a
linear representation, but instead of a set of points, a set K of disjoint (t − 1)-
spaces in PG(n, q) is considered. If K corresponds to a pseudo-hyperoval, the
corresponding structure is again a generalised quadrangle. If K is a (t− 1)-spread
in PG(2t − 1, q), this construction corresponds to the André/Bruck-Bose repre-
sentation of an affine translation plane. When the spread is Desarguesian, the
affine plane is Desarguesian. The André/Bruck-Bose representation thus provides
a nice representation of the Desarguesian plane PG(2, qt) as subspaces of PG(2t, q).
This representation has proven to be useful for the construction of substructures
of PG(2, qt), for instance for the generation of (translation) arcs and unitals, and
can contribute to the classification or characterisation of them.

This thesis contributes to some of the aforementioned combinatorial questions
by focussing on the characterisation of substructures such as pseudo-caps, eggs,
spreads, linear representations, subgeometries and unitals.

Chapter 1 recalls the basic definitions and fundamental results concerning inci-
dence structures and (substructures of) projective spaces over finite fields.

Part I considers characterisations of elementary pseudo-caps and Desarguesian
spreads. In Chapter 2 we investigate pseudo-caps and (weak) eggs. We pro-
vide conditions on element induced spreads which ensure that these structures
are contained in a Desarguesian spread. Next, in Chapter 3, focussing on the
Desarguesian spread itself, we obtain a geometric characterisation in terms of the
normal elements of the spread.

In Part II, we consider the linear representation T ∗n(K) defined by a point set K
at infinity. We investigate the isomorphism problem for linear representations in
Chapter 4. If the set K contains a frame, then the full automorphism group of

viii



this structure is obtained. Using the corresponding incidence graph, we construct
new infinite families of semisymmetric graphs in Chapter 5.

Part III focusses on the André/Bruck-Bose representation of PG(2, qn) in PG(2n, q).
We investigate the representation of Fqt-sublines and Fqt-subplanes of PG(2, qn) in
Chapter 6. In Chapter 7 we obtain a characterisation of the ovoidal Buekenhout-
Metz unitals of PG(2, q2) in terms of its Baer secants.

Lastly, an extended summary in English and a brief overview in Dutch is given,
summarising the main results of this thesis.
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1
Preliminaries

This chapter introduces the structures and objects investigated in this thesis. It
is not meant as a layman’s introduction, but simply recalls basic definitions and
fixes notation to avoid ambiguity. We will assume the reader has basic knowledge
of combinatorics, finite field theory, linear algebra, graph theory and group theory.

1.1 Finite fields

The finite field of order q is unique up to isomorphism and is denoted by Fq. Finite
fields exist for all q = ph, p a prime number and h ≥ 1. When Fq0 is a subfield of
Fq, then q = ph and q0 = ph0 , p prime, with h0|h.

There are various ways of representing finite fields. In this thesis, we will encounter
two of them in particular, namely the representation as vector spaces, that is,

Fqk = {a0x0 + a1x1 + · · ·+ ak−1xk−1 | ai ∈ Fq},

where {x0, x1, . . . , xk−1} is a basis of Fqk over Fq, and the representation as poly-
nomial quotient rings, that is

Fqk = Fq[x]/(f(x)) = {a0 + a1x+ · · ·+ ak−1x
k−1 | ai ∈ Fq},

where f(x) is an irreducible monic polynomial of degree k over Fq.

The finite field Fq, q = ph, p prime, has exactly h automorphisms, namely,

σi : Fq → Fq : a 7→ ap
i

, i = 1, 2, . . . , h.

The automorphism group Aut(Fq) of Fq is thus a cyclic group of order h with σ1
as a generator. The distinct automorphisms of Fqk , trivial over Fq, are given by

σ′i : Fqk → Fqk : a 7→ aq
i

, i = 1, 2, . . . , k.
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Chapter 1. Preliminaries

The cyclic group of order k generated by σ′1 is denoted by Aut(Fqk/Fq). It is clear
that Aut(Fqk )

/
Aut(Fqk/Fq) ∼= Aut(Fq). Depending on the context, the map σ1

or σ′1 is sometimes called the Frobenius automorphism.

Consider the subfield Fq of Fqk . The trace map Tk and norm map Nk are defined
as follows:

Tk :Fqk → Fq : a 7→ a+ aq + aq
2

+ · · ·+ aq
k−1

,

Nk :Fqk → Fq : a 7→ a · aq · aq
2
· · · · · aq

k−1
.

1.2 Incidence structures

In this thesis, we will encounter projective spaces, linear representations, Laguerre
planes and generalised quadrangles. These are all examples of incidence structures.

Definition 1.2.1. An incidence structure or incidence geometry S is a triple
S = (P,B, I), with P and B non-empty disjoint sets and with I the symmetric
incidence relation, that is I ⊆ (P × B) ∪ (B × P). The elements of P are called
the points of S and the elements of B are called the blocks of S.

We will only encounter incidence structures such that every block of S is uniquely
determined by the points incident with it, i.e. the blocks can be identified with the
subsets of P determining them. The incidence relation I becomes symmetrised
containment, hence, we will use set theoretical notation and often write (P,B)
instead of (P,B, I).

If (P,B) ∈ I, we say that P is incident with B, P is contained in B or B goes
through P , and we write this as PIB. We say that two points are collinear if they
are contained in a block. Dually, we say that two blocks are concurrent if and only
if they have non-empty intersection.

Actually, after this chapter, we will not use the term blocks. We will consider
two types of incidence structures, namely point-line incidence structures (P,L),
where the blocks in L are called lines, and point-line-circle incidence structures
(P,L ∪ C), with two classes of blocks, namely lines in L and circles in C.

Definition 1.2.2. An isomorphism between two incidence structures S = (P,B, I)
and S′ = (P ′,B′, I ′) is a pair θ = (θ1, θ2), with bijections θ1 : P → P ′ and
θ2 : B → B′, preserving incidence and non-incidence, i.e. ∀(P,B) ∈ P × B :
PIB ⇔ θ1(P )I ′θ2(B). However, in the rest of this work, we will not use such a
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1.2. Incidence structures

strict notation, and just say that θ is an isomorphism without referring to θ1 and
θ2.
If there exists such an isomorphism, we say that S and S′ are isomorphic and
write S ∼= S′. An isomorphism from S to itself is called an automorphism. The
set of all automorphisms of S forms a group, the automorphism group of S, and
will be denoted by Aut(S).

A substructure S′ = (P ′,B′, I ′) of an incidence structure S = (P,B, I) is an
incidence structure with P ′ ⊆ P, B′ ⊆ B, where I ′ is the restriction of I on
(P ′ × B′) ∪ (B′ × P ′).
The collinearity graph of an incidence structure S = (P,B, I) is the graph with as
vertex set the point set P of S and were two vertices are adjacent if and only if
the corresponding points are contained in a block of B.

Definition 1.2.3. An incidence structure is called connected if its corresponding
collinearity graph is connected.

In this thesis, we will only consider connected incidence structures, moreover, only
a specific class of connected incidence structures, namely partial linear spaces.

Definition 1.2.4. A finite connected incidence structure S is called a partial
linear space of order (s, t) if and only if

• every block of S contains exactly s+ 1 > 1 points,
• every point of S is contained in exactly t+ 1 > 1 blocks,
• two distinct points are contained in at most one common block.

If every two distinct points are contained in exactly one common block, then S is
called a linear space.

A partial geometry S with parameters s, t, α is a partial linear space of order (s, t)
such that for every non-incident point-block pair (P,B) of S, there are exactly
α > 0 blocks of S incident with P and concurrent with B.
A partial geometry with parameter α = 1 is called a (finite) generalised quadrangle
or GQ. A partial geometry with parameter α = t is called a net.
A semipartial geometry S with parameters s, t, α, µ, is a partial linear space of
order (s, t) such that

• for every non-incident point-block pair (P,B) of S, there are either 0 or
α > 0 blocks of S incident with P and concurrent with B,

3



Chapter 1. Preliminaries

• for every pair (P,Q) of non-collinear points of S, there are exactly µ > 0
points of S collinear with both P and Q.

1.3 Projective spaces

1.3.1 Axiomatic projective spaces

Definition 1.3.1. A projective space is an incidence structure S = (P,L, I) where
I satisfies the following axioms.

AX1 Through every two points of P, there is exactly one line of L.

AX2 If P,Q,R, S are distinct points of P and the lines PQ and RS intersect, then
so do the lines PR and QS.

AX3 There are at least 3 points on a line.

A subspace of S is a substructure (P ′,L′) of S, with P ′ ⊆ P, L′ ⊆ L, forming a
projective space. A subset X ⊆ P forms the point set of a subspace if every line
containing two points of X is a subset of X. By abuse of notation and phrasing,
we identify a subspace with its point set. The dimension of S is said to be n if n
is the largest number for which there exists a strictly ascending chain of subspaces
such that their point sets satisfy ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = P. In this chain,
the subspace corresponding to Xm is said to have dimension m and is called an
m-space or m-subspace of S. Subspaces of dimension 0, 1, 2 and n − 1 are also
called points, lines, planes and hyperplanes, respectively.

For two subspaces U and W of S, the intersection U ∩W is the subspace of S
consisting of all points that U and W have in common. This can be generalised
to the intersection of k subspaces U1, . . . , Uk of S, denoted by U1 ∩ . . . ∩ Uk.

For two subspaces U and W of S, the span 〈U,W 〉 is the smallest subspace con-
taining the points of both U and W . This definition can as well be generalised to
the span of k subspaces U1, . . . , Uk of S, denoted by 〈U1, . . . , Uk〉. In the case of
two distinct points P1, P2 of S, the line 〈P1, P2〉 is also written as P1P2.

The Grassmann identity for subspaces of a projective space states that for all
subspaces U and W of S, we have:

dim(U) + dim(W ) = dim(〈U,W 〉) + dim(U ∩W ).

4



1.3. Projective spaces

A triangle of a projective space S is a set {P1, P2, P3} of three non-collinear points
Pi. Two triangles {P1, P2, P3} and {Q1, Q2, Q3} contained in a plane are in per-
spective when the lines P1Q1, P2Q2 and P3Q3 are concurrent in one point.

Definition 1.3.2. A projective space is called Desarguesian if for any two triangles
{P1, P2, P3} and {Q1, Q2, Q3} that are in perspective, we have that the points
P1P2 ∩Q1Q2, P1P3 ∩Q1Q3 and P2P3 ∩Q2Q3 are collinear.

Every vector space gives rise to a projective space (see Subsection 1.3.2 for the
coordinatisation). Hilbert [62] showed that the Desarguesian projective spaces are
precisely the spaces arising from a vector space over a division ring. Moreover, in
the finite case, Wedderburn [81] proved that a finite division ring is a field, hence,
every finite Desarguesian projective space has a corresponding finite field Fq. The
Desarguesian n-dimensional projective spaces over the finite field Fq are denoted
by PG(n, q) and will be introduced more formally in the next section.

It is shown by Veblen and Young [118] that a finite projective space of dimension
n ≥ 3 is always a Desarguesian projective space PG(n, q) over the finite field
Fq. This is not true for the case n = 2, i.e. there do exist non-Desarguesian
projective planes. In this thesis, we introduce the notion of translation planes;
these can provide examples of non-Desarguesian planes. Other examples of non-
Desarguesian projective planes, besides translation planes, can be found in [69].

Besides projective spaces, we also consider affine spaces.

Definition 1.3.3. Consider a hyperplaneH∞ of an n-dimensional projective space
S = (P,L, I). Define P ′, respectively L′, as the set of points of P, respectively
lines of L, that are not contained in H∞. Let I ′ be the restriction of I to (P ′ ×
L′) ∪ (L′ × P ′). We call A = (P ′,L′, I ′) an n-dimensional affine space. We call
H∞ the hyperplane at infinity of A.

Affine spaces can also be introduced by using axioms. We will not give these
axioms here, but note that the above definition is equivalent. This means the
reverse construction is possible, that is, every affine space can be extended to a
projective space by adding a hyperplane at infinity. We call this the projective
completion A of the affine space A. For any affine subspace π of an affine space
A, the projective completion of π, denoted by π, forms a subspace of A.

The dual of a projective space can be considered in the following way. Given
a finite projective space S, its dual projective space, denoted by SD, is the in-
cidence structure whose points and hyperplanes are respectively the hyperplanes
and points of S. If S is n-dimensional, then the i-spaces of SD correspond to the
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Chapter 1. Preliminaries

(n − 1 − i)-spaces of S. The dual of a Desarguesian projective space is again a
Desarguesian projective space.

1.3.2 Projective spaces over finite fields

Standard references for finite geometries are Finite Geometries by Dembowski
[47], Finite Projective Spaces of Three Dimensions by Hirschfeld [63], Projective
Geometries over Finite Fields by Hirschfeld [64] and General Galois Geometries
by Hirschfeld and Thas [67]. We refer to these for a more general overview than
given here.
Let V (n+ 1, q) denote the vector space of rank n+ 1 over the finite field Fq (note
that we use the word ‘rank’ instead of ‘dimension’ to avoid confusion with the
dimension of a projective space). The projective space corresponding to V (n+1, q)
is Desarguesian and denoted by PG(n, q). It corresponds to the space (V (n+1, q)\
{0})/ ∼, where ∼ is the equivalence relation such that ∀v ∈ V (n+ 1, q)\{0},∀λ ∈
F∗q : λv ∼ v. Note that, for sake of convenience, we use the notation F∗q for the set
Fq \ {0}. We say Π = PG(n, q) has dimension n, often written as dim(Π) = n.
For every subspace of V (n+ 1, q) of rank k+ 1, we can consider the corresponding
subspace of PG(n, q) of dimension k. Every k-dimensional subspace of PG(n, q) is
isomorphic to PG(k, q). If H∞ is a hyperplane of PG(n, q), then the corresponding
n-dimensional affine space PG(n, q) \H∞ is denoted by AG(n, q).
Due to the relation with vector spaces, we can count the number of subspaces of a
certain dimension in PG(n, q) by using the Gaussian coefficient, defined as follows:

[
a

b

]
q

=
b∏
i=1

qa−b+i − 1
qi − 1 = (qa − 1) · · · (qa−b+1 − 1)

(qb − 1) · · · (q − 1) .

One can easily check that the number of k-dimensional subspaces in PG(n, q) is

equal to
[
n+ 1
k + 1

]
q

.

Let π be a k-dimensional subspace of PG(n, q), k ≤ n − 2. We consider the
following incidence structure S = (P,L, I), where I is symmetric containment:

P : the set of (k + 1)-subspaces of PG(n, q) containing π,
L : the set of (k + 2)-subspaces of PG(n, q) containing π.

We call S the quotient space of π, and we denote it by PG(n, q)/π. Consider an
(n − k − 1)-dimensional subspace π′ of PG(n, q) disjoint from π, and look at the

6



1.3. Projective spaces

projection of P and L from π onto π′, that is, identify every element µ in P or L
with µ ∩ π′. Then it clearly follows that PG(n, q)/π ∼= π′ ∼= PG(n− k − 1, q).

We introduce the following notation for the points of projective spaces. Consider
the vector space V ' Fqn0 × · · · × Fqns of rank

∑s
i=0 ni over Fq, for some positive

integers ni. A point P of the corresponding projective space defined by the vector
v = (a0, . . . , as), where ai ∈ Fqni , will be written as (v)Fq or (a0, . . . , as)Fq , em-
phasizing the fact that every Fq-multiple of v = (a0, . . . , as) gives rise to the point
P , i.e.

(v)Fq
= {λv | λ ∈ F∗q} and (a0, . . . , as)Fq

= {(λa0, . . . , λas) | λ ∈ F∗q}.

1.3.3 Collineations of PG(n, q)

First, recall the following basic definitions from group theory.

Definition 1.3.4. If a group G has a normal subgroup N and the quotient G/N
is isomorphic to some group H, we say that G is an extension of N by H. This is
written as G = N.H.

An extension G = N.H which is a semidirect product is also called a split extension
and is denoted by G = N oH. This means that one can find a subgroup H̃ ∼= H

in G such that G = N.H̃ and N ∩ H̃ = {eG}.

An extension G = N.H is a direct product, written as G = N × H, when G

has normal subgroups H̃ and Ñ such that H̃ ∼= H, Ñ ∼= N , G = Ñ .H̃ and
Ñ ∩ H̃ = {eG}.

A linear map on the vector space V = V (n+ 1, q) is a mapping V → V : x 7→ xA,
with x ∈ V a row vector and A a non-singular (n + 1) × (n + 1)-matrix over
Fq. By abuse of notation and phrasing, we identify a linear map with the matrix
defining it. The group consisting of all linear maps of V (n + 1, q), that is, the
group consisting of all non-singular (n+ 1)× (n+ 1)-matrix over Fq, is called the
general linear group and is denoted by GL(n+ 1, q).

A semi-linear map on the vector space V = V (n+1, q) is a mapping V → V : x 7→
xσA, with again x ∈ V a row vector, A a non-singular (n+1)×(n+1)-matrix over
Fq and with σ ∈ Aut(Fq). Again, by abuse of notation and phrasing, we identify
a semi-linear map with the pair (A, σ) defining it. Moreover, the semi-linear map
corresponding to (A,1) is naturally identified with A. The group consisting of
all semi-linear maps of V (n + 1, q) is denoted by ΓL(n + 1, q). It is clear that
ΓL(n+ 1, q) ∼= GL(n+ 1, q) o Aut(Fq).
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The subgroup of GL(n+ 1, q) consisting of all matrices having determinant equal
to one, is called the special linear group and is denoted by SL(n+ 1, q). The sizes
of these three groups are the following, for q = ph, p prime, h ≥ 1:

|ΓL(n+ 1, q)| = hqn(n+1)/2
n+1∏
i=1

(qi − 1),

|GL(n+ 1, q)| = qn(n+1)/2
n+1∏
i=1

(qi − 1),

|SL(n+ 1, q)| = qn(n+1)/2
n+1∏
i=2

(qi − 1).

An automorphism of the projective space PG(n, q), n ≥ 2, is called a collineation.
Every semi-linear mapping of V (n + 1, q) induces a mapping on the points of
the corresponding projective space PG(n, q), which corresponds to a collineation
when n ≥ 2. Moreover, the fundamental theorem of projective geometry states
that every collineation of PG(n, q), n ≥ 2, arises from a semi-linear map. The
group consisting of these maps is called the collineation group of PG(n, q) (even
for n = 1) and is denoted by PΓL(n + 1, q). A map arising from a linear map of
V (n+ 1, q) is called a projectivity of PG(n, q). The projective general linear group
is the subgroup of PΓL(n + 1, q) containing all projectivities of PG(n, q) and is
denoted by PGL(n+1, q). We have that PΓL(n+1, q) ∼= PGL(n+1, q)oAut(Fq).

Remark. Note that every semi-linear map (A, σ), A a non-singular (n+1)×(n+1)-
matrix over Fq and σ ∈ Aut(Fq), corresponds to an element of PΓL(n + 1, q) (or
PGL(n+1, q) when σ = 1). However, every map of PΓL(n+1, q) or PGL(n+1, q)
corresponds to several semi-linear maps (A, σ) when q > 2.

The subgroup of PGL(n+ 1, q) arising from elements of SL(n+ 1, q) is denoted by
PSL(n+ 1, q). Note that all these groups are obtained as quotient groups:

PΓL(n+ 1, q) = ΓL(n+ 1, q)/Z,
PGL(n+ 1, q) = GL(n+ 1, q)/Z,
PSL(n+ 1, q) = SL(n+ 1, q)/Z ′,

with Z = {λIn+1 | λ ∈ F∗q} ≤ GL(n+ 1, q) and Z ′ = {λIn+1 | λ ∈ F∗q , λn+1 = 1} ≤
SL(n+ 1, q), where In+1 denotes the (n+ 1)× (n+ 1)-identity matrix.

8
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Hence, we have the following sizes for these groups:

|PΓL(n+ 1, q)| = hqn(n+1)/2
n+1∏
i=2

(qi − 1),

|PGL(n+ 1, q)| = qn(n+1)/2
n+1∏
i=2

(qi − 1),

|PSL(n+ 1, q)| = 1
d
qn(n+1)/2

n+1∏
i=2

(qi − 1) with d = gcd(n+ 1, q − 1).

As V (1, qn+1) ∼= Fqn+1 ∼= Fn+1
q

∼= V (n + 1, q), the map that multiplies vectors
in V (1, qn+1) with an element α ∈ F∗qn+1 induces a linear map A ∈ GL(n + 1, q)
on the vectors of V (n + 1, q). It follows that GL(n + 1, q) contains a subgroup
isomorphic to F∗qn+1 . Singer [105] obtained this in the following way. Let f(x) =
xn+1−mnx

n−· · ·−m1x−m0 be an irreducible monic polynomial of degree n+ 1
over Fq used to construct Fqn+1 ∼= Fq[x]/(f(x)). Let M be the companion matrix
of f(x), that is,

M =



0 1 0 · · · 0
0 0 1 ...
...

...
. . .

1 0
0 0 · · · 0 1
m0 m1 · · · mn−1 mn


.

Then it is well known from linear algebra (see for example [68], Theorem 3.3.14)
that f(x) is the minimal polynomial of M . Consequently, if we define

H = {a0In+1 + a1M + · · ·+ anM
n | ai ∈ Fq} ,

then H has the structure of Fqn+1 under usual matrix addition and multiplication.
Consider the action of H \ {0} on V (n + 1, q) by right-multiplication, that is, let
the matrix act on row vectors from the right. The subgroup in PGL(n + 1, q)
inherited by (H \ {0}) ≤ GL(n + 1, q) is denoted by SG(n + 1, q) and is called a
Singer group. It is a cyclic group of order qn+1−1

q−1 acting regularly on the points
(and hyperplanes) of PG(n, q).

A perspectivity or central collineation of PG(n, q) is an element of PΓL(n + 1, q)
fixing a hyperplane H∞ of PG(n, q) pointwise; this hyperplane is called the axis of

9
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the perspectivity. Every perspectivity also has a centre, i.e. a point such that every
line through it is stabilised. If the centre belongs to the axis, the perspectivity is
called an elation. If the centre does not belong to the axis, it is called a homology.

Remark. Note that the term perspectivity is also used in the setting of non-
Desarguesian planes. That is, an incidence preserving map on a projective plane
π is called a perspectivity if it fixes a line l∞ of π (called the axis) pointwise and
fixes all lines through a fixed point P (called the center). Also in this context we
call the perspectivity an elation if the centre belongs to the axis. If the centre does
not belong to the axis, it is called a homology.

Clearly, the kernel of the action of PΓL(n+1, q) on a hyperplane H∞ is the group of
all perspectivities with axis H∞, denoted by Perspq(H∞). Note that this is in fact
a subgroup of PGL(n+ 1, q). Similarly, the subgroup of PΓL(n+ 1, q), actually of
PGL(n+ 1, q), consisting of all perspectivities with as centre a point V is denoted
by Perspq(V ). A perspectivity φ is uniquely determined by its axis, its centre and
one ordered pair (P, φ(P )) for a point P different from the centre and not on the
axis. Hence, one can easily count that |Perspq(H∞)| = |Perspq(V )| = qn(q − 1).
The subgroup of PΓL(n+ 1, q) consisting of all elations of PG(n, q) with axis H∞
is denoted by Elatq(H∞). One can easily count that |Elatq(H∞)| = qn. Although
the following result is well known, we include a reference for completeness.

Theorem 1.3.5. [94, Lemma 13.]

• The group Elatq(H∞) is a normal subgroup of Perspq(H∞).
• The group Elatq(H∞) can be identified with the vector space V = V (n, q).
• Under this identification, a subgroup of Elatq(H∞) corresponds to a subspace

of V if and only if it is normalised by Perspq(H∞).

Consider a hyperplaneH∞ of PG(n, q) and the corresponding affine space AG(n, q).
Every map of PΓL(n + 1, q) fixing the hyperplane H∞ setwise induces an auto-
morphism of AG(n, q). The respective subgroups of PΓL(n + 1, q) and PGL(n +
1, q) containing these automorphisms of AG(n, q) are denoted by AΓL(n, q) and
AGL(n, q); the latter is called the affine general linear group. The fundamental
theorem of affine geometry states that every automorphism of AG(n, q), n ≥ 2, has
a corresponding map in the affine group AΓL(n, q). It is clear that Perspq(H∞) ≤
AGL(n, q).

Definition 1.3.6. Two point sets K and K′ of PG(n, q) are called projectively
equivalent or PGL-equivalent if and only if there is an element φ ∈ PGL(n+ 1, q)

10



1.3. Projective spaces

such that φ(K) = K′. The sets are called isomorphic or PΓL-equivalent if and only
if there is an element φ ∈ PΓL(n + 1, q) such that φ(K) = K′. In this case, by
abuse of notation, we write K ∼= K′.

1.3.4 Special subsets of projective spaces

In this subsection, we define several subsets of finite projective spaces, which we
will encounter throughout this thesis.

Consider a point set K in PG(n, q). A line of PG(n, q) intersecting K in 0, 1 or
≥ 2 points, is respectively called an external line, a tangent line or a secant line
to K. We note that in some contexts, for example for quadrics and Hermitian
varieties, lines that are completely contained in K are also called tangent lines; we
will however not use this phrasing.

We call a point set of PG(n, q), a point set in general position, if every subset of
n + 1 points spans the full space. A basis of PG(n, q) is a set of n + 1 points in
general position. A frame of PG(n, q) is a set of n+ 2 points in general position.

Definition 1.3.7. An n-dimensional subgeometry of PG(n, q) of order q0 is a set
of (qn+1

0 − 1)/(q0 − 1) points whose homogeneous coordinates, with respect to a
well-chosen frame of PG(n, q), are in a subfield Fq0

of Fq. In this case we call it an
Fq0

-subgeometry. A k-dimensional subgeometry of a k-space contained in PG(n, q)
is just called a k-dimensional subgeometry of PG(n, q).

When Fq = Fq2
0
, an Fq0 -subgeometry is also called a Baer subgeometry.

Note that, for n > 1, the inherited incidence structure of an n-dimensional Fq0 -
subgeometry of PG(n, q) is isomorphic to the projective space PG(n, q0). The
group PGL(n+1, q) acts sharply transitively on the (ordered point sets of) frames
of PG(n, q), hence, n+ 2 points in general position define a unique n-dimensional
Fq0

-subgeometry of PG(n, q).

Definition 1.3.8. If a point set S contains a frame of PG(n, q), then its closure
Ŝ consists of the points of the smallest n-dimensional subgeometry of PG(n, q)
containing all the points of S.

The closure Ŝ of a point set S can be constructed recursively as follows:

(i) determine the set A of all subspaces of PG(n, q) spanned by an arbitrary
number of points of S;
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(ii) determine the set Ŝ of points that occur as the exact intersection of two
subspaces in A, if Ŝ 6= S replace S by Ŝ and go to (i), otherwise stop.

For n = 2, this recursive construction coincides with the definition of the closure
of a set of points in a plane containing a quadrangle, given in [69, Chapter XI].
Polar spaces and in particular quadrics are well-studied objects in finite geometry.
The only quadrics of importance for this thesis are the non-singular quadrics in
PG(3, q), which are defined as follows.
An elliptic quadric Q−(3, q) in PG(3, q) is a set of points whose coordinates
(x0, x1, x2, x3)Fq

, with respect to a well-chosen frame, satisfy the standard equa-
tion f(x0, x1) + x2x3 = 0, where f is an irreducible homogeneous quadratic form
over Fq.
A hyperbolic quadric Q+(3, q) in PG(3, q) is a set of points whose coordinates
(x0, x1, x2, x3)Fq

, with respect to a well-chosen frame, satisfy the standard equation
x0x1 +x2x3 = 0. Clearly, the points of this hyperbolic quadric are covered by two
sets of q + 1 disjoint lines, namely the set of lines arising as the intersection of
ax0 − bx2 = 0 and bx1 − ax3 = 0, (a, b) 6= (0, 0), and the set of lines arising as the
intersection of cx0 − dx3 = 0 and dx1 − cx2 = 0, (c, d) 6= (0, 0). Each of these sets
is called a 1-regulus or a regulus.

Definition 1.3.9. A line-blocking set B in PG(n, q) is a set of points such that
every line of PG(n, q) contains at least one point of B.

The point set of a hyperplane of PG(n, q) forms the classical example of a line-
blocking set.

Definition 1.3.10. A cap of PG(n, q) is a set of points such that every three
points span a plane. A cap of size k is called a k-cap. A k-cap is complete if it is
not contained in a (k + 1)-cap.

Caps are mostly studied in PG(2, q) and in PG(3, q). A k-cap of PG(2, q) satisfies
k ≤ q + 1 for q odd and k ≤ q + 2 for q even. We call a (q + 1)-cap in PG(2, q) an
oval and a (q + 2)-cap a hyperoval. A conic is the set of points whose coordinates
(x0, x1, x2)Fq , with respect to a well-chosen frame, satisfy the standard equation
x2

0 + x1x2 = 0. It is clear that a conic is an oval, moreover, Segre [101] proved the
converse in odd characteristic.

Theorem 1.3.11. [101] Every oval in PG(2, q), q odd, is a conic.

When q is even, the q + 1 tangent lines to an oval in PG(2, q) are concurrent in
one point (see [21]). This intersection point is called the nucleus of the oval. An
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oval in PG(2, q), q even, extends uniquely to a hyperoval by adding its nucleus. A
conic together with its nucleus is called a hyperconic. There are multiple examples
of hyperovals that are not hyperconics, and all hyperovals in PG(2, q), q ≤ 32
even, have been classified, see [58, 85, 92]. However, unlike the q odd case, the
classification of (hyper)ovals in PG(2, q), q > 32 even, remains an open problem.
For more information on hyperovals, we refer to the survey paper [90] (2003).

Every k-cap of PG(3, q), q > 2, satisfies k ≤ q2 + 1, and a (q2 + 1)-cap of PG(3, q)
is often called an ovoid. An elliptic quadric Q−(3, q) is an ovoid, and Barlotti [8]
and Panella [88] independently proved the converse in odd characteristic.

Theorem 1.3.12. [8, 88] Every ovoid of PG(3, q), q odd, is an elliptic quadric
Q−(3, q).

In even characteristic, besides the elliptic quadrics, there exists another class of
ovoids, namely the Tits ovoids. These ovoids exist in PG(3, q), q = 22e+1, e ≥ 1,
and are projectively equivalent to the point set

{(1, s, t, st+ sσ+2 + tσ)Fq | s, t ∈ Fq} ∪ {(0, 0, 0, 1)Fq},

where σ : Fq → Fq : x 7→ x2e+1 . The only known examples of ovoids in PG(3, q),
q even, are the elliptic quadrics and the Tits ovoids. Moreover, these are the only
existing ovoids for q ≤ 32, see [8, 52, 84, 86, 87]. However, unlike the q odd case,
there is no classification of ovoids in PG(3, q) for q > 32 even.

A set of points in general position is also called an arc.

Definition 1.3.13. An arc of PG(n, q) is a set of points such that every subset of
n+ 1 points spans PG(n, q). An arc of size k is called a k-arc. A k-arc is complete
if it is not contained in a (k + 1)-arc.

Clearly, in PG(2, q) every cap is an arc and vice versa.

Bush [28] proved that an arc in PG(n, q), n > q − 2, has size at most n + 2. An
arc attaining this bound is equivalent to a frame of PG(n, q).

It is conjectured that an arc in PG(n, q), 2 ≤ n ≤ q − 2, has at most q + 1
points, unless q is even and n = 2 or n = q − 2, in which case it has size at most
q + 2. This is the well-known MDS-conjecture, in view of its coding-theoretical
description. The conjecture is known to be true for many values of q and n. For a
summary of these results we refer to [65], more recent results can be found in [4]
and [6].

The classical example of an arc of size q+ 1 is given by the normal rational curve.
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Definition 1.3.14. A normal rational curve in PG(n, q), 2 ≤ n ≤ q − 2, is a
(q + 1)-arc PGL-equivalent to the (q + 1)-arc

{(0, . . . , 0, 1)Fq} ∪ {(1, t, t2, t3, . . . , tn)Fq | t ∈ Fq}.

There are few examples of (q+1)-arcs that are not normal rational curves, we will
consider some of them in Chapter 5. In [65], an overview can be found of results
showing that for many values of q and n, every (q+ 1)-arc in PG(n, q) is a normal
rational curve.

Definition 1.3.15. A unital U in PG(2, q2) is a set of q3 + 1 points such that
every line of PG(2, q2) contains either exactly 1 point or q + 1 points of U .

An example of a unital in PG(2, q2) is given by the set of absolute points of a
unitary polarity, called a classical unital (or Hermitian curve). That is, a classical
unital in PG(2, q2) is a set of q3 + 1 points projectively equivalent to the set of
points whose coordinates (x0, x1, x2)Fq2 satisfy equation xq+1

0 + xq+1
1 + xq+1

2 = 0.

Note that every unital in PG(2, 4) is classical. In PG(2, q2), q > 2, there are
examples of non-classical unitals. Even so, every known unital, including the
classical unital, arises as an ovoidal Buekenhout-Metz unital, first introduced by
Buekenhout in [27] and extended by Metz in [83]. The exact construction of this
unital will be given in Chapter 7. Every unital in PG(2, q2), with q = 2, 3, 4,
corresponds to an ovoidal Buekenhout-Metz unital, see [7, 93]. For q > 4, the
classification of unitals remains an open problem.

All previously defined sets can also be considered in the dual projective space.
Structures obtained in this way are called dual caps, dual ovals, dual ovoids, dual
arcs, dual unitals, and so on. We denote the dual of a subspace M or a set of
subspaces O by MD and OD.

Remark. Note that, when q is odd, the set of tangent lines to an oval O in a
finite projective plane π of order q forms an oval in the dual plane πD. Sometimes,
in other contents, this oval is called the dual oval of O, written as OD. However,
we will never use this meaning or notation.

1.4 Field reduction and Desarguesian spreads

A partial (n− 1)-spread of Π = PG(N − 1, q) is a set of mutually disjoint (n− 1)-
spaces. An (n− 1)-spread of Π is a partial spread partitioning the points of Π, i.e.
every point of Π is contained in exactly one spread element.
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By an easy counting argument, we see that an (n− 1)-spread in PG(N − 1, q) can
exist only if n divides N . The following construction of a Desarguesian spread by
Segre [103] shows the well-known fact that this condition is also sufficient.

A Desarguesian (n− 1)-spread of PG(rn− 1, q) can be obtained by applying field
reduction to the points of PG(r − 1, qn). The underlying vector space of the
projective space PG(r − 1, qn) is V (r, qn). When considering V (r, qn) as a vector
space over Fq, we obtain a vector space isomorphic to V (rn, q), which in its turn
corresponds to the projective space PG(rn − 1, q). This is the concept of field
reduction, namely every point of PG(r−1, qn) corresponds to an (n−1)-subspace
of PG(rn−1, q). This set of subspaces D forms an (n−1)-spread of PG(rn−1, q),
which is called a Desarguesian spread. A different but equivalent construction of
a Desarguesian spread, in terms of its indicator set, will be considered in Chapter
6.

The (n− 1)-space of the spread D, corresponding to the point P of PG(r− 1, qn),
will be denoted by Fr,n,q(P ). Analogously, for a subset π of PG(r − 1, qn), we
define Fr,n,q(π) := {Fr,n,q(P ) | P ∈ π}. We refer to Fr,n,q as the field reduction
map from PG(r−1, qn) to PG(rn−1, q). When there is no ambiguity, we simplify
notation by writing F instead of Fr,n,q.

A field reduction map in terms of coordinates can be considered as follows. A point
P of PG(r − 1, qn) defined by the vector (x1, x2, . . . , xr) ∈ (Fqn)r is denoted by
(x1, x2, . . . , xr)Fqn . Since we can identify the vector space Frnq with (Fqn)r, every
point of PG(rn−1, q) also has a corresponding vector (y1, y2, . . . , yr) ∈ (Fqn)r, but
here the point is denoted by (y1, y2, . . . , yr)Fq

. This means, we can consider a field
reduction map such that the point (x1, . . . , xr)Fqn of PG(r− 1, qn) corresponds to
the (n− 1)-space {(αx1, . . . , αxr)Fq | α ∈ Fqn} of PG(rn− 1, q).

Since V (r, qn) ∼= V (rn, q), the multiplication of vectors in V (r, qn) with ele-
ments α ∈ F∗qn induces a subgroup of PGL(rn, q), isomorphic to the Singer group
SG(n, q), such that the Desarguesian (n − 1)-spread in PG(rn − 1, q), under the
corresponding field reduction map, is fixed elementwise. In [49], Dye obtained
the full projective automorphism group of a Desarguesian (n − 1)-spread D in
PG(rn − 1, q). This subgroup of PGL(rn, q) can be obtained as the extension of
the inherited collineation group of PG(r − 1, qn) by the Singer group SG(n, q),
that is

PGL(rn, q)D ∼= (SG(n, q).PGL(r, qn)) o Aut(Fqn/Fq).

Definition 1.4.1. The Segre map σl,k : PG(l, q)×PG(k, q)→ PG((l+1)(k+1)−
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1, q) is defined by

σl,k((x0, . . . , xl)Fq , (y0, . . . , yk)Fq )
= (x0y0, . . . , x0yk, . . . , xly0, . . . , xlyk)Fq

.

The image of the Segre map is called the Segre variety Sl,k.
If we give the points of PG((l + 1)(k + 1)− 1, q) coordinates of the form

(x00, x01, . . . , x0k;x10, . . . , x1k; . . . ;xl0, . . . , xlk)Fq
,

xij ∈ Fq, then it is clear that the points of the Segre variety Sl,k are exactly the
points that have coordinates such that the matrix (xij), 0 ≤ i ≤ l, 0 ≤ j ≤ k, has
rank 1 (see also [67, Theorem 25.5.7]).

Fix the point (x0, . . . , xl)Fq
∈ PG(l, q). By varying the point (y0, . . . , yk)Fq

of
PG(k, q) and looking at the images under the Segre map, we obtain a k-dimensional
space on Sl,k. For every point of PG(l, q) we obtain such a k-space. The set of all
these subspaces, which are clearly disjoint, is called a system. Similarly, by fixing
the point (y0, y1, . . . , yk)Fq

∈ PG(k, q), we can obtain an l-dimensional space on
Sl,k by varying the point (x0, x1, . . . , xl)Fq

of PG(l, q); the set of these subspaces
is again a system. Spaces of Sl,k from different systems intersect each other in
exactly one point.

We have seen that applying the field reduction map Fr,n,q to all points of PG(r−
1, qn) gives a Desarguesian (n − 1)-spread of PG(rn − 1, q). The following result
shows that applying the field reduction map to a subgeometry of PG(r − 1, qn)
yields one of the two systems of a Segre variety.

Theorem 1.4.2. [75, Theorem 2.4] Consider a subgeometry π ∼= PG(k − 1, q)
of PG(r − 1, qn) of order q, then Fr,n,q(π) is projectively equivalent to a system
of maximal subspaces of a Segre variety Sk−1,n−1 contained in the Segre variety
Sr−1,n−1.

An (n − 1)-regulus or regulus is a set R of q + 1 (n − 1)-spaces contained in
PG(2n− 1, q) such that any line meeting 3 elements of R, intersects all elements
of R. Such a line is called a transversal line to the regulus R. For every point
contained in an element of R, there is a unique transversal line. Note that a
regulus is actually one of the systems of a Segre variety S1,n−1, that is, a regulus
arises from applying the field reduction map F2,n,q to an Fq-subline of PG(1, qn).

It is well known that 3 mutually disjoint (n − 1)-spaces A,B,C in PG(2n − 1, q)
lie on a unique regulus, denoted by R(A,B,C). In [76], Lavrauw and Zanella
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showed that this also holds for Segre varieties. Note that a set of (n − 1)-spaces
in PG(rn− 1, q) is said to be in general position when any r of them span the full
space.

Theorem 1.4.3. [76, Proposition 2, Corollary 1, Proposition 3] A set of r + 1
(n− 1)-spaces in PG(rn− 1, q) in general position are contained in a unique Segre
variety Sr−1,n−1.

An (n − 1)-spread S of PG(2n − 1, q) is regular if for every three (n − 1)-spaces
A,B,C of S, the elements of R(A,B,C) are contained in S. Clearly, when q = 2,
every (n− 1)-spread of PG(2n− 1, 2) is regular. When q > 2, then S is regular if
and only if S is Desarguesian (see [25]).

An (n − 1)-spread S of PG(rn − 1, q) is called normal or geometric when the
subspace spanned by any two spread elements is partitioned by elements of S.
Hence, a subspace generated by any number of elements from a normal spread
S is partitioned by elements of S. Clearly, when r ≤ 2, every (n − 1)-spread
of PG(rn − 1, q) is normal. When r > 2, then S is normal if and only if S is
Desarguesian (see [10]).

1.5 The André/Bruck-Bose representation

Definition 1.5.1. A projective plane Π is called a translation plane if there exists
a line l∞, the translation line, such that the group of elations with axis l∞ acts
transitively on the points of the corresponding affine plane Π \ l∞. In this case,
Π \ l∞ is called an affine translation plane.

Remark. If a projective plane has two distinct translation lines, then all its lines
are translation lines and the plane must be Desarguesian, see for instance [69,
Theorem 6.18].

The kernel of a translation plane is a field and its multiplicative group is isomorphic
to the group of all homologies with axis l∞ and centre a fixed point not on l∞.

André [2] and Bruck and Bose [24] independently found a representation of transla-
tion planes of order qn with kernel containing Fq in the projective space PG(2n, q).
We refer to this as the André/Bruck-Bose representation or the ABB-representation.
The construction of André was based on group theory, Bruck and Bose gave an
equivalent geometric construction, which is the form we use in this thesis and goes
as follows.
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Let S be an (n−1)-spread in PG(2n−1, q). Embed PG(2n−1, q) as a hyperplane
H∞ in PG(2n, q). Consider the following incidence structure A(S) = (P,L, I),
where the incidence I is natural:

P : the affine points, i.e. the points of PG(2n, q)\H∞,
L : the n-spaces of PG(2n, q) intersecting H∞ in an element of S.

In [24] the authors showed that A(S) is an affine translation plane of order qn,
and conversely, every such translation plane can be constructed in this way. If the
spread S is Desarguesian, the plane A(S) is a Desarguesian affine plane AG(2, qn).
The projective completion A(S) of the affine plane A(S) can be found by adding
H∞ as the line l∞ at infinity, i.e. the translation line, where the elements of
S correspond to the points of l∞. Clearly, the projective completion A(S) is a
Desarguesian projective plane PG(2, qn) if and only if the spread S is Desarguesian.

The author of [2] obtained that the full automorphism group of A(S) is a subgroup
of PΓL(2n+ 1, q) isomorphic to the group extension

Perspq(H∞).PΓL(2n, q)S .

The Barlotti-Cofman representation [10] is a generalisation of the André/Bruck-
Bose representation in the following way. Let S be an (n− 1)-spread in PG(rn−
1, q). Embed PG(rn − 1, q) as a hyperplane H∞ in PG(rn, q). Consider the
following incidence structure BC(S) = (P,L, I), where the incidence I is natural:

P : the affine points, i.e. the points of PG(rn, q)\H∞,
L : the n-spaces of PG(rn, q) intersecting H∞ in an element of S.

The structure BC(S) is sometimes called a translation Sperner space. This is a
specific type of Sperner space, also called a weak affine space. When r > 2, the
structure BC(S) is an affine space if and only if S is a Desarguesian spread. When
S is Desarguesian, BC(S) is isomorphic to AG(r, qn). In this case, by adding H∞
as the hyperplane at infinity where the elements of S correspond to its points, one
obtains the Desarguesian projective space PG(r, qn).

In the same way as for translation planes, one can prove that the automorphism
group of BC(S) is a subgroup of PΓL(rn+ 1, q) isomorphic to

Perspq(H∞).PΓL(rn, q)S .
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I
Pseudo-ovals, eggs and
Desarguesian spreads

Part I consists of two chapters, providing characterisations
of elementary pseudo-caps (Chapter 2) and Desarguesian
spreads (Chapter 3), both in terms of spread inducing ele-
ments.
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2
Characterisations of elementary

pseudo-caps

In this chapter, we obtain characterisations of pseudo-ovals in PG(3n − 1, q), q
even, and of pseudo-caps and good (weak) eggs in PG(4n− 1, q).

These results are joint work with G. Van de Voorde and were published in [98]
and [99].

2.1 Preliminaries

We study pseudo-caps, more specifically eggs and pseudo-ovals, in the projective
space PG(N, q). These are the higher dimensional equivalents of caps, ovoids and
ovals.

Definition 2.1.1. A pseudo-cap is a set A of (n− 1)-spaces in PG(2n+m− 1, q)
such that any three elements of A span a (3n− 1)-space.

When m = n, a pseudo-cap is also called a pseudo-arc. By [112], a pseudo-arc
A in PG(3n − 1, q) satisfies |A| ≤ qn + 1 for q odd and |A| ≤ qn + 2 for q even.
If a pseudo-arc A has qn + 1 or qn + 2 elements, A is called a pseudo-oval or
pseudo-hyperoval respectively. When m = 2n, a pseudo-cap with q2n + 1 elements
is called a pseudo-ovoid.

Examples of pseudo-caps in PG(kn − 1, q) arise by applying field reduction to
caps in PG(k− 1, qn) and if a pseudo-cap is obtained by field reduction, we call it
elementary.

An important tool to investigate pseudo-caps is the following observation. Every
element Ei of a pseudo-cap A of PG(2n+m−1, q) defines a partial (n−1)-spread

Si := {E1, . . . , Ei−1, Ei+1, . . . , E|A|}/Ei
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in the quotient space PG(n+m−1, q) ∼= PG(2n+m−1, q)/Ei and we say that the
element Ei induces the partial spread Si. An elementary pseudo-cap is contained in
a Desarguesian spread. Hence, every element of an elementary pseudo-cap induces
a partial spread which extends to a Desarguesian spread.

Definition 2.1.2. A weak egg in PG(2n+m−1, q) is a pseudo-cap of size qm+1.

Clearly, pseudo-ovals and pseudo-ovoids are examples of weak eggs. A weak egg
E in PG(2n + m − 1, q) is called an egg if each element E ∈ E is contained in
an (n + m − 1)-space, TE , which is skew to every element of E different from E.
The space TE is called the tangent space of E at E. It is easy to see that when
m = n, every weak egg is an egg. Eggs are studied mostly because of their one-
to-one correspondence with translation generalised quadrangles of order (qn, qm),
see Subsection 2.4.4.

The only known examples of eggs in PG(2n + m − 1, q) have either m = n or
m = 2n, and we have the following theorem restricting the number of possibilities
for the parameters m and n.

Theorem 2.1.3. [89, Theorem 8.7.2] If E is an egg of PG(2n + m − 1, q), then
m = n or ma = n(a + 1) with a odd. Moreover, if q is even, then m = n or
m = 2n.

This explains why the study of eggs is mainly focussed on pseudo-ovals and pseudo-
ovoids. In the case of pseudo-ovals, all known examples are elementary. All known
examples of pseudo-ovoids in PG(4n− 1, q) are elementary when q is even, but in
contrast to the situation for pseudo-ovals, when q is odd, there are non-elementary
examples of pseudo-ovoids. For an overview of these examples we refer to [72,
Section 3.8]. For both pseudo-ovals and pseudo-ovoids, the classification remains
an open problem.

This chapter is organised as follows. First, in Section 2.2 we prove some useful
results on Desarguesian spreads. Afterwards, we provide characterisations of el-
ementary pseudo-caps in both PG(3n − 1, q) and PG(4n − 1, q) in terms of the
induced (partial) spreads of their elements. That is, in Section 2.3 we consider
pseudo-(hyper)ovals in PG(3n − 1, q), q even; and in Section 2.4 we focus on ele-
mentary pseudo-caps and (weak) eggs in PG(4n− 1, q).
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2.2. Desarguesian spreads

2.2 Desarguesian spreads

A point of PG(r − 1, qn) will be denoted by (x1, x2, . . . , xr)Fqn , where xi ∈ Fqn .
A point of PG(rn − 1, q) will be written as (x1, x2, . . . , xr)Fq , where xi ∈ Fqn .
Under a well-chosen field reduction map, a point (x1, x2, . . . , xr)Fqn in PG(r−1, qn)
corresponds to the (n−1)-space {(αx1, αx2, . . . , αxr)Fq

| α ∈ Fqn} in PG(rn−1, q),
which by abuse of notation will also be denoted by (x1, x2, . . . , xr)Fqn .

Note that in general, different choices of representations of PG(r − 1, qn) and
PG(rn − 1, q) (or equivalently, different choices for a basis of Fqn over Fq) give
rise to different, but projectively equivalent Desarguesian spreads. To get rid of
this ambiguity, in the following definition, we will fix a Desarguesian spread in
PG(r − 1, qn).

Definition 2.2.1. Consider a field reduction map F = F2,n,q from PG(1, qn) to
PG(2n−1, q) and let D be the corresponding Desarguesian spread in PG(2n−1, q).
An FRqt -subline in D is a field reduced Fqt-subline, i.e. it is a set of qt+ 1 (n−1)-
spaces of PG(2n−1, q), obtained as the image of an Fqt-subline of PG(1, qn) under
F .

Note that for t = 1, an FRq-subline consists of the q+1 spaces of an (n−1)-regulus.
For t = n, an FRqn-subline is simply the set of all elements of the Desarguesian
(n− 1)-spread D in PG(2n− 1, q).

A geometric characterisation of FRqt-sublines will be obtained in Chapter 6, Sec-
tion 6.3.4.

Definition 2.2.2. Consider a field reduction map F = F3,n,q from PG(2, qn) to
PG(3n−1, q) and let D be the corresponding Desarguesian spread in PG(3n−1, q).
An FRqt -subplane in D is a field reduced Fqt-subplane, i.e. it is a set of q2t+qt+1
(n − 1)-spaces of PG(3n − 1, q), obtained as the image of an Fqt-subplane of
PG(2, qn) under F .

Note that for t = 1, an FRq-subplane consists of the q2 + q + 1 (n − 1)-spaces
forming one system of a Segre variety S2,n−1. For t = n, an FRqn-subplane is just
the set of elements of the Desarguesian (n− 1)-spread D in PG(3n− 1, q).

It is well known that three disjoint (n− 1)-spaces in PG(2n− 1, q) are contained
in a unique regulus. We will need a generalisation of this in terms of FRqt-
sublines. However, the statement is not true for general t, that is, three disjoint
(n−1)-spaces can be contained in different FRqt-sublines of different Desarguesian
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spreads. However, every Desarguesian spread containing the three elements has
only one FRqt-subline through them.

Lemma 2.2.3. Three disjoint (n−1)-spaces contained in a Desarguesian (n−1)-
spread D in PG(2n − 1, q) are contained in a unique FRqt -subline in D, for all
t|n.

Proof. As these three disjoint (n−1)-spaces are contained in a Desarguesian (n−1)-
spread, and all Desarguesian spreads are PGL-equivalent, they can be represented
as the (n − 1)-spaces (1, 0)Fqn , (0, 1)Fqn and (1, 1)Fqn of the Desarguesian spread
D = {(x, y)Fqn | x, y ∈ Fqn}. Hence, they are contained in the FRqt-subline which
is the field reduction of the subline {(x, y)Fqn | x, y ∈ Fqt}. Any other FRqt-subline
in D through these three elements would give rise to a different Fqt-subline through
the three points (1, 0)Fqn , (0, 1)Fqn and (1, 1)Fqn in PG(1, qn), a contradiction.

We know by [76] that four (n− 1)-spaces in PG(3n− 1, q) in general position are
contained in a unique Segre variety S2,n−1. Again, we need the generalisation for
FRqt-subplanes of PG(3n− 1, q). In exactly the same way as the previous lemma,
we can also prove the following.

Lemma 2.2.4. Four disjoint (n − 1)-spaces in general position contained in a
Desarguesian spread D in PG(3n− 1, q) are contained in a unique FRqt -subplane
in D, for all t|n.

We will need the following lemma on Desarguesian spreads which has a straight-
forward proof, but we include it for completeness.

Lemma 2.2.5. Let D1 be a Desarguesian (n−1)-spread in a (kn−1)-dimensional
subspace Π of PG((k + 1)n − 1, q), let µ be an element of D1 and let E1 and E2
be mutually disjoint (n− 1)-spaces such that 〈E1, E2〉 meets Π exactly in the space
µ. Then there exists a unique Desarguesian (n− 1)-spread of PG((k + 1)n− 1, q)
containing E1, E2 and all elements of D1.

Proof. Since D1 is a Desarguesian spread in Π, we can choose coordinates for Π
such that D1 = {(x1, x2, . . . , xk)Fqn | xi ∈ Fqn} and µ = (0, . . . , 0, 1)Fqn . We
embed Π in PG((k+ 1)n− 1, q) by mapping a point (x1, . . . , xk)Fq , xi ∈ Fqn , of Π
onto (x1, . . . , xk, 0)Fq

. Let `P denote the unique transversal line through a point
P of µ to the regulus R(µ,E1, E2).

We can still choose coordinates for n + 1 points in general position in PG((k +
1)n−1, q)\Π. We will choose these n+ 1 points such that n of them belong to E1
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and one of them belongs to E2. Consider a set {yi | i = 1, . . . , n} forming a basis of
Fqn over Fq. We may assume that the line `Pi through Pi = (0, . . . , 0, yi, 0)Fq ∈ µ
meets E1 in the point (0, . . . , 0, 0, yi)Fq . It follows that E1 = (0, . . . , 0, 0, 1)Fqn .
Moreover, we may assume that `Q with Q = (0, . . . , 0,

∑n
i=1 yi, 0)Fq

∈ µ meets E2
in (0, . . . , 0,

∑n
i=1 yi,

∑n
i=1 yi)Fq

. As the point (0, . . . , 0,
∑n
i=1 yi,

∑n
i=1 yi)Fq

has
to be contained in the space spanned by the intersection points Ri = `Pi ∩ E2, it
follows that Ri = (0, . . . , 0, yi, yi)Fq and consequently, that E2 = (0, . . . , 0, 1, 1)Fqn .

It is clear that the Desarguesian spread D = {(x1, . . . , xk+1)Fqn | xi ∈ Fqn} con-
tains the spread D1 and the (n − 1)-spaces E1 and E2. Moreover, since every
element of D, not in 〈E1, E2〉, is obtained as the intersection of 〈E1, X〉 ∩ 〈E2, Y 〉,
where X,Y ∈ D1, it is clear that D is the unique Desarguesian spread satisfying
our hypothesis.

Theorem 2.2.6. A point set M in PG(1, qn), q > 2, containing at least three
points, such that any three points of M determine a Fq-subline entirely contained
in M, defines an Fqt -subline PG(1, qt) for some t|n.

Proof. Without loss of generality, we may assume that the points (0, 1)Fqn , (1, 0)Fqn

and (1, 1)Fqn are contained in M. Put M = {x | (1, x)Fqn ∈ M}, clearly
Fq ⊆M ⊆ Fqn .

Consider x, y ∈ M , where x 6= y, then every point of the Fq-subline through the
distinct points (0, 1)Fqn , (1, x)Fqn and (1, y)Fqn has to be contained in M. The
points of this subline, different from (0, 1)Fqn are given by (1, x + (y − x)t)Fqn ,
where t ∈ Fq. This implies that when x and y are in M , also (1 − t)x + ty ∈ M ,
for all t ∈ Fq. It easily follows that M is closed under taking linear combinations
with elements of Fq, hence, M forms an Fq-subspace of Fqn .

Now consider x′, y′ ∈ M \ {0}. We claim that (1) x′2/y′ ∈ M and (2) x′2 ∈ M .
If y′/x′ ∈ Fq, our claim (1) immediately follows from the fact that M is an Fq-
subspace, so we may assume that y′/x′ ∈ Fqn \ Fq. Since q > 2, we can consider
an element t ∈ Fq such that t(t − 1) 6= 0. Put z′ := y′ − (t − 1)x′. Since M is
an Fq-subspace, z′ ∈ M . It is easy to check that z′ /∈ {0, x′}. Every point of the
Fq-subline containing distinct points (1, 0)Fqn , (1, x′)Fqn and (1, z′)Fqn has to be
contained inM , and the points of this subline, different from (1, z′)Fqn , are given by
(z′−x′+t′x′, t′x′z′)Fqn , where t′ ∈ Fq. This implies that (t′x′z′)/(z′ + (t′ − 1)x′) ∈
M , for every t′ ∈ Fq, so also for t′ = t, which implies that tx′−(t(t− 1)x′2)/y′ ∈M .
Since tx′ ∈ M and t(t− 1) 6= 0, we conclude that x′2/y′ ∈ M which proves claim
(1). Claim (2) follows immediately from claim (1) by taking y′ = 1 ∈ Fq ⊆ M .
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Note that from Claim (1) it follows that for any y′ ∈M \ {0} its converse 1/y′ is
also contained in M .

Now let v, w ∈M and first suppose that q is odd, then vw = 1
2 ((v+w)2−v2−w2),

and since M is an Fq-subspace and by claim (2), all terms on the right hand side
are in M , hence, so is vw. If q is even, say qn = 2h, then v = u2 for some u ∈ Fqn ,
but since u = u2h = v2h−1 , we have that also u is contained in M . This implies that
v
w = u2

w ∈M by claim (1) and consequently, again by claim (1), vw = v2

v/w ∈M .

In both cases, we get that M is a subfield of Fqn and the statement follows.

We deduce the following lemma as a corollary.

Lemma 2.2.7. Let D1 and D2 be two Desarguesian (n− 1)-spreads in PG(2n−
1, q), q > 2, with at least 3 elements in common, then D1 and D2 share exactly
qt + 1 elements for some t|n, forming an FRqt -subline in both D1 and D2. In
particular, if n is prime, then D1 and D2 share a regulus or coincide.

Proof. Let X be the set of common elements of D1 and D2. Since a Desarguesian
spread D is regular, it has to contain the reguli defined by any three elements of
D, which, since D1 and D2 are Desarguesian, implies that the regulus through 3
elements of X is contained in X . Since the set X is contained in a Desarguesian
spread, X corresponds to a set of pointsM in PG(1, qn) such that every Fq-subline
through 3 points of M is contained in M. The first part of the statement now
follows from Theorem 2.2.6. The second part follows from the fact that the only
divisors of a prime n are 1 and n.

2.3 Pseudo-ovals in even characteristic

In this section, we focus on pseudo-ovals in PG(3n − 1, q). We explain the con-
nection between dual pseudo-ovals and elation Laguerre planes and show that a
pseudo-(hyper)oval in PG(3n − 1, q), where q is even and n is prime, such that
every element induces a Desarguesian spread, is elementary.

First, consider the following statement, which for n = 1, reduces to a well-known
and easy to prove statement.

Theorem 2.3.1. [112] A pseudo-oval in PG(3n− 1, q), q even, is contained in a
unique pseudo-hyperoval.
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Note that we call a pseudo-oval, obtained by applying field reduction to a conic in
PG(2, qn), a pseudo-conic. A pseudo-hyperoval (necessarily in even characteristic)
obtained by applying field reduction to a conic, together with its nucleus, is called
a pseudo-hyperconic.

Every element of a pseudo-oval induces a partial spread of PG(2n−1, q) of size qn,
i.e. we say it has deficiency 1. By [17, Theorem 4], we know that it can be extended
to a spread in a unique way. This means that the set of points in PG(2n − 1, q),
not lying on an element of the partial spread of size qn, forms an (n−1)-space. So
by abuse of terminology, we say that an element of a pseudo-oval induces a spread
instead of a partial spread.

A natural question to ask is whether we can characterise pseudo-ovals in terms
of the induced spreads. Since an elementary pseudo-oval is contained in a Desar-
guesian spread and as a Desarguesian spread is normal, it follows that for every
element of an elementary pseudo-oval the induced spread is Desarguesian. The
following theorem shows that for q odd, a strong version of the converse also
holds.

Theorem 2.3.2. [36] If O is a pseudo-oval in PG(3n− 1, q), q odd, such that for
at least one element the induced spread is Desarguesian, then O is a pseudo-conic.

In [94] this result was extended to large pseudo-arcs in PG(3n− 1, q).

Theorem 2.3.3. [94] If K = {K1, . . . ,Ks} is a pseudo-arc in PG(3n − 1, q), q
odd, of size at least the size of the second largest complete arc in PG(2, qn), where
for one element Ki of K, the partial spread S = {K1, . . . ,Ki−1,Ki+1, . . . ,Ks}/Ki

extends to a Desarguesian spread of the quotient space PG(2n− 1, q) = PG(3n−
1, q)/Ki, then K is contained in a pseudo-conic.

The proof of Theorem 2.3.2 relies on a result of Chen and Kaerlein [38] for La-
guerre planes in odd order, which in its turn relies on the theorem of Segre [101]
characterising every oval in PG(2, q), q odd, as a conic. This clearly rules out a
similar approach for even characteristic. The characterisation of pseudo-ovals in
terms of the induced spreads for even characteristic was posed as an open problem
in [115, Problem A.3.4].

In this section, we will prove that the following property holds:

Theorem 2.3.22. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian, then
O is elementary.
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As a corollary, we prove a similar statement for pseudo-hyperovals.

Corollary 2.3.23. Let H be a pseudo-hyperoval in PG(3n−1, q), q = 2h, h > 1, n
prime, such that the spread induced by at least qn+1 elements of H is Desarguesian,
then H is elementary.

In Subsection 2.3.1, we will explain the connection between dual pseudo-ovals and
elation Laguerre planes, meanwhile proving a theorem that characterises ovoidal
Laguerre planes as those elation Laguerre planes obtained from an elementary
dual pseudo-oval. In Subsection 2.3.2, we give a proof for our main theorem in
PG(3n− 1, q), n prime. We will prove this theorem in a setting for general n; we
will formulate a conjecture on hyperovals in PG(2, qn) which holds for n prime and
which would have the statement for general n as a corollary. We end by stating a
corollary of our main theorem in terms of ovoidal Laguerre planes in Subsection
2.3.3.

2.3.1 Laguerre planes

Definition 2.3.4. A Laguerre plane L is an incidence structure with point set
P, line set L and set of circles C such that (P,L ∪ C) satisfies the following four
axioms:

AX1 Every point lies on a unique line.
AX2 A circle and a line meet in a unique point.
AX3 Through 3 points, no two on a line, there is a unique circle of C.
AX4 If P is a point on a fixed circle C and Q is a point, not on the line through

P and not on the circle C, then there is a unique circle C ′ through P and
Q, meeting C only in the point P .

In a finite Laguerre plane, every circle contains s+1 points for some s; this constant
s is called the order of the Laguerre plane.

Starting from a point P of a Laguerre plane L = (P,L ∪ C), we obtain an affine
plane (P ′,L′), where incidence is inherited from L, as follows.

P ′ : the points of P, different from P and not collinear with P ,
L′ : (a) the lines of L, not through P ,

(b) the circles of C, through P .
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The obtained affine plane is called the derived affine plane at P .

Definition 2.3.5. A finite ovoidal Laguerre plane (P,L ∪ C) with point set P,
line set L and set of circles C is a Laguerre plane that can be constructed from a
cone K as follows. Consider a cone K in PG(3, q) with vertex a point V and base
an oval O in a plane not containing V . Incidence is natural.

P : the points of K \ {V },
L : the generators of K, i.e. the lines of PG(3, q), lying on K,
C : the plane sections of K, not containing V .

For later use, we will also consider the dual model in PG(3, q) of the ovoidal
Laguerre plane obtained from the cone K. Let H be a plane in PG(3, q) containing
the dual oval OD (which is the coordinate wise dual in PG(2, q) of the oval O). It
is not hard to see that we find the following incidence structure (P,L ∪ C):

P : the planes that intersect H in a line of OD,
L : the lines of H contained in OD,
C : the points of PG(3, q) not contained in H, i.e. the affine points.

The ovoidal Laguerre plane obtained this way will be denoted by L(OD).

Definition 2.3.6. The classical Laguerre plane of order q is an ovoidal Laguerre
plane obtained from a quadratic cone in PG(3, q), that is, a cone with base a conic.

Remark. Let (PQRS) denote that four points P,Q,R, S are on a common circle.
A Laguerre plane is called Miquelian if for each eight pairwise different points
A,B,C,D,E, F,G,H, it follows from (ABCD), (ABEF ), (BCFG), (CDGH),
(ADEH) that (EFGH). However, by a theorem of van der Waerden and Smid,
a Laguerre plane is Miquelian if and only if it is classical [117] and we, as well as
many others, use the term ‘Miquelian Laguerre plane’ instead of ‘classical Laguerre
plane’.

It follows from Theorem 1.3.11 of Segre that an ovoidal Laguerre plane of odd
order is necessarily Miquelian.

For later use, we will also introduce the plane model of the Miquelian Laguerre
plane of even order q (for more information we refer to [16]). Consider a point
N in PG(2, q), q even. Since three non-collinear points together with a nucleus
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determine a unique conic, one can easily count that there are exactly q3−q2 distinct
conics in PG(2, q) having the same point N as their nucleus. The plane model
of the Miquelian Laguerre plane is the following incidence structure (P,L ∪ C)
embedded in PG(2, q), q even, with natural incidence.

P : the points of PG(2, q) different from N ,
L : the lines of PG(2, q) containing N ,
C : the q2 lines of PG(2, q) not containing N , and

the q3 − q2 conics having N as their nucleus.

Remark. This model can be deduced from the standard cone model of the
Miquelian Laguerre plane, i.e. the quadratic cone K with vertex V and base a
conic O. That is, one obtains the plane model by projecting the cone K from a
point (on the line through V and the nucleus of O) onto a plane not containing V .

Consider a Laguerre plane L and its automorphism group Aut(L). The kernel K
of L is the subgroup of Aut(L) consisting of all automorphisms which map every
point P of L onto a point collinear with P . In other words, K is the elementwise
stabiliser of lines of L.

Lemma 2.3.7. [106, Theorem 1] The order of the kernel K of a Laguerre plane L
of order s divides s3(s− 1). Moreover, |K| = s3(s− 1) if and only if L is ovoidal.

Definition 2.3.8. A Laguerre plane L is an elation Laguerre plane if its kernel
K acts transitively on the circles of L.

We denote the dual of a pseudo-oval O of PG(3n − 1, q) by OD. This is the
coordinate wise dual.

Remark. Given a pseudo-oval O in π = PG(3n − 1, q), for every element E of
O, there is a unique (2n− 1)-space intersecting O only in E. This space is called
the tangent space to O at E. When q is odd, the set of all tangent spaces to
O forms a pseudo-oval in the dual space πD. Sometimes, in other contents, this
pseudo-oval is called the translation dual pseudo-oval of O, written as O∗ or OD.
We will however never consider this type of dual or use this meaning or notation.
Note that, when q is even, all tangent spaces intersect in a common (n− 1)-space,
this (n− 1)-space extends the pseudo-oval to a pseudo-hyperoval.

A dual pseudo-oval OD in PG(3n − 1, q) gives rise to an elation Laguerre plane
L(OD) in the following way. Embed H∞ = PG(3n − 1, q) as a hyperplane at
infinity of PG(3n, q) and define L(OD) to be the incidence structure (P,L ∪ C)
with natural incidence and with
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2.3. Pseudo-ovals in even characteristic

P : the 2n-spaces meeting H∞ in an element of OD,
L : the elements of OD,
C : the points of PG(3n, q), not in H∞.

It is not hard to check that this incidence structure defines a Laguerre plane of
order qn and that the group Perspq(H∞) ≤ PGL(3n, q) of perspectivities with
axis H∞ induces a subgroup of the kernel of L(OD) that acts transitively on the
circles of L(OD). So L(OD) is indeed an elation Laguerre plane.

In [106], Steinke showed the converse: every elation Laguerre plane can be con-
structed from a dual pseudo-oval.

Theorem 2.3.9. [106, Theorem 4] A finite Laguerre plane L is an elation La-
guerre plane if and only if L ∼= L(OD) for some dual pseudo-oval OD.

More explicitely, Steinke shows that a Laguerre plane of order qn with kernel of
order q3n(q − 1) can be obtained from a dual pseudo-oval in PG(3n− 1, q).

We will show in Theorem 2.3.11 that every elementary dual pseudo-oval gives rise
to an ovoidal Laguerre plane and vice versa. In order to prove this, we need the
following lemma.

Lemma 2.3.10. Let L be an ovoidal Laguerre plane of order qn, then there is a
unique subgroup T of order q3n in the kernel K of L.

Proof. Consider the dual model for an ovoidal Laguerre plane. Every perspectivity
in PΓL(4, qn) with axis H induces an element of K. Since the group Perspqn(H)
of perspectivities with axis H has order q3n(qn − 1), which equals the order of K
by Lemma 2.3.7, it follows that every element of K corresponds to a perspectivity.
The group Elatqn(H) consisting of all elations in PG(3, qn) with axis H is a normal
subgroup of Perspqn(H) and has order q3n.

Let S be a subgroup of K of order q3n, q = ph, p prime, then S is a Sylow p-
subgroup and since all Sylow p-subgroups are conjugate and Elatqn(H) is normal
in K, we obtain S = Elatqn(H).

Theorem 2.3.11. A finite elation Laguerre plane L is ovoidal if and only if
L ∼= L(OD) where OD is an elementary dual pseudo-oval in PG(3n− 1, q).

Proof. Let L be an elation Laguerre plane. By Theorem 2.3.9, L is isomorphic to
L(OD), where OD is a dual pseudo-oval in PG(3n − 1, q), for some q and n such
that the order of L is qn. So it remains to show that L(OD) is ovoidal if and only
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if OD is elementary. In view of the definition of an ovoidal Laguerre plane, using
the dual setting, we will show that L(OD) is isomorphic to L(OD) if and only if
the dual pseudo-oval OD in PG(3n − 1, q) is obtained from the dual oval OD in
PG(2, qn) by field reduction.

First suppose that the dual pseudo-ovalOD in PG(3n−1, q) is obtained from a dual
oval, say OD, in PG(2, qn) by field reduction. Apply field reduction to the points,
lines and circles of L(OD), then it is clear that the obtained incidence structure L∗,
contained in PG(4n−1, q) is isomorphic to L(OD). If we intersect the points, lines
and circles of L∗ with a fixed 3n-dimensional subspace of PG(4n− 1, q), through
the (3n− 1)-space containing the field reduced elements of OD, then the obtained
structure is clearly isomorphic to the points, lines and circles from L(OD).

Now, let L = (P,L∪C) be a Laguerre plane that on the one hand is isomorphic to
L(OD) (call this model 1) and on the other hand isomorphic to L(OD) (call this
model 2). As before, the elementwise stabiliser of the lines in the automorphism
group Aut(L) of L (the kernel of L) is denoted by K.

From model 1, we know that the group of elations in PG(3n, q) with axis the
hyperplane H∞ (which contains the elements of OD) induces a subgroup of K of
order q3n, likewise, from model 2, we know that the group of elations in PG(3, qn)
with axis the hyperplane H (which contains the elements of OD) induces a sub-
group of K of order q3n. By Lemma 2.3.10 these induced subgroups are the same,
denote this group by T . Consider the stabiliser TP of a point P ∈ P in T . From
model 2, we have that TP has order q2n, that is, TP corresponds to a subgroup of
elations with axis H, fixing a plane of PG(3, qn), different from H, through a line
of OD. In model 1, the elements of TP correspond to elations of PG(3n − 1, q)
with axis H∞, fixing a 2n-space through an element of OD.

Since T corresponds to the group of elations in PG(3, qn), T forms a 3-dimensional
vector space V over Fqn . On the other hand, T also corresponds to the group of
elations in PG(3n, q), hence T forms a 3n-dimensional vector space V ′ over Fq. In
both cases, one can check that TP is normalised by the group of perspectivities
with axis H, respectively H∞. Hence, by Theorem 1.3.5, we find that TP forms
a 2-dimensional vector subspace W = V (2, qn) (model 1), and a 2n-dimensional
vector subspace W ′ = V (2n, q) (model 2). The projective space corresponding to
V can be identified with H ∼= PG(2, qn), the projective space corresponding to V ′
can be identified with H∞ ∼= PG(3n− 1, q). Clearly, since W and W ′ correspond
to the same vector space, the projective subspace defined by W ′ is obtained from
the projective subspace defined by W by field reduction from H to H∞.

Now consider a circle C ∈ C and denote its qn + 1 points by Pi, i = 1, . . . , qn + 1.
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Every point Pi lies on a unique line `i of L, so we can identify TPi
with the line `i.

Considering this projectively, we get that for all i = 1, . . . , qn + 1, the subgroup
TPi is identified on the one hand to an element of OD of H∞ (model 1) and on
the other hand to a line of OD of H (model 2). This implies that OD is obtained
from OD by field reduction.

From this we easily deduce the following corollaries.

Corollary 2.3.12. A finite elation Laguerre plane L is Miquelian if and only if
L ∼= L(OD) where OD is a dual pseudo-conic in PG(3n− 1, q).

Corollary 2.3.13. Let HD be a dual hyperoval such that there is an element
ED such that L(OD), where OD = HD \ ED, is Miquelian, then H is a pseudo-
hyperconic with E as the field reduced nucleus.

Proof. By Corollary 2.3.12, OD is the field reduction of a dual conic OD. The dual
conic OD in PG(2, qn) uniquely extends to a dual hyperconic by adding the dual
nucleus line ND. This shows that OD can be extended to a dual pseudo-hyperoval
HD by adding the (2n − 1)-space ED which is the field reduced line ND. Since
Theorem 2.3.1 shows that this extension is unique, we see that the element E is
the (n − 1)-space obtained by applying field reduction to the nucleus N of the
conic O, and hence, H is a pseudo-hyperconic.

2.3.2 Towards the proof of the main theorem

Recall that we will prove the following:

Theorem 2.3.22. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian, then
O is elementary.

We know from Theorem 2.3.1 that a pseudo-oval in even characteristic extends in
a unique way to a pseudo-hyperoval and hence, for the proof of our main theorem
we will work with H, that is the unique pseudo-hyperoval extending O. As said
before, we will only restrict ourselves to the case where n is a prime to finish our
proof.

We will split the proof of our main theorem in two cases. In Case 1, we consider
pseudo-hyperovals having a specific property (P1) and we prove that they are
always elementary. In Case 2, we consider dual pseudo-hyperovals satisfying a
property (P2), and again we show that they are elementary. Finally, we prove
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that if a pseudo-oval O, such that every element induces a Desarguesian spread,
extends to a pseudo-hyperoval H which does not meet property (P1), then its dual
HD necessarily meets (P2), which implies that O is elementary.

We need one more definition.

Definition 2.3.14. We will call an FRqt-subplane in a Desarguesian spread of
PG(3n− 1, q) crowded (w.r.t. a pseudo-hyperoval H) if it contains qt + 2 elements
of H.

Note that for t = n, the existence of a crowded FRqn -subplane implies that H is
contained in a Desarguesian spread, hence, is elementary.

Case 1

First, we will consider a pseudo-hyperoval H having the following property:

(P1): there exist four elements Ei, i = 1, . . . , 4, of H, such that

(i) the induced spreads S1, S2, S3 are Desarguesian,

(ii) for every t < n, the FRqt -subplane through {Ei}i=1,...,4 in the Desar-
guesian spread D determined by E1, E2 and S1 (seen in 〈E3, E4〉) is
not crowded.

Remark. Note that the Desarguesian spread D in Property (P1) is uniquely
determined by Lemma 2.2.5.

Theorem 2.3.15. Consider a pseudo-hyperoval H in PG(3n−1, q), q = 2h, h > 1,
satisfying Property (P1), then H is elementary.

Proof. Let E1, E2, E3, E4 be the four elements of H obtained from Property (P1).
Denote the (n− 1)-space 〈E1, E2〉 ∩ 〈E3, E4〉 by µ. The spreads S1 and S2 can be
seen in 〈E3, E4〉 = PG(2n− 1, q). By the hypothesis, S1 and S2 are Desarguesian.
Since by definition E3, E4 and µ are contained in S1 and S2, and S1 and S2
are Desarguesian and hence regular, the q + 1 elements of the unique regulus
R(µ,E3, E4) through E3, E4 and µ are contained in S1 and S2. Consider the
Desarguesian spread D in PG(3n − 1, q) uniquely determined by S1 and E1, E2.
We will prove that S1 = S2 and/or S3 ⊂ D.

(Step 1)
Since µ,E1, E2 are elements of the Desarguesian spread S3 considered in 〈E1, E2〉,
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every element of R(µ,E1, E2) is contained in S3. Let X be an element of the
regulus R(µ,E1, E2), different from E1, E2 and µ (which exists since q > 2).

By construction, the space 〈X,E3〉 contains an element E5 ofH. The (2n−1)-space
〈E1, E5〉 meets 〈E3, E4〉 in an (n−1)-space Y , that is by construction contained in
S1. Since E5 = 〈X,E3〉∩〈Y,E1〉 and a Desarguesian spread is normal, we see that
E5 ∈ D. This holds for every element Ei ∈ H on 〈Z,E3〉 with Z ∈ R(µ,E1, E2),
let E5, . . . , Eq+2 be these elements of H.

Now consider the (n − 1)-spaces Ti := 〈E2, Ei〉 ∩ 〈E3, E4〉, with i = 5, . . . , q + 2.
The spaces Ti by definition belong to S2 (considered in 〈E3, E4〉). But since
E2, Ei, E3, E4 are elements of D, Ti is an element of D and since D∩〈E3, E4〉 = S1,
Ti ∈ S1.

So the spreads S1 and S2 contain R(µ,E3, E4) and all elements Ti. If all elements
Ti are contained in R(µ,E3, E4), then the unique FRq-subplane in D containing
E1, E2, E3 and E4 is crowded (note that the FRq-subplane is unique by Lemma
2.2.4). This is in clear contradiction with Property (P1). By Lemma 2.2.7, it now
follows that S1 and S2 have an FRqs-subline in common for some 1 < s ≤ n,
moreover, if s = n, then S1 = S2.

(Step 2)
Consider the smallest t, where 1 < t < n, such that the unique FRqt-subline L
of D through µ,E3, E4, contains all elements Ti, and thus is contained in both S1
and S2. Consider an element U ∈ L\{µ,E3, E4}. Since U ∈ S2, the space 〈U,E2〉
contains an element F5 ∈ H. This holds for every element of L\{µ,E3, E4}, so let
F5, . . . , Fqt+2 be these elements of H. Since a space Fi arises as the intersection
〈E2, U〉 ∩ 〈E1, V 〉, for some U ∈ L ⊂ D, V ∈ S1 ⊂ D, all elements Fi belong to D.

Now consider the (n − 1)-spaces T ′i := 〈E3, Fi〉 ∩ 〈E1, E2〉, with i = 5, . . . , qt + 2.
The spaces T ′i by definition belong to S3. But since E1, E2, E3, Fi are elements of
D, T ′i is an element of D. By Lemma 2.2.7, this implies that S3 and D ∩ 〈E1, E2〉
have an FRqs-subline in common for some 1 < s ≤ n, moreover, if s = n, then
S3 ⊂ D.

(Step 3)
Consider the smallest t′, where 1 < t′ < n, such that the unique FRqt′ -subline L′
of D through µ,E1, E2, contains all elements T ′i and thus is also contained in S3.
We will repeat the same argument as before in Step 1. Let X ′ be an element of
L′ \ {µ,E1, E2}. By construction, the space 〈X ′, E3〉 contains an element E′5 of
H. The (2n − 1)-space 〈E1, E

′
5〉 meets 〈E3, E4〉 in an (n − 1)-space Y ′ that is by

construction contained in S1. Since E′5 = 〈X ′, E3〉 ∩ 〈Y ′, E1〉, we see that E′5 ∈ D.
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This holds for every element E′i ∈ H on 〈E3, Z
′〉 with Z ′ ∈ L′ \ {µ,E1, E2}, let

E′5, . . . , E
′
qt′+2 be these elements of H.

Now consider the (n− 1)-spaces T ′′i := 〈E2, E
′
i〉 ∩ 〈E3, E4〉, with i = 5, . . . , qt′ + 2.

The spaces T ′′i by definition belong to S2 (considered in 〈E3, E4〉). But since
E2, E

′
i, E3, E4 are elements of D, T ′′i is an element of D and since D∩〈E3, E4〉 = S1,

T ′′i ∈ S1. This shows that S1 and S2 also have the elements T ′′i in common. Now
arguing as before, if all elements T ′′i are contained in the unique FRqt′ -subline L′′
through µ,E3, E4 in D, then the FRqt′ -subplane through E1, E2, E3, E4 in D is
crowded, a contradiction. This implies that S1 and S2 have elements outside of
L′′ in common.

(Step 4)
We can again consider the smallest value of s such that the unique FRqs-subline M
in D through µ,E3 and E4 contains all elements T ′′i , say this value is t′′. Arguing
as before, we either find (1) t′′ = n, and then S1 = S2 which proves our claim, (2)
S3 ⊂ D which proves our claim, (3) the FRqt′′ -subplane through E1, E2, E3, E4 in
D is crowded, which is a contradiction, or (4) we find elements in the intersection
of S1 and S2 which are not contained in M . In the latter case we can repeat the
same argument to find a larger value of s and eventually find that S1 = S2 or
S3 ⊂ D.

(Step 5)
When S1 = S2, every element E of H, different from E1, E2, E3, E4 can be written
as 〈E1, U〉 ∩ 〈E2, V 〉, where U, V are elements of S1 = S2. It follows that E ∈ D
for all E ∈ H. Since H is contained in a Desarguesian spread, H is elementary.

When S3 ⊂ D, every element E of H, different from E1, E2, E3, E4 can be written
as 〈E1, U〉 ∩ 〈E3, V 〉, where U ∈ S1 ⊂ D and V ∈ S3 ⊂ D. It follows that E ∈ D
for all E ∈ H. Since H is contained in a Desarguesian spread, H is elementary.

From the final argument in the previous proof, it is clear that having two induced
Desarguesian spreads that coincide is sufficient to say that the pseudo-hyperoval
is elementary. This statement can be easily generalised for pseudo-arcs, hence we
obtain the following theorem. Note that this statement (in terms of translation
generalised quadrangles) was already proven in [114, Theorem 6.1] for pseudo-ovals
by using the Fqn -extension of its elements.

Theorem 2.3.16. Consider a pseudo-arc K in PG(3n− 1, q). If K contains two
elements E1 and E2 such that their induced partial spreads S1 and S2 (when viewed
in the same (2n− 1)-space) can both be extended to the same Desarguesian spread
S, then K is elementary.
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Case 2

We will proceed in this case explicitely assuming that the following conjecture
holds true.

Conjecture 2.3.17. Consider an oval O in PG(2, qn), q > 2 even, and let N be
the unique point extending O to a hyperoval. Suppose that for every triple of
distinct points P1, P2, P3, there is a divisor t < n of n such that the Fqt-subplane
through P1, P2, P3 and N contains qt + 1 elements of O, then O is a conic with
nucleus N .

Note that for different choices of triples P1, P2, P3, the obtained value of t is allowed
to vary. When the value of t is constant for all choices of triples P1, P2, P3, then
the conjecture follows from the following result.

Theorem 2.3.18. [91, Theorem 11, Remark 5] Consider an oval O of PG(2, qn),
q > 2 even. Let N be the unique point extending O to a hyperoval. Then O is a
conic if and only if every triple of distinct points of O together with N lies in a
Fq-subplane that meets O in q + 1 points.

In particular, taking into account that the only divisor t < n of a prime number
n equals 1, Conjecture 2.3.17 holds for n prime.
In the proof of this case we will work in the dual setting, so we need the following
lemma on dual pseudo-(hyper)ovals.

Lemma 2.3.19. Let O be a pseudo-oval in PG(3n−1, q) such that every element
Ei ∈ O, i = 1, . . . , qn + 1 induces a Desarguesian spread Si, then the dual pseudo-
oval OD has the property that for every element EDi , the set of intersections {EDj ∩
EDi | j 6= i} forms a partial spread uniquely extending to a Desarguesian spread
and vice versa. The analogous statement holds for pseudo-hyperovals.

Proof. An element of Si, say E1/Ei, equals 〈E1, Ei〉/Ei. This (n − 1)-space can
be identified with 〈E1, Ei〉 and its dual 〈E1, Ei〉D, which equals ED1 ∩ EDi .
This implies that the partial spread {E1, . . . , Ei−1, Ei+1, . . . , Eqn+1}/Ei extends
to a Desarguesian spread of PG(2n − 1, q) if and only if {ED1 ∩ EDi , . . . , EDi−1 ∩
EDi , E

D
i+1 ∩ EDi , . . . , EDqn+1 ∩ EDi } extends to a Desarguesian spread. The same

reasoning holds for pseudo-hyperovals.

Consider a pseudo-hyperoval H and its dual HD = {ED1 , . . . , EDqn+2}. We say that
an element EDi of HD induces the (n− 1)-spread S ′i := {EDi ∩EDj | j 6= i} of EDi .
Now Lemma 2.3.19 states that Si is Desarguesian if and only if S ′i is Desarguesian.
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Take note of the following correspondence. There is a unique Desarguesian spread
D containing E1, E2 and the elements of S1 (seen in 〈E3, E4〉). Hence, there is a
unique dual Desarguesian spread containing ED1 , ED2 and all (2n−1)-space of SD1 ,
this is of course the dual spread DD. Two (2n − 1)-spaces of DD intersect each
other in an (n−1)-space and the set of all these intersections forms a Desarguesian
spread D′ of PG(3n − 1, q). The (n − 1)-spaces arising as the intersection of ED1
with the (2n − 1)-spaces of SD1 form exactly S ′1. This means that the spread D′
is the unique Desarguesian spread determined by ED3 ∩ ED4 , ED2 ∩ ED4 and the
elements of S ′1.

We will also consider a dual FRqt-subplane contained in the dual Desarguesian
spread DD. This is a set of q2t + qt + 1 (2n − 1)-spaces, and from Lemma 2.2.4,
four disjoint (2n − 1)-spaces of DD in dual general position are contained in a
unique dual FRqt-subplane of DD.

Suppose that the dual pseudo-hyperoval HD has an element ED1 such that HD
and ED1 satisfy the following property:

(P2): (i) ED1 induces a Desarguesian spread S ′1,
(ii) for any three elements ED2 , ED3 , ED4 of HD \ {ED1 } there exists a t <

n such that the dual FRqt-subplane through ED1 , E
D
2 , E

D
3 and ED4 in

the dual spread DD is crowded, where D is the Desarguesian spread
determined by S1 and R(E1, E2, 〈E1, E2〉 ∩ 〈E3, E4〉).

Lemma 2.3.20. Let H be a pseudo-hyperoval in PG(3n − 1, q), q = 2h, h > 1.
Assume that

• the spread induced by a subset T of qn + 1 elements of H is Desarguesian,
• HD satisfies Property (P2) for some element ED1 of T D,
• Conjecture 2.3.17 holds,

then the following statements hold:

(i) the elation Laguerre plane L(OD) where OD = HD\{ED1 } is isomorphic to
the Laguerre plane (P ′,L′ ∪C′) embedded in π, with natural incidence, given
by

P ′ : the lines of π different from `∞,
L′ : the points of `∞,
C′ : the q2n point-pencils of π not containing `∞ and

the q3n − q2n dual ovals all having `∞ as their nucleus line,
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where π is the Desarguesian projective plane from the André/Bruck-Bose
representation obtained from the spread S ′1 and where `∞ is the line at infinity
of π corresponding to ED1 .

(ii) a dual oval AD of the set C′ is a dual conic with `∞ as its nucleus line.

(iii) L(OD) is Miquelian.

Proof. (i) Embed the space PG(3n− 1, q), containing OD, as a hyperplane H∞ in
PG(3n, q). Recall that the elation Laguerre plane L(OD) is the incidence structure
(P,L ∪ C) embedded in PG(3n, q) as follows:

P : the 2n-spaces meeting H∞ in an element of OD,
L : the elements of OD,
C : the affine points of PG(3n, q) \H∞.

Consider a 2n-space Π of PG(3n, q) intersecting H∞ in ED1 . The elements of
OD intersect ED1 in the Desarguesian spread S ′1. It follows that the (projective)
André/Bruck-Bose representation in Π, using S ′1, defines a Desarguesian projective
plane π ∼= PG(2, qn). The elements of S ′1 correspond to the points of the line
`∞ at infinity of π. By intersecting the elements of L(OD) with Π, we find the
representation (P ′,L′∪C′) of the Laguerre plane L(OD) in the Desarguesian plane
π as given in the statement. For this, we identify every circle of C with the qn + 1
elements of P it contains and consider their intersection with Π. Then, an affine
point contained in Π corresponds to a point-pencil of π not containing `∞. An
affine point not contained in Π will also correspond to qn + 1 lines of π, different
from `∞. However, since such an affine point does not belong to Π, any three of
these lines will have empty intersection, hence they form a dual oval. Moreover,
these qn + 1 lines are all concurrent in points not on `∞, therefore each dual oval
extends uniquely to a dual hyperoval by adding the line `∞.

(ii) Consider the affine point P of PG(3n, q)\Π corresponding to a dual oval AD
of C′. Consider three lines `2, `3, `4 of AD. These correspond to three elements
of HD, say ED2 , E

D
3 and ED4 . Now, since HD satisfies Property (P2), we find a

crowded dual FRqt-subplane BD through the four (2n−1)-spaces ED1 , ED2 , ED3 and
ED4 contained in DD, for some divisor t < n of n. The element ED1 is contained in
BD, and the projection from P of the q2t+qt (2n−1)-spaces in BD, different from
ED1 , onto the space Π (used in the André/Bruck-Bose representation) corresponds
to q2t + qt lines of the plane π. Every such projected line intersects `∞ in a point
which corresponds to one of the qt+1 elements of the unique FRqt-subline through
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ED1 ∩ ED2 , ED1 ∩ ED3 and ED1 ∩ ED4 contained in S ′1. This implies that the set of
(2n−1)-spaces of BD corresponds to a dual Fqt-subplane in the Desarguesian plane
π, which contains `∞, `2, `3, `4 and qt − 2 other lines of AD. Since this is true for
every choice of three distinct lines `2, `3, `4 of AD, by Conjecture 2.3.17, AD is a
dual conic with `∞ as its nucleus line.

(iii) We consider the incidence structure (P ′′,L′′∪C′′) obtained from the incidence
structure (P ′,L′∪C′) in the dual setting of PG(2, qn). We use part (ii) which states
that the dual ovals in C′ are dual conics. Let the point N be the dual of the line
`∞, then (P ′′,L′′ ∪ C′′) is given by

P ′′ : the points of PG(2, qn) different from N ,
L′′ : the lines of PG(2, qn) containing N ,
C′′ : the q2n lines of PG(2, qn) not containing N , and

the q3n − q2n conics in PG(2, qn) having N as their nucleus.

This is the standard plane model for a Miquelian Laguerre plane of even order
qn.

The proof of the main theorem

We now prove a lemma which gives the connection between Properties (P1) and
(P2).

Lemma 2.3.21. Let H be a pseudo-hyperoval in PG(3n − 1, q), q = 2h, h > 1,
such that there is a subset O of qn + 1 elements of H inducing a Desarguesian
spread. If H does not satisfy Property (P1), then HD satisfies (P2) for every
element of OD.

Proof. Let H be a pseudo-hyperoval in PG(3n − 1, q), q = 2h, h > 1, such that
there is a subset O of qn + 1 elements of H inducing a Desarguesian spread.

Consider a fixed element E1 of O, and take three other elements E2, E3, E4 of H,
where in the case that one of the chosen elements is the element in H \ O, we
put E4 = H \ O. If the hyperoval H does not satisfy property (P1), then clearly
H does not satisfy property (P1)(ii). Hence, there is some t < n, for which the
unique FRqt-subplane through E1, E2, E3, E4 in the unique Desarguesian spread
D through S1 (seen in 〈E3, E4〉) and R(E1, E2, 〈E1, E2〉 ∩ 〈E3, E4〉) is crowded.
Dualising, we see that the element ED1 satisfies (P2)(i) since S1 is Desarguesian if
and only if S ′1 is Desarguesian (by Lemma 2.3.19). Since the unique FRqt -subplane
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through E1, E2, E3, E4 in D is crowded, by dualising it follows that the unique dual
FRqt-subplane through ED1 , E

D
2 , E

D
3 , E

D
4 in the dual Desarguesian spread DD is

crowded.

Theorem 2.3.22. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian, then
O is elementary.

Proof. By Theorem 2.3.1, consider the unique pseudo-hyperoval H extending O.
Clearly, H satisfies the conditions of Lemma 2.3.21. This implies that either H
satisfies Property (P1), and then the statement follows from Theorem 2.3.15 (and
the fact that a subset of an elementary set is elementary), or H satisfies Property
(P2) for every element of O. Moreover, if n is prime, Conjecture 2.3.17 is true by
Theorem 2.3.18, so the assumptions of Lemma 2.3.20 hold for H and every element
E of the subset O of H. By Lemmas 2.3.20 and 2.3.13, H is a pseudo-hyperconic
with E corresponding to the nucleus N of a conic O (hence O is elementary). Note
that only for q = 4 this possibility can occur. When q > 4 it is impossible that
the set (O ∪ {N}) \ {P}, where P is a point of O, is again a conic.

As a corollary, we state a similar statement for pseudo-hyperovals.

Corollary 2.3.23. Let H be a pseudo-hyperoval in PG(3n− 1, q), q = 2h, h > 1,
n prime, such that the spread induced by qn + 1 elements of H is Desarguesian,
then H is elementary.

Proof. The subset O of elements inducing a Desarguesian spread is an elementary
pseudo-oval by Theorem 2.3.22, suppose O is the field reduced oval O. There is a
unique element extending O to a pseudo-hyperoval, so H\O must be the element
corresponding to the unique point of PG(2, qn) extending O to a hyperoval.

2.3.3 A corollary in terms of Laguerre planes

Lemma 2.3.24. A point P of an elation Laguerre plane L = L(OD), where OD is
a dual pseudo-oval in PG(3n−1, q), admits a Desarguesian derivation if and only if
the spread S, induced by the unique line of L(OD) containing P , is Desarguesian.

Proof. Let P be a point of L, then P is a 2n-space through an element ED of OD.
The derived affine plane of order qn at the point P of L consists of point set P ′
and line set L′ obtained as follows:
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P ′ : the 2n-spaces in PG(3n, q) meeting H∞ in an element of OD \ {ED},
L′ : the elements of OD \ {ED} and the affine points in P .

Suppose Sp is the partial (n− 1)-spread in ED obtained by intersections with the
elements of OD \ {ED}; let S be its unique extension to a spread. The derived
affine plane can be represented in the 2n-space P as follows:

P ′ : the n-spaces in P intersecting ED in an element of Sp,
L′ : the elements of Sp and the affine points in P .

The affine plane (P ′,L′) clearly extends to a projective plane by adding the element
in S \Sp as the line at infinity and adding ED and the qn n-spaces in P containing
S \ Sp as the points at infinity. This projective plane is the dual of the plane
obtained from the (projective) André/Bruck-Bose representation starting from S
and hence, is Desarguesian if and only if S is Desarguesian.

If L is a Laguerre plane of odd order, then a result of Chen and Kaerlein [38] states
that the existence of one point admitting a Desarguesian derivation forces L to be
Miquelian. The following theorem, which is a consequence of our main theorem,
gives a similar result in the case of even order Laguerre planes, which is of course
not as strong as the result of [38].

Theorem 2.3.25. Let L be a Laguerre plane of order qn with kernel K, |K| ≥
q3n(q − 1), n prime, q > 2 even. Suppose that for every line of L, there exists
a point on that line that admits a Desarguesian derivation, then L is ovoidal and
|K| = q3n(qn − 1).

Proof. From the hypothesis on the size of K and Lemma 2.3.7, we find that q3n

divides the order of T . Hence, by [106, Theorem 2], L is an elation Laguerre
plane. By Theorem 2.3.9, L can be constructed from a dual pseudo-oval OD in
PG(3n− 1, q), n prime. From Lemma 2.3.24, we obtain that for every element of
OD the induced spread is Desarguesian. By Theorem 2.3.22, OD is elementary.
By Theorem 2.3.11 this implies that L is ovoidal. Finally, this implies by Lemma
2.3.7 that |K| = q3n(qn − 1).

2.4 Characterisations of good (weak) eggs

In this section, we will use the theory of Desarguesian spreads to investigate el-
ementary pseudo-caps and good (weak) eggs. Many previous proofs and charac-
terisations of eggs rely on the connection with eggs and translation generalised
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quadrangles [115]. It is our aim to study eggs from a purely geometric perspective,
without using neither this connection nor coordinates.

In Subsection 2.4.1 we obtain a connection between good eggs and Desarguesian
spreads. This link will enable us to reprove, improve or extend known results in
Subsections 2.4.2 and 2.4.3.

Lavrauw [73] characterises elementary eggs in odd characteristic as good eggs for
which there exists a (3n−1)-space, that contains at least 5 elements of the egg, but
is disjoint from the good element. In Subsection 2.4.2, we provide an adaptation of
this characterisation for weak eggs in odd and even characteristic. As a corollary,
we obtain a direct geometric proof for the theorem of Lavrauw.

Thas, Thas and Van Maldeghem [115] showed that an egg in PG(4n−1, q), q odd,
with two good elements is elementary. By a short combinatorial argument, we
show in Subsection 2.4.3 that a similar statement holds for large pseudo-caps, in
odd and even characteristic. As a corollary, this improves and extends the result of
[115] where one needs at least four good elements of an egg in even characteristic
to obtain the same conclusion.

Note that an elementary pseudo-ovoid that arises from applying field reduction to
an elliptic quadric is called classical.

2.4.1 Good eggs and Desarguesian spreads

A (weak) egg E in PG(2n+m− 1, q), m > n, is good at an element E ∈ E if every
(3n− 1)-space containing E and at least two other elements of E , contains exactly
qn + 1 elements of E . A (weak) egg that has at least one good element is called a
good (weak) egg. If E is good at E, then for any two elements E1, E2 ∈ E\{E}
the (3n− 1)-space 〈E,E1, E2〉 intersects E in a pseudo-oval.

Lemma 2.4.1. Good weak eggs in PG(2n+m−1, q) can only exist if n is a divisor
of m. Good eggs only exist in PG(4n− 1, q).

Proof. Consider a weak egg E of PG(2n+m−1, q), m > n, good at an element E ∈
E . Consider a second element E1 ∈ E\{E}. For every element E2 ∈ E \ {E,E1},
the (3n− 1)-space 〈E,E1, E2〉 intersects E in a pseudo-oval. In this way we find a
set T of (3n−1)-spaces containing 〈E,E1〉, such that each space of T intersects E
in a pseudo-oval. Every two spaces in T meet exactly in 〈E,E1〉 and E is the union
of the pseudo-ovals {T ∩ E | T ∈ T }. The set T consists of qm−1

qn−1 (3n− 1)-spaces;
as qn − 1 has to be a divisor of qm − 1, it follows that n is a divisor of m.
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Suppose E is an egg. For q even, by Theorem 2.1.3, eggs only exist in PG(4n−1, q)
(or PG(3n− 1, q)). Consider now a good egg of PG(2n+m− 1, q), q odd, where
m is a multiple of n. By Theorem 2.1.3, m = a+1

a n, for some odd integer a, so we
conclude that m = 2n.

We will show that the good elements of an egg are exactly those inducing a partial
spread which is extendable to a Desarguesian spread. Part (i) of the following
theorem, for E an egg, is mentioned in [115, Remark 5.1.7].

Theorem 2.4.2.

(i) If a weak egg E in PG(2n+m−1, q) is good at an element E, then E induces
a partial spread which extends to a Desarguesian spread.

(ii) Let E be a weak egg in PG(2n+m− 1, q) for q odd and an egg in PG(2n+
m− 1, q) for q even. If an element E ∈ E induces a partial spread extending
to a Desarguesian spread, then E is good at E.

Proof. (i) Suppose E is a weak egg which is good at E. Consider the partial spread
S of PG(n+m− 1, q) of size qm induced by E. Because E is good at E, any two
elements of S span a (2n−1)-space which contains a partial spread of qn elements
of S. This partial spread has deficiency 1, so extends uniquely to a spread by one
(n− 1)-space (by [17, Theorem 4]).

Consider three elements S1, S2, S3 ∈ S not lying in the same (2n−1)-space, hence
spanning a (3n−1)-space π. There are qn elements of S contained in 〈S2, S3〉. For
every element R of S ∩ 〈S2, S3〉, the (2n− 1)-space 〈S1, R〉 contains qn elements of
S. Hence, there are qn (2n−1)-spaces of π containing S1 and qn−1 other elements
of S. Similarly, there are qn (2n − 1)-spaces of π containing S2 and qn − 1 other
elements of S. Since π has dimension 3n−1, two such distinct (2n−1)-spaces, one
containing S1 and the other containing S2, intersect in at least an (n − 1)-space,
hence, in exactly an (n − 1)-space. This space is either an element of S or the
(n− 1)-space which extends both of them to a spread.

It follows that there are q2n elements of S contained in π and if an element of S
intersects π, then it is contained in π. Hence, if 〈S2, S3〉 meets a (2n − 1)-space
spanned by S1 and an other element of S, then they meet in an (n− 1)-space.

As S1, S2, S3 were chosen randomly, it follows in general that if two distinct (2n−
1)-spaces spanned by elements of S intersect, then they meet in an (n− 1)-space.
They meet either in an (n − 1)-space of S or in the (n − 1)-space which extends
the partial spreads of both (2n − 1)-spaces to a spread. Since S has size qm and
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spans PG(n+m−1, q), we see that S can be uniquely extended to a spread which
is normal, thus Desarguesian.

(ii) Now let E be an egg if q is even and a weak egg if q is odd. Suppose E induces
a partial spread S of size qm which extends to a Desarguesian (n− 1)-spread D of
PG(n + m − 1, q), hence m = kn for some k > 1. There are qm−1

qn−1 elements of D
not contained in S.

When E is an egg, the elements of D\S span an (m − 1)-space, corresponding to
TE . Hence, any (2n−1)-space spanned by two elements of S contains qn elements
of S and one element D\S. So, E is good at E.

Suppose E is a weak egg, with q odd. As q is odd, no (3n − 1)-space intersects
E in a pseudo-hyperoval. Hence, any (3n − 1)-space containing E intersects E in
at most qn + 1 elements, so any (2n− 1)-space spanned by two elements of S can
contain at most qn elements of S. Consequently, any such space must contain at
least one element of D\S.

By field reduction, the elements of the Desarguesian spread D of PG(n+m− 1, q)
are in one-to-one correspondence with the points of PG(mn , q

n). Any (2n − 1)-
space spanned by two elements of D must contain at least one element of D\S.
Hence, the points corresponding to D\S form a line-blocking set of PG(mn , q

n).
Since |D\S| = qm−1

qn−1 , from [22, Theorem 2] it follows that the points corresponding
to D\S are the points of an (mn − 1)-space, hence the elements of D\S span an
(m− 1)-space. As before, it follows that E is good at E.

The following corollary, for E an egg, was also mentioned in [113, Theorem 4.3.4]
in terms of translation generalised quadrangles.

Corollary 2.4.3. If a weak egg E, q odd, is good at an element E, then every
pseudo-oval of E containing E is a pseudo-conic.

Proof. Let Π be an (n + m − 1)-space disjoint from E. By Theorem 2.4.2, the
partial spread E/E in Π extends to a Desarguesian spread. Consider a pseudo-
oval O of E containing E. The qn elements of O/E are contained in E/E and thus
extend to a Desarguesian spread of the (2n− 1)-space 〈O〉 ∩Π.

The element E of the pseudo-oval O induces a partial spread O/E which extends
to a Desarguesian spread, hence, by Theorem 2.3.2, the statement follows.
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2.4.2 A geometric proof of a Theorem of Lavrauw

In this section, we obtain a characterisation of good weak eggs. We need the
following lemma stating that every good element of a weak egg has a tangent
space.

Lemma 2.4.4. If a weak egg E in PG(2n + m − 1, q) is good at an element E,
then there exists a unique (n+m− 1)-space T , such that T ∩ E = {E}.

Proof. Consider an (n + m − 1)-space Σ disjoint from E. If E is good at E, the
element E induces a partial spread S = E/E which extends to a Desarguesian
spread D of Σ. As E is good at E, a (3n − 1)-space containing E and two other
elements intersects E in qn + 1 elements. Hence, for both q odd and q even, by
following the proof of Theorem 2.4.2, part (ii), the elements of D\S span and cover
an (m − 1)-space. It is clear that the (n + m − 1)-space T = 〈E,D\S〉 satisfies
T ∩ E = E.

In [74] the authors proved that every egg of PG(7, 2) arises from an elliptic quadric
Q−(3, 4) by field reduction. Hence, in the following characterisation, when E is an
egg in PG(4n− 1, q), the condition qn > 4 is essentially not a restriction.

Theorem 2.4.5. Suppose n > 1, qn > 4, consider a weak egg E in PG(4n− 1, q).
Then E is elementary if and only if the following three properties hold:

• E is good at an element E,
• there exists a (3n− 1)-space, disjoint from E, containing at least 5 elements
E1, E2, E3, E4, E5 of E,

• all pseudo-ovals of E containing {E,E1}, {E,E2} or {E,E3} are elementary.

Proof. Clearly, if an egg is elementary, the statement is valid.

For the converse, consider the (3n−1)-space Π containing 5 elements E1, E2, E3, E4,

E5 of E , but not the element E. As E is good at E, the element E induces a partial
spread which extends to a Desarguesian (n − 1)-spread D0 in Π, which contains
Ei, i = 1, . . . , 5.

By Lemma 2.4.4, there exists a unique (3n− 1)-space T , such that T ∩ E = {E}.
When E is an egg, this space corresponds to the tangent space TE .

Consider the two (n − 1)-spaces F = 〈E1, E5〉 ∩ 〈E2, E4〉 and F ′ = 〈E1, E5〉 ∩
〈E3, E4〉. Both F and F ′ are contained in D0, but at most one of them can be
contained in the (2n−1)-space Π∩T . Suppose F is not contained in T (note that
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this choice has no further impact as E2 and E3 play the same role). This implies
that the (2n−1)-space 〈E,F 〉 contains an element E6 ∈ E\{E}. By Theorem 2.2.5,
there exists a unique Desarguesian spread D containing E, E6 and all elements of
D0. We will prove that E is contained in D.

The (3n− 1)-space 〈E,E1, E5〉 intersects E in a pseudo-oval O1, and the (3n− 1)-
space 〈E,E2, E4〉 intersects E in a pseudo-oval O2. Clearly, O1 and O2 both
contain E6.

By assumption, O1 and O2 are elementary pseudo-ovals. The Desarguesian (n−1)-
spread in 〈E,E1, E5〉 containing O1 contains E, E6 and the qn + 1 elements of
D0 ∩ 〈E1, E5〉. It follows that this Desarguesian spread is contained in D, hence
O1 is contained in D. Analogously, the pseudo-oval O2 is also contained in D.

There are qn − 2 pseudo-ovals O of E , containing {E,E3}, but not E6, such that
the (3n−1)-space 〈O〉 does not contain the (n−1)-space T ∩〈O1〉, nor the (n−1)-
space T ∩ 〈O2〉. Take such an oval O, then there is an element E7 of E \ {E}
contained in 〈O〉 ∩ 〈O1〉, hence, E7 ∈ O ∩O1. Likewise, there is an element E8 of
E \ {E} contained in O ∩O2.

By assumption, O is elementary; let SO be the Desarguesian (n− 1)-spread con-
taining O. As E7 and E8 are contained in D, the Desarguesian spread D inter-
sects 〈E7, E8〉 in a Desarguesian spread. Let P be an element of D ∩ 〈E7, E8〉,
not contained in T , then 〈E,P 〉 meets Π in an element of D, and hence, 〈E,P 〉
contains an element P ′ of E \ E. As 〈E,P 〉 is contained in 〈O〉, P ′ is an element
of O, and hence also of SO. Since P ′, E,E7, E8 are contained in SO, the element
P = 〈E,P ′〉 ∩ 〈E7, E8〉 is an element of SO. This implies that D ∩ 〈E7, E8〉 and
SO ∩ 〈E7, E8〉 have at least qn elements in common, which implies in turn that
they have all their elements in common. We conclude that SO contains E, E3
and the qn + 1 elements of D ∩ 〈E7, E8〉, hence SO and thus all elements of O are
contained in D.

Now, consider an element E9 ∈ E , not contained in O1, O2 or any of the previously
considered qn − 2 pseudo-ovals O. Look at the pseudo-oval O′ = 〈E,E1, E9〉 ∩ E
and the pseudo-oval O′′ = 〈E,E2, E9〉 ∩ E . At least one of them does not contain
E3. Suppose O′ does not contain E3 (the proof goes analogously if O′′ does not
contain E3). For at most one of the qn − 2 pseudo-ovals O containing {E,E3}
we have 〈O〉 ∩ 〈O′〉 ∈ T . Hence, since (qn − 2) − 1 ≥ 2, we can find at least two
distinct elementary pseudo-ovals containing {E,E3} that are contained in D and
have an element E10 and E11 respectively in common with O′.

Let SO′ be the Desarguesian (n − 1)-spread containing O′. As E10 and E11 are
elements of D the same argument as before shows that all but one element of the
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Desarguesian spread D ∩ 〈E10, E11〉 can be written as the intersection of 〈E,P ′′〉
with 〈E10, E11〉 for some P ′′ in O′. It follows that SO′ contains E,E1 and the
qn+1 elements of D∩〈E10, E11〉, hence, that SO′ is contained in D. In particular,
the element E9 is contained in D, which implies that E ⊂ D. We obtain that E is
elementary and more specifically, a field reduced ovoid.

When E is good at E and q is odd, by Corollary 2.4.3 all pseudo-ovals of E con-
taining E are pseudo-conics. From this we obtain the following corollary. The
same statement, where E is an egg, was proven in [73, Theorem 3.2] using coordi-
nates. For E an egg, this was also shown in [115, Theorem 5.2.3] where a different
proof was obtained independently, relying on a technical theorem concerning the
Fqn -extension of the egg elements. We have now obtained a direct geometric proof.

Corollary 2.4.6. A weak egg E of PG(4n− 1, q), q odd, n > 1, is classical if and
only if it is good at an element E and there exists a (3n− 1)-space, not containing
E, with at least 5 elements of E.

2.4.3 Eggs with two good elements

We recall the following theorem from [115].

Theorem 2.4.7. [115, Theorem 5.1.12] If q is odd and an egg E in PG(4n− 1, q)
has at least two good elements, then E is classical. If q is even and an egg E in
PG(4n− 1, q) has at least four good elements, not contained in a common pseudo-
oval on E, then E is elementary.

It was an open problem whether, for q even, being good at two elements is sufficient
to be elementary, this was posed as Problem A.5.6 in [115]. We will give an
affirmative answer to this question in a more general setting, namely in terms of
pseudo-caps.

Lemma 2.4.8. Consider a pseudo-cap E of PG(4n− 1, q) containing an element
E that induces a partial spread which extends to a Desarguesian spread. If Π is a
(3n − 1)-space spanned by E and two other elements of E, then every element of
E is either disjoint from Π or contained in Π.

Proof. Let Σ be a (3n − 1)-space skew from E and consider the induced partial
spread E/E in Σ. If F is an element of E which meets Π, then the projection
F/E of F from E onto Σ is an element of E/E which meets the space Π/E.
By assumption, the space Π/E is spanned by spread elements of a partial spread
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extending to a Desarguesian spread. Hence, since a Desarguesian spread is normal,
F/E is contained in Π/E. It follows that, since Π contains E, the element F is
contained in Π.

Theorem 2.4.9. Consider a pseudo-cap E in PG(4n − 1, q), q > 2, with |E| >
qn+k + qn − qk + 1, q odd, and |E| > qn+k + qn + 2, q even, where k is the largest
divisor of n with k 6= n. The pseudo-cap E is elementary if and only if two of its
elements induce a partial spread which extends to a Desarguesian spread.

Proof. If E is elementary, then the elements of E are contained in a Desarguesian
spread of PG(4n − 1, q), so every element of E induces a partial spread which
extends to a Desarguesian spread.

Now suppose that E contains two distinct elements E1, E2 that induce a par-
tial spread which extends to a Desarguesian spread. Since |E| > qn + 2, using
Lemma 2.4.8, we can find two elements E3, E4 ∈ E such that 〈E1, E2, E3, E4〉
spans PG(4n− 1, q).

The partial spread induced by E1 in the space 〈E2, E3, E4〉 can be extended to
a Desarguesian spread D1. Analogously, the partial spread induced by E2 in the
space 〈E1, E3, E4〉 can be extended to a Desarguesian spread D2. Since E3 and
E4 are elements of the spreads D1 and D2, the Desarguesian spreads D1 and D2
intersect the (2n−1)-space 〈E3, E4〉 each in a Desarguesian spread, say S1 and S2
respectively.

Take an element E ∈ E\{E1, E2} and consider the (3n− 1)-subspace 〈E1, E2, E〉.
From Lemma 2.4.8 it follows that any element of E is either contained in or disjoint
from 〈E1, E2, E〉. By considering the elements of E \ {E1, E2}, we find a set T of
(3n − 1)-spaces containing 〈E1, E2〉, such that each space of T intersects E in a
pseudo-cap. Every two spaces in T meet exactly in 〈E1, E2〉 and E is the union
of the pseudo-caps {T ∩ E | T ∈ T }. The set T intersects 〈E3, E4〉 in a partial
(n− 1)-spread P.

Let P be an element of P, then 〈P,E1, E2〉 is a (3n− 1)-space containing at least
one element E of E\{E1, E2}. The projection E′ of E from E1 onto 〈E2, E3, E4〉
is contained in D1. We obtain that P = 〈E′, E2〉 ∩ 〈E3, E4〉, and since the ele-
ments E′, E2, E3, E4 are contained in D1, this implies that P is contained in D1.
Moreover, since P ⊂ 〈E3, E4〉, the element P is contained in S1. Similarly, we
obtain that P is contained in S2 and we conclude that every element of P must
be contained in both S1 and S2.

Suppose that k is the largest divisor of n with k 6= n. The pseudo-cap E has size
|E| > (qn − ε)(qk + 1) + 2 and every (3n − 1)-space of T contains at most qn − ε
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elements different from E1, E2, where ε = 1 for q odd and ε = 0 for q even. By the
pigeonhole principle, it follows that |P| ≥ qk+2. Hence, the Desarguesian spreads
S1 and S2 have at least qk + 2 elements in common, where k is the largest divisor
of n with k 6= n. As q > 2, by Lemma 2.2.7, we find that S1 = S2.

By Theorem 2.2.5, consider the unique Desarguesian spread D of PG(4n − 1, q)
containing all elements of D1 and two distinct elements of D2\D1. It is clear that,
since S1 = S2, the spread D contains all elements of D2.

Every element of E , not in D1 ∪ D2, arises as the intersection 〈E1, X〉 ∩ 〈E2, Y 〉
for some X ∈ D1 ⊂ D and Y ∈ D2 ⊂ D, hence, since a Desarguesian spread is
normal, every element of E belongs to D. It follows that E is elementary.

We obtain the following corollary which improves [115, Theorem 5.1.12].

Corollary 2.4.10. A weak egg in PG(4n − 1, q) which is good at two distinct
elements is elementary.

Proof. A weak egg is a pseudo-cap of size q2n + 1 in PG(4n− 1, q). By Theorem
2.4.2, if the weak egg is good at two elements, these elements induce a partial
spread which extends to a Desarguesian spread. We can repeat the proof of The-
orem 2.4.9. Now the partial spread P has size qn + 1, so the conclusion S1 = S2
follows immediately. We do not require Lemma 2.2.7, hence the restriction q > 2
can be dropped.

2.4.4 A corollary in terms of translation generalised quad-
rangles

Definition 2.4.11. A generalised quadrangle (GQ) of order (s, t), s, t > 1, is an
incidence structure of points and lines satisfying the following axioms:

• every line has exactly s+ 1 points,
• through every point, there are exactly t+ 1 lines,
• if P is a point, not on the line L, then there is exactly one line through P

which meets L non-trivially.

If a generalised quadrangle S has an abelian subgroup T ⊆ Aut(S) fixing all lines
through a specific point P and acting regularly on all points not collinear with P ,
then we call S a translation generalised quadrangle (TGQ) with base point P . The
kernel of a TGQ is a field with multiplicative group isomorphic to the subgroup
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of Aut(S) fixing all lines through the base point P and fixing all lines through a
given point not collinear with P .

From every egg E in Σ∞ = PG(2n + m − 1, q) we can construct a generalised
quadrangle (P,L) as follows. Embed Σ∞ as a hyperplane at infinity of PG(2n +
m, q).

P : (i) the affine points of PG(2n+m, q), i.e. not lying in Σ∞,
(ii) the (n+m)-spaces meeting Σ∞ in TE for some E ∈ E ,

(iii) the symbol (∞).
L : (a) the n-spaces meeting Σ∞ in an element of E ,

(b) the elements of E .

Incidence is defined as follows.

• A point of type (i) is incident with the lines of type (a) through it.
• A point of type (ii) is incident with the lines of type (a) it contains and the

line of type (b) it contains.
• The point (∞) is incident with all lines of type (b).

The obtained generalised quadrangle is denoted as T (E) and is a TGQ with base
point (∞). Moreover, in [89, Theorem 8.7.1], it is proven that every TGQ of order
(qn, qm), where Fq is a subfield of its kernel, is isomorphic to T (E) for an egg E of
PG(2n+m− 1, q).

When n = m = 1, the egg is an oval O of PG(2, q) and the TGQ is notated
by T2(O). When n = 1 and m = 2, the egg is an ovoid O of PG(3, q) and the
construction above is the construction T3(O) of Tits (see [115]).

Lemma 2.4.12. Let T = T (E) be a TGQ of order (qn, q2n) with base point (∞).
Let m1,m2,m3 be three distinct lines through (∞), and let E1, E2, E3 denote the
elements of E corresponding to m1,m2,m3 respectively. Then there is a subquad-
rangle of order qn through m1,m2,m3 if and only if the (3n−1)-dimensional space
〈E1, E2, E3〉 contains exactly qn + 1 elements of E.

Proof. Suppose that the (3n−1)-space Σ = 〈E1, E2, E3〉 contains a set O of exactly
qn+1 elements of E , then it is clear that T (E) defines the incidence structure T (O)
in a 3n-space through Σ. The structure T (O) is a generalised quadrangle of order
qn, forming a subquadrangle of T (E) and containing the lines m1,m2,m3.

On the other hand, suppose that there is a subquadrangle T ′ of order qn containing
m1,m2,m3, where the lines m1,m2,m3 are incident with (∞). This implies that
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the point (∞) is in T ′, and since (∞) lies only on lines of type (b) (i.e. the lines
corresponding to elements of E), we deduce that T ′ contains exactly qn + 1 lines
of type (b), among which the lines m1,m2 and m3. Let {E1, . . . , Eqn+1} be the
egg elements corresponding to these lines. This means that there are (qn + 1)q2n

lines in T ′ of type (a), containing in total (qn + 1)q2n(qn)/(qn + 1) = q3n points
of type (i) (i.e. affine points).

Each (n− 1)-space Ej is contained in q2n n-spaces corresponding to a line of type
(a) of T ′ and every affine point is contained in exactly one n-space containing Ej .
Let Pj be a point of the space Ej , then we see that the q3n affine points of T ′ lie
on q2n lines through Pj . As this holds for every j ∈ {1, . . . , qn+ 1}, it is clear that
the q3n affine points of T ′ are contained in a 3n-space. This in turn implies that
the elements E1, . . . , Eqn+1 are contained in a (3n−1)-space, namely 〈E1, E2, E3〉.
Hence, this space contains at least qn + 1 elements of E . Since E is an egg, it is
not possible that a (3n− 1)-space contains more than qn + 1 elements of E , which
concludes the proof.

Lemma 2.4.13. Let T = T (E) be a TGQ of order (qn, q2n) with base point (∞).
Let ` be a line through (∞) and E` the element of E corresponding to `. The egg E
is good at E` if and only if for every two distinct lines m1,m2 through (∞), where
m1,m2 6= `, there is a subquadrangle of order qn through m1,m2, `.

Proof. This follows immediately from Lemma 2.4.12 and the definition of being
good at an element.

We are now ready to state the promised characterisation of the translation gener-
alised quadrangle T3(O), which follows from Corollary 2.4.10.

Theorem 2.4.14. Let T be a TGQ of order (qn, q2n) with base point (∞). Suppose
that T contains two distinct lines `i, i = 1, 2, through (∞), such that for every
two distinct lines m1,m2 through (∞), where m1,m2 6= `i, i = 1, 2, there is a
subquadrangle of order qn through m1,m2, `i, i = 1, 2, then T is isomorphic to
T3(O), where O is an ovoid of PG(3, qn).
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3
A geometric characterisation of

Desarguesian spreads

We provide a characterisation of (n − 1)-spreads in PG(rn − 1, q), r > 2, that
have r normal elements in general position. From this, we obtain a geometric
characterisation of Desarguesian (n− 1)-spreads in PG(rn− 1, q), r > 2.

These results were obtained in collaboration with J. Sheekey [96].

3.1 Introduction

In this chapter, we study spreads in finite projective spaces, specifically Desargue-
sian spreads.

Desarguesian spreads play an important role in finite geometries; for example in
field reduction and linear (blocking) sets [75], eggs and TGQ’s [3]. Even so, few
geometric characterisations are known.

A geometric characterisation of Desarguesian (n−1)-spreads in PG(rn−1, q), r >
2, was obtained by Beutelspacher and Ueberberg in [18, Corollary] by considering
the intersection of spread elements with all r(n− 1)-subspaces. Nevertheless, the
two most famous and important characterisations of Desarguesian spreads arise
from their correspondence with regular (for q > 2) and normal spreads (for r > 2).

We will focus on the normality of Desarguesian spreads, by introducing the notion
of a normal element of a spread. We say that an element E of an (n − 1)-spread
S of PG(rn− 1, q) is normal if S induces a spread in the (2n− 1)-space spanned
by E and any other element of S. Clearly, by definition, a spread is normal if and
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only if all of its elements are normal. We consider the following questions:

Can we characterise a spread given the configuration of its normal ele-
ments?

How many normal elements does a spread need, to ensure that it is nor-
mal/Desarguesian?

This chapter is organised as follows.

We introduce the necessary preliminaries in Section 3.2.

In Section 3.3, we obtain a characterisation of (n − 1)-spreads in PG(rn − 1, q)
having r normal elements in general position. We will see in Section 3.4 that,
for some n and q, these spreads must be Desarguesian. Moreover, we obtain a
characterisation of Desarguesian spreads as those having at least r + 1 normal
elements in general position.

Lastly, in Section 3.5, we consider spreads containing normal elements, not in
general postion, but contained in the same (2n− 1)-space.

3.2 Preliminaries

3.2.1 Choosing the coordinates

Definition 3.2.1. An element E of an (n−1)-spread S of PG(rn−1, q) is a normal
element of S if, for every F ∈ S \ {E}, the (2n− 1)-space 〈E,F 〉 is partitioned by
elements of S. Equivalently, this means that S/E defines an (n− 1)-spread in the
quotient space PG((r − 1)n− 1, q) ∼= PG(rn− 1, q)/E.

A spread is called normal when all its elements are normal elements. By [10], we
know that an (n− 1)-spread of PG(rn− 1, q), r > 2, is normal if and only if it is
Desarguesian.

We will use the following coordinates. A point P of PG(r − 1, qn) is denoted
by (a1, a2, . . . , ar)Fqn , with ai ∈ Fqn . Every point of PG(rn − 1, q) is writ-
ten as (a1, . . . , ar)Fq , with ai ∈ Fqn . When applying field reduction, a point
(a1, . . . , ar)Fqn in PG(r − 1, qn) corresponds to the (n− 1)-space

{(a1x, . . . , arx)Fq
| x ∈ Fqn}

of PG(rn− 1, q).

54



3.2. Preliminaries

Moreover, every (n− 1)-space in PG(rn− 1, q) can be represented in the following
way. Let a1, . . . , ar be Fq-linear maps from Fqn to itself. Then the set

{(a1(x), . . . , ar(x))Fq | x ∈ Fqn}

corresponds to an (n − 1)-space of PG(rn − 1, q). When choosing a basis for
Fqn ∼= Fnq over Fq, the Fq-linear map ai, i = 1, . . . , r, is represented by an n × n-
matrix Ai, i = 1, . . . , r, over Fq acting on row vectors of Fnq from the right. We
abuse notation and write the corresponding (n− 1)-space of PG(rn− 1, q) as

(A1, . . . , Ar) := {(xA1, . . . , xAr)Fq
| x ∈ Fnq }.

Recall that a set of (n− 1)-spaces in PG(kn− 1, q) such that any k span the full
space, is called a set of (n− 1)-spaces in general position.
Note that for any set K of k+1 (n−1)-spaces Si, i = 0, . . . , k, of PG(kn−1, q), k >
2, in general position, there exists a field reduction map F from PG(k − 1, qn) to
PG(kn−1, q), such that K is contained in the Desarguesian spread of PG(kn−1, q)
defined by F . This means that K is the field reduction of a frame in PG(k−1, qn).
This is equivalent with saying that we can choose coordinates for PG(kn − 1, q)
such that

K = {S0 = (I, I, I, . . . , I, I), S1 = (I, 0, 0, . . . , 0, 0),
S2 = (0, I, 0, . . . , 0, 0), . . . , Sk = (0, 0, 0, . . . , 0, I)} ,

where I denotes the identity map or the identity matrix.

3.2.2 Quasifields and spread sets

André [2] and Bruck and Bose [24] obtained that finite translation planes and
(n− 1)-spreads of PG(2n− 1, q) are equivalent objects. We will now also consider
their correspondence with finite quasifields and matrix spread sets. For a more
general overview than given here, we refer to [25, 47, 71].

Definition 3.2.2. A finite (right) quasifield (Q,+, ∗) is a structure, where + and
∗ are binary operations on Q, satisfying the following axioms:

(i) (Q,+) is a group, with identity element 0,
(ii) (Q0 = Q\{0}, ∗) is a multiplicative loop with identity 1, i.e. ∀a ∈ Q : 1∗a =

a ∗ 1 = a and ∀a, b ∈ Q0 : a ∗ x = b and y ∗ a = b have unique solutions
x, y ∈ Q,
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(iii) right distributivity: ∀a, b, c ∈ Q : (a+ b) ∗ c = a ∗ c+ b ∗ c,
(iv) ∀a, b, c ∈ Q, a 6= b : x ∗ a = x ∗ b+ c has a unique solution x ∈ Q.

From now on, we will omit the term finite.

Definition 3.2.3. The kernel K(Q) of a quasifield (Q,+, ∗) is the set of all k ∈ Q
satisfying

∀x, y ∈ Q : k ∗ (x ∗ y) = (k ∗ x) ∗ y, and
∀x, y ∈ Q : k ∗ (x+ y) = k ∗ x+ k ∗ y.

Note that the kernel K(Q) of a quasifield Q is a field.

Definition 3.2.4. A (matrix) spread set is a family M of qn n× n-matrices over
Fq such that, for every two distinct A,B ∈M, the matrix A−B is non-singular.

Given a spread set M, consider

S(M) = {EA | A ∈M} ∪ {E∞} ,

where

EA = (I, A) = {(x, xA)Fq
| x ∈ Fnq }, and

E∞ = (0, I) = {(0, x)Fq
| x ∈ Fnq }.

One can check that S(M) is an (n− 1)-spread of PG(2n− 1, q). Moreover, every
(n− 1)-spread of PG(2n− 1, q) is PΓL-equivalent to a spread of the form S(M),
for some spread set M, such that the zero-matrix 0 and identity matrix I are both
contained in M (see [24, Section 5]).

Consider now the vector space V = V (n, q) and take a non-zero row vector e of V .
For every vector y ∈ V , there exists a unique matrix My ∈M such that y = eMy.
Define multiplication ∗ in V on row vectors by

x ∗ y = xMy.

By [24, Section 6], using this multiplication and the original addition, V becomes
a right quasifield Qe(M) = (V,+, ∗), with Fq in its kernel. Conversely, given a
right quasifield Q with multiplication ∗ on V and Fq in its kernel, we can define a
spread set M(Q) = {My | y ∈ V }, where My is defined by ∀x ∈ V : xMy = x ∗ y.
Clearly, Q = Qe(M(Q)).
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Definition 3.2.5. A semifield is a right quasifield also satisfying left distribu-
tivity. A (right) nearfield Q is a (right) quasifield that satisfies associativity for
multiplication, i.e. ∀a, b, c ∈ Q : (a ∗ b) ∗ c = a ∗ (b ∗ c).

Note that a quasifield which is both a semifield and a nearfield is a (finite) field.

Theorem 3.2.6. [25, Section 11]

The quasifield Qe(M) is a nearfield if and only if M is closed under multiplication.

The quasifield Qe(M) is a semifield if and only if M is closed under addition.

We conclude with the following connections (see [47, 71]).

S is a nearfield spread ⇔ S ∼= S(M) with M
closed under multiplication;

S is a semifield spread ⇔ S ∼= S(M) with M
closed under addition;

S is a Desarguesian spread ⇔ S ∼= S(M) with M
closed under multiplication
and under addition.

Equivalent to the previous, we say M is a nearfield spread set, respectively semifield
spread set and Desarguesian spread set.

3.3 Spreads of PG(rn−1, q) containing r normal
elements in general position

We denote the points of PG(rn− 1, q) by {(x1, . . . , xr)Fq
| xi ∈ Fqn}. Consider a

spread set M, containing 0 and I. We define the following (n− 1)-spread

Sr(M) = {(A1, A2, . . . , Ar) | Ai ∈M, every first non-zero matrix Ak = I}

in PG(rn− 1, q).

If M is a nearfield spread set, then one can check that Sr(M) contains r normal el-
ements Si, i = 1, . . . , r, namely S1 = (I, 0, 0, . . . , 0), S2 = (0, I, 0, . . . , 0), . . . , Sr =
(0, 0, 0, . . . , 0, I). This follows since the (2n−1)-space 〈Si, (A1, A2, . . . , Ar)〉 is par-
titioned by the elements
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{(A1, . . . , Ai−1, B,Ai+1, . . . , Ar) | B ∈M} ∪ {Si}.

Moreover, in this case, since M is closed under multiplication, we can simplify
notation such that

Sr(M) = {(A1, A2, . . . , Ar) | Ai ∈M} .

Theorem 3.3.1. An (n − 1)-spread S in PG(rn − 1, q), r > 2, having r normal
elements in general position is PΓL-equivalent to Sr(M), for some nearfield spread
set M.

Proof. Suppose r = 3. Consider an (n − 1)-spread S of PG(3n − 1, q) having
normal elements S1, S2, S3 in general position. Without loss of generality, we may
assume that S1 = (I, 0, 0), S2 = (0, I, 0) and S3 = (0, 0, I). Moreover, we may also
assume that the element T = (I, I, I) is contained in S.
As S1, S2 and S3 are normal elements, the intersection of S with the (2n − 1)-
spaces 〈S2, S3〉, 〈S1, S2〉 and 〈S1, S3〉 are (n− 1)-spreads. Moreover, since T ∈ S,
by considering its projection, we obtain that the (n − 1)-spaces (0, I, I), (I, I, 0)
and (I, 0, I) are all contained in S. Hence, there exist spread sets M1,M2 and
M3 (all containing 0 and I) such that

S ∩ 〈S2, S3〉 = {PA = (0, A, I) | A ∈M1} ∪ {P∞ = (0, I, 0)},
S ∩ 〈S1, S2〉 = {QB = (I,B, 0) | B ∈M2} ∪ {Q∞ = (0, I, 0)},
S ∩ 〈S1, S3〉 = {RC = (C, 0, I) | C ∈M3} ∪ {R∞ = (I, 0, 0)}.

Note that S2 = P∞ = Q∞ and S1 = R∞. As S2 and S3 are normal elements of S,
we can obtain every element of S, not contained in 〈S2, S3〉, as

(I,B,C−1) = 〈S2, RC〉 ∩ 〈S3, QB〉,

with B ∈M2 and C ∈M3. For any B ∈M2 and C ∈M3, consider the following
projections of elements of S from S1 onto 〈S2, S3〉:

(0, B, I) = 〈S1, (I,B, I)〉 ∩ 〈S2, S3〉,
(0, C, I) = 〈S1, (I, I, C−1)〉 ∩ 〈S2, S3〉,

(0, BC, I) = 〈S1, (I,B,C−1)〉 ∩ 〈S2, S3〉.

As S1 is a normal element, these subspaces are all contained in S. From the first
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two, it follows that M2 and M3 are contained in M1, hence M1 = M2 = M3.
Using the third, we find that BC ∈M1, i.e. M1 is closed under multiplication. By
Theorem 3.2.6, we conclude that the spread S∩〈S2, S3〉 (and thus also S∩〈S1, S2〉
and S ∩ 〈S1, S3〉) is a nearfield spread.
The result now follows for r = 3, since we have obtained that

S = S3(M1) = {(A1, A2, A3) | Ai ∈M1} ,

where M1 is a nearfield spread set.
By induction, suppose the result is true for r = t − 1 ≥ 3. We will now prove it
is true for r = t. Consider an (n − 1)-spread S of PG(tn − 1, q) having t normal
elements S1, . . . , St in general position. Without loss of generality, we may assume

S1 = (I, 0, 0, . . . , 0), S2 = (0, I, 0, . . . , 0), . . . , St = (0, 0, 0, . . . , 0, I).

Consider the ((t−1)n−1)-subspaces Π1 = 〈S2, S3, . . . , St〉 and Π2 = 〈S1, S3, . . . , St〉.
Clearly, Π1 corresponds to the points with coordinates {(0, x2, . . . , xt)Fq | xi ∈
Fqn} and Π2 corresponds to the points with coordinates {(x1, 0, x3, . . . , xr)Fq |
xi ∈ Fqn}. Since all Sj are normal elements, we have that for i = 1, 2, Si = S ∩Πi

is an (n−1)-spread of Πi containing t−1 normal elements in general position. By
the induction hypothesis, there exist nearfield spread sets M1 and M2 such that

S1 = {(0, A2, A3, . . . , At) | Ai ∈M1} , and
S2 = {(A1, 0, A3, . . . , At) | Ai ∈M2} .

The spreads S1 and S2 overlap in the ((t− 2)n− 1)-space Π1 ∩Π2, hence we find
that M1 = M2.
All elements of S, not contained in 〈S1, S2〉, are of the form 〈S1, U〉 ∩ 〈S2, V 〉,
for some U ∈ S1, V ∈ S2. To find the coordinates of the remaining elements of
S ∩ 〈S1, S2〉, we can consider the projection of S from St onto 〈S1, S2, . . . , St−1〉.
We obtain that

S = {(A1, A2, . . . , At) | Ai ∈M1} .

3.4 Characterising Desarguesian spreads

In this section, two characterisations of Desarguesian spreads are obtained, one
dependent and one independent of n and q. For this, we first need the characteri-
sation of finite nearfields.
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Definition 3.4.1. A pair of positive integers (q, n), n > 2, is called a Dickson
number pair if it satisfies the following relations:

(i) q = ph for some prime p,

(ii) each prime divisor of n divides q − 1,

(iii) if q ≡ 3 mod 4, then n 6≡ 0 mod 4.

By [51] and [119], there is a uniform method for constructing a finite nearfield of
order qn, with kernel isomorphic to Fq, whenever (q, n) is a Dickson number pair.
Such a nearfield is called a Dickson nearfield or a regular nearfield. Moreover,
by [119], apart from seven exceptions, every finite nearfield, which is not a field,
is a Dickson nearfield. These seven nearfield exceptions have parameters n = 2
and q ∈ {5, 7, 11, 23, 29, 59}; note that there are two non-equivalent non-regular
nearfields for (q, n) = (11, 2).

Theorem 3.4.2. Consider an (n− 1)-spread S in PG(rn− 1, q), r > 2, such that
for every divisor k|n, we have that (qk, nk ) is not a Dickson number pair and does
not correspond to the parameters of one of the seven nearfield exceptions. If S
contains r normal elements in general position, then S is a Desarguesian spread.

Proof. By Theorem 3.3.1, the spread S is PΓL-equivalent to Sr(M), for a nearfield
spread set M. By assumption, for every divisor k|n, a nearfield of order qn, having
kernel Fqk , is a field, hence M is a Desarguesian spread set. It follows that S is a
Desarguesian spread.

Theorem 3.4.3. Consider an (n − 1)-spread S in PG(rn − 1, q), r > 2. If S
contains r + 1 normal elements in general position, then S is a Desarguesian
spread.

Proof. Suppose r = 3. Suppose S contains normal elements S0, S1, S2, S3 in
general position. Without loss of generality, we may assume that S0 = (I, I, I),
S1 = (I, 0, 0), S2 = (0, I, 0) and S3 = (0, 0, I).

As S1, S2, S3 are normal elements, by following the proof of Theorem 3.3.1, we see
that

S = S3(M) = {(A1, A2, A3) | Ai ∈M},

for a nearfield spread set M (containing 0 and I).
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Given A ∈M \ {0, I}, consider the spread element RA = (0, A, I) ∈ S ∩ 〈S2, S3〉,
and look at the element

〈S0, RA〉 ∩ 〈S1, S2〉 = (I, I −A, 0) .

As S0 is a normal element for S, this (n− 1)-space is contained in S ∩ 〈S1, S2〉. It
follows that the matrix I −A ∈M.

As M is closed under multiplication, for all A,B ∈ M, we have B − BA ∈ M.
Given matrices A,C ∈M, there exists a unique B ∈M for which BA = C. Hence,
for all B,C ∈ M, we find that B − C = B − BA is contained in M. It follows
that M is also closed under addition, hence M is a Desarguesian spread set. We
conclude that S is a Desarguesian spread.

By induction, suppose the result is true for r = t − 1. We will now prove it
is true for r = t. Consider an (n − 1)-spread S of PG(tn − 1, q) having t + 1
normal elements S0, . . . , St in general position. Consider the ((t−1)n−1)-subspace
Π = 〈S1, S2, . . . , St−1〉. As all Sj are normal, S ∩Π is an (n−1)-spread containing
t− 1 normal elements.

Consider the (n− 1)-space T = 〈S0, St〉 ∩ Π, clearly T ∈ S ∩ Π. Take an element
R ∈ S ∩Π different from T and consider the (3n− 1)-space π = 〈S0, St, R〉. Note
that the intersection Π∩π contains the elements T and R. Since S0, St are normal
elements, S ∩ π is an (n − 1)-spread. Both S ∩ Π and S ∩ π are (n − 1)-spreads,
hence S ∩ (Π ∩ π) = S ∩ 〈T,R〉 is an (n− 1)-spread. It follows that T is a normal
element for the spread S ∩Π.

Since the elements Sj lie in general position with respect to the full space PG(tn−
1, q), the elements S1, S2, . . . , St−1, T lie in general position with respect to Π.
Hence, the spread S ∩Π contains t normal elements in general position, and thus,
by the induction hypothesis, S ∩Π is a Desarguesian spread.

By Lemma 2.2.5, there exists a unique Desarguesian spread D of PG(tn − 1, q)
containing S0, St and all elements of S ∩ Π. Every element of D, not contained
in 〈S0, St〉, can be obtained as 〈S0, U〉 ∩ 〈St, V 〉, for some U, V ∈ S ∩ Π. Since
S0 and St are normal elements of S, all elements of D \ 〈S0, St〉 are elements of
S. Looking from the perspective from S1, it is easy to see that the elements of
D ∩ 〈S0, St〉 are also elements of S.

It follows that S = D is a Desarguesian spread.
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Chapter 3. A geometric characterisation of Desarguesian spreads

3.5 Spreads of PG(3n−1, q) containing three nor-
mal elements in a (2n− 1)-space

In this section, we will characterise (n− 1)-spreads of PG(3n− 1, q) containing 3
normal elements contained in the same (2n−1)-space. First, we need to introduce
some definitions and notations concerning the (restricted) closure of a point set
and the field reduction of sublines and subplanes.

3.5.1 The (restricted) closure of a point set

Consider the field reduction map F from PG(1, qn) to PG(2n − 1, q). When we
apply F to an Fq0

-subline of PG(1, qn), for a subfield Fq0
≤ Fq, we obtain a

set Rq0
consisting of q0 + 1 (n − 1)-spaces, such that if a line meets 3 elements

E1, E2, E3 of Rq0
, in the points P1, P2, P3 respectively, then the unique Fq0

-subline
containing P1, P2, P3 meets all elements of Rq0

. When Fq0
= Fq, such a set

Rq is called a regulus. It is well known that 3 mutually disjoint (n − 1)-spaces
E1, E2, E3 in PG(2n − 1, q) lie on a unique regulus, which we will denote by
R(E1, E2, E3) = Rq(E1, E2, E3). It now easily follows that 3 mutually disjoint
(n− 1)-spaces E1, E2 and E3 in PG(2n− 1, q) lie on a unique Rq0

, which we will
denote by Rq0

(E1, E2, E3). Note that Rq0
(E1, E2, E3) ⊂ Rq(E1, E2, E3).

Consider the field reduction map F from PG(2, qn) to PG(3n−1, q). If we apply F
to the point set of an Fq0

-subplane, we find a set Vq0 of q2
0 +q0 +1 elements of a De-

sarguesian spread D. When Fq0
= Fq, the set Vq consists of one system of a Segre

variety S2,n−1. By Theorem 1.4.3, we know that four (n−1)-spaces E1, E2, E3, E4
in PG(3n − 1, q) in general position are contained in a unique Segre variety Vq,
which we will denote by Vq(E1, E2, E3, E4). As a corollary, we obtain that for any
subfield Fq0

≤ Fq, four (n−1)-spaces E1, E2, E3, E4 in PG(3n−1, q) in general posi-
tion are contained in a unique set Vq0 , which we will denote by Vq0 (E1, E2, E3, E4).
Note that for any three (n− 1)-spaces S1, S2, S3 in Vq0 (E1, E2, E3, E4), contained
in the same (2n− 1)-space, we have that Rq0(S1, S2, S3) ⊂ Vq0 (E1, E2, E3, E4).

Inspired by the recursive construction of the closure of a point set (see Definition
1.3.8), we define the following. Consider a set S of points of PG(2, q) containing a
specific subset {Pi}i=1,...,m. We define the restricted closure S̃ with respect to the
points {Pi} to be the point set constructed recursively as follows:

(i) determine the set A of all lines of PG(2, q) of the form 〈Pi, Q〉, i = 1, . . . ,m,
Q ∈ S;
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3.5. Spreads with 3 normal elements in a (2n− 1)-space

(ii) determine the set S̃ of points that occur as the exact intersection of two lines
in A, if S̃ 6= S replace S by S̃ and go to (i), otherwise stop.

Clearly the restricted closure S̃ of S, with respect to all its points, is exactly its
closure Ŝ.

Lemma 3.5.1. Consider the point set S of PG(2, q), q = ph, containing a frame
{P1, P2, Q1, Q2} and the point P3 = P1P2 ∩ Q1Q2. The points of the restricted
closure S̃ of S with respect to {P1, P2, P3}, not on the line P1P2, are the points of
the affine Fp-subplane Ŝ \P1P2.

Proof. Clearly, the set S̃ can contain no other points than the points of the Fp-
subplane Ŝ.

Without loss of generality, we may choose coordinates such that P1 = (1, 0, 0)Fq
,

P2 = (0, 0, 1)Fq
, Q1 = (0, 1, 0)Fq

, Q2 = (1, 1, 1)Fq
and hence P3 = (1, 0, 1)Fq

.

The point U1 = (0, 1, 1)Fq
= P1Q2 ∩ P2Q1 is contained in S̃. Hence, the point

T2 = (1, 1, 2)Fq
= P3U1 ∩ P2Q2 is contained in S̃. Using T2 ∈ S̃, we see that the

point U2 = (0, 1, 2)Fq
= P1T2 ∩ P2Q1 is also contained in S̃.

Continuing this process, we get that all points Ua = (0, 1, a)Fq ∈ P2Q1 and Ta =
(1, 1, a)Fq ∈ P2Q1, with a ∈ Fp, are contained in S̃. All other points of the unique
Fp-subplane Ŝ through P1, P2, Q1, Q2 and not on P1P2, can be written as the
intersection point 〈P1, Ta〉 ∩ 〈P2, Ub〉, for some a and b in Fp. Hence, they are all
contained in S̃.

We can translate the previous lemma to the higher dimensional case in the follow-
ing way.

Lemma 3.5.2. Consider an (n − 1)-spread S in PG(3n − 1, q), q = ph, hav-
ing 3 normal elements S1, S2, S3 in the same (2n − 1)-space Π0. If two spread
elements R1, R2 ∈ S satisfy 〈R1, R2〉 ∩ 〈S1, S2〉 = S3, then all (n − 1)-spaces of
Vp(S1, S2, R1, R2) \ 〈S1, S2〉 are contained in S.

Proof. There exists a field reduction map F from PG(2, qn) to PG(3n−1, q), such
that S1, S2, S3, R1, R2 are contained in the Desarguesian spread D of PG(3n−1, q)
defined by F . This means, there exist points P1, P2, P3, Q1, Q2 such that their field
reduction is equal to S1, S2, S3, R1, R2 respectively.

Since S1, S2, S3 are normal elements for S, the field reduction of the points of
the restricted closure of {P1, P2, P3, Q1, Q2} with respect to {P1, P2, P3} must all
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Chapter 3. A geometric characterisation of Desarguesian spreads

be contained in S. By Lemma 3.5.1, the restricted closure contains all points
of the Fp-subplane defined by {P1, P2, Q1, Q2}, not on 〈P1, P2〉. Hence, its field
reduction, i.e. the (n − 1)-spaces of Vp(S1, S2, R1, R2) \ 〈S1, S2〉 are all contained
in S.

3.5.2 Characterising spreads with 3 normal elements in the
same (2n− 1)-space

There exists a different but equivalent definition of a semifield spread than the
one given in Subsection 3.2.2. Namely, an (n − 1)-spread S of PG(2n − 1, q) is
a semifield spread if and only if it contains a special element E such that the
stabiliser of S fixes E pointwise and acts transitively on the elements of S \ {E}
(see [71, Corollary 5.60]). The element E is called the shears element of S.

Consider a matrix spread set M containing 0 and closed under addition, and
consider the corresponding semifield spread S(M) = {(I, A) | A ∈ M} ∪ {E =
(0, I)} of PG(2n− 1, q). In this case, the element E = (0, I) is the shears element
of S(M).

Definition 3.5.3. The subsets of a semifield Q given as

Nr(Q) = {x ∈ Q | ∀a, b ∈ Q : (a ∗ b) ∗ x = a ∗ (b ∗ x)}
Nm(Q) = {x ∈ Q | ∀a, c ∈ Q : (a ∗ x) ∗ c = a ∗ (x ∗ c)},
Z(Q) = {x ∈ Nr(Q) ∩ Nm(Q) | ∀a ∈ Q : x ∗ a = a ∗ x}

are all fields and are called, respectively, the right nucleus, middle nucleus and the
centre of the semifield.

The parameters of the semifield Qe(M) can be translated to subsets of the asso-
ciated spread set M, that is Nr(M) = {Mx ∈ M | x ∈ Nr(Qe(M))}, Nm(M) =
{Mx ∈ M | x ∈ Nm(Qe(M))} and Z(M) = {Mx ∈ M | x ∈ Z(Qe(M))}. As in
[50, Theorem 2.1], but considering our conventions, we obtain that

Nr(Qe(M)) = {x ∈ Qe(M) | ∀a, b ∈ Qe(M) : (a ∗ b) ∗ x = a ∗ (b ∗ x)}
= {x ∈ Qe(M) | ∀a, b ∈ Qe(M) : aMbMx = aMb∗x}
= {x ∈ Qe(M) | ∀b ∈ Qe(M) : MbMx = Mb∗x}
= {x ∈ Qe(M) | ∀b ∈ Qe(M) : MbMx ∈M}
= {x ∈ Qe(M) | ∀M ∈M : MMx ∈M}.
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3.5. Spreads with 3 normal elements in a (2n− 1)-space

Hence, it follows that

Nr(M) = {X ∈M |MX = M or X = 0.}

Similarly, we obtain

Nm(M) = {X ∈M | XM = M or X = 0}, and
Z(M) = {X ∈ Nr(M) ∩Nm(M) | ∀Y ∈M : Y X = XY }.

Suppose M contains the identity I, then M is a subspace over a subfield Fq0 ≤ Fq
if and only if {λI | λ ∈ Fq0} ⊆ Z(M).

Recall that a spread S in PG(2n− 1, q) is regular if and only if for any 3 elements
E1, E2, E3 ∈ S, the elements of Rq(E1, E2, E3) are all contained in S. It is well
known that every (n− 1)-spread of PG(2n− 1, q), q > 2, is regular if and only if
it is Desarguesian (see [25]). When q = 2, every (n− 1)-spread of PG(2n− 1, 2) is
regular. More generally, for every three elements E1, E2, E3 of an (n − 1)-spread
S of PG(2n− 1, 2h), all elements of R2(E1, E2, E3) = {E1, E2, E3} are contained
in S.

Loosening the concept of regularity of Desarguesian spreads, we obtain the follow-
ing result for semifield spreads. For Fq0 = Fq, this result was already obtained in
[79, Teorema 5].

Theorem 3.5.4. Suppose S is an (n − 1)-spread of PG(2n − 1, q). Consider a
subfield Fq0

≤ Fq, q0 > 2, and an element E ∈ S. The spread S is a semifield
spread with Fq0 contained in its centre and having E as its shears element if and
only if for all E1, E2 ∈ S, we have Rq0

(E,E1, E2) ⊂ S.

Proof. We may assume without loss of generality that S = S(M) = {(I, A) | A ∈
M} ∪ {E = (0, I)} for some spread set M containing 0 and I. Let Ei = (I, Ai).
Then the setRq0(E,E1, E2) consists of the spaces (I, (1−λ)A1+λA2), for λ ∈ Fq0 ,
together with E. Hence, (1−λ)A1 +λA2 ∈M, for all A1, A2 ∈M and all λ ∈ Fq0 .

Since 0 ∈M, for all A2 ∈M, we get that λA2 ∈M for all λ ∈ Fq0 . Therefore, for
all A1, A2 ∈M, µA1 + λA2 ∈M for all λ, µ ∈ Fq0 , and so M is an Fq0 -subspace,
implying that M is a semifield spread set with centre containing Fq0 . It follows
that S is a semifield spread with shears element E.

Now, consider three disjoint (n − 1)-spaces S1 = (I, 0, 0), S2 = (I, I, 0), S3 =
(0, I, 0) of PG(3n − 1, q) contained in the same (2n − 1)-space Π0 = {(x, y, 0)Fq |
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x, y ∈ Fqn}. Consider two spread sets M and M0, both containing 0 and I, and
define the following (n− 1)-spread

T3(M,M0) = {(A,B, I) | A,B ∈M} ∪ {(I, C, 0) | C ∈M0} ∪ {(0, I, 0)}

in PG(3n−1, q). If M is a semifield spread set, then one can check that T3(M,M0)
has at least 3 normal elements, namely S1, S2 and S3.

Theorem 3.5.5. Consider an (n − 1)-spread S in PG(3n − 1, q), q odd. If S
contains 3 normal elements contained in the same (2n − 1)-space Π0, then S is
PΓL-equivalent to T3(M,M0), for some spread set M0 and a semifield spread set
M.

Furthermore, the set of normal elements of S contained in S∩Π0 is PΓL-equivalent
to {(I, C, 0) | C ∈M0 ∩Nr(M)} ∪ {(0, I, 0)}.

Proof. Consider an (n − 1)-spread S containing normal elements S1, S2, S3 con-
tained in the same (2n − 1)-space Π0. Since S3 is a normal element with respect
to S, we can consider a (2n − 1)-space Π, meeting Π0 in the space S3, such that
S ∩ Π is an (n − 1)-spread. Without loss of generality, we may assume that
S1 = (I, 0, 0), S2 = (I, I, 0), S3 = (0, I, 0), Π0 = {(x, y, 0)Fq | x, y ∈ Fqn} and
Π = {(0, y, z)Fq | y, z ∈ Fqn}.

Since S ∩Π is an (n− 1)-spread, there exists a spread set M such that

S ∩Π = {(0, A, I) | A ∈M} ∪ {(0, I, 0)}.

Consider two elements R1, R2 of S ∩ Π, different from S3. By Lemma 3.5.2, all
elements of Vp(S1, S2, R1, R2) \ Π0 are contained in S. It follows that the p + 1
elements of Rp(S3, R1, R2) are all contained in S ∩ Π. By Theorem 3.5.4, we see
that S ∩Π is a semifield spread (with Fp contained in its centre and S3 its shears
element), hence M is a semifield spread set.

The elements S1 and S2 are normal elements, hence every element of S \ 〈S1, S2〉
is of the form

(B −D,B, I) = 〈S1, (0, B, I)〉 ∩ 〈S2, (0, D, I)〉,

for some B,D ∈M. Since M is closed under addition, every element of S\〈S1, S2〉
is of the form (A,B, I), with A,B ∈M. We conclude that

S = {(A,B, I) | A,B ∈M} ∪ {(I, C, 0) | C ∈M0} ∪ {(0, I, 0)},
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for some spread set M0 (containing 0 and I) and a semifield spread set M.

Now suppose that (I, C, 0) ∈ Π0, C ∈ M0, is a normal element for T3(M,M0).
Given elements A,B,D,E ∈ M, the spread element (D,E, I) is contained in
〈(I, C, 0), (A,B, I)〉 if and only if (D −A)C = E −B. Hence, 〈(I, C, 0), (A,B, I)〉
is partitioned by elements of T3(M,M0) if and only if (D −A)C +B ∈M for all
A,B,D ∈M. As M is closed under addition, this occurs if and only if MC ⊆M,
i.e. C ∈M0 ∩Nr(M).
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II
Linear representations

and their graphs

In Part II, we consider linear representations and their
graphs. A linear representation of a point set is a point-line
incidence structure embedded in a Desarguesian projective
space. In Chapter 4, we study the isomorphism problem
for linear representations. Using the incidence graph of
these structures, we obtain infinite families of semisymmet-
ric graphs in Chapter 5.
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4
The isomorphism problem for

linear representations

We study the isomorphism problem for linear representations. A linear represen-
tation T ∗n(K) of a point set K is a point-line incidence structure, embedded in a
projective space PG(n+ 1, q), where K is contained in a hyperplane.

This chapter combines the results published in [31] with P. Cara and G. Van de
Voorde, and in [45] with S. De Winter and G. Van de Voorde.

4.1 Introduction

In finite geometry, one often considers geometries that are embedded in a projective
or affine space. If G1 and G2 are two such embedded geometries, a natural question
to ask is the following.

(Q) Is every isomorphism between G1 and G2 induced by a collineation
of the ambient projective space?

Of course, the answer to this question will strongly depend on the properties
of the geometries G1 and G2, as well as on the type of embedding considered.
For example, it is well known that this question has an affirmative answer for
the standard embeddings of finite classical polar spaces and Segre varieties [67],
and has been studied for various other types of geometries such as generalised
quadrangles [89] and semipartial geometries [43].

In this chapter, we study problem (Q) for a particular, but broad, class of ge-
ometries, namely linear representations. The linear representation T ∗2 (O), O a
hyperoval, was constructed by Ahrens and Szekeres [1] and independently by Hall
[57]. This definition was extended to the linear representation of general point sets
in [40].
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Definition 4.1.1. Let K be a point set in a hyperplane H∞ ∼= PG(n, q) of PG(n+
1, q). The linear representation T ∗n(K) of K is a point-line incidence structure with
natural incidence, point set P and line set L as follows:

P : the affine points of PG(n+ 1, q), i.e. not contained in H∞,
L : the lines of PG(n+ 1, q) intersecting H∞ exactly in a point of K.

We see that a linear representation T ∗n(K) in PG(n + 1, q) is entirely determined
by the point set K at infinity.

In some of the arguments, we also come across a generalisation of this incidence
structure, called a generalised linear representation.

Definition 4.1.2. Let K be a set of disjoint (t − 1)-dimensional subspaces in
Π∞ ∼= PG(m, q). Embed Π∞ as a hyperplane in PG(m + 1, q). The generalised
linear representation T ∗m,t−1(K) ofK is the incidence structure (P ′,L′) with natural
incidence for which:

P ′ : the affine points of PG(m+ 1, q), i.e. not contained in Π∞,
L′ : the t-spaces of PG(m+ 1, q) intersecting Π∞ in exactly a (t− 1)-space of K.

Clearly, when t = 1, this definition coincides with the definition of a linear repre-
sentation.

If the answer to (Q) is affirmative, then two linear representations T ∗n(K) and
T ∗n(K′) are isomorphic if and only if the point sets K and K′ are PΓL-equivalent,
which we denote by K ∼= K′. Whether this is also true when the answer to (Q) is
not affirmative, is what we call the isomorphism problem for linear representations.

Linear representations are mostly studied for point sets K that possess a lot of
symmetry. For example, in the case n = 2 and K a hyperoval, T ∗2 (K) is a gener-
alised quadrangle of order (q − 1, q + 1). Bichara, Mazzocca and Somma showed
in [19] that for K,K′ hyperovals, T ∗2 (K) ∼= T ∗2 (K′) if and only if K ∼= K′. The
answer to (Q) is proven positive when K is a hyperconic in PG(2, q) [56]. When
K is an ovoidal Buekenhout-Metz unital, question (Q) is answered affirmatively
by De Winter [44]; in this case, the linear representation T ∗2 (K) is a semipartial
geometry. It is worth noticing that our result includes these cases.

In Subsection 4.1.1, we clarify why we consider subsets K,K′ containing a frame
of H∞. In Section 4.2, we provide conditions on the point sets K and K′ such that
the answer to question (Q) is affirmative for T ∗n(K) and T ∗n(K′). This leads to the
following theorem.
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Theorem 4.2.10. Let q > 2. Let K and K′ denote point sets in H∞ = PG(n, q)
such that

• there is no plane of H∞ intersecting K in two intersecting lines, or in two
intersecting lines minus their intersection point,

• the closure K̂′ is equal to H∞.

If α is an isomorphism of incidence structures between T ∗n(K) and T ∗n(K′), then α

is induced by a collineation of the ambient space mapping K to K′.

In Section 4.3, we investigate what happens when the first condition on K is not
fulfilled. In Section 4.4, we will prove that when the second condition is not met,
there always exist isomorphisms not induced by collineations of the ambient space
and we explicitly describe them. Both conditions might have been silently assumed
when the authors of [3, Corollary 7] answer the question (Q) affirmatively for all
(generalised) linear representations; since we will see that the answer to question
(Q) is in general not affirmative.

Theorem 4.2.10 handles the case where the closure K̂′ is equal to H∞. The re-
maining case is when K̂′ is a subgeometry S of H∞. In Section 4.4, we obtain
the full automorphism group of a linear representation T ∗n(S) of a subgeometry
S ∼= PG(n, q) embedded in the projective space PG(n+ 1, qt).

Finally, in Section 4.5, we conclude with an answer to the isomorphism problem
under a small condition.

Theorem 4.5.3. Let K and K′ be two point sets of H∞ = PG(n, q), q > 2, n > 1,
each containing a frame, such that 〈K〉 = 〈K′〉 = H∞. If K̂′ = H∞, suppose
furthermore that there is no plane of H∞ intersecting K in two intersecting lines,
or in two intersecting lines minus their intersection point. The linear representa-
tions T ∗n(K) and T ∗n(K′) are isomorphic if and only if the point sets K and K′ are
PΓL-equivalent.

4.1.1 Restrictions on the point set K

Consider a linear representation T ∗n(K) of a point set K contained in H∞ =
PG(n, q). When n = 1, the linear representation T ∗1 (K) is a net, which is a
well-studied object, introduced by Bruck [23], that has its own theory. This is a
case we will not study.
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Suppose the set K spans an m-dimensional subspace PG(m, q) of H∞ = PG(n, q),
m < n. The following result shows that in this case the corresponding point-line
incidence graph of T ∗n(K) is not connected.

Theorem 4.1.3. [39, Corollary 4.3] The point-line incidence graph of T ∗n(K) is
connected if and only if the span 〈K〉 has dimension n.

Moreover, one can check that the linear representation T ∗n(K) consists of qn−m dis-
joint components, where each component is isomorphic to the linear representation
T ∗m(K). Points of different components are never collinear inside T ∗n(K). We ob-
tain that T ∗n(K) is isomorphic to the cartesian product T ∗m(K)× {1, 2, . . . , qn−m}.
In this case, the automorphism group of T ∗n(K) is isomorphic to the wreath product
Aut(T ∗m(K)) oSqn−m . This clarifies why we will only consider linear representations
T ∗n(K), where 〈K〉 = H∞.

Remark. The action of Aut(T ∗m(K)) oSqn−m on T ∗m(K)×{1, 2, . . . , qn−m} goes as
follows. Consider A to be the direct product of qn−m copies of Aut(T ∗m(K)), each
one acting on one component T ∗m(K) of T ∗n(K). LetB be a copy of Sqn−m permuting
the copies of T ∗m(K). We have that B normalises A, i.e. ∀b ∈ B : b−1Ab = A. The
wreath product Aut(T ∗m(K)) oSqn−m corresponds to the semidirect product AoB

(for more information about the wreath product o, we refer to [59, page 81]).

Moreover, from now on, we will only consider linear representations T ∗n(K) of a
point set K containing a frame of H∞ = PG(n, q), n > 1, even when we do not
explicitly mention it. Note that the case we exclude, is when the points of K can
be partitioned in k subsets K1, . . . ,Kk, where the elements of Ki contain a frame
for an ni-dimensional subspace πi, such that all spaces πi are mutually disjoint.

4.2 Isomorphisms between linear representations

In this section, we will deal with question (Q) for linear representations. An
isomorphism between T ∗n(K) and T ∗n(K′) that is induced by a collineation of the
ambient projective space PG(n+ 1, q) is called geometric. We will provide certain
conditions on K, to ensure that every isomorphism between T ∗n(K) and T ∗n(K′) is
geometric.

More generally, we prove that an isomorphism between T ∗n(K) and T ∗n(K′) is in-
duced by an isomorphism between two linear representations T ∗n(S) and T ∗n(S ′) of
the closures S = K̂′ and S ′ = K̂′ of H∞.
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Recall that for a point set S, containing a frame of PG(n, q), its closure Ŝ consists
of the points of the smallest n-dimensional subgeometry of PG(n, q) containing all
points of S (see Definition 1.3.8). The closure Ŝ of a point set S can be constructed
recursively as follows:

(i) determine the set A of all subspaces of PG(n, q) spanned by an arbitrary
number of points of S;

(ii) determine the set Ŝ of points that occur as the exact intersection of two
subspaces in A, if Ŝ 6= S replace S by Ŝ and go to (i), otherwise stop.

We also need the notion of α-rigid subspaces:

Definition 4.2.1. Let α be an isomorphism between the linear representations
T ∗n(K) and T ∗n(K′). We will say that a k-subspace π∞ of H∞ is α-rigid if for every
(k + 1)-subspace π through π∞, not contained in H∞, the point set {α(P ) | P ∈
π \ π∞} spans a (k + 1)-subspace.

It follows from the definition of the linear representation T ∗n(K) that every point of
K is β-rigid, for any isomorphism β. Moreover, it is clear that if an isomorphism
β between T ∗n(K) and T ∗n(K′) is induced by a collineation, necessarily, every point
of H∞ is β-rigid.

Our way of approaching question (Q) is to find conditions on the point sets K,
K′ that force every point of H∞ to be β-rigid, for all isomorphisms β. Finally,
these conditions will enable us to prove that every isomorphism between T ∗n(K)
and T ∗n(K′) is induced by a collineation.

We start off with an easy lemma on α-rigid subspaces.

Lemma 4.2.2. If for some isomorphism α, two subspaces π1 and π2 are α-rigid
subspaces meeting in at least one point, then π1 ∩ π2 is an α-rigid subspace.

Proof. Let R be an affine point and α an isomorphism between T ∗n(K) and T ∗n(K′).
Suppose dim(πi) = ki and dim(π1 ∩ π2) = m ≥ 0. Since πi is α-rigid, the affine
points of 〈R, πi〉 are mapped onto the affine points of a (ki + 1)-dimensional space
µi. As µ1 and µ2 are subspaces of PG(n + 1, q), they intersect in a subspace of
PG(n + 1, q). Moreover, as this subspace contains exactly the images under α of
the points that are contained in 〈R, π1〉 ∩ 〈R, π2〉, it has dimension m + 1. This
implies that π1 ∩ π2 is α-rigid.

In the previous lemma, we proved that for an isomorphism α, the intersection
of α-rigid subspaces is an α-rigid space. The next step is to show that the span
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of α-rigid subspaces is again an α-rigid subspace. However, we need to impose
certain restrictions since this is not always the case, as we will see later in Section
4.3.

Recall that the points of K are β-rigid, for all isomorphisms β. In the next lemma,
we will give a condition that ensures that the span of two points of K is a β-rigid
line. This result will be generalised in Lemma 4.2.7 to arbitrary β-rigid points and
spaces of arbitrary dimension.

Definition 4.2.3. For a line L of PG(n+ 1, q) not in H∞, we define ∞(L) to be
the point L ∩H∞.

A permutation β of the affine points extends naturally to a mapping on the lines L
having a β-rigid point ∞(L) at infinity, by defining β(L) to be the line containing
the points β(R), R ∈ L.

Lemma 4.2.4. Let q > 2. Suppose that no plane of H∞ intersects K or K′ in
two intersecting lines or in two intersecting lines minus their intersection point.
Let P1 and P2 be two points of K, then P1P2 is α-rigid, for any isomorphism α

between T ∗n(K) and T ∗n(K′).

Proof. First, assume that no plane of H∞ intersects K′ in two intersecting lines
or in two intersecting lines minus their intersection point.

Let π be a plane through the line P1P2, not in H∞. Let Li, i = 1, . . . , q, be the
q lines in π through P1, different from P1P2, and let Mj , j = 1, . . . , q, be the q
lines through P2 in π, different from P1P2. It is clear that the lines L1 and Li,
i = 2, . . . , q, are not concurrent in T ∗n(K).

Suppose that ∞(α(L1)) is different from ∞(α(Li)) for some 2 ≤ i ≤ q. If for
some j 6= k, α(Mj) and α(Mk) meet H∞ in the same point, then α(L1) and α(Li)
are lines in the same plane, hence they intersect, and thus by assumption they
intersect in an affine point. This would mean that α(L1) and α(Li) are concurrent
in T ∗n(K′); a contradiction since α is an isomorphism.

This implies that if ∞(α(L1)) is different from ∞(α(Li)) for some i, then the
points ∞(α(Mj)), 1 ≤ j ≤ q, are all distinct and hence also the points ∞(α(Li)),
1 ≤ i ≤ q, are mutually different. Moreover, it is impossible that ∞(α(Li)) =
∞(α(Mj)) for some 1 ≤ i, j ≤ q, since Li and Mj are concurrent and α is an
isomorphism. Since the line α(Li) meets α(Mj) in a point, for all 1 ≤ i, j ≤ q,
we see that the line sets {α(L1), . . . , α(Lq)} and {α(M1), . . . , α(Mq)} are each
contained in a regulus of a hyperbolic quadric Q+(3, q).
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Suppose that the line P1P2 contains an extra point P3 ∈ K. A line of T ∗n(K) in π

through P3 is mapped by α to a line that contains q points of the quadric Q+(3, q),
but is not contained in a regulus of this quadric, a contradiction, hence P1P2 is
α-rigid.

Now suppose that the line P1P2 does not contain an extra point of K, then we know
that either P1P2 is α-rigid, or the lines α(L1), . . . , α(Lq) and α(M1), . . . , α(Mq)
are each contained in a regulus of a hyperbolic quadric Q+(3, q). This quadric
meets H∞ in a plane η∞ containing two lines N1, N2 and hence, the 2q points of
N1 and N2, different from their intersection point, are necessarily points of K′.

By our assumption, this is either not possible or there exists a point P ∈ K′ on
η∞, not on the lines N1 and N2. Consider a line T through P intersecting N1 in a
point S1 and intersecting the line N2 in a point S2, such that S1 6= S2. Consider
the plane π′ through T , different from η∞, intersecting the quadric Q+(3, q) in
two lines, one line through S1 and the other through S2. By the first part of the
proof, since T contains 3 points of K′, T is β-rigid for any isomorphism β from
T ∗n(K′) to T ∗n(K). Hence, the plane π′ is mapped by α−1 to the plane π, so the
lines of T ∗n(K′) through S1, S2 respectively, are mapped to the lines through P1,
P2 respectively. This is a contradiction since not the lines of π′, but the lines of
the reguli of the quadric are already mapped by α−1 to the lines through P1 and
P2 in π. It follows that P1P2 is α-rigid.

Now suppose that K has the property that no plane of H∞ intersects it in two
intersecting lines or in two intersecting lines minus their intersection point. By
repeating the proof, we obtain that for any two points Q1, Q2 of K′, we have that
the line Q1Q2 is α−1-rigid. As the isomorphisms α and α−1 are each others inverse,
it now follows that for any two points P1, P2 of K, the line P1P2 is α-rigid.

Remark. For q = 2, a line of L contains only two points of P. Hence, if K = H∞,
clearly any permutation of P induces an automorphism of T ∗n(K). Moreover, we
checked by computer that the linear representation T ∗2 (K), for any point set K
in H∞ = PG(2, 2), has an automorphism group which is always larger than the
automorphism group induced by collineations of PG(3, 2).

From now on, in the remainder of this section, we assume that every point set K
of H∞ satisfies the following property.

Definition 4.2.5. We say that a point set K of H∞ has Property (∗), if there is
no plane of H∞ intersecting K only in two intersecting lines, or in two intersecting
lines minus their intersection point.
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Lemma 4.2.6. Let q > 2. Suppose K or K′ satisfies Property (∗) and 〈K〉 =
〈K′〉 = H∞. Let α be an isomorphism between T ∗n(K) and T ∗n(K′). We can define
a mapping α̃ on the set of α-rigid points by putting α̃(Q) = ∞(α(L)), where Q

is an α-rigid point and L is any line for which ∞(L) = Q. This means, for two
lines L1 and L2, if ∞(L1) = ∞(L2) = Q is an α-rigid point, then ∞(α(L1)) =
∞(α(L2)) = α̃(Q).

Proof. We have to show that this is a mapping well defined, that is, if Q is an
α-rigid point and L1 and L2 are two lines through Q, not contained in H∞, then
we will show that ∞(α(L1)) =∞(α(L2)).

We first show that the mapping is well defined for points of K. Consider two
lines L1, L2 of L such that ∞(L1) = ∞(L2) = P1 ∈ K. Suppose that L1 and L2
are contained in a plane π intersecting H∞ in a line P1P2, with points Pi ∈ K.
It follows by Lemma 4.2.4 that P1P2 is α-rigid. The lines of T ∗n(K) through P1
contained in π partition the affine points of π, and α is an isomorphism mapping
lines of π through P1 onto lines in a plane, hence ∞(α(L1)) = ∞(α(L2)) is the
same point.

We proceed by induction. Suppose that for every line L ∈ L, contained in a k-space
π together with L1, such that∞(L) =∞(L1) = P1 and such that π intersects H∞
in a (k−1)-space 〈P1, . . . , Pk〉, Pi ∈ K, 3 ≤ k ≤ n, we have∞(α(L)) =∞(α(L1)).

Consider a point Pk+1 ∈ K not in 〈P1, . . . , Pk〉, and let L2 ∈ L be a line through
P1, contained in a (k+1)-space π together with L1 such that π intersects H∞ in the
k-space 〈P1, . . . , Pk+1〉. The plane 〈L2, Pk+1〉 meets the k-space 〈L1, P1, . . . , Pk〉
in a line M for which ∞(M) = P1. By the induction hypothesis, ∞(α(M)) =
∞(α(L1)). Moreover, from the case k = 2, we know that for the line L2, it holds
that ∞(α(L2)) = ∞(α(M)) = ∞(α(L1)). Hence, proceeding by induction and
using the fact that the points of K span H∞, we have shown that the theorem is
valid for all points of K.

Now suppose that Q is an α-rigid point not contained in K. Let L1 be a line
intersecting H∞ in Q. Consider a point P ∈ K and the plane π = 〈L1, P 〉;
let L2 be a line through Q in π different from L1. Let Nj , j = 1, 2, be two
lines in π intersecting in the point P . We have shown in the previous part that
∞(α(N1)) = ∞(α(N2)). It follows that α(L1) and α(L2) lie in a plane (namely
in 〈α(N1), α(N2)〉), hence, they meet in a point. Since α is an automorphism and
L1 and L2 only meet in a point at infinity, α(L1) and α(L2) cannot meet in an
affine point, hence ∞(α(L1)) = ∞(α(L2)). The lemma now follows by induction
with the same argument as used above for points of K.
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The previous lemma shows that an isomorphism β between T ∗n(K) and T ∗n(K′) can
be extended to a mapping on the β-rigid points Q ∈ H∞, and we abuse notation
by putting β(Q) := β̃(Q).

Lemma 4.2.7. Let q > 2. Suppose K or K′ satisfies Property (∗) and 〈K〉 =
〈K′〉 = H∞. Let α be an isomorphism between T ∗n(K) and T ∗n(K′). If P1, . . . , Pk
are α-rigid points, then 〈P1, . . . , Pk〉 is an α-rigid space.

Proof. We proceed by induction on the number k of considered α-rigid points.
Suppose k = 2 and let π be a plane meeting H∞ in the line P1P2, and let R be an
affine point of π. By Lemma 4.2.6, since P1 and P2 are α-rigid, the points on the
line RPi, i = 1, 2, are mapped by α to the points on the line 〈α(R), α(Pi)〉. Let
S 6= R be a point of π, not on P1P2, RP1 or RP2 and let T1 (respectively T2) be
the intersection point SP1 ∩ RP2 (respectively SP2 ∩ RP1). The point α(T1) lies
on 〈α(R), α(P2)〉 and α(T2) lies on 〈α(R), α(P1)〉. It follows from Lemma 4.2.6
that α(S) lies on 〈α(T1), α(P1)〉 and 〈α(T2), α(P2)〉, hence, α(S) is contained in
the plane 〈α(R), α(P1), α(P2)〉. It follows that P1P2 is α-rigid.

Now suppose by induction that the statement is true for every set of k− 1 α-rigid
points, we will prove it is also true for a set of k α-rigid points.

Consider a space µ := 〈P1, . . . , Pk〉 spanned by k α-rigid points Pi, i = 1, . . . , k.
The subspace π := 〈P1, . . . , Pk−1〉 is an α-rigid space by the induction hypothesis.
If Pk ∈ π, then µ = 〈π, Pk〉 = π is α-rigid.

Suppose Pk /∈ π. Consider an affine point R of PG(n + 1, q), then, since π is
α-rigid and by Lemma 4.2.6, we have that every affine point of 〈R, π〉 is mapped
by α to an affine point of 〈α(R), α(P1), . . . , α(Pk−1)〉. Let S be an affine point
of 〈R,µ〉, not in 〈R, π〉. The line SPk meets 〈R, π〉 in a point T . As α(T ) lies
in 〈α(R), α(P1), . . . , α(Pk−1)〉 and α(S) lies on the line through α(Pk) and α(T )
by Lemma 4.2.6, α(S) lies in 〈α(R), α(P1), . . . , α(Pk−1), α(Pk)〉. This proves our
lemma.

Theorem 4.2.8. Let q > 2. Let K and K′ be point sets in the hyperplane H∞ ∼=
PG(n, q) such that S = K̂′ and S ′ = K̂′ are n-dimensional subgeometries of H∞. If
S = H∞, then furthermore suppose K satisfies Property (∗). Every isomorphism
γ between T ∗n(K) and T ∗n(K′) is induced by an isomorphism between T ∗n(S) and
T ∗n(S ′) mapping S onto S ′.

Proof. If the subgeometry S is not the whole hyperplane H∞, then the set K spans
H∞, but it does not contain full lines of H∞, nor full lines minus one point, and
thus it also satisfies Property (∗). Hence, the concept ‘rigid’ is well defined.
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By the recursive construction of the closure of a set of points, we conclude, invoking
Lemmas 4.2.2 and 4.2.7, that all points of S are γ-rigid. Hence, γ maps the affine
points of a projective line intersecting H∞ in exactly one point of S, onto the affine
points of a projective line intersecting H∞ in exactly one point.

Making use of Lemma 4.2.6, we know that lines through the same γ-rigid point at
infinity are mapped to lines intersecting each other in a point at infinity. As said
before, we abuse notation and use γ for the extension of γ to all γ-rigid points of
H∞. Now, let P,Q,R be three points of S on a line L of H∞ and let U be a point,
not contained in H∞. Since L is a γ-rigid line, γ maps the points of 〈U,L〉 onto
points of a plane containing γ(P ), γ(Q), and γ(R) at infinity. This implies that γ
also maps collinear points of S to collinear points of H∞. Since K is mapped to
K′, and collinearity needs to be preserved, clearly the points of S are mapped to
the points of S ′ (keeping the recursive construction of S and S ′ in mind).

With the same argument, the points of S ′ are γ−1-rigid, and collinear points of S ′
are mapped by γ−1 to collinear points of H∞, thus belonging to S. We conclude
that γ is induced by an isomorphism between T ∗n(S) and T ∗n(S ′) that maps S onto
S ′ (preserving collinearity of points of S).

Corollary 4.2.9. Let q > 2. Let K denote a point set in H∞ = PG(n, q) such
that 〈K〉 = H∞. Consider the subgeometry S = K̂′. When S = H∞, furthermore
suppose that K satisfies Property (∗). We obtain that Aut(T ∗n(K)) ≤ Aut(T ∗n(S)).

Theorem 4.2.10. Let q > 2. Let K and K′ denote point sets satisfying Property
(∗) in H∞ = PG(n, q) such that K̂′ = H∞. Let α be an isomorphism between
T ∗n(K) and T ∗n(K′). The map α is induced by an element of PΓL(n + 2, q)H∞
mapping K to K′.

If K̂′ is H∞, clearly K spans H∞ and hence, (PΓL(n+2, q)H∞)K = PΓL(n+2, q)K.
Taking this into account, we obtain the following corollary.

Corollary 4.2.11. Let q > 2. Let K denote a point set in H∞ = PG(n, q) satis-
fying Property (∗) such that K̂′ = H∞. The automorphism group Aut(T ∗n(K)) ∼=
PΓL(n+ 2, q)K.

4.3 Point sets not satisfying Property (∗)

In Corollary 4.2.11, it is assumed that K satisfies Property (∗). It turns out that,
if this condition is not satisfied, there exist counterexamples to this corollary. We
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give an explicit construction of such counterexamples and provide computer results
that give more information on Aut(T ∗n(K)) for small n and q. All the mentioned
computer results were obtained with GAP [54].

Recall that Property (∗) states that K is a point set such that there is no plane of
H∞ intersecting K only in two intersecting lines, or in two intersecting lines minus
their intersection point. Now, let K be the point set of two intersecting lines in
PG(2, q), we will show that there exist non-geometric automorphisms of T ∗2 (K).
Moreover, we obtain the full automorphism group Aut(T ∗2 (K)).

From the findings in the proof of Lemma 4.2.4, we deduce that a non-geometric
automorphism φ of T ∗2 (K) acts such that the 2q lines of L contained in a plane
intersecting K in exactly two points are mapped to 2q lines of a hyperbolic quadric
Q+(3, q). It is easy to see that, if the lines of L in some plane that intersects K
in exactly two points are mapped to the lines of a hyperbolic quadric Q+(3, q),
then this is true for all planes that intersect K in exactly two points, just by
looking at the intersection of two planes and the intersection of a plane and a
hyperbolic quadric. We will construct such a mapping and show that if ψ and ψ′

are non-geometric, then ψ′ = χ1ψχ2 with χi ∈ PΓL(4, q)K.

Without loss of generality, let H∞ be the plane of PG(3, q) with equation X0 = 0,
and let the set K consist of the points of two intersecting lines L1 : X0 = X1 = 0
and L2 : X0 = X2 = 0.

Theorem 4.3.1. For the set of affine points P of T ∗2 (K), the mapping

φm : P → P : (1, x, y, z)Fq
7→ (1, x, y, z +mxy)Fq

induces a non-geometric automorphism of T ∗2 (K) when m ∈ F∗q .

Proof. The map φm is clearly a bijection.

We will describe the action of φm on all lines not in H∞. Lines through (0, 0, 0, 1)Fq

not in H∞ are stabilised by φm. A line M of T ∗2 (K) through (0, 1, 0, u)Fq , u ∈ Fq,
such that 〈M,L2〉 is the plane with equation yX0−X2 = 0, with y ∈ Fq, is mapped
by φm to a line of T ∗2 (K) through (0, 1, 0, u+ my)Fq

. A line N of T ∗2 (K) through
(0, 0, 1, u′)Fq

, u′ ∈ Fq, such that 〈N,L1〉 is the plane with equation xX0−X1 = 0,
with x ∈ Fq, is mapped by φm to a line of T ∗2 (K) through (0, 0, 1, u′ +mx)Fq .

The affine points of a line through (0, 1, v, w)Fq , v, w ∈ Fq, v 6= 0, not in H∞, are
mapped by φm to the affine points of an irreducible conic containing the point
(0, 0, 0, 1)Fq

. Specifically, the affine points of the line 〈(1, x, y, z)Fq
, (0, 1, v, w)Fq

〉,
v 6= 0, are mapped to the points of the conic with equation (z−wx)X2

0 +mvX2
1 +
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(w + my − mvx)X0X1 − X0X3 = 0, different from (0, 0, 0, 1)Fq
. This conic is

contained in the plane X2 = (y − vx)X0 + vX1. The mapping φm induces an
automorphism of T ∗2 (K), but is clearly not induced by a collineation.

Consider the group S of automorphisms of T ∗2 (K) induced by {φm : P → P :
(1, x, y, z)Fq 7→ (1, x, y, z + mxy)Fq | m ∈ Fq}. It is clear that S is isomorphic to
(Fq,+).

Theorem 4.3.2. Let q > 2. The group 〈PΓL(4, q)K, φ1〉 = PΓL(4, q)K o S is
the full automorphism group of T ∗2 (K) and is q times larger than the geometric
automorphism group PΓL(4, q)K.

Proof. Consider a non-geometric automorphism ψ of T ∗2 (K). We want to consider
the action of ψ on (the affine points of) the planes that intersect H∞ in the
line N with equation X0 = X3 = 0. The lines of T ∗2 (K) in such a plane are
mapped by ψ to lines of a hyperbolic quadric in PG(3, q) which contains the
lines L1 and L2, that is, a quadric Q+(3, q) whose points satisfy the equation
X0(aX0 + bX1 + cX2 +X3) +mX1X2 = 0, for some a, b, c,m ∈ Fq.
By multiplying with a well-chosen element of PΓL(4, q)K, we may assume that ψ
fixes the two lines with equations X3 = X1 = 0 and X3 = X2 = 0 setwise. Hence,
the planes X1 = 0 and X2 = 0 are also fixed setwise by ψ. The 2q lines of T ∗2 (K) in
the plane X3 = 0 are mapped by ψ to lines of a hyperbolic quadric with equation
X0X3 + mX1X2 = 0, for some m ∈ Fq. The set of planes {πa : aX0 + X3 =
0 | a ∈ Fq}, all containing the line N , provides a partition of the affine points
in PG(3, q). Hence, the set of hyperbolic quadrics {ψ(πa) | a ∈ Fq} must also
provide a partition of the affine points. This means that for every quadric ψ(πa)
there exists a unique plane through N intersecting it in two lines. Vice versa, every
plane containing N , different from H∞, contains two lines of exactly one quadric
ψ(πa). Moreover, one of these lines is contained in the plane X1 = 0, the other in
X2 = 0. Hence, we see that the set of planes {aX0 +X3 = 0 | a ∈ Fq} is mapped
by ψ to the set of hyperbolic quadrics {X0(a′X0 + X3) + mX1X2 = 0 | a′ ∈ Fq}
for some non-zero m ∈ F∗q .
By multiplying with a well-chosen element of PΓL(4, q)K, we may say that the
set of planes {aX0 + X3 = 0 | a ∈ Fq} is mapped by ψ to the set of hyperbolic
quadrics {X0(a′X0 +X3) +X1X2 = 0 | a′ ∈ Fq}. It is clear that the sets of planes
{bX0 +X1 = 0 | b ∈ Fq} and {cX0 +X2 = 0 | c ∈ Fq} are both fixed by ψ and not
switched.
Recall that the mapping φ1 maps every plane aX0 + X3 = 0 to the hyperbolic
quadric X0(aX0 + X3) + X1X2 = 0 and fixes all the planes of the form bX0 +
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X1 = 0 and cX0 + X1 = 0. We now consider the mapping φ−1
1 ψ, this map is

an isomorphism of T ∗n(K) which sends planes through N to planes through N ,
hence, as said before, sends all planes to planes. Thus, φ−1

1 ψ is induced by some
collineation of PΓL(4, q)K. We see that ψ = χ1φ1χ2 with χi ∈ PΓL(4, q)K and
hence 〈PΓL(4, q)K, φ1〉 is the full automorphism group of T ∗2 (K).

The group S has order q and PΓL(4, q)K is a normal subgroup of 〈PΓL(4, q)K, φ1〉
such that S ∩ PΓL(4, q)K is trivial, hence the result follows.

For q = 3, 4, we considered K to be the point set of two intersecting planes in
H∞ = PG(3, q). We checked by computer that the group Aut(T ∗3 (K)) is q2 times
larger than PΓL(5, q)K. Hence, also in this case there exist automorphisms of
T ∗3 (K) which are not induced by a collineation of the ambient projective space.

Remark. There are point sets K that do not satisfy Property (∗) but do have the
property that Aut(T ∗3 (K)) consists entirely of geometric automorphisms. E.g. let
K be the point set of three lines L1, L2, L3 in H∞ = PG(3, q) such that L1∩L2 = ∅
and L3 intersects L1 and L2, then, by going through the details of the proofs in
the previous section, it is not too hard to check that Aut(T ∗3 (K)) = PΓL(5, q)K.

4.4 Linear representations of subgeometries

In Section 4.2 we proved that the automorphism group of the linear representation
T ∗n(K) is induced by a collineation group of the ambient space, provided certain
conditions on K are fulfilled (see Corollary 4.2.9). In Section 4.3 we showed what
could happen when K does not satisfy Property (∗). In this section, we consider
what happens when the condition on the closure K̂′ is not met; more specifically,
we will see that the automorphism group is always larger.

From Theorem 4.2.8 it follows that we only need to consider isomorphisms between
two linear representations T ∗n(S) and T ∗n(S ′) of subgeometries S and S ′, who are
thus necessarily projectively equivalent. Hence, it is sufficient to focus on the
automorphism group of T ∗n(S), where S is a non-trivial n-dimensional subgeometry
of H∞. Let S = PG(n, q) be a subgeometry of H∞ = PG(n, qt), q a prime power,
t ∈ N0\{1}, and embed H∞ in PG(n + 1, qt); consider the linear representation
T ∗n(S) of S.

Remark. This case covers all possibilities of non-trivial subgeometries, since a
subgeometry PG(n, qi) of PG(n, qt) can be written as the subgeometry PG(n, q̃)
of PG(n, q̃ t

i ) where q̃ = qi since i|t.
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In Subsection 4.4.1 we introduce the geometry X(n, t, q); this is a generalisation
of the semipartial geometry Hn+2

q that was introduced in [40]. We will explore
the automorphism group of X(n, t, q) and prove that this group consists solely of
collineations of its ambient space PG(n+ t+ 1, q).

In Subsection 4.4.2 we provide a geometric proof of the isomorphism between
the geometry X(n, t, q) and the linear representation T ∗n(S) of a subgeometry
S ∼= PG(n, q) of the hyperplane H∞ ∼= PG(n, qt). We study X(n, t, q) as a coset
geometry in Subsection 4.4.3, by generalising the idea of translation semipartial
geometries as introduced in [43]. In a group theoretical/algebraic way, we recover
the isomorphism with T ∗n(S).

In Subsection 4.4.4 we prove that this automorphism group is isomorphic to a
specific collineation group of PG(t(n + 1) + 1, q), namely the collineation group
stabilising the generalised linear representation isomorphic to T ∗n(S). These results
in particular show that the automorphism group of T ∗n(S) is much larger than its
automorphism group induced by PΓL(n+ 2, qt).

This allows us to correct a misconception that has appeared in the literature. More
specifically, we can construct a non-geometric automorphism of T ∗2 (K), where K
is a Baer subplane of PG(2, q2). In this case, T ∗2 (K) is a semipartial geometry and
the general belief was that for every T ∗m(K) that is a semipartial geometry, every
automorphism is geometric (see e.g. [42, Remark 7.3.13]).

4.4.1 The geometry X(n, t, q)

Definition 4.4.1. Consider an n-dimensional subspace π of the projective space
PG(n+t, q). The geometryX(n, t, q) is the incidence structure (P,L), with natural
incidence, where the point set P and line set L are defined as follows:

P : the (t− 1)-spaces of PG(n+ t, q) skew to π,
L : the t-spaces of PG(n+ t, q) meeting π in exactly one point.

For t = 2, this geometry was introduced in [40] as Hn+2
q . The geometry Hn+2

q was
also given in [46] as an example of a semipartial geometry that is not a partial
geometry for n ≥ 2. There the author proved that for n = 2 the geometry H4

q is
isomorphic to T ∗2 (B), with B a Baer subplane of PG(2, q2). We will show that this
holds for general n and t, namely X(n, t, q) ∼= T ∗n(S), where S is an n-dimensional
Fq-subgeometry of H∞ = PG(n, qt); we provide both a geometric (Subsection
4.4.2) and algebraic proof (Subsection 4.4.3).
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4.4. Linear representations of subgeometries

First, we will determine the full automorphism group of X(n, t, q). We prove that
an automorphism of X(n, t, q) is induced by a collineation of its ambient space.

Theorem 4.4.2. Every automorphism of X(n, t, q) is induced by a collineation
of its ambient space; more precisely, Aut(X(n, t, q)) ∼= PΓL(n+ t+ 1, q)π.

Proof. For t = 1, the statement is trivial since X(n, 1, q) corresponds to the affine
space AG(n + 1, q). From now on, assume t > 1. We will prove that every
automorphism of X(n, t, q) is induced by a mapping on the points and lines of
PG(n+ t, q) which is incidence preserving, hence is a collineation.
Every automorphism ψ of X(n, t, q) is a permutation of the (t − 1)-dimensional
subspaces of PG(n + t, q) disjoint from π. Consider a (t − 2)-dimensional space
µ disjoint from π, and take two elements ν1, ν2 ∈ P such that ν1 ∩ ν2 = µ. We
clearly have 〈ν1, ν2〉 ∈ L. Since ψ preserves L, ψ sends ν1 and ν2 to two elements
ν′1 and ν′2 of P lying in an element of L, thus intersecting in a (t− 2)-dimensional
space µ′.
Now consider ν3 ∈ P containing µ, but not lying in 〈ν1, ν2〉. As seen before,
its image ν′3 intersects both ν′1 and ν′2 in a (t − 2)-dimensional space. Hence,
ν′3 ∩ ν′1 = ν′3 ∩ ν′2 = ν′1 ∩ ν′2 = µ′, since otherwise ν′1, ν′2 and ν′3 would lie in one and
the same element of L, a contradiction. It follows that ψ extends to a well-defined
mapping on the (t − 2)-dimensional subspaces µ of PG(n + t, q), disjoint from π,
by putting ψ(µ) := ψ(ν1)∩ψ(ν2) for ν1, ν2 ∈ P with ν1 ∩ ν2 = µ. Furthermore, ψ
preserves incidence between these (t− 2)-spaces and the (t− 1)-spaces of P.
In other words, for k = t− 1, the map ψ extends to a mapping which:

(i) permutes the (k+1)-subspaces intersecting π in exactly one point, such that
incidence with the k-subspaces disjoint from π is preserved,

(ii) permutes the k-subspaces disjoint from π,

(iii) permutes the (k−1)-subspaces disjoint from π, such that incidence with the
k-subspaces disjoint from π is preserved and such that incidence with the
(k + 1)-subspaces intersecting π in one point is preserved.

We continue by induction. Suppose that for some k ≤ t − 1, the previous three
properties are valid. We will prove that they are also valid for k − 1. Clearly,
property (ii) for k − 1 follows immediately from property (iii) for k. First we
prove property (i) and afterwards property (iii).
(Step 1: prove that ψ satisfies property (i) for k − 1)
Consider a k-dimensional space α intersecting π in exactly one point P , and take
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two (k+1)-dimensional spaces β1, β2 intersecting π only in P such that β1∩β2 = α.
The map ψ preserves the (k− 1)-dimensional spaces of PG(n+ t, q), disjoint from
π, contained in α and their incidence with β1 and β2. The subspaces β1 and β2 are
mapped to two (k+1)-dimensional spaces β′1 and β′2, intersecting in a subspace α′.
The subspace α′ needs to contain exactly qk distinct (k− 1)-dimensional spaces of
PG(n + t, q) disjoint from π, hence α′ is a k-dimensional subspace intersecting π
in a point P ′. It follows that this point P ′ is the point at infinity for both β′1 and
β′2.

Consider a third (k+1)-dimensional space β3, intersecting π in exactly P , and con-
taining α. Its image β′3 intersects both β′1 and β′2 in a k-dimensional space. Since
ψ acts bijectively on (k − 1)-dimensional subspaces disjoint from π and preserves
their incidence with (k + 1)-spaces intersecting π in one point, the intersections
β′3∩β′1, β′3∩β′2 and β′1∩β′2 all contain the same (k−1)-dimensional subspaces and,
again by counting, we see that they each coincide with the same k-dimensional
subspace α′ intersecting π in P ′. It follows that ψ extends to a well-defined map-
ping on the k-dimensional subspaces of PG(n + t, q) intersecting π in one point,
preserving incidence with the (k−1)-dimensional subspaces disjoint from π. That
is, ψ satisfies property (i) for k − 1.

(Step 2: prove that ψ satisfies property (iii) for k − 1)
Consider a (k − 2)-dimensional subspace γ of PG(n + t, q) disjoint from π. Take
two (k−1)-dimensional subspaces δ1 and δ2, disjoint from π, such that δ1∩δ2 = γ

and such that 〈δ1, δ2〉 = ε is a k-dimensional space intersecting π in exactly one
point Q. From property (i) it follows that their images δ′1 and δ′2 are contained in
a k-space ε′, which is the image of ε. Hence, they intersect in a (k−2)-dimensional
subspace γ′, disjoint from π.

Consider a third (k−1)-dimensional subspace δ3 containing γ, disjoint from π and
not contained in ε. This means 〈δ1, δ2, δ3〉 is a (k + 1)-dimensional space. From
the above, the image δ′3 intersects both δ′1 and δ′2 in a (k − 2)-dimensional space.
The intersection δ′3∩δ′1 equals δ′3∩δ′2, which must be γ′, since otherwise 〈δ′1, δ′2, δ′3〉
would be k-dimensional, that is, equal to ε′. This is a contradiction, because ψ
preserves k-dimensional spaces intersecting π in exactly one point.

Hence, the map ψ extends to a well-defined mapping on the (k − 2)-dimensional
subspaces of PG(n+t, q) which are disjoint from π, such that incidence with the k-
dimensional subspaces intersecting π in one point, and with the (k−1)-dimensional
subspaces disjoint from π is preserved. That is, ψ satisfies property (iii) for k− 1.

(Step 3: ψ extends to an incidence preserving map on π)
By induction we see that the map ψ extends to a well-defined incidence preserving
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mapping on the m-dimensional spaces disjoint from π, 0 ≤ m ≤ t− 1, and on the
l-dimensional spaces intersecting π in exactly one point, 1 ≤ l ≤ t.

We now only need to show that ψ can be extended to an incidence preserving
bijective mapping on the point set of π. Suppose that P is a point of π, and L1
and L2 are two distinct lines containing P , such that 〈L1, L2〉 ∩ π = {P}. Since
the plane 〈L1, L2〉 is mapped to a plane intersecting π in one point P ′, both L1
and L2 are mapped to lines intersecting π in P ′. Consider a line L3 intersecting
π in exactly P , such that 〈L1, L3〉 intersects π in a line. The plane 〈L2, L3〉
intersects π only in P , hence from the above, the line L3 is also mapped to a line
intersecting π in P ′. So we can extend ψ to a mapping on the points of π by
putting ψ(P ) := ψ(L1) ∩ ψ(L2) for lines L1, L2 meeting π exactly in the point P .

Now consider a line L in π. Take a 3-dimensional space µ intersecting π in exactly
L. Take two disjoint lines M and N in µ, both disjoint from L. The lines M and
N are mapped to two disjoint lines spanning a 3-dimensional space µ′ intersecting
π in at most a line. The q+ 1 planes, spanned by M and a point of L, all intersect
N in a point, hence their images lie in µ′. The images of the points of L are all
different and lie in µ′, hence they lie on a line L′ which has to be the intersection
of µ′ with π. It follows that ψ also preserves the line set of π.

We have proved that every automorphism ψ of X(n, t, q) is induced by a mapping
on the points and lines of PG(n + t, q) which is incidence preserving, hence it is
a collineation. From this, it is clear that the automorphism group of X(n, t, q) is
isomorphic to the stabiliser group PΓL(n+ t+ 1, q)π of π.

4.4.2 A geometric isomorphism between X(n, t, q) and T ∗
n(S)

By field reduction, the points of PG(n + 1, qt) correspond to the elements of a
Desarguesian (t − 1)-spread D of PG(t(n + 2) − 1, q). In this way, the points of
the embedded hyperplane H∞ = PG(n, qt) correspond to the (t − 1)-spaces of D
forming a Desarguesian spread D∞ in a subspace J∞ = PG(t(n + 1) − 1, q) of
PG(t(n + 2) − 1, q). Say F = Fn+1,t,q is the corresponding field reduction map,
that is, denote the element of D corresponding to a point P of PG(n + 1, qt) by
F(P ), and define F(u) := {F(P ) | P ∈ u} for a subset u of PG(n+ 1, qt).

If U is a subset of PG(t(n+ 2)− 1, q), then we define B(U) := {R ∈ D | U ∩R 6=
∅}. We can identify the elements of B(U) with their corresponding points of
PG(n+ 1, qt), i.e. we will not always make the distinction between a point P and
its corresponding spread element F(P ).
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If S is a subgeometry PG(n, q) of H∞, then the set F(S) is a set of q
n+1−1
q−1 disjoint

(t− 1)-spaces in J∞, forming one of the two systems of a Segre variety Sn,t−1 (see
Theorem 1.4.2).

We use the notation F(T ∗n(S)) for the field reduced geometry corresponding to the
linear representation T ∗n(S).

Definition 4.4.3. The geometry F(T ∗n(S)) is a point-line incidence structure
embedded in PG(t(n + 2) − 1, q), with natural incidence, point set P̃ := {F(P ) |
P ∈ P(T ∗n(K))} and line set L̃ := {〈F(L)〉 | L ∈ L(T ∗n(K))}, meaning:

P̃ : the (t−1)-spaces of the Desarguesian (t−1)-spread D, not contained in D∞,
L̃ : the (2t−1)-spaces spanned by elements of D, meeting the space J∞ in exactly

one element of F(S).

Clearly, the geometry F(T ∗n(S)) is isomorphic to T ∗n(S).

We will show that the geometry X(n, t, q) is isomorphic to F(T ∗n(S)) by projecting
F(T ∗n(S)) from a specific subspace π′. From this, we will conclude that X(n, t, q)
is isomorphic to T ∗n(S).

Lemma 4.4.4. Let S be an n-dimensional Fq-subgeometry in PG(n, qt). There
exists an n-dimensional space π of J∞ such that S corresponds to B(π) and a
(tn− n+ t− 2)-dimensional subspace π′ of J∞ skew to π meeting all elements of
B(π) in a (t− 2)-space, such that π′ does not contain a spread element of D∞.

Proof. As said before, S corresponds to one system of the Segre variety Sn,t−1 in
J∞, denote this system consisting of (t − 1)-spaces by system A and the system
of n-spaces by system B. Now consider a subvariety Sn,t−2, contained in Sn,t−1,
then Sn,t−2 meets every element of system A in a (t − 2)-space. Moreover, we
know that Sn,t−1 spans J∞ and Sn,t−2 spans a (tn−n+ t−2)-space π′, containing
qt−1−1
q−1 elements of system B. Now let π be an n-space of system B, not contained

in Sn,t−2. If π and π′ would meet in a point P , this point would lie on two different
elements of system B, namely π and the unique element of Sn,t−2 of system B

through P , a contradiction.

Now suppose that π′ contains a spread element τ of D∞, then τ corresponds to a
point Q of PG(n, qt), not contained in S. Let µ be an (n−2)-dimensional subspace
of π such that Q is not contained in the (n− 2)-space of PG(n, qt) spanned by the
points of S corresponding to µ. This implies that the space 〈B(µ), τ〉 corresponds
to a hyperplane H of PG(n, qt). However, 〈B(µ), τ〉 meets π′ in a space ρ of
dimension (tn − n). Since π′ is (tn − n + t − 2)-dimensional, this implies that
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ρ meets all elements of B(π), hence, that the subgeometry S is contained in the
hyperplane H of PG(n, qt), a contradiction.

Let π and π′ be subspaces of J∞ as described in Lemma 4.4.4. Note that 〈π, π′〉 =
J∞. For a subspace L of PG(t(n+ 2)− 1, q), we denote ∞(L) to be the subspace
L∩J∞. Let Π be an (n+t)-dimensional space of PG(t(n+2)−1, q) with∞(Π) = π.

The following mapping φ will give us the projection of F(T ∗n(S)) from π′ onto the
embedding of the structure X(n, t, q) in Π = PG(n+ t, q).

φ : F(T ∗n(S)) → Π;
P ∈ P̃ 7→ 〈π′, P 〉 ∩Π,
L ∈ L̃ 7→ 〈π′, L〉 ∩Π.

Theorem 4.4.5. The mapping φ defines an isomorphism between F(T ∗n(S)) and
X(n, t, q).

Proof. We need to prove that φ preserves incidence and defines a bijection between
P̃ and P, and between L̃ and L.

(Step 1: φ is a bijection between P̃ and P)
For P ∈ P̃, the space 〈π′, P 〉 is a (tn + 2t − n − 2)-dimensional subspace of
PG(t(n + 2) − 1, q). This space intersects the (n + t)-dimensional space Π in a
subspace P ′ of dimension at least (tn+2t−n−2)+(n+ t)− (t(n+2)−1) = t−1.
If the intersection would have dimension t or larger, then π′ and Π would meet, a
contradiction. It follows that P ∈ P̃ is mapped to a (t − 1)-dimensional space of
Π\π, and thus belongs to the elements P of X(n, t, q).

For P,R ∈ P̃, P 6= R, suppose φ(P ) = φ(R), then 〈π′, P 〉 ∩ Π = 〈π′, R〉 ∩ Π. We
see that 〈π′, P 〉 = 〈〈π′, P 〉 ∩ Π, π′〉 = 〈〈π′, R〉 ∩ Π, π′〉 = 〈π′, R〉. The (2t − 1)-
dimensional space 〈P,R〉 lies in the space 〈π′, P 〉, so clearly 〈P,R〉∩J∞ = 〈P,R〉∩
π′. Since P,R ∈ D, we have 〈P,R〉 ∩ J∞ ∈ D∞. This is not possible since there
are no elements of D∞ contained in π′ = 〈π′, P 〉 ∩ J∞.

Since |P̃| = |P| = qt(n+1), the map φ is a bijection between P̃ and P.

(Step 2: φ is a bijection between L̃ and L)
For L ∈ L̃, since L∩π′ has dimension t−2, the space 〈π′, L〉 is a (tn+ 2t−n−1)-
dimensional subspace of PG(t(n+ 2)−1, q). This space intersects Π in a subspace
L′ of dimension at least t. If the intersection would have dimension t+ 1 or larger,
then π′ and Π would meet, a contradiction. It follows that L ∈ L̃ is mapped to
a t-dimensional space of Π intersecting π in exactly one point, thus it belongs to
the elements L of X(n, t, q).
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For L,M ∈ L̃, suppose φ(L) = φ(M), then 〈π′, L〉 ∩Π = 〈π′,M〉 ∩Π. Intersection
with J∞ gives ∞(L) ∩ π = ∞(M) ∩ π, thus ∞(L) = ∞(M) since they are both
elements of B(π). The space 〈φ(L),∞(L)〉 has dimension 2t − 1 and contains L,
thus is equal to L. It follows that L = 〈φ(L),∞(L)〉 = 〈φ(M),∞(M)〉 = M , so
we conclude that the mapping is injective.

As |L̃| = |L| = qnt q
n+1−1
q−1 , the map φ is a bijection between L̃ and L.

(Step 3: φ preserves incidence)
First note that every line of L̃ contains qt points of P̃, and also every line of
L contains qt points of P. Now, suppose P ∈ P̃ is contained in L ∈ L̃, then
clearly φ(P ) = 〈π′, P 〉 ∩ Π is contained in φ(L) = 〈π′, L〉 ∩ Π, hence incidence is
preserved.

Considering Theorem 4.4.2 and 4.4.5, we arrive to the following conclusion.

Theorem 4.4.6. The geometries X(n, t, q) and T ∗n(S) are isomorphic and thus
Aut(T ∗n(S)) ∼= Aut(X(n, t, q)) ∼= PΓL(n+ t+ 1, q)π.

4.4.3 X(n, t, q) as a coset geometry

In this section, we will see that X(n, t, q) has a natural description as a coset
geometry. We will prove that X(n, t, q) is isomorphic to the linear representation
T ∗n(S) embedded in PG(n + 1, qt), where S is the subgeometry PG(n, q) of the
hyperplane H∞ ∼= PG(n, qt). This provides an elegant description of both the
geometry and its automorphism group as determined in Subsection 4.4.1.

Without loss of generality, let π be the n-dimensional space of PG(n + t, q) with
equation X0 = X1 = . . . = Xt−1 = 0. We consider the embedding of the geometry
X(n, t, q) in PG(n + t, q). Recall that the point set P consists of the (t − 1)-
subspaces of PG(n + t, q) disjoint from π, and the line set L consists of the t-
subspaces of PG(n+ t, q) intersecting π in exactly one point.

Consider the following (n+ 1)-dimensional spaces through π:

Σ0 :X1 = . . . = Xt−1,

Σj :X0 = . . . = Xj−1 = Xj+1 = . . . = Xt−1, ∀j = 1, . . . , t− 2,
Σt−1 :X0 = . . . = Xt−2.

Every (t − 1)-dimensional space P ∈ P is spanned by the set of t unique points
{Uj = P ∩ Σj}j=0,...,t−1, that is, for all j = 0, . . . , t − 1, the point Uj has coordi-
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nates (0, . . . , 0, 1, 0, . . . , 0, a0j , . . . , anj)Fq
with a 1 at position j and aij ∈ Fq, for

all i = 0, . . . , n, and j = 0, . . . , t− 1.

For every P ∈ P, we can consider an (n+ t+ 1)× (n+ t+ 1)-matrix A′P

A′P =
(
It 0
AP In+1

)
,

where the (n + 1) × t-matrix AP is defined by (AP )ij = aij , for all 0 ≤ i ≤ n,
0 ≤ j ≤ t− 1, and where Ik denotes the k × k-identity matrix. Conversely, every
such matrix corresponds to a unique P ∈ P.

Now let G be the set consisting of all these matrices,

G = {A′P | P ∈ P}.

This set G, under operation of multiplication, forms a group. Note that

A′PA
′
Q =

(
It 0

AP +AQ In+1

)
.

Hence, this group is elementary abelian of order q(n+1)t. Furthermore, since every
elementary abelian group corresponds to a vector space, this implies we will be
able to interpret X(n, t, q) as a geometry “embedded” in an Fp-vector space, or
equivalently, in an affine space over Fp.

We define the action of G on P by A′R(P ) = Q if and only if A′RA′P = A′Q. It is
obvious that this is well defined and that the group G acts sharply transitively on
the point set P of X(n, t, q).

One could also envision G as a subgroup of PGL(n + t + 1, q) and consider the
action on the points of PG(n+ t, q) by left-multiplication, that is we let the matrix
act on column vectors from the left. The induced action on the elements of P is
exactly the same as the one we defined earlier. Note that all the points of π are
fixed by the group G.

Next we will describe the lines of X(n, t, q) in an algebraic way. Choose for every
point R ∈ π a corresponding vector (0, . . . , 0, b0, . . . , bn) (determined up to a scalar
multiple). We define the subgroup G(R) of G as follows:

G(R) =
{(

It 0
Ba In+1

) ∣∣∣∣ a ∈ Ftq
}
,

with the (n+ 1)× t-matrix Ba defined by (Ba)ij = biaj , 0 ≤ i ≤ n, 0 ≤ j ≤ t− 1,
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for a = (a0, a1, . . . , at−1) ∈ Ftq. Clearly the group G(R) is independent of the
chosen coordinates for R.

For 0 ≤ i ≤ n+ t, consider the point Qi of PG(n+ t, q) with corresponding vector
wi, where w0 = (1, 0, . . . , 0), w1 = (0, 1, 0, . . . , 0), . . . , wn+t = (0, . . . , 0, 1). The
group G(R) has size qt and stabilises the t-space

LR = 〈R,Q0, Q1, . . . , Qt−1〉.

Note that this space is an element of L. The group G(R) fixes the point R and acts
transitively on the t-tuples (R0, . . . , Rt−1), where Ri is a point of 〈R,Qi〉 \ {R}.
Hence, it acts transitively on the (t − 1)-spaces of LR not through R. These are
exactly the elements of P contained in this line LR of X(n, t, q). Furthermore,
since this group has size qt, this action is sharply transitive.

The space I = 〈Q0, . . . , Qt−1〉 ∈ P corresponds to the identity matrix of G. From
the above, we learned that the lines of X(n, t, q) through I correspond to the
subgroups G(R), R ∈ π. Furthermore, since G (interpreted as a subgroup of
PGL(n+t+1, q)) fixes all points of π and acts (sharply) transitively on the (t−1)-
spaces disjoint from π, we deduce that the elements of L (the lines of X(n, t, q)) are
in one-to-one correspondence with the cosets of G(R) in G. However, at this point
we can simplify notation if we take into account that all important properties of G
and the subgroups G(R) are determined by the (n+1)×t-submatrices in the lower
left corner of the elements of G. Let M be the group of all (n+1)×t-matrices over
Fq under matrix addition. We have obtained the following description of X(n, t, q)
as a coset geometry M = (PM,LM) with natural incidence (containment), point
set PM and line set LM as follows:

PM : the elements of M, that is, the (n+ 1)× t-matrices over Fq,
LM : the cosets in M of the subgroups Lb :=

{
bTa

∣∣ a ∈ Ftq
}

, for all b ∈ Fn+1
q \

{(0, . . . , 0)}.

There are exactly qn−1
q−1 lines of type Lb, since Lb = Lc, when b and c are scalar

multiples of each other.

Note that this also provides a nice description of the adjacency graph of our
geometry as a Cayley graph: the vertices are the elements of M, and two vertices
are adjacent if and only if their difference (in M) is of the form bTa, for some
a ∈ Ftq and b ∈ Fn+1

q \ {(0, . . . , 0)}.

Next we will find the lowest dimensional affine space in which X(n, t, q) naturally
embeds, and establish the isomorphism with T ∗n(S) in an algebraic way. Recall
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the representation of the Singer group of Subsection 1.3.3. That is, let f(x) =
xt −mt−1x

t−1 − · · · −m1x −m0 be an irreducible monic polynomial of degree t
over Fq used to construct Fqt . Let M be the companion matrix of f(x), that is,

M =
(

0 It−1
m0 m

)
,

with m = (m1, . . . ,mt−1). When we define

H =
{
a0It + a1M + · · ·+ at−1M

t−1 ∣∣ ai ∈ Fq
}
,

then H has the structure of Fqt under usual matrix addition and multiplication.
It follows that H \ {0} acts sharply transitively on the points of AG(t, q), different
from (0, . . . , 0)Fq

.

Now define the action of H on M by right-multiplication, i.e. in the following way:

(H,M)→M : (C,AP ) 7→ APC.

It is readily checked that this makes M into an H-vector space, that is, an Fqt-
vector space. However, if we consider this action restricted to the subgroups Lb of
M, then we see that we for every C ∈ H obtain an action

(C,Lb) 7→ Lb.

This makes the subgroups Lb into H-vector subspaces of the H-vector space M.

From the above it now follows that we can view our geometry X(n, t, q) as a ge-
ometry embedded in an (n+ 1)-dimensional vector space over Fqt , where the lines
through I correspond to certain vector subspaces and the other lines to cosets of
these subspaces, which are parallel subspaces when seen in AG(n+1, qt). Hence we
obtain a representation of X(n, t, q) as a generalised linear representation. Since
the lines of X(n, t, q) have size qt = |H| = |Fqt |, this is in fact a linear repre-
sentation, and we obtain X(n, t, q) as a linear representation of a point set in
PG(n, qt).

Define the following set

A = {(A,B,C, l) | A ∈M, B ∈ GL(n+ 1, q), C ∈ GL(t, q), l ∈ Zh},
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and a binary operation ◦ on A as follows

(A2, B2, C2, l2) ◦ (A1, B1, C1, l1)

= (Bp
−l1

2 A1C
p−l1

2 +Ap
−l1

2 , Bp
−l1

2 B1, C1C
p−l1

2 , l1 + l2).

Then A,◦ is easily checked to be a group.

Next define an action of A on the points of M as follows

((A,B,C, l), AP ) 7→ (BAPC +A)p
l

.

A simple verification now shows that this makes A into a group of automorphisms
ofM. The kernel of the described action clearly is K = {(0, λIn+1, λ

−1It, 0) | λ ∈
F∗q}.

Elements of the form (A, In+1, It, 0) map every element of LM to one of its cosets,
meaning it fixes the point set at infinity of the linear representation while permut-
ing the lines that go through a given point at infinity. An element (0, In+1, C, 0)
fixes every subgroup Lb and permutes the group elements of every subgroup,
meaning it fixes the point set at infinity and the affine point corresponding to
the zero matrix (meaning the space I), while permuting the points of every line
of P through this point. Elements of the form (0, In+1, It, l) provide the semi-
linear maps corresponding to the elements of Aut(Fq). The action of the subgroup
{(0, B, It, 0) | B ∈ GL(n + 1, q)} ≤ A fixes the point corresponding to the zero
matrix (that is, the origin in the corresponding linear representation) while per-
muting the lines that go through it. Hence this subgroup stabilises the point set
at infinity of the linear representation.

We still need to uncover this point set at infinity. With every vector b ∈ Fn+1
q \

{(0, . . . , 0)}, up to scalar multiple, there is a corresponding point at infinity. Define
a point-line incidence structure with as points the subgroups Lb and as lines the set
of subgroups {Lbi

| i = 0, . . . , q} where the vectors bi belong to a plane, meaning,
the corresponding projective points are contained in a projective line. This means
the lines through the affine point corresponding to I naturally correspond to the
structure PG(n, q). Since this structure is stabilised by the subgroup {(0, B, It, 0) |
B ∈ GL(n+ 1, q)} of the automorphism group of M, we know that our point set
at infinity is a subgeometry isomorphic to PG(n, q) and hence that M∼= T ∗n(S).

Finally, since this group has the size of the full automorphism group

|A|
|K|

= q(n+1)t |GL(n+ 1, q)| |GL(t, q)| |Aut(Fq)| /(q − 1) = |PΓL(n+ t+ 1, q)π| ,
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we see that A provides a natural description of the full automorphism group of
T ∗n(S).

4.4.4 The automorphism group

In this section, by some easy counting arguments, we will show that while the
automorphism group of T ∗n(S) is not induced by collineations of its ambient space,
there is another setting where we can see the automorphism group as a collineation
group, namely when we consider a generalised linear representation isomorphic to
T ∗n(S).

Recall the definition of a generalised linear representation.

Definition 4.4.7. Let K be a set of disjoint (t − 1)-dimensional subspaces in
Π∞ ∼= PG(m, q). Embed Π∞ as a hyperplane in PG(m + 1, q). The generalised
linear representation T ∗m,t−1(K) ofK is the incidence structure (P ′,L′) with natural
incidence for which:

P ′ : the affine points of PG(m+ 1, q), i.e. not contained in Π∞,
L′ : the t-spaces of PG(m+ 1, q) intersecting Π∞ in exactly a (t− 1)-space of K.

Recall the Barlotti-Cofman representation [10] of PG(n + 1, qt) inside PG(t(n +
1), q) (see Section 1.5). Here, the points of the hyperplane H∞ ∼= PG(n, qt) in
PG(n+1, qt) are represented as (t−1)-dimensional spaces of a Desarguesian spread
D∞ in J∞ ∼= PG(t(n+1)−1, q). The affine points of PG(n+1, qt) with respect to
H∞ can be identified with the affine points of the space PG(t(n+ 1), q) \J∞. The
lines of PG(n+ 1, qt) intersecting H∞ in a point correspond to the t-dimensional
spaces of PG(t(n+ 1), q) meeting J∞ in an element of D∞.

We consider the Barlotti-Cofman representation of the points and lines of the linear
representation T ∗n(S). The points of the hyperplane H∞ are mapped to elements
of a Desarguesian (t − 1)-spread D∞, the points of S are mapped to the (t − 1)-
spaces of F(S), where F is the field reduction map corresponding to D∞. The
affine points go to affine points, the lines of T ∗n(S) go to t-spaces intersecting J∞
in an element of F(S). In this way we obtain the generalised linear representation
T ∗t(n+1)−1,t−1(F(S)), which is thus clearly isomorphic to T ∗n(S).

Note that this representation corresponds to the intersection of the ‘points’ and
‘lines’ of F(T ∗n(S)) with a space PG(t(n + 1), q) through J∞, hence T ∗n(S) ∼=
T ∗t(n+1)−1,t−1(F(S)) ∼= F(T ∗n(S)) ∼= X(n, t, q).
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It is clear that the group PΓL(t(n + 1) + 1, q)F(S) stabilises the generalised lin-
ear representation T ∗t(n+1)−1,t−1(F(S)) and hence is isomorphic to a subgroup of
Aut(X(n, t, q)) ∼= PΓL(n+ t+ 1, q)π. We will see by counting that the groups are
in fact isomorphic.

Recall that the group of all perspectivities of PG(m, q) with a fixed axis H is a
subgroup of PGL(m+ 1, q) and is denoted by Perspq(H).

Lemma 4.4.8. Suppose K is a subset of a hyperplane H of PG(m, q) such that
〈K〉 = H. The group PΓL(m+1, q)K is an extension of Perspq(H) by PΓL(m, q)K
and PGL(m+ 1, q)K is an extension of Perspq(H) by PGL(m, q)K.

Proof. The kernel of the action of (PΓL(m + 1, q)H)K, (PGL(m + 1, q)H)K re-
spectively, on H is clearly Perspq(H). The image of the action is isomorphic to
PΓL(m, q)K, PGL(m, q)K respectively, showing that (PΓL(m+1, q)H)K, (PGL(m+
1, q)H)K respectively, is an extension of Perspq(H) by PΓL(m, q)K, PGL(m, q)K
respectively.

Theorem 4.4.9. [67, Theorem 25.5.13] The projective automorphism group of a
Segre variety Sl,k of PG((l+1)(k+1)−1, q) is either isomorphic to PGL(l+1, q)×
PGL(k+1, q) when l 6= k, or is isomorphic to (PGL(l+1, q)×PGL(k+1, q))oC2
when l = k.

Theorem 4.4.10.

Aut(T ∗n(S)) ∼= PΓL(n+ t+ 1, q)π ∼= PΓL(t(n+ 1) + 1, q)F(S)

Proof. The full automorphism group of T ∗n(S) is isomorphic to PΓL(n+ t+ 1, q)π,
see Theorem 4.4.6. Since PΓL(n + t + 1, q) acts transitively on the n-spaces of
PG(n+ t, q), we find the following:

|PΓL(n+ t+ 1, q)π| =
|PΓL(n+ t+ 1, q)|[

n+ t+ 1
n+ 1

]
q

= qt(n+1)q
t(t−1)

2 (qt − 1) · · · (q − 1)|PΓL(n+ 1, q)|.

Now we calculate the size of PΓL(t(n+1)+1, q)F(S). By Lemma 4.4.8, since F(S)
spans J∞, we find:

|PΓL(t(n+ 1) + 1, q)F(S)| = |Perspq(J∞)||PΓL(t(n+ 1), q)F(S)|.
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As seen before, the set of points contained in F(S) forms a Segre variety Sn,t−1.
Hence the stabiliser of F(S) is the stabiliser of the Segre variety that in the
case t = n + 1 does not switch the two systems. Thus, by Theorem 4.4.9, we
find PGL(t(n + 1), q)F(S) = PGL(n + 1, q) × PGL(t, q). The semilinear auto-
morphisms stabilising any one of the systems of the Segre variety naturally ex-
tend to elements of PΓL(t(n + 1), q). Hence we obtain

∣∣PΓL(t(n+ 1), q)F(S)
∣∣ =

|PGL(n+ 1, q)| |PGL(t, q)| |Aut(Fq)|.

We conclude that PΓL(t(n+ 1) + 1, q)F(S) has the same size as PΓL(n+ t+ 1, q)π:

|PΓL(t(n+ 1) + 1, q)F(S)|

= |Perspq(J∞)||PGL(n+ 1, q)||PGL(t, q)| |Aut(Fq)|

= |Perspq(J∞)||PΓL(n+ 1, q)||PGL(t, q)|

= qt(n+1)(q − 1)q
t(t−1)

2 (qt − 1) · · · (q2 − 1)|PΓL(n+ 1, q)|.

Clearly, every collineation of PΓL(t(n + 1) + 1, q)F(S) is a non-trivial element of
Aut(T ∗n(S)). Both groups have the same size, thus we obtain that Aut(T ∗n(S)) ∼=
PΓL(t(n+ 1) + 1, q)F(S).

Recall that the subgroup of PΓL(t(n + 1), q) stabilising the Desarguesian spread
D∞ elementwise, is isomorphic to the Singer group SG(t, q). This means that the
group elements of Perspqt(H∞) stabilising the hyperplane H∞ of PG(n + 1, qt)
pointwise correspond to elements of a group isomorphic to Perspq(J∞).SG(t, q)
stabilising the Desarguesian spread D∞ in the hyperplane J∞ of PG(t(n + 1), q)
elementwise.

The subgroup of the automorphism group of the linear representation T ∗n(S) for
which the elements are induced by collineations of the space PG(n+ 1, qt) will be
called the geometric automorphism group.

Theorem 4.4.11. The full automorphism group of T ∗n(S) is

|PGL(t, q)|
t|SG(t, q)| = 1

t
q

t(t−1)
2 (qt−1 − 1) · · · (q2 − 1)(q − 1)

times larger than the geometric automorphism group of T ∗n(S).

Proof. Since S spans H∞, the geometric automorphism group of T ∗n(S) is isomor-
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phic to

PΓL(n+2, qt)S
∼= Perspqt(H∞).PΓL(n+ 1, qt)S
∼= Perspqt(H∞). (PGL(n+ 1, q) o Aut(Fqt))
∼= Perspqt(H∞). (PGL(n+ 1, q) o (Aut(Fqt/Fq).Aut(Fq))) .

The full automorphism group is isomorphic to

PΓL((n+ 1)t+ 1, q)F(S)

∼= Perspq(J∞).PΓL((n+ 1)t, q)F(S)

∼= Perspq(J∞). ((PGL(n+ 1, q)× PGL(t, q)) o Aut(Fq)) .

4.5 Conclusion

We can now give a full answer to the isomorphism problem for linear representa-
tions T ∗n(K) and T ∗n(K′) of point sets K, K′.

Theorem 4.5.1. Let K and K′ denote point sets in H∞ ∼= PG(n, qt), n > 1, t > 1,
such that the closures K̂′ and K̂′ are non-trivial n-dimensional subgeometries of
H∞. Suppose K̂′ ∼= PG(n, q) and let α be an isomorphism between T ∗n(K) and
T ∗n(K′). Then α is induced by an element of PΓL(t(n+1)+1, q)J∞ mapping F(K)
onto F(K′), for the field reduction map F = Fn+1,t,q.

Proof. Suppose S = K̂′ and S ′ = K̂′ are n-dimensional subgeometries of H∞.
From Theorem 4.2.8, we know that every isomorphism between T ∗n(K) and T ∗n(K′)
is induced by an isomorphism between T ∗n(S) and T ∗n(S ′) mapping S onto S ′, that
is S ∼= S ′ ∼= PG(n, q).

From the previous section we know that every isomorphism between T ∗n(S) and
T ∗n(S ′) is induced by an element of PΓL(t(n + 1) + 1, q)J∞ mapping F(S) onto
F(S ′). It is clear that an isomorphism between T ∗n(K) and T ∗n(K′) corresponds to
an element of PΓL(t(n+ 1) + 1, q)J∞ mapping F(K) onto F(K′).

Theorem 4.5.2. Let K be a point set of H∞ = PG(n, qt), n > 1, t > 1, such that
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K̂′ ∼= S ∼= PG(n, q). The full automorphism group of T ∗n(K) is

|PGL(t, q)|
t|SG(t, q)| = 1

t
q

t(t−1)
2 (qt−1 − 1) · · · (q2 − 1)(q − 1)

times larger than the geometric automorphism group of T ∗n(K).

Proof. Since K contains a frame, the set F(K) contains a set of n + 2 (t − 1)-
spaces in general position. Hence, by Theorem 1.4.3, the set F(K) is contained in
a unique Segre variety Sn,t−1, which necessarily corresponds to F(S). It follows
that the stabiliser of F(K) in PGL((n + 1)t − 1, q) necessarily stabilises F(S),
hence

PGL((n+ 1)t, q)F(K) ∼= PGL(n+ 1, q)K × PGL(t, q).

The result now follows as in the proof of Theorem 4.4.11.

Theorem 4.5.3. Let K and K′ be two point sets of H∞ = PG(n, qt), n > 1, qt >
2, such that 〈K〉 = 〈K′〉 = H∞. If K̂′ = H∞, suppose furthermore that K satisfies
Property (∗). The linear representations T ∗n(K) and T ∗n(K′) are isomorphic if and
only if the point sets K and K′ are PΓL-equivalent.

Proof. When K̂′ = H∞ such that K satisfies Property (∗), we know by Theorem
4.2.10 that every isomorphism is induced by a collineation of the ambient space,
hence the result follows.

Suppose K̂′ and K̂′ are non-trivial isomorphic subgeometries S and S ′ of H∞.
Say S ∼= S ′ ∼= PG(n, q), then it follows from the previous theorem that given
an isomorphism α between T ∗n(K) and T ∗n(K′), there is a corresponding map in
PΓL(t(n+ 1), q) mapping F(S) onto F(S ′) such that F(K) is mapped to F(K′).

The induced action of this map in PG(n + 1, qt) is not necessarily geometric,
however, it always preserves the inherited incidence structure of the subgeometries
S and S ′. It follows that the point sets K and K′ must be PΓL-equivalent.
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5
Infinite families of

semisymmetric graphs

In this chapter, we present a general construction leading to several non-isomorphic
families of connected q-regular semisymmetric graphs Γn,q(K) of order 2qn+1, em-
beddable in PG(n+ 1, q) by considering the linear representation T ∗n(K) of a par-
ticular point set K of size q.

By varying the point set K, we obtain new examples of semisymmetric graphs.
Moreover, by using the results of the previous chapter, we obtain in almost all
cases the full automorphism group. When K is a normal rational curve with one
point removed, the graphs Γn,q(K) are isomorphic to the graphs constructed for
q = ph in [78] and to the graphs constructed for q prime in [48]. These graphs
were known to be semisymmetric, but the authors did not determine their full
automorphism group.

These results were published in [30] and are joint work with P. Cara and G. Van
de Voorde.

5.1 Introduction

All graphs are assumed to be finite and simple, i.e. they are undirected graphs
which contain no loops or multiple edges.

Definition 5.1.1. We say that a graph is vertex-transitive if its automorphism
group acts transitively on the vertices. Similarly, a graph is edge-transitive if its
automorphism group acts transitively on the edges. A graph is semisymmetric if
it is regular and edge-transitive but not vertex-transitive (see [53]).

One can easily prove that a semisymmetric graph must be bipartite with equal
partition sizes. Moreover, the automorphism group must be transitive on both
partition sets. General constructions of semisymmetric graphs are quite rare. We
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will construct several infinite families Γn,q(K) of semisymmetric graphs using the
linear representation T ∗n(K) of the point set K.

The chapter is organised as follows. In Section 5.2, we introduce the incidence
graph Γn,q(K) and we obtain a condition on K to ensure that the graph is not
vertex-transitive. In Section 5.3, we will explicitly describe the geometric auto-
morphism group of the constructed graphs and provide an easy condition on K to
ensure that the graph is edge-transitive. In Section 5.4, we will consider point sets
K such that the closure K̂′ is equal to H∞. In Section 5.5, we will look for point
sets K spanning H∞ such that the closure K̂′ is equal to a non-trivial subgeometry
of H∞.

We give a brief overview of all constructions to come in Table 5.1. Note that we
use the abbreviation NRC for a normal rational curve. If q = p is prime and
K contains a frame and satisfies Property (∗) (see Definition 4.2.5) then every
automorphism of Γn,q(K) is geometric, that is, every automorphism is induced by
a collineation of the ambient space. When q = ph is not prime, in Theorem 4.5.2
we saw that, when the closure K̂′ is isomorphic to a subgeometry PG(n, q0), for
some q = qk0 , then one can obtain an automorphism group which is

ng(q0, k) := 1
k
q

k(k−1)
2

0

k−1∏
i=1

(qi0 − 1)

times larger than the geometric one. When K contains a frame, this is the full
automorphism group.

K Condition |Aut(Γn,q(K))| Ref.

basis q = n+ 1 > hqn+1(q − 1)q!ng(p, h) §5.4.1
frame q = n+ 2 hqn+1(q − 1)nq!ng(p, h) §5.4.1
⊂ NRC q ≥ n+ 3 hqn+2(q − 1)2 §5.4.2
⊂ q-arc q > 4 even hq5(q − 1)2 §5.4.3
⊂ Glynn-arc q = 9 9682 §5.4.4
⊂ Q−(3, q) q > 4 square 2hq5(q − 1)2ng(√q, 2) §5.5.1
⊂ Tits ovoid q = 22(2e+1) hq5(q − 1)(√q − 1)ng(√q, 2) §5.5.2
⊂ Q+(3, q) q > 4 square 2hq5(q − 1)(√q − 1)2ng(√q, 2) §5.5.3
⊂ cone VO q = qk0 kq2n+1(q − 1)2|PΓL(n, q0)O|ng(q0, k) §5.5.4

Table 5.1: Overview of all constructions of Chapter 5
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5.2 The graph Γn,q(K)

We introduce the concept of the incidence graph Γn,q(K) of the linear representa-
tion T ∗n(K) of a point set K.

Definition 5.2.1. We denote the point-line incidence graph of T ∗n(K) by Γn,q(K).
It is the bipartite graph with as classes the point set P and the line set L of T ∗n(K),
and adjacency corresponding to the natural incidence of the structure T ∗n(K).

The main goal of this chapter is the construction of infinite families of semisym-
metric graphs. Note that, since a semisymmetric graph is regular, any graph
Γn,q(K) that is semisymmetric, necessarily has |K| = q. For this reason, we will
investigate point sets of size q in PG(n, q). Moreover, as in the previous chapter,
we will only consider point sets K such that 〈K〉 = H∞, since otherwise, the graph
Γn,q(K) would not be connected (see Theorem 4.1.3).
Whenever we consider the incidence graph Γn,q(K), we still regard the set of
vertices as a set of points and lines in PG(n + 1, q). In this way we can use
the inherited properties of this space and borrow expressions such as the span of
points, a subspace, incidence, and others.
It is easy to see that the problem of describing the automorphism group of Γn,q(K)
is essentially the same as dealing with the problem for T ∗n(K), as long as there is
no automorphism of Γn,q(K) mapping a vertex corresponding to a point onto a
vertex corresponding to a line. In Subsection 5.2.1, we give a condition on K to
ensure that every automorphism of Γn,q(K) preserves the set of points P. After
that we can use the results of Chapter 4 whenever this condition is met.

5.2.1 A property of Aut(Γn,q(K))

Note that an automorphism of T ∗n(K), viewed as an incidence structure, always
maps points onto points and lines onto lines, whereas an automorphism of Γn,q(K)
might map vertices corresponding to points onto vertices corresponding to lines.
Of course, in this latter case, the sets P and L must have equal size, that is,
|K| = q.
Consider a graph Γ and a positive integer i, for a vertex v of Γ, we write Γi(v) for
the set of vertices at distance i from v.
The following lemma provides a condition which forces the neighbourhood of a
vertex in the set P to be essentially different from the neighbourhood of a vertex
in the set L.
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Lemma 5.2.2. Let K be a set of points of H∞ such that every point of H∞\K
lies on at least one tangent line to K, then ∀P ∈ P,∀L ∈ L : Γn,q(K)4(P ) 6∼=
Γn,q(K)4(L).

Proof. We will prove that, for every line L ∈ L, the set of vertices Γn,q(K)4(L)
contains at least one vertex that has all its neighbours in Γn,q(K)3(L), while for
every point P ∈ P, a vertex in the set Γn,q(K)4(P ) cannot have all its neighbours
in Γn,q(K)3(P ).

To prove the first claim, consider a line L ∈ L with L∩H∞ = P1 ∈ K. Choose an
affine point Q on L and a point P2 ∈ K different from P1. Take a point R on QP2,
not equal to Q or P2, then clearly the line RP1 ∈ Γn,q(K)4(L). We will show that
RP1 has all its neighbours in Γn,q(K)3(L). Consider a neighbour S of RP1, i.e a
point S ∈ RP1 \ {P1}. The line SP2 meets L in a point T . We find a minimal
path S ∼ SP2 ∼ T ∼ L, it follows that S ∈ Γn,q(K)3(L).

Consider now a point P ∈ P and a point T ∈ Γn,q(K)4(P ). Consider a minimal
path of length 4 from T to P , that is T ∼ QP1 ∼ Q ∼ QP2 ∼ P , for some
affine point Q and distinct points P1, P2 ∈ K, such that T ∈ QP1 and P ∈ QP2.
Consider the point R = PT ∩H∞, then R must lie on the line P1P2. Moreover R
is different from P1 and P2, and hence, since PR = PT /∈ Γn,q(K)1(P ), we have
R not in K. By assumption, there is a tangent line of K through R, say RP3,
with P3 ∈ K. The line TP3 is a neighbour of T . Suppose that TP3 belongs to
Γn,q(K)3(P ), then there exists a line PT ′ through a point P4 ∈ K, with T ′ on
TP3, which implies that RP3 contains the point P4 ∈ K, a contradiction.

Theorem 5.2.3. Let |K| 6= q or let K be a set of points of H∞ such that every point
of H∞\K lies on at least one tangent line to K. Suppose α is an automorphism of
Γn,q(K), then α stabilises P.

Proof. Since any graph automorphism preserves distance and hence neighbour-
hoods, it follows from Lemma 5.2.2 that no automorphism of Γn,q(K) maps a
vertex in P to a vertex in L.

Corollary 5.2.4. If K is a set of q points of H∞ such that every point of H∞ lies
on at least one tangent line to K, then Γn,q(K) is not vertex-transitive.

Remark. If K does not satisfy the conditions of the previous corollary, then
sometimes we can find an automorphism switching the sets P and L of the graph
Γn,q(K). That is, let K be the q-arc {(0, 1, x, x2)Fq

| x ∈ Fq}, q even, embed-
ded in the plane H∞ of PG(3, q) with equation X0 = 0. Consider the map φ,
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such that for all a, b, c ∈ Fq, the affine point (1, a, b, c)Fq
is mapped to the line

〈(0, 1, a, a2)Fq , (1, 0, c, b2)Fq 〉. One can check that this map preserves the edges of
the graph Γ2,q(K) but switches the sets P and L.

From Theorems 4.2.11, 4.5.2 and 4.5.3, we easily deduce the following corollaries
in terms of the incidence graphs.

Corollary 5.2.5. Let q > 2 and consider two point sets K and K′ in H∞ =
PG(n, q). Let K be a set of q points such that 〈K〉 = H∞ and such that every point
of H∞ lies on at least one tangent line to K. The graphs Γn,q(K) and Γn,q(K′)
are isomorphic if and only if the point sets K and K′ are PΓL-equivalent.

Corollary 5.2.6. Let q > 2 and let K be a set of q points such that its closure K̂′
is equal to H∞ and such that every point of H∞ lies on at least one tangent line
to K. Then Aut(Γn,q(K)) ∼= PΓL(n+ 2, q)K.

Corollary 5.2.7. Let K be a point set of H∞ = PG(n, q), n > 1, q > 2, of size q
such that K̂′ ∼= PG(n, q0), where q = qk0 . Suppose that every point of H∞ lies on
at least one tangent line to K. The full automorphism group of Γn,q(K) is

ng(q0, k) := 1
k
q

k(k−1)
2

0

k−1∏
i=1

(qi0 − 1)

times larger than its geometric automorphism group PΓL(n+ 2, q)K.

5.3 Describing the automorphism group

An element of (PΓL(n+ 2, q)H∞)K induces a geometric automorphism of Γn,q(K);
it defines an element of Aut(Γn,q(K)). In the previous chapter, we have shown that,
under certain conditions, (PΓL(n + 2, q)H∞)K is the full automorphism group of
Γn,q(K). In this section, it is our goal to provide a more explicit description of
(PΓL(n+ 2, q)H∞)K.

Recall that the subgroup of PΓL(n+2, q) consisting of all perspectivities with axis
H∞ is denoted as Perspq(H∞). In the previous chapter we obtained the following
lemma.

Lemma 4.4.8. Consider a point set K spanning H∞. The group (PΓL(n +
2, q)H∞)K is an extension of Perspq(H∞) by PΓL(n+1, q)K and (PGL(n+2, q)H∞)K
is an extension of Perspq(H∞) by PGL(n+ 1, q)K.
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Remark. In general, PΓL(n+2, q)H∞ is an extension of Perspq(H∞) by PΓL(n+
1, q). However, this extension does not necessarily split since PΓL(n+ 1, q) is not
necessarily embeddable in PΓL(n+2, q). For example, PGL(4, 4) has no subgroup
isomorphic to PGL(3, 4). Depending on the choice ofK, we can investigate whether
(PΓL(n+2, q)H∞)K does split over Perspq(H∞). To show that this extension splits,
we need to embed the group PΓL(n+ 1, q)K in (PΓL(n+ 2, q)H∞)K, and different
groups PΓL(n+ 1, q)K may require a different proof. In the next theorem, we give
a general condition on K that is sufficient to show that the extension splits. The
condition is not necessary: in Subsection 5.4.1, the result is shown to hold when K
is a basis or frame in H∞ and in [44], it is shown that the same holds for ovoidal
Buekenhout-Metz unitals, in particular the classical unital, which does not satisfy
our condition. However, our theorem obtains the result simultaneously for a lot
of different point sets K.

We start with an easy lemma.

Lemma 5.3.1. If there is an element of PΓL(n+1, q) mapping K to a point set K′,
where K′ is stabilised under the Frobenius automorphism, then PΓL(n + 1, q)K ∼=
PGL(n+ 1, q)K o Aut(Fq).

Proof. Since all automorphisms of Fq are generated by the Frobenius automor-
phism, every automorphism of Fq stabilises K′. From this, if there is an element of
PΓL(n+1, q) mapping K to K′, we can also find an element of PGL(n+1, q) map-
ping K to K′. Since K′ is contained in the orbit of K under PGL(n+ 1, q), we find
that PGL(n+1, q)K ∼= PGL(n+1, q)K′ and PΓL(n+1, q)K ∼= PΓL(n+1, q)K′ . Since
Aut(Fq) stabilises K′, we can restrict the well-known isomorphism PΓL(n+1, q) ∼=
PGL(n+1, q)oAut(Fq) to elements of PΓL(n+1, q)K′ , and the lemma follows.

Theorem 5.3.2. If the setwise stabiliser PΓL(n + 1, q)K, respectively PGL(n +
1, q)K, of a point set K spanning H∞ = PG(n, q), fixes a point of H∞, then
PΓL(n + 2, q)K ∼= Perspq(H∞) o PΓL(n + 1, q)K, respectively PGL(n + 2, q)K ∼=
Perspq(H∞) o PGL(n+ 1, q)K.

Proof. Since K spans H∞, the group PΓL(n + 2, q)K is contained in PΓL(n +
2, q)H∞ . By Lemma 4.4.8, we see that PΓL(n+2, q)K is an extension of Perspq(H∞)
by PΓL(n+1, q)K. This extension splits if and only if PΓL(n+1, q)K can be embed-
ded in PΓL(n+ 2, q)K in such a way that it intersects trivially with Perspq(H∞).
By assumption, PΓL(n+ 1, q)K fixes a point P ∈ H∞. Suppose that P has corre-
sponding vector (0, c1, c2, . . . , cn+1), where the first non-zero coordinate equals one.
This implies that for each β ∈ PΓL(n+1, q)K, there exists a unique (n+1)×(n+1)
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matrix B = (bij), 1 ≤ i, j ≤ n+1, and an element θ ∈ Aut(Fq) corresponding to β,
such that (c1, . . . , cn)θB = (c1, . . . , cn). Moreover, the obtained semi-linear maps
(B, θ) form a subgroup G of ΓL(n+ 1, q). Let AB = (aij), 0 ≤ i, j ≤ n+ 1, be the
(n+ 2)× (n+ 2) matrix with a00 = 1, ai0 = a0j = 0 for i, j ≥ 1, and aij = bij for
1 ≤ i, j ≤ n + 1. It is clear that the set of all maps (AB , θ) forms a subgroup of
PΓL(n+ 2, q)H∞ , where every map (AB , θ) corresponds to a collineation α acting
in the same way as β on H∞. If θ 6= 1, then α is not a perspectivity. If θ = 1,
then α fixes every point on the line through P and (1, 0, . . . , 0), thus fixes at least
two affine points, and hence is not a perspectivity. This implies that we have
found a subgroup of PΓL(n+2, q)K isomorphic to PΓL(n+1, q)K and intersecting
Perspq(H∞) trivially.

The second claim can be proved in the same way.

Corollary 5.3.3. If the setwise stabiliser PGL(n+1, q)K of a point set K spanning
H∞ = PG(n, q) fixes a point of H∞, and PΓL(n + 1, q)K ∼= PGL(n + 1, q)K o
Aut(Fq/Fq0), for q0 = ph0 , h0|h, or PΓL(n + 1, q)K ∼= PGL(n + 1, q)K, then
PΓL(n+ 2, q)K ∼= Perspq(H∞) o PΓL(n+ 1, q)K.

Proof. It is clear that Aut(Fq) can be embedded in PΓL(n + 2, q) by mapping
θ ∈ Aut(Fq) to the semi-linear map (In+2, θ) ∈ PΓL(n + 2, q) where In+2 is the
(n + 2) × (n + 2) identity matrix. Since Perspq(H∞) intersects Aut(Fq) trivially,
the corollary follows.

Examples of point sets satisfying the conditions of Theorem 5.3.2 are ubiquitous;
the case where K is a q-arc in H∞ will be studied in detail in Section 5.4.

The following theorem is easy to prove. We will use it to show edge-transitivity
of the constructed graphs.

Theorem 5.3.4. Consider a point set K of size q in H∞ = PG(n, q) such that
〈K〉 = H∞. The graph Γn,q(K) is an edge-transitive if and only if the subgroup
PΓL(n + 1, q)K ≤ PΓL(n + 1, q) acting on H∞ stabilises K and acts transitively
on the points of K.

Proof. Consider two edges (Ri, Li), i = 1, 2, where Ri ∈ P, Li ∈ L, Ri ∈ Li, we
will construct a mapping from one edge to the other. Let Pi be Li ∩H∞. Since
PΓL(n + 1, q)K acts transitively on K, we may take an element β of PΓL(n +
1, q)K such that β(P1) = P2. This element extends to an element β′ of (PΓL(n+
2, q)H∞)K mapping P1 onto P2.
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If β′(R1) = R2, then β′(L1) = L2, hence the statement follows. If β′(R1) 6= R2,
then let S be the point at infinity of the line β′(R1)R2. There is a (unique) elation
γ with centre S and axis H∞ mapping β′(R1) to R2. This elation maps β′(L1)
onto L2. Since γ ◦ β′ is an element of (PΓL(n+ 2, q)H∞)K mapping (R1, L1) onto
(R2, L2), the statement follows.

Moreover, by Corollary 5.2.5, every isomorphism of Γn,q(K) (which does not switch
the classes P and L) induces on action on the point set K which is also induced
by an element of PΓL(n+ 1, q)K stabilising Γn,q(K). Hence, the graph Γn,q(K) is
edge-transitive only if the group PΓL(n+ 1, q)K acts transitively on the points of
K.

5.4 Semisymmetric graphs arising from arcs

We are in search of point sets K such that the closure K̂′ is equal to H∞ and such
that PΓL(n + 1, q)K acts transitively on the points of K. An arc of size q turns
out to be an excellent choice.

If A is a k-arc in PG(n, q), then k ≥ n + 1, hence, we will only consider the case
where q ≥ n + 1. If q = n + 1, then it is easy to see that an arc of size q in
PG(n, q) is a basis. If q = n + 2, then every arc of size q is a frame. Hence,
when q = n + 1 or q = n + 2, all arcs of size q in PG(n, q) are PΓL-equivalent.
Because of the isomorphism of the graph Γn,q(K) with other graphs (see Section
5.6), we will explicitly investigate these cases, but the more interesting examples
occur when q ≥ n + 3. Recall that the classical example of an arc of size q + 1
is given by the normal rational curve. A normal rational curve in PG(n, q), 2 ≤
n ≤ q − 2, is a (q + 1)-arc PGL-equivalent to the (q + 1)-arc {(0, . . . , 0, 1)Fq

} ∪
{(1, t, t2, t3, . . . , tn)Fq

| t ∈ Fq}.

Remark. In [65] an overview can be found of several results concerning normal
rational curves and the extendability of arcs. There are results showing that an
arc of size q in PG(n, q) can be extended to an arc of size q+ 1, see [65, Table 3.2]
for q sufficiently large w.r.t. n, and [65, Table 3.4] for q close to n. Moreover, other
results show that for many values of q and n, all (q+1)-arcs in PG(n, q) are normal
rational curves. The combination of these results leads to the understanding why
there are not many known examples of q-arcs in PG(n, q) that are not contained
in a normal rational curve.

We will construct different families of graphs, arising from non-PΓL-equivalent
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arcs of size q. Since these arcs satisfy the conditions of Corollary 5.2.5, we see that
the obtained graphs are non-isomorphic.

In view of Corollary 5.2.6, our first goal is to show that the closure K̂′ of a set K
of q points of an arc in PG(n, q), q ≥ n+ 3 or q = p = n+ 2 prime, is H∞. When
n = 2, this follows immediately, since an arc that is contained in a non-trivial
subplane of PG(2, q) can have size at most √q + 2. In the following lemmas, we
deal with the case n ≥ 3.

Lemma 5.4.1. Let K be an arc of size q in PG(n, q), n ≥ 3. Let P1 and P2 be
any two points of K;

• if q = n+ 2, then the line P1P2 contains at least one additional point of K̂′,

• if q ≥ n+ 3, then the line P1P2 contains at least q/2 additional points of K̂′.

Proof. Note that a k-space π, k ≤ n− 2, with k+ 1 points of K, different from P1
and P2, does not intersect P1P2, since otherwise 〈π, P1P2〉 would be a (k+1)-space
containing k + 3 points of K, contradicting the arc condition.

Consider n points P3, . . . , Pn+2 of K, all different from P1 and P2. The space
〈P3, . . . , Pn+2〉 is a hyperplane of H∞, hence, it meets the line P1P2 in a point
Q. This point Q is contained in K̂′ but not contained in K since K is an arc. If
q = n+ 2, there is exactly one set {P3, . . . , Pn+2} of n points of K, different from
P1 and P2, yielding an extra point in K̂′ on P1P2.

If n+3 ≤ q ≤ 2n+2, then let {P3, . . . , Pn+3} be a set of n+1 points of K, different
from P1 and P2. Any subset with n points of {P3, . . . , Pn+3} defines a hyperplane
intersecting P1P2 in a point Q 6= P1, P2 contained in K̂′. These points Q are all
different since any two considered hyperplanes intersect in an (n − 2)-space with
n− 1 points of K, and hence this space does not intersect P1P2. There are n+ 1
such subsets, so the line P1P2 contains q/2 ≤ n + 1 ≤ q − 2 additional points in
K̂′ different from P1 and P2.

If q ≥ 2n + 2, then let P3, . . . , Pn+1 be n − 1 points of K, different from P1 and
P2. Clearly, 〈P3, . . . , Pn+1〉 is disjoint from P1P2. There are q − n− 1 points of K
different from all Pi, i = 1, . . . , n+1. For every such point R ∈ K\{P1, . . . , Pn+1},
the hyperplane 〈P3, . . . , Pn+1, R〉 intersects P1P2 in a point of K̂′different from P1
and P2. Again, all these points are different since two such hyperplanes intersect
in 〈P3, . . . , Pn+1〉. The line P1P2 contains q − n − 1 ≥ q/2 points of K̂′ different
from P1 and P2.
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Lemma 5.4.2. Let K be an arc of size q in PG(n, q), n ≥ 2, with q ≥ n + 3 or
q = p = n+ 2. If µ∞ is a plane containing 3 points of K, then every point of µ∞
is contained in K̂′.

Proof. Consider three points P1, P2, P3 of K and let µ∞ be the plane 〈P1, P2, P3〉.
Consider q ≥ n+ 3. By Lemma 5.4.1, we know that there exist at least q/2 points
in K̂′ on each of the lines P2P3, P1P3 and P1P2, different from P1, P2 and P3.
Consider the set S containing all these points and the points P1, P2 and P3. Its
closure Ŝ forms a subplane π of µ∞ consisting of only points of K̂′. Since a proper
subplane of PG(2, q) contains at most √q + 1 < q/2 + 2 points of the line P1P2,
we see that π must be µ∞.

If q = n+ 2 is prime, by Lemma 5.4.1, we find an extra point Qi ∈ K̂′, i = 2, 3, on
the line P1Pi. The closure of {P1, P2, P3, Q2, Q3} forms a subplane with all points
in K̂′. By the fact that q is prime, this subplane equals µ∞ = PG(2, q).

Lemma 5.4.3. Let L be a line such that every point is in K̂′. If π∞ is a plane of
H∞ containing L and at least two points R1 and R2 of K̂′ \L, then every point in
the plane π∞ belongs to K̂′.

Proof. The closure of the set of points of K̂′on the line L, together with the points
R1 and R2 is clearly the plane π∞ itself.

Lemma 5.4.4. For n ≥ 2, let q ≥ n+ 3 or q = p = n+ 2, and let K be an arc of
size q in PG(n, q), then K̂′ = PG(n, q).

Proof. For n = 2, this follows from before. Let P1, . . . , Pq be the points of K. By
Lemma 5.4.2, we know that every point of 〈P1, P2, P3〉 belongs to K̂′. Suppose, by
induction on k ≤ n that every point in 〈P1, . . . , Pk〉 belongs to K̂′.

The point Pk+1 is not contained in 〈P1, . . . , Pk〉. Let S be a point of 〈P1, . . . , Pk+1〉,
not on the line P1Pk+1, and let R be the intersection of the line SPk+1 with
〈P1, . . . , Pk〉. By induction, every point on the line RP1 belongs to K̂′.

By Lemma 5.4.1, there exists an additional point Q in K̂′on the line P1Pk+1. Since
the plane 〈RP1, Pk+1〉 contains RP1 ⊂ K and the points Q and Pk+1 of K̂′, Lemma
5.4.3 implies that the point S belongs to K̂′, as do all the points of P1Pk+1. This
shows that every point in 〈P1, . . . , Pk+1〉 is in K̂′. The lemma follows by induction
and the fact that H∞ = 〈P1, . . . , Pn+1〉.

Theorem 5.4.5. For n = 2, suppose q odd, for n ≥ 3, suppose q ≥ n + 3 or
q = p = n+ 2. If K is an arc in PG(n, q), then Aut(Γn,q(K)) ∼= PΓL(n+ 2, q)K.
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Proof. It is clear that if n = 2, q odd or n ≥ 3, then every point of H∞ lies on a
tangent line to the arc. By Lemma 5.4.4, K̂′ equals PG(n, q). The theorem follows
from Corollary 5.2.6.

5.4.1 K is a q-arc in PG(n, q) with q = n + 1 or q = n + 2

As noted before, a q-arc in PG(n, q), with q = n+1, is a basis, a q-arc in PG(n, q),
with q = n + 2, is a frame. In these cases, the linear representation of a q-arc
gives rise to a semisymmetric graph, however, the description of the automorphism
group is different from the case q ≥ n+3. Sadly, we cannot use the same techniques
as in the proof of Lemma 4.4.8 to show that PΓL(n+2, q)K splits over Perspq(H∞).

We introduce some definitions.

Definition 5.4.6. A permutation matrix is a square binary matrix that has exactly
one entry 1 in each row and each column, and 0’s elsewhere. A monomial matrix
or generalised permutation matrix has exactly one nonzero entry in each row and
each column.

The (n+1)× (n+1)-monomial matrices over Fq form a subgroup Mon(n+1, q) of
GL(n+ 1, q). Let PMon(n+ 1, q) denote the corresponding subgroup of PGL(n+
1, q). Let Sk denote the symmetric group of degree k, meaning the group of all
permutations of {1, 2, . . . , k}.

Theorem 5.4.7. If K is a q-arc in PG(n, q), n ≥ 2, q = n+ 1 or q = n+ 2, with
(n, q) 6= (2, 4), then Γn,q(K) is a semisymmetric graph. The group PΓL(n+ 2, q)K
is a subgroup of Aut(Γn,q(K)) and is isomorphic to Perspq(H∞)oPΓL(n+ 1, q)K,
where PΓL(n+ 1, q)K is isomorphic to

(i) Sq o Aut(Fq) if q = n+ 2, having size hqn+1(q − 1)q!;
(ii) PMon(n+ 1, q) o Aut(Fq) if q = n+ 1, having size hqn+1(q − 1)nq!.

If q = n + 2 and q is prime, then Aut(Γn,q(K)) is geometric and isomorphic to
PΓL(n+ 2, q)K.

If q = n + 2 and q = ph is not prime, then Aut(Γn,q(K)) is not geometric
and |Aut(Γn,q(K))| = |PΓL(n + 2, q)K|ng(p, h) = hqn+1(q − 1)nq!ng(p, h), where
ng(p, h) := 1

hp
h(h−1)

2
∏h−1
i=1 (pi − 1).

Proof. (i) If q = n + 2, then K is PGL-equivalent to the frame K′ of H∞ =
PG(n, q) with points P1, . . . , Pn+2, where Pi has corresponding vector vi, and v1 =
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(1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vn+1 = (0, . . . , 0, 1), vn+2 = (−1,−1, . . . ,−1).
For all 1 ≤ k ≤ n + 1, consider Bk = (bij) to be the matrix with bii = 1, i 6= k,
1 ≤ i ≤ n + 1, bki = −1, 1 ≤ i ≤ n + 1, and bij = 0 for all other i, j. The
considered action of Bk on the points of PG(n, q) is by right-multiplication on
the row vector of their coordinates. Let Gper denote the subgroup of permutation
matrices of GL(n+ 1, q), and consider the subgroup G of GL(n+ 1, q), generated
by the elements of Gper and the matrices Bk, 1 ≤ k ≤ n+ 1.

Let H∞ correspond to the hyperplane X0 = 0 of PG(n+1, q), that is, every point of
H∞ = PG(n, q) with vector (c1, . . . , cn+1) corresponds to the point of PG(n+1, q)
with vector (0, c1, . . . , cn+1). For every matrix B = (bij), 1 ≤ i, j ≤ n + 1, in G,
we can define a matrix AB = (aij), 0 ≤ i, j ≤ n+1, as the (n+2)× (n+2) matrix
with a00 = 1, ai0 = a0j = 0 for i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n + 1. Let
G̃ be the subgroup of PGL(n + 2, q) obtained as the set of all matrices AB with
corresponding matrix B ∈ G. It is clear that the elements of G are exactly the
permutations of the elements of {v1, . . . , vn+2} and hence that G̃ is isomorphic to
PGL(n+ 1, q)K ∼= Sq.

It follows that the only element of G̃ fixing K pointwise corresponds to the identity
matrix, which implies that any element of Perspq(H∞) contained in G̃ is trivial.
Hence, PGL(n + 2, q)K is isomorphic to Perspq(H∞) o PGL(n + 1, q)K. Clearly,
PGL(n + 1, q)K acts transitively on the points of K, hence by Theorem 5.3.4 the
graph Γn,q(K) is edge-transitive.

(ii) Now suppose q = n+1. The group PSL(n+1, q) is a subgroup of PGL(n+1, q)
and a quotient of SL(n + 1, q). When q = n + 1, all three groups have the same
order and thus are all isomorphic. Hence, PGL(n + 1, q) can be embedded in
PGL(n+ 2, q)H∞ by taking all matrices B = (bij), 1 ≤ i, j ≤ n+ 1, of SL(n+ 1, q)
and, as before, defining AB = (aij), 0 ≤ i, j ≤ n+1, with a00 = 1, ai0 = a0j = 0 for
i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n+ 1. An element of Perspq(H∞) corresponds
to a matrix of the form D = (dij), 0 ≤ i, j ≤ n+ 1, with d0j = λj , 0 ≤ j ≤ n+ 1,
dii = µ, 1 ≤ i ≤ n + 1, for some λj , µ ∈ Fq, µ 6= 0 and dij = 0 otherwise. This
implies that the group G̃ of matrices AB defined in this way meets Perspq(H∞)
trivially. Hence, PGL(n+ 2, q)K is isomorphic to Perspq(H∞) o PGL(n+ 1, q)K.

Since q = n+ 1, the curve K is PGL-equivalent to the set K′ consisting of points
P1, . . . , Pn+1 in PG(n, q), where Pi has coordinates vi, and v1 = (1, 0, . . . , 0), v2 =
(0, 1, 0, . . . , 0), . . . , vn+1 = (0, . . . , 0, 1). Using this, it is clear that PGL(n+ 1, q)K
is isomorphic to PMon(n + 1, q) and that PGL(n + 1, q)K acts transitively on K.
Hence, Γn,q(K) is an edge-transitive graph.

In both cases, it is clear that K′ is stabilised by the Frobenius automorphism,
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hence, using Theorem 5.3.2, it also follows that PΓL(n + 2, q)K ∼= Perspq(H∞) o
(PGL(n + 1, q)K o Aut(Fq)). The observation on the sizes follows from |Sq| = q!
and |PMon(n+ 1, q)| = |Sq|

|(F∗q)n|
(q−1) = q!(q − 1)n−1.

Since through every point of H∞, there is a tangent line to K, Corollary 5.2.4
shows that Γn,q(K) is not vertex-transitive. Since K spans H∞ and |K| = q, we
get that Γn,q(K) is connected and semisymmetric.
The last part of the statement follows from Theorem 5.4.5 and Corollary 5.2.7.

Remark. By using the computer program GAP [54], we obtained that when K a
basis of PG(2, 3) (i.e. n = 2, q = 3) every automorphism of Γ2,3(K) is induced by a
collineation of PG(3, 3). Hence, the automorphism group of Γ2,3(K) is isomorphic
to PΓL(4, 3)K. However, for n = 3, q = 4, we found that [Aut(Γn,q(K)) : PΓL(n+
2, q)K] = 8. This implies that there exist automorphisms of the graph Γ3,4(K)
that are not collineations of PG(4, 4). For n = 4, q = 5, this index is already 7776.
This might indicate that the general description of the full automorphism group
of Γn,q(K), with n+ 1 = q and K a basis, is a hard problem.

5.4.2 K is contained in a normal rational curve and q ≥ n+3

We will use the following theorem by Segre.

Theorem 5.4.8. [102] If q ≥ n+ 2 and S is a set of n+ 3 points in PG(n, q), no
n+ 1 of which lie in a hyperplane, then there is a unique normal rational curve in
PG(n, q) containing the points of S.

Corollary 5.4.9. If K is a set of q points of a normal rational curve N in
PG(n, q), q ≥ n + 3, then N is the unique normal rational curve containing the
points of K.

The following theorem is well known; a proof can be found in e.g. [67, Theorem
27.5.3].

Theorem 5.4.10. If q ≥ n + 2 and N is a normal rational curve in PG(n, q),
then the stabiliser of N in PΓL(n+ 1, q) is isomorphic to PΓL(2, q) (in its faithful
action on q + 1 points).

These results enable us to give a construction for the following infinite two-
parameter family of semisymmetric graphs.
Note that the subgroup of PΓL(2, q) fixing one point in its natural action, is
isomorphic to the affine semilinear group AΓL(1, q).
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Theorem 5.4.11. If K is a set of q points, contained in a normal rational curve
of PG(n, q), q = ph, n ≥ 3, q ≥ n + 3, or n = 2, q odd, then Γn,q(K) is a
semisymmetric graph.

Moreover, Aut(Γn,q(K)) is isomorphic to Perspq(H∞) o AΓL(1, q) and has size
hqn+2(q − 1)2.

Proof. Since |K| = q, the graph Γn,q(K) is q-regular. The set K is an arc spanning
the space PG(n, q). It is clear that if n ≥ 3, or if q is odd, every point of PG(n, q)
lies on at least one tangent line to K. Hence, by Theorem 4.1.3, Corollary 5.2.4
and Theorem 5.4.5, Γn,q(K) is a connected not vertex-transitive graph for which
Aut(Γn,q(K)) ∼= PΓL(n+ 2, q)K. By Corollary 5.4.9, K extends by a point P to a
unique normal rational curve N . Since P must be fixed by the stabiliser of K and
PΓL(2, q)P ∼= AΓL(1, q), we get PΓL(n+2, q)K ∼= Perspq(H∞)oAΓL(1, q), by The-
orem 5.3.2. The size of this group follows when considering that |Perspq(H∞)| =
qn+1(q − 1) and |AΓL(1, q)| = hq(q − 1). By Theorem 5.3.4, the graph Γn,q(K) is
edge-transitive and thus semisymmetric.

5.4.3 K is contained in an arc in PG(3, q), q even

The (q + 1)-arcs in PG(3, q), q even, have been classified, each of them has the
same stabiliser group as the normal rational curve.

Theorem 5.4.12. [33] In PG(3, q), q ≥ 8 even, every (q+1)-arc is PGL-equivalent
to a (q+1)-arc C(σ) = {(1, x, xσ, xσ+1) | x ∈ Fq}∪{(0, 0, 0, 1)}, for some generator
σ of Aut(Fq).

Theorem 5.4.13. [80] In PG(3, q), q ≥ 8 even, the stabiliser of C(σ) in PΓL(4, q)
is isomorphic to PΓL(2, q) (in its faithful action on q + 1 points).

The case q = 4 is already discussed in Section 5.4.1.

Theorem 5.4.14. [32] For a k-arc of PG(3, q), q ≥ 4 even, we have k ≤ q + 1.

Theorem 5.4.15. [26] Let K be a k-arc in PG(3, q), q even. If k > (q + 4)/2,
then K is contained in a unique complete arc.

Corollary 5.4.16. Consider a (q + 1)-arc C(σ) of PG(3, q), q ≥ 8 even. If K is
a set of q points contained in C(σ), then there is a unique (q + 1)-arc through the
points of K, namely C(σ).
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Proof. Using Theorem 5.4.15, since q > (q + 4)/2 when q > 4, we find a unique
complete arc through K. This arc has size at most q + 1 by Theorem 5.4.14 and
thus is equal to C(σ).

Theorem 5.4.17. If K is a set of q points contained in any (q+1)-arc of PG(3, q),
q = 2h ≥ 8 even, then Γ3,q(K) is a semisymmetric graph.

Moreover, Aut(Γ3,q(K)) is isomorphic to Perspq(H∞) o AΓL(1, q) and has size
hq5(q − 1)2.

Proof. The proof goes in exactly the same way as the proof of Theorem 5.4.11, by
making use of Corollary 5.4.16, Theorem 5.4.12 and Theorem 5.4.13.

5.4.4 K is contained in the Glynn arc in PG(4,9)

In [55], Glynn constructed an example of an arc of size 10 in PG(4, 9), which is
not a normal rational curve. We call this 10-arc the Glynn arc (of size 10). He
also shows that an arc in PG(4, 9) of size 10 is either a normal rational curve or a
Glynn arc.

Theorem 5.4.18. [55] The stabiliser in PΓL(5, 9) of the Glynn arc of size 10 in
PG(4, 9) is isomorphic to PGL(2, 9).

Theorem 5.4.19. [20] A k-arc in PG(n, q), n ≥ 3, q odd and k ≥ 2
3 (q − 1) + n,

is contained in a unique complete arc of PG(n, q).

Corollary 5.4.20. If K is a set of 9 points contained in a Glynn 10-arc C of
PG(4, 9), then K is contained in a unique 10-arc, namely C.

Theorem 5.4.21. If K is a 9-arc contained in a Glynn 10-arc of PG(4, 9), then
Γ4,9(K) is a semisymmetric graph.

Moreover, Aut(Γ4,9(K)) is isomorphic to Perspq(H∞) o AGL(1, 9) and has size
9682.

Proof. Since |K| = 9, Γ4,9(K) is a 9-regular graph. The set K is an arc spanning the
space PG(4, 9). It is clear that every point of PG(4, 9) lies on at least one tangent
line to K. Hence, by Theorem 4.1.3, Corollary 5.2.4 and Theorem 5.4.5, Γ4,9(K) is
a connected not vertex-transitive graph for which Aut(Γ4,9(K)) ∼= PΓL(6, 9)K. By
Corollary 5.4.20, K extends by a point P to a unique Glynn 10-arc C. By Theorem
5.3.2, we have PΓL(6, 9)K ∼= Perspq(H∞) o PΓL(5, 9)K. Since PGL(2, 9)P ∼=
AGL(1, 9), we find PΓL(6, 9)K ∼= Perspq(H∞) o AGL(1, 9). As before, the size
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easily follows. By Theorem 5.3.4, the graph Γ4,9(K) is edge-transitive and thus
semisymmetric.

5.4.5 Using the MDS dual arc construction

Let K = {P1, . . . , Pk} be a k-arc in PG(n, q), k ≥ n + 4. Consider corresponding
vectors (a0j , . . . , anj) of Pj , 1 ≤ j ≤ k, then the rows of the (n + 1) × k-matrix
A = (aij) determine a vector subspace V1 = V (n + 1, q) of V (k, q) (i.e. an MDS
code). The space V1 has a unique orthogonal complement V2 = V (k − n− 1, q) in
V (k, q). Then V2 also is an MDS code [82, p. 319]. A k-arc K̈ = {Q1, . . . , Qk} of
PG(k−n−2, q), with respective vectors (b0j , . . . , bk−n−2,j) defining Qj , 1 ≤ j ≤ k,
such that the (k−n−1)×k-matrix B = (bij) generates V2, is called an MDS dual
k-arc K̈ of the k-arc K [111].

It should be noted that MDS duality for arcs is a one-to-one correspondence be-
tween equivalence classes of arcs, rather than a correspondence between arcs.
Choosing other orderings of the points of K or choosing other coordinates for
the points of K, could give distinct arcs, however, all these MDS dual k-arcs of
the arc K are PΓL-equivalent.

Theorem 5.4.22. [109, Theorem 2.1] A k-arc K in PG(n, q), k ≥ n + 4, and a
MDS dual k-arc K̈ of K in PG(k − n − 2, q) have isomorphic collineation groups
and isomorphic projective groups.

The duality transformation maps normal rational curves to normal rational curves
and non-classical arcs to non-classical arcs. This implies that the arcs in Sections
5.4.3 and 5.4.4 give rise to a different family of semisymmetric graphs. This follows
from the following theorem.

Theorem 5.4.23. Let K be a q-arc in H∞ = PG(n, q), q ≥ n + 4, and let
K̈ be a MDS dual arc of K in Ḧ∞ = PG(q − n − 2, q). Suppose that one of
the groups PΓL(n + 1, q)K or PΓL(q − n − 1, q)K̈ fixes a point outside of K, K̈
respectively, and acts transitively on the points of K, K̈ respectively, then Γn,q(K)
and Γq−n−2,q(K̈) are semisymmetric, Aut(Γn,q(K)) ∼= Perspq(H∞) o PΓL(n +
1, q)K and Aut(Γq−n−2,q(K̈)) ∼= Perspq(Ḧ∞) o PΓL(n+ 1, q)K.

Proof. In the same way as before, using Theorem 4.1.3, Corollary 5.2.4 and Theo-
rem 5.4.5, we see that Γn,q(K) and Γq−n−2,q(K̈) are connected not vertex-transitive
graphs for which Aut(Γn,q(K)) ∼= PΓL(n+2, q)K and Aut(Γq−n−2,q(K̈)) ∼= PΓL(q−
n, q)K̈.
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Suppose w.l.o.g. that PΓL(n+ 1, q)K fixes a point outside of K, then by Theorem
5.3.2, PΓL(n+2, q)K ∼= Perspq(H∞)oPΓL(n+1, q)K. The embedding of PΓL(n+
1, q)K in PΓL(n + 2, q)K used to show this result was constructed by adding a 1
at the upper left corner of every matrix B corresponding to an element (B, θ) of
PΓL(n + 1, q)K, for some θ ∈ Aut(Fq) to obtain a matrix B′ corresponding to
an element (B′, θ) of PΓL(n+ 2, q)K. This subgroup meets Perspq(H∞) trivially,
which implies that in the group of matrices defining elements of PΓL(n + 1, q)K,
no proper scalar multiple of the identity matrix occurs.

Now, from the isomorphism of Theorem 5.4.22, it follows that the group PGL(q−
n− 1, q)K̈, which is isomorphic to PGL(n+ 1, q)K, also contains no proper scalar
multiple of the identity matrix. Hence, by embedding PΓL(q − n − 1, q)K̈ in
PΓL(q−n, q) in the same way (by adding a 1 at the upper left corner), we see that
it meets Perspq(Ḧ∞) trivially. This implies that PΓL(q − n, q)K̈ ∼= Perspq(Ḧ∞) o
PΓL(n+ 1, q)K.

We know that PΓL(n+1, q)K and PΓL(q−n−1, q)K̈ are permutation isomorphic,
hence, if one of them acts transitively on the points of K or K̈, so does the other.
By Theorem 5.3.4, the graphs Γn,q(K) and Γq−n−2,q(K̈) are edge-transitive and
hence semisymmetric.

If we restrict ourselves in the previous theorem to elements of the projective groups,
using Theorem 5.3.3, we get the following corollary.

Corollary 5.4.24. Let K be a q-arc in H∞ = PG(n, q), q ≥ n + 4, and let K̈ be
a MDS dual arc of K in Ḧ∞ = PG(q − n − 2, q). Suppose that one of the groups
PGL(n + 1, q)K or PGL(q − n − 1, q)K̈ fixes a point outside of K, K̈ respectively,
and acts transitively on the points of K, K̈ respectively. Suppose PΓL(n+ 1, q)K ∼=
PGL(n + 1, q)K o Aut(Fq/Fq0) or PΓL(q − n − 1, q)K̈ ∼= PGL(q − n − 1, q)K̈ o
Aut(Fq/Fq0) respectively, for q0 = ph0 , h0|h, or PΓL(n+ 1, q)K ∼= PGL(n+ 1, q)K,
PΓL(q − n− 1, q)K̈ ∼= PGL(q − n− 1, q)K̈ respectively.

Then Γn,q(K) and Γq−n−2,q(K̈) are semisymmetric, Aut(Γn,q(K)) ∼= Perspq(H∞)o
PΓL(n+ 1, q)K and Aut(Γq−n−2,q(K̈)) ∼= Perspq(Ḧ∞) o PΓL(n+ 1, q)K.

Consider the Glynn 10-arc contained in PG(4, 9) and take any point P of this
10-arc; if we project the arc from P onto a PG(3, 9) skew to P , then we obtain a
complete 9-arc of PG(3, 9). In [55] the author also shows that all complete 9-arcs
in PG(3, 9) can be obtained in this way, i.e. all complete 9-arcs of PG(3, 9) are
PΓL-equivalent. It follows from [108] that the complete 9-arc in PG(3, 9) is the
MDS dual of a 9-arc that is contained in the Glynn arc in PG(4, 9). If we apply

117



Chapter 5. Infinite families of semisymmetric graphs

Theorem 5.4.23 to the Glynn 10-arc, we obtain the following corollary. The size
of the automorphism group follows as before.

Corollary 5.4.25. If K is a complete 9-arc of PG(3, 9), then Γ3,9(K) is a semisym-
metric graph.

Moreover, Aut(Γ3,9(K)) is isomorphic to Perspq(H∞) o AGL(1, 9) and has size
9582.

We can also apply Theorem 5.4.23 to the arcs of Section 5.4.3.

Corollary 5.4.26. Let K be an arc of size q contained in any (q + 1)-arc of
PG(q − 4, q), q = 2h > 8, then Γq−4,q(K) is a semisymmetric graph.

Moreover, Aut(Γq−4,q(K)) is isomorphic to Perspq(H∞) o AΓL(1, q) and has size
hqq−2(q − 1)2.

5.5 Semisymmetric graphs arising from other
point sets

By Corollary 5.2.6, if K is a set of points such that its closure K̂′ is the whole space
H∞, then every automorphism of the graph Γn,q(K) is induced by a collineation
of its ambient space PG(n + 1, q). However, we do not need this property for
the construction of semisymmetric graphs. From the results of Section 5.2, the
following theorem clearly follows.

Theorem 5.5.1. Let K be a point set of H∞ = PG(n, q) of size q spanning H∞
such that every point of H∞\K belongs to at least one tangent line to K, and such
that PΓL(n + 1, q)K acts transitively on the points of K. Then the graph Γn,q(K)
is a connected semisymmetric graph.

We now give some examples of semisymmetric graphs for which K̂′ is a subgeometry
of H∞. In the first three examples, K̂′ is a Baer subgeometry, obviously this only
works if we look at a projective space over a field of square order. We will also
construct their geometric automorphism group.

5.5.1 K is contained in an elliptic quadric

Let π be a Baer subgeometry PG(3,√q) embedded in H∞ = PG(3, q), q a square.
Let K denote the set of points of an elliptic quadric Q−(3,√q) in π with one point
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removed. This set K has q points and clearly every point not in K lies on at least
one tangent line to K.

Theorem 5.5.2. [9] A q-cap in PG(3,√q), q an odd square, is uniquely extendable
to an elliptic quadric Q−(3,√q).

Theorem 5.5.3. [104, Chapter IV] In PG(3,√q), q > 4 an even square, a k-cap,
with q − 4

√
q/2 + 1 < k < q + 1, is contained in a unique complete (q + 1)-cap.

Theorem 5.5.4. [63, Section 15.3] The stabiliser in PΓL(4,√q) of an elliptic
quadric in PG(3,√q) is PΓO−(4,√q), which is isomorphic to PΓL(2, q) (in its
faithful action on q + 1 points).

Theorem 5.5.5. Let K denote the set of points of an elliptic quadric Q−(3,√q)
in H∞ = PG(3, q), with one point removed. The graph Γ3,q(K), q > 4 square,
is semisymmetric. Moreover, the geometric automorphism group is isomorphic to
Perspq(H∞)o (AΓL(1, q)o2) and has size 2hq5(q−1)2. The size of Aut(Γ3,q(K))
is equal to 2hq5(q − 1)2ng(√q, 2).

Proof. As K consists of q points spanning PG(3, q), the graph Γ3,q(K) is q-regular
and it is connected by Theorem 4.1.3. The graph Γ3,q(K) is not vertex-transitive by
Corollary 5.2.4. The geometric automorphism group of Γ3,q(K) is PΓL(5, q)K. By
Theorem 5.5.2 (q odd) and 5.5.3 (q even), the cap K extends uniquely to an elliptic
quadric in PG(3,√q) by a point P . This point is obviously fixed by the stabiliser of
K and hence, by Theorem 5.3.2, we find PΓL(5, q)K ∼= Perspq(H∞) o PΓL(4, q)K.

The group stabilising K also stabilises the subgeometry K̂′, hence PΓL(4, q)K ∼=
PΓL(4,√q)K o (Aut(Fq/F√q)) ∼= PΓL(4,√q)K o 2. The stabiliser of K sta-
bilises the elliptic quadric and fixes its point P , hence we find PΓL(4,√q)K ∼=
PΓO−(4,√q)P ∼= PΓL(2, q)P ∼= AΓL(1, q). Since AΓL(1, q) acts transitively on
the points of K, the graph is semisymmetric. The size of this group follows from
|Perspq(H∞)| = q4(q − 1) and |AΓL(1, q)| = hq(q − 1). The size of the full auto-
morphism group follows from Corollary 5.2.7.

5.5.2 K is contained in a Tits ovoid

Let π be a Baer subgeometry PG(3,√q) embedded inH∞ = PG(3, q), q = 22(2e+1),
e > 0. Let K denote the set of points of a Tits ovoid in π, with one point removed.
This set K has q points and forms a cap in PG(3, q).
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The canonical form of a Tits ovoid in PG(3,√q), √q = 22e+1, is

{(1, s, t, st+ sσ+2 + tσ)Fq | s, t ∈ F√q} ∪ {(0, 0, 0, 1)Fq},

where σ : F√q → F√q : x 7→ x2e+1 . Let the set K correspond to the points of this
ovoid minus the point (0, 0, 0, 1)Fq

, then K is clearly stabilised by Aut(Fq).

Theorem 5.5.6. [116] The stabiliser of K in PGL(4,√q) is the 2-transitive Suzuki
simple group Sz(√q).

Following the notation of [70, Chapter 11], the point stabiliser of Sz(√q) will be
denoted by FH. Since Sz(√q) is 2-transitive, the group FH is transitive.

Theorem 5.5.7. Let K denote the set of points of a Tits ovoid in an F√q-
subgeometry of H∞, with one point removed. The graph Γ3,q(K), q = 22(2e+1),
e > 0, is semisymmetric. Moreover, the geometric automorphism group is isomor-
phic to Perspq(H∞) o (FHo Aut(Fq)) and has size hq5(q − 1)(√q − 1). The size
of Aut(Γ3,q(K)) is equal to hq5(q − 1)(√q − 1)ng(√q, 2).

Proof. The proof works in almost the same way as for the elliptic quadric. The
size of the group follows when considering that |FH| = q(√q − 1).

5.5.3 K is contained in a hyperbolic quadric

Let π be a Baer subgeometry PG(3,√q) embedded in H∞ = PG(3, q), q > 4
square. Let K denote the set of points of a hyperbolic quadric Q+(3,√q) in π

with two lines of different reguli removed. This set K has q points.

Theorem 5.5.8. [63, Section 15.3] The stabiliser in PΓL(4,√q) of a hyperbolic
quadric in PG(3,√q) is PΓO+(4,√q), which is isomorphic to ((PGL(2,√q) ×
PGL(2,√q)) o 2) o Aut(F√q) for √q > 2.

Corollary 5.5.9. For √q > 2, the stabiliser in PΓL(4,√q) of a hyperbolic quadric
in PG(3,√q) fixing two lines of different reguli is isomorphic to ((AGL(1,√q) ×
AGL(1,√q)) o 2) o Aut(F√q).

Theorem 5.5.10. Let K denote the set of points of a hyperbolic quadric Q+(3,√q)
of an F√q-subgeometry of H∞ with two lines of different reguli removed. The
graph Γ3,q(K), q = ph > 4 square, is semisymmetric. Moreover, the geometric
automorphism group is isomorphic to Perspq(H∞)o((AGL(1,√q)×AGL(1,√q))o
2)oAut(Fq) and has size 2hq5(q− 1)(√q− 1)2. The size of Aut(Γ3,q(K)) is equal
to 2hq5(q − 1)(√q − 1)2ng(√q, 2).
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Proof. Since K consists of q points spanning PG(3, q), Γ3,q(K) is q-regular and is
connected by Theorem 4.1.3. Clearly every point of PG(3, q) not in K belongs to
at least one tangent to K, hence Γ3,q(K) is not vertex-transitive by Corollary 5.2.4.
The geometric automorphism group is PΓL(5, q)K. Clearly K extends uniquely to
a hyperbolic quadric in PG(3,√q) by adding the missing line of each regulus. Since
the intersection point of these lines will be fixed by the stabiliser of K, we find
by Theorem 5.3.2 that PΓL(5, q)K ∼= Perspq(H∞) o PΓL(4, q)K. Since the group
stabilising the hyperbolic quadric also stabilises the subgeometry K̂′ = PG(3,√q)
and the canonical form of Q+(3,√q) is fixed by Aut(Fq), we find PΓL(4, q)K ∼=
PGL(4,√q)KoAut(Fq) ∼= ((AGL(1,√q)×AGL(1,√q))o2)oAut(Fq), by Theorem
5.3.3. Since (AGL(1,√q)× AGL(1,√q)) o 2 acts transitively on the points of K,
the graph is semisymmetric. The size of the full automorphism group follows from
Corollary 5.2.7.

5.5.4 K is contained in a cone

Let Π be a subgeometry PG(n, q0) embedded in H∞ = PG(n, q), q = qk0 . Let π
be a hyperplane of Π. Consider a set O of qk−1

0 points of π. Let V be a point of
Π\π and let VO denote the set of points of the cone in Π with vertex V and base
O. Let K be the point set of VO minus its vertex V , clearly K contains q points.

Lemma 5.5.11. Let K be the cone VO of Π minus its vertex V , such that every
point of π\O belongs to at least one tangent line to O, then ∀P ∈ P,∀L ∈ L :
Γn,q(K)4(P ) 6∼= Γn,q(K)4(L).

Proof. Let Γ = Γn,q(K). We will prove that, for every line L ∈ L, the set of
vertices Γ4(L) contains more than q − 1 vertices that have all their neighbours in
Γ3(L), while for every point P ∈ P, there are exactly q − 1 vertices in the set
Γ4(P ) that have all their neighbours in Γ3(P ).

To prove the first claim, consider a line L ∈ L with L∩H∞ = P1 ∈ K. Choose an
affine point Q on L and a point P2 ∈ K different from P1. Take a point R on QP2,
not equal to Q or P2, then clearly the line RP1 ∈ Γ4(L). We will show that RP1
has all its neighbours in Γ3(L). Consider a neighbour S of RP1, i.e S ∈ RP1\{P1}.
The line SP2 meets L in a point T . Since T ∈ Γ1(L) and TP2 ∈ Γ2(L), it follows
that S ∈ Γ3(L). Clearly any line M ∈ L through P1, such that 〈M,L〉 ∩ H∞
contains at least two points in K, belongs to Γ4(L) and has all its neighbours in
Γ3(L). Since the points of K are not contained in one line, there are more than
q − 1 such lines M .
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Consider now a point P ∈ P and a point T ∈ Γ4(P ). Consider a minimal path
of length 4 from T to P : T ∼ QP1 ∼ Q ∼ QP2 ∼ P , for some affine point Q
and distinct points P1, P2 ∈ K, such that T ∈ QP1 and P ∈ QP2. Consider the
point R = PT ∩ H∞, then R belongs to the line P1P2. Since PR /∈ Γ1(P ), we
have R not in K. First, suppose there is a tangent line of K through R, say RP3,
with P3 ∈ K. The line TP3 is a neighbour of T . If TP3 belongs to Γ3(P ), then
there exists a line PT ′ through a point P4 ∈ K, with T ′ on TP3, which implies
that RP3 contains the point P4 ∈ K, a contradiction. Hence in this case there are
neighbours of T that do not belong to Γ3(P ). Now suppose there is no tangent
line of K through R, then by construction, R is the vertex V of the cone. A line
through V either contains 0 or q0 points of K, so in this case, any neighbour of T
belongs to Γ3(P ). There are exactly q − 1 points on the line V P different from P

and V .

Corollary 5.5.12. The graph Γn,q(K) is not vertex-transitive.

Proof. Since any graph automorphism preserves distance and hence neighbour-
hoods, no automorphism of Γn,q(K) can map a vertex in P to a vertex in L.

Recall that the subgroup of PΓL(n + 1, q) consisting of the perspectivities with
centre V is denoted by Perspq(V ).

Lemma 5.5.13. Consider K, the point set of the cone VO in PG(n, q0), minus
its vertex V , where O spans π. If PΓL(n, q0)O and PGL(n, q0)O, respectively, fix
a point of π, then

PΓL(n+ 1, q)K ∼= Perspq(V ) o (PΓL(n, q0)O o Aut(Fq/Fq0))

and
PGL(n+ 1, q)K ∼= Perspq(V ) o PGL(n, q0)O,

respectively.

Proof. First, it should be noted that the Fq0-span of O is π, the Fq0 -span of K
is Π, so PΓL(n + 1, q)K and PGL(n + 1, q)K stabilise the subgeometry Π of H∞.
This implies that PΓL(n + 1, q)K ∼= (PΓL(n + 1, q)Π)K, and PGL(n + 1, q)K ∼=
(PGL(n + 1, q)Π)K respectively. Since PΓL(n + 1, q)Π is clearly isomorphic to
PGL(n+ 1, q0) o Aut(Fq/Fq0), we have that PΓL(n+ 1, q)K ∼= PΓL(n+ 1, q0)K o
Aut(Fq/Fq0). Also, since PGL(n+ 1, q)Π is isomorphic to PGL(n+ 1, q0), we have
that PGL(n+ 1, q)K ∼= PGL(n+ 1, q0)K.
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Let φ be an element of PΓL(n + 1, q0)K, then φ preserves the lines through V .
Define the action of φ on the lines L of VO to be the mapping taking L ∩ π to
φ(L) ∩ π. The kernel of this action of PΓL(n+ 1, q0)K on π is clearly isomorphic
to Perspq(V ), as it consists of all collineations fixing the lines through V . The
image of the action is isomorphic to PΓL(n, q0)O, showing that PΓL(n + 1, q0)K
is an extension of Perspq(V ) by PΓL(n, q0)O. To show that this extension splits,
we embed PΓL(n, q0)O in PΓL(n+ 1, q0)K in such a way that it intersects trivially
with Perspq(V ). By assumption, PΓL(n, q0)O fixes a point P ∈ π. W.l.o.g. let
π be the hyperplane with equation X0 = 0 and let V be the point (1, 0, . . . , 0)Fq

.
Suppose that P has corresponding vector (0, c1, c2, . . . , cn), where the first non-zero
coordinate equals one. This implies that for each β ∈ PΓL(n, q0)O, there exists a
unique n×n matrix B = (bij), 1 ≤ i, j ≤ n, and θ ∈ Aut(Fq0) corresponding to β,
such that (c1, . . . , cn)θB = (c1, . . . , cn). Moreover, the obtained maps (B, θ) form
a subgroup of ΓL(n, q0). Let AB = (aij), 0 ≤ i, j ≤ n, be the (n + 1) × (n + 1)
matrix with a00 = 1, ai0 = a0j = 0 for i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n. It
is clear that the semi-linear map (AB , θ) defines an element of PΓL(n + 1, q0)K,
corresponding to a collineation α acting in the same way as β on H∞. If θ is
not the identity 1, then α is not a perspectivity. If θ = 1, then α fixes every
point on the line through P and V , thus fixes at least two affine points and
hence is not a perspectivity. This implies that the elements α form a subgroup
of PΓL(n+ 1, q)K isomorphic to PΓL(n, q0)O and intersecting Perspq(V ) trivially.
This implies that PΓL(n+ 1, q0)K ∼= Perspq(V ) o PΓL(n, q0)O, and we have seen
before that PΓL(n + 1, q)K ∼= PΓL(n + 1, q0)K o Aut(Fq/Fq0). Since Perspq(V )
intersects trivially with the standard embedding of Aut(Fq/Fq0), the claim follows.

The claim for PGL(n+ 1, q)K can be proved in the same way.

Since Perspq(V ) acts transitively on the points of each line through V , we obtain
the following corollary.

Corollary 5.5.14. If the stabiliser PΓL(n, q0)O acts transitively on O, then PΓL(n+
1, q)K acts transitively on K.

Theorem 5.5.15. Let K denote the points of a cone VO in an Fq0 -subgeometry
of H∞ = PG(n, q), q = qk0 , minus its vertex V . Suppose that O spans π, that every
point of π\O belongs to a tangent line to O and that PΓL(n, q0)O acts transitively
on O. Then the graph Γn,q(K) is semisymmetric.

The geometric automorphism group of Γn,q(K) is isomorphic to Perspq(H∞) o(
Perspq(V ) o (PΓL(n, q0)O o Aut(Fq/Fq0))

)
. The group Aut(Γn,q(K)) has size

kq2n+1(q − 1)2|PΓL(n, q0)O|ng(q0, k).
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Proof. Since K consists of q points spanning PG(n, q), Γn,q(K) is q-regular and is
connected by Theorem 4.1.3. The graph Γn,q(K) is not vertex-transitive by Corol-
lary 5.5.12. Clearly, PΓL(n+ 1, q)K stabilises the point V , so we find by Theorem
5.3.2 that PGL(n+2, q)K ∼= Perspq(H∞)oPGL(n+1, q)K. The expression for the
geometric automorphism group follows from Lemma 5.5.13. Since PΓL(n+ 1, q)K
acts transitively on the points of K, by Theorem 5.3.4, the graph is edge-transitive,
and hence semisymmetric. The size of the full automorphism group follows from
Corollary 5.2.7.

5.6 Isomorphisms with other graphs

In this section, we will show that the graphs constructed by Du, Wang and Zhang
[48], and the graphs of Lazebnik and Viglione [78] belong to the family Γn,q(K),
where K is a q-arc contained in a normal rational curve (see Section 5.4.2).

5.6.1 The graph of Du, Wang and Zhang

If q = p prime, then the point set N of PG(n, p) defined as

N =
{

(0, . . . , 0, 1)Fq

}
∪
{
φi(P )

∣∣P = (1, 0, . . . , 0)Fq
, i = 0, 1, . . . , p− 1

}
,

where the element φ ∈ PGL(n + 1, p) has order p and is defined by the matrix
Aφ (under right-multiplication on row vectors) forms a normal rational curve in
PG(n, p) (see [107]):

Aφ =



1 0 · · · 0
1 1

...0 1
. . .

...
. . .

1 1 0
0 · · · 0 1 1


.

When we consider the orbit of P under φ as the point set K at infinity, we obtain a
reformulation of the construction of the semisymmetric graphs found by Du, Wang
and Zhang in [48]. This shows that our construction of the graph Γn,p(K), with K
a set of p points, contained in a normal rational curve, contains their family (and
extends their construction to the case where q is not a prime).
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Moreover, the edge-transitive group of automorphisms described by the authors is
not the full automorphism group of the graph: they only consider automorphisms
induced by the group 〈φ〉 of order p acting on the points of K, together with
Perspp(H∞).

5.6.2 The graph of Lazebnik and Viglione

In [78], the authors define the graph Λn,q as follows. Let Pn and Ln be two (n+1)-
dimensional vector spaces over Fq, q = ph. The vertex set of Λn,q is Pn ∪Ln, and
we declare a point (p) = (p1, p2, . . . , pn+1) adjacent to a line [l] = [l1, l2, . . . , ln+1]
if and only if the following n relations on their coordinates hold:

l2 + p2 = p1l1,

l3 + p3 = p1l2,

...
ln+1 + pn+1 = p1ln.

In the following theorem, we will show that the graph Λn,q is isomorphic to the
graph Γn,q(K), where K is contained in a normal rational curve; hence, Γn,q(K)
provides an embedding of the Lazebnik-Viglione graph in PG(n+ 1, q). It should
be noted that in [78], the authors provide some automorphisms, acting on the
graph Λn,q, to show that this graph is semisymmetric. From the isomorphism
with Γn,q(K), it follows that PΓL(n + 2, q)K is also the full automorphism group
of the Lazebnik-Viglione graph when q ≥ n+ 3 or q = p = n+ 2.

Theorem 5.6.1. We have Λn,q ∼= Γn,q(K), where K is a q-arc contained in a
normal rational curve.

Proof. The graph Λn,q is isomorphic to the graph Λ′n,q obtained by reversing the
role of the points and the lines in the definition of Λn,q. So, Λ′n,q is the bipar-
tite graph with parts Pn and Ln, where (p1, . . . , pn+1) ∈ Pn is incident with
[l1, . . . , ln+1] ∈ Ln if and only if pi+1 + li+1 = l1pi for all 1 ≤ i ≤ n. Let
[l] = [l1, . . . , ln+1] be a vertex of Λ′n,q, then the points, incident with [l], form a
line of AG(n+ 1, q): suppose (p1, . . . , pn+1) and (p′1, . . . , p′n+1) are vertices, adja-
cent with [l], then so is the vertex (p1 + λ(p′1 − p1), . . . , pn+1 + λ(p′n+1 − pn+1)),
for any λ ∈ Fq.
Now let (p1, . . . , pn+1) and (p′1, . . . , p′n+1) be vertices of Λ′n,q and consider their
corresponding affine points in PG(n + 1, q), by identifying (p1, . . . , pn+1) with
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(1, p1, . . . , pn+1)Fq
. The line L determined by these points meets the hyperplane

at infinity with equation X0 = 0 of AG(n + 1, q) in the point P∞ = (0, p1 −
p′1, . . . , pn+1−p′n+1)Fq . Now the affine point set of L is a vertex of Λ′n,q if and only
if there is an element [l1, . . . , ln+1] ∈ Ln such that for all 1 ≤ i ≤ n:

pi+1 + li+1 = l1pi,

p′i+1 + li+1 = l1p
′
i.

This implies that there exists some l1 ∈ Fq such that pi+1 − p′i+1 = l1(pi − p′i) for
all 1 ≤ i ≤ n. Hence, the point P∞ has coordinates (0, 1, l1, l21, . . . , ln1 )Fq

, which
implies that all the vertices [l1, . . . , ln+1] of Λ′n,q define a line in PG(n+1, q) through
a point of the standard normal rational curve K, minus the point (0, . . . , 0, 1)Fq .
This is exactly the description of the graph Γn,q(K).

Corollary 5.6.2. The automorphism group Aut(Λn,q) of the graph Λn,q is iso-
morphic to the edge-transitive group PΓL(n+ 2, q)K. Moreover

• if q ≥ n + 3, q = ph, n ≥ 3 (or n = 2 and q odd), then Aut(Λn,q) has size
hqn+2(q − 1)2;

• if q = p = n+2, then Aut(Λn,q) has size qn+1(q−1)q!, and, if q = ph = n+2,
h > 1, then Aut(Λn,q) has size qn+1(q − 1)q!ng(p, h).
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III
The André/Bruck-Bose

representation

In Part III, we consider substructures in the André/Bruck-
Bose representation of PG(2, qn) in PG(2n, q). We investi-
gate the André/Bruck-Bose representation of Fqk -sublines
and Fqk -subplanes of PG(2, qn) in Chapter 6. In Chap-
ter 7, we obtain a characterisation of ovoidal Buekenhout-
Metz unitals in PG(2, q2) by considering their correspond-
ing point set in PG(4, q).

127





6
Subgeometries in the

André/Bruck-Bose
representation

We consider the André/Bruck-Bose representation of the projective plane PG(2, qn)
in PG(2n, q). We investigate the representation of Fqk -sublines and Fqk -subplanes
of PG(2, qn), extending the results of [11, 13, 14]. More precisely, we characterise
the representation of Fqk -sublines tangent to or contained in the line at infinity, Fq-
sublines external to the line at infinity, Fq-subplanes tangent to and Fqk -subplanes
secant to the line at infinity.

The results in this chapter are joint work with J. Sheekey and G. Van de Voorde,
and were published in [97].

6.1 Introduction

The André/Bruck-Bose representation, or ABB-representation, is the well-known
representation of the plane PG(2, qn) in PG(2n, q) (for details, see Section 1.5).
The aim of this chapter is to characterise the ABB-representation of Fqk -sublines
and Fqk -subplanes of PG(2, qn) in PG(2n, q). For this, we need to make the
distinction between sublines that are contained in, tangent to or external to the
line at infinity, as well as the distinction between subplanes that are secant to,
tangent to or external to the line at infinity.

For k = 1 and n = 2, these problems are thoroughly studied and solved (see [12,
Section 3.4.2]). For sublines tangent to and subplanes secant to the line at infinity
where k = 2i and n = 2r, this problem was solved in [11]. Recently, the case k = 1
and n = 3, for tangent and external sublines as well as for secant and tangent
subplanes, was settled in [13, 14]. In [13, Theorem 3.5], the authors extended
their proof for sublines with n = 3 to general n. However, we note in Theorem
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6.3.5 that this extension is not entirely correct for the case of an external subline
(unless n is a prime).

We will settle the characterisation of the following cases:

• Fqk -sublines tangent to or contained in the line at infinity:
for general k and n (Theorem 6.3.3 and Theorem 6.3.8),

• Fq-sublines external to the line at infinity:
for general n (Theorem 6.3.5),

• Fqk -subplanes secant to the line at infinity:
for general k and n (Theorem 6.4.1),

• Fq-subplanes tangent to the line at infinity:
for general n (Theorem 6.4.5).

The chapter is organised as follows. Indicator sets and subspreads of Desarguesian
spreads are considered in Subsection 6.2.1. We will use explicit coordinates for the
ABB-representation, which are introduced in Subsection 6.2.2. This enables us
to determine the indicator set of the Desarguesian spread in an explicit way in
Subsection 6.2.3. To allow us to use coordinates in the most convenient form
in the calculations of Sections 6.3 and 6.4, we determine in Subsection 6.2.4 the
induced action of the stabiliser of the line at infinity of PG(2, qn) on the points
of the ABB-representation in PG(2n, q). Sections 6.3 and 6.4 are devoted to the
proofs of the characterisation theorems for sublines and subplanes.

Remark. We wish to remark the following correspondence between field reduction
and the ABB-representation. Apply the field reduction map F3,n,q to the points
and lines of a projective plane π ∼= PG(2, qn). The points of π correspond to
(n − 1)-spaces of a Desarguesian (n− 1)-spread D in a space Π ∼= PG(3n− 1, q);
the lines of π correspond to (2n − 1)-spaces in Π partitioned by elements of D.
Take a line l∞ of π and its corresponding (2n−1)-space H∞ of Π. Consider now a
2n-space Σ in Π containing H∞. The space Σ intersects an element of D \H∞ in
a point and intersects a (2n− 1)-space corresponding to a line of π (different from
l∞) in an n-space containing an element of D ∩H∞. It is clear that the incidence
structure of these points and n-spaces in Σ corresponds to the ABB-representation
of π with respect to l∞. The image under the field reduction map F3,n,q of an
Fq-subline, respectively Fq-subplane, of π is a regulus, respectively Segre variety,
contained in D. Hence, characterising the ABB-representation of such Fq-sublines
and Fq-subplanes corresponds to characterising the intersection of a regulus and
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a Segre variety with an appropriate subspace. This was an approach used in [77]
to describe the ABB-representation of an external Fq-subline. However, obtaining
a one-to-one correspondence this way seems unfeasible, since the indicator sets
play a crucial role in the characterisation. Moreover, since there is not (yet) a nice
description of the field reduction of Fqk -sublines and Fqk -subplanes for k > 1, their
ABB-representation can not be obtained this way. Hence, we will not be using
this approach.

6.2 Preliminaries

6.2.1 The indicator set of a Desarguesian spread and its
subspreads

As seen in Section 1.4, a Desarguesian spread of PG(rn−1, q) can be obtained by
applying field reduction to the points of PG(r−1, qn). However, by Segre [103], a
Desarguesian spread can also be constructed as follows. Embed Λ = PG(rn−1, q)
as a subgeometry of Λ∗ = PG(rn − 1, qn). The subgroup of PΓL(rn, qn) fixing
Λ pointwise is isomorphic to Aut(Fqn/Fq). Consider a generator σ of this group.
One can prove that there exists an (r−1)-space ν skew to the subgeometry Λ such
that 〈ν, νσ, . . . , νσn−1〉 = PG(rn− 1, qn). Moreover, a subspace of PG(rn− 1, qn)
of dimension s is fixed by σ if and only if it intersects the subgeometry Λ in a
subspace of dimension s (see [34]). Let P be a point of ν and let L(P ) denote
the (n − 1)-dimensional subspace generated by the conjugates of P , i.e., L(P ) =
〈P, P σ, . . . , P σn−1〉. Then L(P ) is fixed by σ and hence it intersects PG(rn− 1, q)
in an (n − 1)-dimensional subspace. Repeating this for every point of ν, one
obtains a set D of (n − 1)-spaces of the subgeometry Γ forming a spread. This
spread D is a Desarguesian spread and {ν, νσ, . . . , νσn−1} is called the indicator
set of D. An indicator set is sometimes also called a set of director spaces [103] or
a set of transversal spaces [13]. It is known from [34] that for any Desarguesian
(n−1)-spread of PG(rn−1, q) there exists a unique indicator set in PG(rn−1, qn).

Definition 6.2.1. A (k − 1)-subspread of an (n − 1)-spread S of PG(rn − 1, q),
k|n, is a (k − 1)-spread of PG(rn − 1, q) that induces a (k − 1)-spread in each
element of S.

We can construct a Desarguesian (k− 1)-subspread of the Desarguesian spread D
as follows. For every divisor k|n, consider the (rn − 1)-dimensional subgeometry
Λk := Fix(σk) = PG(rn− 1, qk) of Λ∗. Obviously, Λ is contained in Λk. Consider
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the ( rnk − 1)-dimensional subgeometry Π = 〈ν, νσk

, . . . , νσ
n−k〉 ∩ Λk, this space is

disjoint from Λ. One can see that the set {Π,Πσ, . . . ,Πσk−1} is the indicator set
of a (k − 1)-spread Dk in Λ. By construction, Dk is Desarguesian.

Consider a spread element E ∈ D and its Fqn-extension E∗ in Λ∗; there exists a
unique point P ∈ ν such that E∗ = 〈P, P σ, . . . , P σn−1〉. Consider the (nk − 1)-
dimensional subgeometry

π = 〈P, P σ
k

, . . . , P σ
n−k

〉 ∩ Λk

in E∗; this is a subspace of Π. The set {π, πσ, . . . , πσk−1} is the indicator set of
a (k − 1)-spread of E and each of these (k − 1)-spaces is a spread element of Dk.
Hence, the spread Dk induces a (k−1)-spread in each (n−1)-space of D. It follows
that Dk is a Desarguesian subspread of D.

In [11, Theorem 2.4], the authors proved that there is a unique Desarguesian 1-
subspread of a Desarguesian 3-spread in PG(7, q). This is true in general, we will
prove the following corollary in Subsection 6.3.4.

Corollary 6.3.9. A Desarguesian (n − 1)-spread of PG(rn − 1, q) has a unique
Desarguesian (k − 1)-subspread for each k|n.

Remark. The Desarguesian subspreads can also be obtained by the connection
with field reduction. Consider a field reduction map F from subspaces of PG(r−
1, qn) to subspaces of PG(rn− 1, q):

F : PG(r − 1, qn)→ PG(rn− 1, q).

For a divisor k|n, this map can be written as the composition of two other field
reduction maps F = F2 ◦ F1:

PG(r − 1, qn) −→
F

PG(rn− 1, q)

= PG(r − 1, qn) −−→
F1

PG(rn
k
− 1, qk) −−→

F2
PG(rn− 1, q).

If D is the Desarguesian (n− 1)-spread in PG(rn− 1, q) obtained by applying the
field reduction map F to the points of PG(r − 1, qn), then its subspread Dk is
the Desarguesian (k − 1)-spread in PG(rn − 1, q) obtained by applying the field
reduction map F2 to the points of PG( rnk − 1, qk).
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6.2.2 The André/Bruck-Bose representation

Consider the ABB-representation of PG(2, qn) in PG(2n, q) with respect to a line
l∞. Let D be the Desarguesian (n−1)-spread in the hyperplane H∞ in PG(2n, q),
corresponding to the points of the line l∞. We will consider a specific way of giving
coordinates to PG(2, qn) and PG(2n, q), and using this we will define an explicit
map φ : PG(2, qn)→ PG(2n, q) mapping each point to its corresponding element
in the ABB-representation.

Recall that a point P of PG(2, qn) defined by a vector (a, b, c) ∈ (Fqn)3 is denoted
by (a, b, c)Fqn . We fix a line at infinity of PG(2, qn), say l∞, such that

l∞ = {(a, b, 0)Fqn | a, b ∈ Fqn , (a, b) 6= (0, 0)}.

The affine points are the points of PG(2, qn)\l∞ and clearly every affine point can
be written as (a, b, 1)Fqn , a, b ∈ Fqn .

On the other hand, each point of PG(2n, q) can be denoted by (a, b, c)Fq , a, b ∈
Fqn , c ∈ Fq. We consider the hyperplane H∞ of PG(2n, q) with the following
coordinates

H∞ = {(a, b, 0)Fq
| a, b ∈ Fqn , (a, b) 6= (0, 0)}.

Furthermore, H∞ contains the Desarguesian (n− 1)-spread D defined by

D =
{
{(ax, bx, 0)Fq | x ∈ F∗qn}

∣∣ a, b ∈ Fqn , (a, b) 6= (0, 0)
}
.

Note that for all ρ ∈ F∗qn , the tuples (a, b) and (ρa, ρb) in F2
qn give rise to the same

spread element of D.

It is clear that the following map φ, for a, b ∈ Fqn , (a, b) 6= (0, 0), corresponds to
the ABB-representation.

φ : PG(2, qn)→ PG(2n, q) :
(a, b, 0)Fqn 7→ {(ax, bx, 0)Fq

| x ∈ F∗qn}
(a, b, 1)Fqn 7→ (a, b, 1)Fq

.

The map φ will also be called the ABB-map.

6.2.3 Choosing the appropriate coordinates

Now consider the Desarguesian (n − 1)-spread D in H∞ = PG(2n − 1, q) con-
structed in the previous section and the embedding of H∞ as a hyperplane in
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Σ = PG(2n, q).
We wish to consider an embedding of Σ as a subgeometry in Σ∗ = PG(2n, qn),
such that the induced embedding of H∞ ⊂ Σ in H∗∞ ⊂ Σ∗ provides us with a
convenient description of the indicator set of D consisting of lines.
We can denote points of Σ∗ = PG(2n, qn) by

(a0, a1, . . . , an−1; b0, b1, . . . , bn−1; c)Fqn , for ai, bi, c ∈ Fqn .

Define the hyperplane H∗∞ = PG(2n − 1, qn) to consist of the points of Σ∗ for
which c = 0.
We define a collineation σ of Σ∗ by

σ : PG(2n, qn)→ PG(2n, qn) :
(a0, a1, . . . , an−1; b0, b1, . . . , bn−1; c)Fqn

7→ (aqn−1, a
q
0, . . . , a

q
n−2; bqn−1, b

q
0, . . . , b

q
n−2; cq)Fqn .

The corresponding map on the vector defining a point of PG(2n, qn) will also be
denoted by σ. The points of Σ∗ fixed by σ form a subgeometry isomorphic to
PG(2n, q); this subgeometry is the following:{

(a, aq, . . . , aq
n−1

; b, bq, . . . , bq
n−1

; c)Fqn

∣∣∣ (a, b, c) ∈ (Fqn × Fqn × Fq)∗
}
.

Hence, we can see the embedding of Σ = PG(2n, q) in Σ∗ = PG(2n, qn) via the
following map ι, for a, b ∈ Fqn , c ∈ Fq.

ι : PG(2n, q)→ PG(2n, qn) :

(a, b, c)Fq
7→ (a, aq, . . . , aq

n−1
; b, bq, . . . , bq

n−1
; c)Fqn .

Clearly,

ι(H∞) =
{

(a, aq, . . . , aq
n−1

; b, bq, . . . , bq
n−1

; 0)Fqn

∣∣∣ (a, b) ∈ (Fqn × Fqn)∗
}

forms a (2n− 1)-dimensional Fq-subgeometry of H∗∞.
Let us now consider the line ν in H∗∞, disjoint from ι(H∞), defined as

ν =
〈
(1, 0, . . . , 0; 0, 0, . . . , 0; 0)Fqn , (0, 0, . . . , 0; 1, 0, . . . , 0; 0)Fqn

〉
.

Then the set {ν, νσ, . . . , νσn−1} is an indicator set defining a Desarguesian spread
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of ι(H∞) consisting of the (n− 1)-spaces{
(ax, (ax)q, . . . , (ax)q

n−1
; bx, (bx)q, . . . , (bx)q

n−1
; 0)Fqn

∣∣∣x ∈ F∗qn

}
,

for a, b ∈ Fqn , (a, b) 6= (0, 0). It is easy to see that this is precisely ι(D). By abuse
of notation, from now on, we will denote ι(H∞) and ι(D) again by H∞ and D.

One can check that the (k − 1)-subspread Dk of D in its original setting of H∞
(see Subsection 6.2.1) corresponds to the set

Dk =
{
{(ax, bx, 0)Fq

| x ∈ F∗qk}
∣∣∣ a, b ∈ Fqn , (a, b) 6= (0, 0)

}
.

This implies that ι(Dk), which we also denote by Dk, corresponds to the set of
(k − 1)-spaces of the form{

(ax, (ax)q, . . . , (ax)q
n−1

; bx, (bx)q, . . . , (bx)q
n−1

; 0)Fqn

∣∣∣x ∈ F∗qk

}
,

for a, b ∈ Fqn , (a, b) 6= (0, 0).

6.2.4 The induced action of the stabiliser of l∞

We use the notations introduced in the previous subsections. Recall that points
in PG(2, qn) have coordinates of the form (a, b, c)Fqn and that the line l∞ has
equation c = 0. We will now consider how an element of the stabiliser of l∞
in PGL(3, qn), say G, induces an action on Σ = PG(2n, q) and we describe its
extension to an element of PΓL(2n+ 1, qn) acting on Σ∗ = PG(2n, qn). This will
be of use later since it will allow us to study the representation of a representative
of orbits of sublines or subplanes under G.

Every element χ0 of the stabiliser G of l∞ corresponds to a matrix of the form

X =

x11 x12 0
x21 x22 0
x31 x32 1

 ,

with xij ∈ Fqn and x11x22−x12x21 6= 0, where we let the matrix act on row vectors
from the right, hence for (a, b, c) ∈ F3

qn \ {(0, 0, 0)}:

χ0 : PG(2, qn)→ PG(2, qn) :
(a, b, c)Fqn 7→ ((a, b, c)X)Fqn

.
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Chapter 6. Subgeometries in the ABB-representation

The map χ0 induces a natural action χ on the points (a, b, c)Fq
of Σ, a, b ∈ Fqn ,

c ∈ Fq, in the following way:

χ : PG(2n, q)→ PG(2n, q) :
(a, b, c)Fq

7→ ((a, b, c)X)Fq
.

Recall that we chose coordinates such that the points of Σ∗ = PG(2n, qn) were
denoted by (a0, a1, . . . , an−1; b0, b1, . . . , bn−1; c)Fqn , for ai, bi, c ∈ Fqn . For short-
hand, we will write these now as ((ai); (bi); c)Fqn

, where the index i is assumed to
range from 0 to n− 1.

We define the extension of χ, denoted by χ∗, to be the collineation of Σ∗ which
acts as follows on a generic point:

χ∗ : PG(2n, qn)→ PG(2n, qn) :
((ai); (bi); c)Fqn

7→ ((xq
i

11ai + xq
i

21bi + xq
i

31c); (xq
i

12ai + xq
i

22bi + xq
i

32c); c)Fqn .

Lemma 6.2.2. Using the notations from above, we have the following.

(i) The map χ satisfies the following properties for every divisor k of n:

• χ stabilises the Desarguesian spread Dk of H∞,
• χ stabilises the set of k-spaces of PG(2n, q) meeting H∞ in an element

of Dk.

Moreover, let φ : PG(2, qn) → PG(2n, q) be the ABB-map as defined in
Subsection 6.2.2. For every point P of PG(2, qn), we have that

φχ0(P ) = χφ(P ).

(ii) The extension χ∗ of χ satisfies the following properties:

• χ∗(Pσ) = (χ∗(P ))σ for all P ∈ Σ∗, i.e. χ∗ maps conjugate points to
conjugate points,
• χ∗ stabilises the indicator set of Dk for each divisor k of n.

Moreover, let ι : PG(2n, q) → PG(2n, qn) be the embedding as defined in
Subsection 6.2.3. For every point P of PG(2n, q), we have that

ιχ(P ) = χ∗ι(P ).
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6.3. The ABB-representation of sublines

Proof. The proof follows from straightforward, but tedious calculations.

(i) Notice that the image of an element {(ax, bx, 0)Fq
| x ∈ F∗qk} of Dk under χ is

given by {((ax11 + bx21)x, (ax12 + bx22)x, 0)Fq
| x ∈ F∗qk} ∈ Dk. From this the two

properties of χ follow.

For the second statement of (i), we consider a point P ∈ PG(2, qn) with co-
ordinates (a, b, c)Fqn . We have that χ0(P ) = ((a, b, c)X)Fqn = (ax11 + bx21 +
cx31, ax12 + bx22 + cx32, c)Fqn . So, when c 6= 0, we obtain φχ0(P ) = (ax11 + bx21 +
cx31, ax12 + bx22 + cx32, c)Fq and we get χφ(P ) = χ(a, b, c)Fq = (ax11 + bx21 +
cx31, ax12 + bx22 + cx32, c)Fq . When c = 0, we have that both φχ0(P ) and χφ(P )
correspond to the (n−1)-space {((ax11 +bx21 +cx31)x, (ax12 +bx22 +cx32)x, 0)Fq

|
x ∈ F∗qn}.

(ii) Consider a point P with coordinates ((ai); (bi); c)Fqn in Σ∗. If we put a−1 =
an−1 and b−1 = bn−1, then for i ∈ {0, . . . , n−1}, the (i+1)-th coordinate of χ∗(P )
is xq

i

11ai + xq
i

21bi + xq
i

31c, which implies that the (i + 1)-th coordinate of (χ∗P )σ is
xq

i+1

11 aqi−1 + xq
i+1

21 bqi−1 + xq
i+1

31 c. This is clearly equal to the (i+ 1)-th coordinate of
χ∗(Pσ). The same argument holds for the other coordinate positions. This also
implies that χ∗ stabilises the indicator sets.

For the last statement, consider a point P in PG(2n, q) with coordinates (a, b, c)Fqn ,
then ι(P ) = ((aqi); (bqi); c)Fqn and

χ∗ι(P ) =
(

(xq
i

11a
qi

+ xq
i

21b
qi

+ xq
i

31c); (xq
i

12a
qi

+ xq
i

22b
qi

+ xq
i

32c); c
)
Fqn

=
(

((x11a+ x21b+ x31c)q
i

); ((x12a+ x22b+ x32c)q
i

); c
)
Fqn

= ιχ(P ).

6.3 The ABB-representation of sublines

In this section, we determine the ABB-representation of Fqk -sublines of PG(2, qn).
We need to make a distinction between sublines that are tangent to, external to,
or contained in l∞.

We start with the first two cases, which will be handled by use of coordinates. We
end with the case of Fqk -sublines contained in l∞, for which no coordinates are
needed.
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Chapter 6. Subgeometries in the ABB-representation

6.3.1 Equivalent sublines under the stabiliser of the line at
infinity

In the case of tangent and external sublines, we will consider sublines with specific
coordinates. As before, we consider the plane PG(2, qn) = {(a, b, c)Fqn | a, b, c ∈
Fqn} and the line l∞ with equation c = 0. Let l be the line with equation a = 0. We
will show in Lemma 6.3.2 that any subline tangent or external to l∞ is equivalent
to a particular subline contained in l. Note that an Fqk -subline of PG(2, qn), k|n,
is uniquely determined by two distinct vectors of F3

qn , or, equivalently, by three
collinear projective points.

Given ω ∈ Fqn and a divisor k|n, denote by lω,k the Fqk -subline uniquely deter-
mined by the vectors (0, 1, ω), (0, 0, 1), i.e. lω,k consists of the points corresponding
to the vectors {(0, 1, ω) + t(0, 0, 1) | t ∈ Fqk} ∪ {(0, 0, 1)}.

Alternatively, the Fqk -subline lω,k is uniquely determined by the points (0, 1, ω)Fqn ,
(0, 0, 1)Fqn , (0, 1, ω + 1)Fqn , i.e.

lω,k =
{

(0, 1, ω + t)Fqn | t ∈ Fqk} ∪ {(0, 0, 1)Fqn

}
.

Consider a set of sublines; we refer to a subline being the smallest of the set, if
it has the smallest number of points, or equivalently, if it is the subline over the
smallest field.

Lemma 6.3.1. Given ω ∈ Fqn , if Fqk = Fq(ω) is the smallest subfield of Fqn

containing ω (and Fq), then the subline lω,k is the smallest subline tangent to l∞
and containing lω,1.

Proof. For all k|n, there is a unique Fqk -subline containing the points (0, 1, ω)Fqn ,
(0, 0, 1)Fqn and (0, 1, ω + 1)Fqn . Hence, the Fqk -subline containing the points of
lω,1 is of the form lω,k. The subline lω,k contains the point (0, 1, 0)Fqn of l∞ if and
only if −ω ∈ Fqk , and the statement follows.

Lemma 6.3.2. Every Fqk -subline external to l∞ is equivalent to lω,k for some
ω /∈ Fqk , under the action of the stabiliser of l∞ in PGL(3, qn).

Every Fqk -subline tangent to l∞ is equivalent to l0,k, under the action of the sta-
biliser of l∞ in PΓL(3, qn).

Proof. Consider an Fqk -subline m not contained in l∞. Then m is determined by
two vectors in F3

qn , which we may take to be (α, β, 1) and (γ, δ, ω). Consider the
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6.3. The ABB-representation of sublines

matrix  u v 0
γ − ωα δ − ωβ 0
α β 1

 ,

where u, v are chosen so that this matrix is invertible. This matrix, acting on row
vectors from the right, maps (0, 0, 1) to (α, β, 1) and (0, 1, ω) to (γ, δ, ω), and hence
defines a collineation ψ in the stabiliser of l∞ which maps lω,k to m.

As ψ stabilises l∞, if m is tangent to l∞, then lω,k is as well, and vice versa.
The subline lω,k meets l∞ if and only if ω ∈ Fqk by Lemma 6.3.1, in which case
lω,k = l0,k, proving the claim.

6.3.2 Sublines tangent to l∞

Theorem 6.3.3.

(i) The affine points of an Fqk -subline m in PG(2, qn) tangent to l∞ correspond
to the points of a k-dimensional affine space π in the ABB-representation,
such that π ∩H∞ is an element of Dk.

(ii) Conversely, let π be a k-dimensional affine space of Σ such that π intersects
H∞ in a spread element of Dk. Then the points of π correspond to the affine
points of an Fqk -subline m tangent to l∞.

Proof. (i) From Lemma 6.3.2, the tangent Fqk -subline m is equivalent to l0,k under
an element of the stabiliser G of l∞ in PGL(3, qn), say χ0(l0,k) = m for χ0 ∈ G.
Note that l0,k consists of the following points:

l0,k =
{

(0, b, 1)Fqn | b ∈ Fqk

}
∪
{

(0, 1, 0)Fqn

}
.

In the ABB-representation, the point (0, 1, 0)Fqn ∈ l0,k corresponds to the spread
element {(0, x, 0)Fq | x ∈ F∗qn} ∈ D. By definition of the ABB-map φ, the affine
points of l0,k in the ABB-representation form an affine k-space π defined as follows:

π =
{

(0, b, 1)Fq

∣∣∣ b ∈ Fqk

}
.

Using the embedding ι of π in PG(2n, qn), we obtain the set of points{
(0, . . . , 0; b, bq, . . . , bq

n−1
; 1)Fqn

∣∣∣ b ∈ Fqk

}
.
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Chapter 6. Subgeometries in the ABB-representation

Since bqk+j = bq
j for all b ∈ Fqk , it is clear that the projective completion π of π

intersects H∞ in an element of Dk, more specifically in 〈Q,Qσ, . . . , Qσk−1〉 ∩H∞,
where

Q = (v + vσ
k

+ vσ
2k

+ · · ·+ vσ
n−k

)Fqn ,

v = (0, 0, . . . , 0; 1, 0, . . . , 0; 0), thus (vσ
i

)Fqn ∈ νσ
i

.

We know that φ(m) = φ(χ0(l0,k)), and that the affine points of φ(l0,k) form the
point set of an affine space π such that its projective completion π intersects H∞ in
an element of Dk. By Lemma 6.2.2, we know that φχ0 = χφ and that χ stabilises
the set of k-spaces meeting H∞ in an element of Dk. This implies that also the
affine points of φ(m) form the point set of an affine space such that its projective
completion intersects H∞ in an element of Dk.

(ii) To prove that the converse also holds, it is sufficient to use a counting argu-
ment.

The number of affine points of PG(2, qn) \ l∞ is equal to the number of affine
points of PG(2n, q)\H∞. Hence, the number of choices for any two distinct affine
points is the same in both cases.

For any k, two affine points A1, A2 in PG(2, qn) define a unique Fqk -subline tangent
to l∞. Because of (i), this subline corresponds to a k-dimensional space intersecting
H∞ in an element of Dk.

The two affine points A1, A2 correspond in the ABB-representation to two affine
points B1, B2 in PG(2n, q). There is a unique element of Dk containing the point
〈B1, B2〉∩H∞, hence there is a unique k-dimensional space containing B1, B2 and
intersecting H∞ in an element of Dk.

From this we see that the number of Fqk -sublines tangent to l∞ is equal to the
number of k-spaces intersecting H∞ in an element of Dk. Hence, the statement
follows.

6.3.3 Sublines disjoint from l∞

Recall that a normal rational curve in PG(l, q), 2 ≤ l ≤ q − 2, is a (q + 1)-arc
PGL-equivalent to the (q + 1)-arc

{(0, . . . , 0, 1)Fq} ∪ {(1, t, t2, t3, . . . , tl)Fq | t ∈ Fq}.
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Note that when l = 1, the corresponding point set would consist of all points of
PG(1, q).

We say that a set C in PG(N, q) is a normal rational curve of degree (or order) k if
and only if it is a normal rational curve in a k-dimensional subspace of PG(N, q),
or equivalently, if and only if there exist linearly independent vectors e0, e1, . . . , ek
in V (N + 1, q) such that

C =
{

(ske0 + sk−1re1 + · · ·+ srk−1ek−1 + rkek)Fq

∣∣ s, r ∈ Fq
}
.

Note that, by abuse of phrasing, a normal rational curve of degree 1 corresponds
to a projective line.

Consider the following theorem of [102] introduced in Chapter 5.

Theorem 5.4.8. Consider a (k + 3)-arc A in PG(k, q), k ≤ q − 2, then there
exists a unique normal rational curve containing all points of A.

To illustrate the previous result, consider k + 3 points in general position defined
by vectors u0, . . . , uk, a, b, where a =

∑k
i=0 aiui and b =

∑k
i=0 biui. Note that

since the points form an arc, we have that ∀i = 0, . . . , k : ai 6= 0, bi 6= 0. The
unique normal rational curve through these points may be parametrised as

 k∑
i=0

k∏
j=0,j 6=i

(a−1
j s− b−1

j r)ui


Fq

∣∣∣∣∣∣∣ s, r ∈ Fq

 .

The point (uj)Fq
corresponds to (s, r) = (b−1

j , a−1
j ), the point (a)Fq

to (1, 0) and
the point (b)Fq

to (0, 1).

Consider a normal rational curve C of PG(k, q), 2 ≤ k ≤ q−2, and the embedding
of PG(k, q) as a subgeometry of PG(k, qn). Because of the previous result, a
normal rational curve C∗ in PG(k, qn) containing the points of C is unique and we
call this the Fqn -extension C∗ of C.

As we have seen, a normal rational curve C is the point set of an algebraic variety in
PG(k, q) defined by the parameter t ∈ Fq. The extension C∗ of C can be obtained
as the point set from the variety which is obtained by allowing the parameter t to
range over Fqn .

Before we can consider the characterisation of disjoint sublines, we first need the
following lemma.

141



Chapter 6. Subgeometries in the ABB-representation

Lemma 6.3.4. Consider three non-collinear affine points A,B,C of PG(2n, q)
contained in an n-space intersecting H∞ in an element E of D, and consider the
line l := 〈A,B,C〉 ∩H∞. Consider the set S of values i for which some element
Ei of Di contains the line l. For every m 6= min(S) in S, the points A,B,C and
the m conjugate points generating the element Em are not in general position.

Proof. Let k be the minimum of S. It follows from the definition of Di that S is
the set of all values tk where tk|n.

Let m = tk with t > 1. Suppose L(Q) = 〈Q,Qσ, . . . , Qσm−1〉 generates Em. The
(k− 1)-space Ek is part of the (k− 1)-spread S = Dk ∩Em. Consider the (t− 1)-
space Π = 〈Q,Qσk

, . . . , Qσ
(t−1)k〉. The set {Π,Πσ, . . . ,Πσk−1} is the indicator set

of the spread S of Em. Consider the space L(P ) = 〈P, P σ, . . . , P σk−1〉 spanned by
conjugate points generating Ek, where the point Pσi is contained in Πσi for all i.

We prove that the m + 3 points of the set {Q,Qσ, . . . , Qσm−1
, A,B,C} (that is

contained in an m-dimensional space) are not in general position, by constructing
u+ 2 points that are contained in a u-space, where u ≤ m− 1.

The space 〈L(P ), A,B,C〉 has dimension k, and every space Πσi intersects it
in exactly one point, namely the point Pσi . Consider the (k − 1)t + 3 points
contained in {Q,Qσ, . . . , Qσm−1

, A,B,C}, but not contained in the space Πσk−1 =
〈Qσk−1

, Qσ
2k−1

, . . . , Qσ
tk−1〉. These points are contained in the space spanned by

〈L(P ), A,B,C,Π,Πσ, . . . ,Πσk−2〉 which has dimension at most k+(k−1)(t−1) =
(k− 1)t+ 1. Since t > 1, we have that u = (k− 1)t+ 1 ≤ m− 1 = kt− 1 and our
claim follows.

Remark. In fact, for m = min(S), the points A,B,C and the m conjugate points
generating the element Em are in general position. This follows from the proof of
Theorem 6.3.5.

Recall that the norm map of Fqk over Fq is denoted as follows: Nk(α) =
∏k−1
i=0 α

qi ∈
Fq.

Note that in [77, Theorem 4.2], it was proven that the ABB-representation of an
Fq-subline external to l∞ satisfies part (i) of the following theorem.

Theorem 6.3.5. A set of points C in PG(2n, q), n ≤ q−2, is the ABB-representation
of an Fq-subline m of PG(2, qn) external to l∞ if and only if

(i) C is a normal rational curve of degree k contained in a k-space intersecting
H∞ in an element of Dk,
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(ii) its extension C∗ to PG(2n, qn) intersects the indicator set
{Π,Πσ, . . . ,Πσk−1} of Dk in k conjugate points.

Moreover, the smallest subline containing m and tangent to l∞ is an Fqk -subline.

Proof. We include a proof using coordinates for part (i), as it will be necessary
for proving part (ii).

(i) Consider the smallest k, such that m is contained in a tangent Fqk -subline. It
follows from Theorem 6.3.3 that the q+1 points corresponding to m are contained
in a k-space intersecting H∞ in an element of Dk.

By Lemmas 6.3.1 and 6.3.2, we know that m is G-equivalent to the Fq-subline lω,1,
say m = χ0(lω,1), where ω ∈ Fqn such that Fq(ω) = Fqk and χ0 in the stabiliser G
of l∞ in PGL(3, qn).

By definition, φ(lω,1), where φ is the ABB-map, is a set Cω defined as follows:

Cω =
{(

0, 1
ω + t

, 1
)

Fq

∣∣∣∣∣ t ∈ Fq

}
∪
{

(0, 0, 1)Fq

}
.

Now Nk(ω + t) =
∏k−1
i=0 (ωqi + t) ∈ Fq for all t ∈ Fq, and is never zero, and so

Cω =


(

0,
k−1∏
i=1

(ωq
i

+ t),
k−1∏
i=0

(ωq
i

+ t)
)

Fq

∣∣∣∣∣∣ t ∈ Fq

 ∪ {(0, 0, 1)Fq

}
.

Expanding the products, we find k+1 non-zero vectors vi ∈ Fqn×Fqn×Fq (which
depend only on ω) such that

Cω = {(v0 + tv1 + · · ·+ tkvk)Fq
| t ∈ Fq} ∪ {(vk)Fq

}.

The vectors vi span 0× Fqk × Fq, hence Cω is a normal rational curve of degree k,
contained in a projective k-space meeting H∞ in an element of Dk, as claimed.

(ii) Using the embedding ι to embed Cω in PG(2n, qn) gives the points(
0, . . . , 0;

k−1∏
i=1

(ωq
i

+ t), . . . ,
k−1∏
i=1

(ωq
i+n−1

+ t);
k−1∏
i=0

(ωq
i

+ t)
)

Fqn

,

for t ∈ Fq. Since ω ∈ Fqk , the (n + j)-th entry
∏k−1
i=1 (ωqi+j + t) is equal to the

(n + j + k)-th entry
∏k−1
i=1 (ωqi+j+k + t) for all 0 ≤ j ≤ n − 1. The extension
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C∗ω of Cω is the normal rational curve obtained by allowing t to range over Fqn .
The intersection of C∗ω with H∗∞ can be obtained by finding the elements t ∈ Fqn

such that
∏k−1
i=0 (ωqi +t) = 0. Clearly these are precisely t = −ω,−ωq, . . . ,−ωqk−1 .

When we consider the value t = −ωqj , then all coordinates become zero, excluding
those in position (n + j + rk) for r = 0, 1, . . . , n/k − 1. Hence we get that the
points of C∗ω ∩H∗∞ are precisely the k conjugate points given by

Qσ
j

= (vσ
j

+ vσ
j+k

+ vσ
j+2k

+ · · ·+ vσ
j+(n−k)

)Fqn , j = 0, 1, . . . , k − 1,

where P = (v)Fqn with v = (0, . . . , 0; 1, 0, . . . , 0; 0), so P ∈ ν. If k = n, i.e. if
ω is not contained in any proper subfield of Fqn , then C∗ω contains n conjugate
points, one on each of the lines of the indicator set {ν, νσ, . . . , νσn−1}. However if
k < n, each point belongs to one of the spaces of the set {π, πσ, . . . , πσk−1}, where
π = 〈P, P σk

, . . . , P σ
n−k〉. It is clear that π ⊂ Π, where {Π,Πσ, . . . ,Πσk−1} is the

indicator set of Dk.

Now m = χ0(lω,1) and φ(m) = φ(χ0(lω,1)) = χ(φ(lω,1)) by Lemma 6.2.2. Since χ
is a collineation, this implies that φ(m) is also a normal rational curve of degree
k, and since χ stabilises the elements of Dk, this normal rational curve lies in a
k-space intersecting H∞ in an element of Dk. Now, again by Lemma 6.2.2, we
have that ιφ(m) = ιχφ(lω,1) = χ∗ιφ(lω,1). Since χ∗ stabilises the indicator sets,
the unique Fqn-extension of ιφ(m) is also a normal rational curve which intersects
the indicator set in conjugate points. This proves the first part of the claim.

To prove that the converse also holds, it is sufficient to use a counting argument.
As three points on a line of PG(2, qn) uniquely determine a subline, the number
of choices for three points defining an external Fq-subline of a fixed line is equal
to
(
qn

3
)
− qn(qn−1)(q−2)

3·2 = qn(qn−1)(qn−q)
6 .

Three such affine points in PG(2, qn) correspond to three non-collinear affine points
in PG(2n, q) contained in an n-space containing an element of D. By the first part
of the proof, we know that these three non-collinear affine points are contained
in a normal rational curve C satisfying (i) and (ii) for some value k. By Lemma
6.3.4, we know that through three non-collinear affine points, there is at most one
value of k (namely, min(S)) such that there is a normal rational curve of degree k
satisfying (i) and (ii), so the obtained normal rational curve C is unique. Hence it
suffices to note that the number of triples of non-collinear affine points in a fixed
n-space is qn(qn−1)(qn−q)

6 , which equals the number of triples uniquely defining
external sublines of a fixed line, completing the proof.

Remark. In the statement of [13, Theorem 3.5], characterising the external Fq-
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sublines, the authors state that C∗ meets each transversal line νσj . This is due
to the fact that the authors choose one representative for a subline, equivalent to
our choice of lω,1, where ω is a primitive element of Fqn . With this choice, the
unique subline tangent to l∞ and containing lω,1 is always the full line and in that
case, we have indeed seen in Theorem 6.3.5 that C∗ meets each transversal line
νσ

j . But as follows from Lemma 6.3.1, unless n is prime, there are many choices
for a subline lω,1 in PG(2, qn) contradicting this statement.

Corollary 6.3.6. An Fqk -subline m in PG(2, qn), n ≤ q − 2, external to l∞,
such that the smallest subline containing m and tangent to l∞ is an Fqr -subline,
corresponds in the ABB-representation to a set M of qk + 1 affine points no three
collinear, contained in an r-space intersecting H∞ in an element of Dr. Every
three points of M determine an affine normal rational curve whose points are all
contained in M .

Consider an Fqk -subline m of PG(1, qn). The unique Fq-subline defined by any
three points of m is completely contained in m. Moreover, this property gives a
characterisation of an Fqk -subline, as seen in the following result from Chapter 2.

Theorem 2.2.6. A set M of at least 3 points in PG(1, qn), q > 2, such that the
Fq-subline determined by any three points ofM is entirely contained inM, defines
an Fqk -subline of PG(1, qn) for some k|n.

Corollary 6.3.7. An Fqk -subline m in PG(2, qn), n a prime power, 2 < n ≤ q−2,
external to l∞, such that the smallest subline containing m and tangent to l∞ is
an Fqr -subline, corresponds in the ABB-representation to a set M of qk + 1 affine
points of PG(2n, q) if and only if

(i) the set M spans an r-space intersecting H∞ in an element of Dr,
(ii) every three points of M define a normal rational curve C of degree r in

PG(2n, q) whose points are all contained in M , such that its Fqn -extension
C∗ intersects the indicator set {Π,Πσ, . . . ,Πσr−1} of Dr in r conjugate points.

Proof. Let m′ be the Fqr -subline containing m and tangent to l∞. Any three
points of m define an Fq-subline m0 completely contained in m. We claim that,
because n is a prime power, any subline containing m0 is either contained in m or
contains m. Hence, the smallest subline containing m0 and tangent to l∞ equals
m′. This is valid for the following reason: consider PG(1, qn), where m0 and m

are the canonical Fq- and Fqk -subline respectively, hence m0 is contained in m.
Take a point (1, a)Fqn not in m, that is a ∈ Fqn \ Fqk and consider r such that
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Fqr = Fqk (a). The subline containing m and the point (1, a)Fqn is an Fqr -subline,
say m′. The smallest subline containing m0 and the point (1, a)Fqn also equals m′,
since Fq(a) = Fqk (a) = Fqr , because n is a prime power and a /∈ Fqk .

The statement now follows immediately from Theorem 6.3.5.

6.3.4 Sublines contained in l∞

Note that the following theorem provides a characterisation of FRqk -sublines of
the Desarguesian spread D (as defined in Chapter 2, Section 2.2).

Theorem 6.3.8. Let S be a set of qk + 1 elements of the Desarguesian spread D
of H∞ = PG(2n− 1, q), q > 2. Then the following statements are equivalent:

(i) S is the ABB-representation of an Fqk -subline of l∞,
(ii) for any three elements of S, the unique regulus through them is contained in
S,

(iii) there exists a (2k−1)-dimensional subspace of H∞ intersecting each element
of S in a (k − 1)-dimensional space,

(iv) there exists a (2k−1)-dimensional subspace of H∞ intersecting each element
of S in a (k − 1)-dimensional space of Dk.

Proof. (i) ⇐⇒ (ii)
The ABB-map φ, when restricted to the points of the line l∞, clearly corresponds
to applying field reduction to the points of PG(1, qn). By field reduction, an
Fq-subline contained in l∞ corresponds to a regulus of D, and vice versa.

A set S of qk + 1 elements of D is the image of a set m of qk + 1 points of l∞.
By the previous paragraph, we get that, for any three elements of S, the unique
regulus through them is contained in S if and only if for any three points of m
the unique Fq-subline through them is contained in m. Because of Theorem 2.2.6,
this is true if and only if m is an Fqk -subline contained in l∞.

(iii)⇒ (i) and (iii)⇒ (iv)
Consider a (2k − 1)-dimensional subspace π of H∞ intersecting each of the qk +
1 elements of S in a (k − 1)-space. We see that S ∩ π is a (k − 1)-spread of
π. Take a 2k-space Π of PG(2n, q) intersecting H∞ in π. Clearly, the ABB-
representation A(S ∩ π) contained in Π is a projective plane of order qk. This
subplane is embedded in the original plane PG(2, qn). Every Fqk -subline of this
plane is contained in a line of PG(2, qn), hence the subplane is a subgeometry
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isomorphic to PG(2, qk). It follows that S is the image of an Fqk -subline contained
in l∞.

Moreover, since every tangent Fqk -subline of this subplane corresponds to a k-
space intersecting H∞ in an element of Dk (Theorem 6.3.3), we know that all
(k − 1)-spaces of S ∩ π belong to Dk.

(i)⇒ (iv)
Suppose S is the image of an Fqk -subline m contained in l∞. The subline m

together with an Fqk -subline tangent to l∞ in a point of m, defines a unique
Fqk -subplane µ of PG(2, qn). The image of the q2k affine points of µ in the ABB-
representation is a set M of q2k affine points of PG(2n, q).

Every two affine points of µ are contained in an Fqk -subline of µ that is tangent to
l∞. Hence, by Theorem 6.3.3, every two affine points of the set M are contained
in an affine k-space completely contained in M . This means that the affine line
through any two points of M is contained in M , hence M is an affine subspace.
Since M contains q2k points, it is a 2k-dimensional affine subspace. Its projective
completion intersects H∞ in a (2k − 1)-space π, and clearly this space π can
intersect D only in elements of S.

Consider any affine point P of µ and its image φ(P ) of M , under the ABB-map
φ. There are qk + 1 distinct Fqk -sublines of µ tangent to l∞ and containing P .
So, there are qk + 1 affine k-spaces through φ(P ) contained in M and, because
of Theorem 6.3.3, their projective completion intersects H∞ in an element of Dk.
Hence, π intersects each element of S in an element of Dk.

(iv)⇒ (iii)
Obvious.

Corollary 6.3.9. A Desarguesian (n − 1)-spread of PG(rn − 1, q) has a unique
Desarguesian (k − 1)-subspread for each k|n.

Proof. In Subsection 6.2.1, we constructed a Desarguesian (k − 1)-subspread of a
Desarguesian (n− 1)-spread of PG(rn− 1, q).

To prove that such a spread is unique, first consider the case r = 2. Consider the
Desarguesian (n − 1)-spread D of PG(2n − 1, q) and any Desarguesian (k − 1)-
subspread Sk of D. Take two elements of Sk contained in different elements of
D. These span a (2k − 1)-space containing qk + 1 elements of Sk, all contained
in different elements of D. From the equivalence of statements (iii) and (iv) in
Theorem 6.3.8, it follows that all elements of Sk are elements of Dk.
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Now consider r > 2 and a Desarguesian (n − 1)-spread D′ of PG(rn − 1, q). The
spread D′ induces a Desarguesian spread D in any (2n− 1)-space spanned by two
elements of D′. By the previous part this spread D has a unique Desarguesian
(k − 1)-subspread, and the statement follows.

6.4 The ABB-representation of subplanes

An Fqk -subplane is said to be secant, tangent, or external if it is secant, tangent,
or external to l∞. In this section we will characterise secant Fqk -subplanes and
tangent Fq-subplanes.

6.4.1 Secant subplanes

Theorem 6.4.1. A set Π of affine points in PG(2n, q), q > 2, is the ABB-
representation of the affine points of an Fqk -subplane in PG(2, qn) secant to l∞ if
and only if

(i) Π is a 2k-dimensional affine space,
(ii) its projective completion Π intersects H∞ in a (2k−1)-space which intersects

qk + 1 elements of D in exactly a (k − 1)-space.

Moreover, this (2k− 1)-space intersects each of the qk + 1 spread elements of D in
a (k − 1)-space of Dk.

Proof. Follows from the proof of Theorem 6.3.8.

6.4.2 Equivalent subplanes under the stabiliser of the line
at infinity

An Fqk -subplane of PG(2, qn) is uniquely determined by four projective points
in general position, or alternatively, by three independent vectors in V (3, qn).
Given ω, λ ∈ Fqn , denote by πω,λ the Fq-subplane determined by the vectors
(1, 0, λ), (0, 1, ω), (0, 0, 1), i.e.

πω,λ = {(s, u, sλ+ uω + t)Fqn | s, t, u ∈ Fq}
= {(s, 1, sλ+ ω + t)Fqn | s, t ∈ Fq} ∪ {(1, 0, λ+ t)Fqn | t ∈ Fq}

∪ {(0, 0, 1)Fqn }.
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We see that the plane πω,λ is an external subplane if and only if {1, ω, λ} are
linearly independent over Fq.

Lemma 6.4.2. Every Fq-subplane external to l∞ is equivalent, under the action of
the stabiliser of l∞ in PGL(3, qn), to πω,λ for some ω, λ ∈ Fqn such that {1, ω, λ}
are linearly independent over Fq.

Every Fq-subplane tangent to l∞ is equivalent, under the action of the stabiliser
of l∞ in PGL(3, qn), to πω,0 where ω /∈ Fq.

Proof. Consider an Fq-subplane µ. Then µ is determined by three distinct inde-
pendent vectors in F3

qn , which we may take to be (α, β, ω), (γ, δ, λ) and (ε, ζ, 1).
The matrix γ − λε δ − λζ 0

α− ωε β − ωζ 0
ε ζ 1


is non-singular and, when acting on row vectors from the right, it maps (0, 1, ω)
to (α, β, ω), (1, 0, λ) to (γ, δ, λ) and (0, 0, 1) to (ε, ζ, 1). Hence, the corresponding
collineation ψ ∈ PGL(3, qn) maps πω,λ to µ.

As ψ stabilises l∞, if µ is disjoint from, tangent to, or external to l∞, then πω,λ is
also disjoint from, tangent to, or external to l∞. If the subplane µ is tangent to
l∞, we may choose our first vector such that λ = 0, and hence µ is equivalent to
the subplane πω,0. If ω ∈ Fq, clearly the subplane is secant to l∞.

Lemma 6.4.3. Given ω ∈ Fqn , if Fqk = Fq(ω) is the smallest subfield of Fqn

containing ω, then the smallest subplane secant to l∞ and containing πω,0 is an
Fqk -subplane.

Proof. For all k|n, there is a unique Fqk -subplane containing the points (1, 0, 0)Fqn ,
(0, 1, ω)Fqn , (0, 0, 1)Fqn , (1, 1, ω+1)Fqn , and every such subplane contains the points
of πω,0. Such an Fqk -subplane is secant to l∞ if and only if it contains the point
(0, 1, 0)Fqn ∈ l∞, if and only if −ω ∈ Fqk , and the statement follows.

6.4.3 Tangent subplanes

Consider two normal rational curves C1 and C2 of degree k and l respectively.
Embed both curves in PG(N, q), N ≥ k+ l+1, such that the subspaces they span,
of dimension k and l respectively, are disjoint.
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Let ρ1, ρ2 be maps from PG(1, q)→ PG(N, q) defined by

ρ1 : (s, t)Fq
7→

(
k∑
i=0

sk−itiei

)
Fq

,

ρ2 : (s, t)Fq
7→

(
l∑
i=0

sl−itifi

)
Fq

,

for defining vectors ei, fi such that C1 = Im(ρ1) and C2 = Im(ρ2).

A normal rational scroll of bidegree {k, l} defined by {C1, C2} consists of the set of
lines of PG(N, q) defined as follows

{〈ρ1(P ), ρ2(ψ(P ))〉 | P ∈ PG(1, q)} ,

where ψ is an element of PGL(2, q).

The stabiliser in PGL(N+1, q) of a normal rational curve in PG(N, q) is isomorphic
to PGL(2, q) [67, Theorem 27.5.3]. So, if we take different choices ρ′i defining Ci,
then ρ′i = ρiψi for some ψi ∈ PGL(2, q), and the normal rational scroll defined by
ρ1, ρ2 and ψ is equal to the one defined by ρ′1, ρ′2, and ψ−1

2 ψψ1. Hence, the set
of all normal rational scrolls defined by {C1, C2} does not depend on the choice of
ρi, i = 1, 2.

When C1 and C2 are general curves, such a set of lines is often called a ruled surface.
The curve of the smallest degree is often called the directrix.

Consider the embedding of PG(N, q) as a subgeometry of PG(N, qn). The Fqn -
extensions of the curves Ci are unique and we can consider the canonical extension
ρ∗i : PG(1, qn)→ PG(N, qn) of ρi and ψ∗ ∈ PGL(2, qn) of ψ. Clearly these define
the Fqn -extension of a normal rational scroll and such an extension is unique.

Before considering the characterisation of external subplanes, we introduce a lemma
on the existence of normal rational scrolls.

Lemma 6.4.4. Let C1, C2 be two normal rational curves in Σ, and C∗1 , C∗2 their
respective extensions to Σ∗. Consider points P ∈ C∗1\C1, Q ∈ C∗2\C2 such that P
is not contained in the Fq2 -extension of C1. Then there exists at most one normal
rational scroll S∗ in Σ∗, containing C∗1 and C∗2 , such that S∗ contains the line
〈P,Q〉, and such that S∗ meets Σ in a normal rational scroll S containing C1 and
C2. Moreover, if such a scroll exists, then it contains the lines 〈Pσi

, Qσ
i〉 for each

i, where Σ = Fix(σ).
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Proof. Let C∗i be defined by the map ρ∗i from PG(1, qn) into Σ∗ such that Ci is the
image under ρ∗i of the canonical Fq-subline l = {(s, t)Fqn | s, t ∈ Fq, (s, t) 6= (0, 0)}
in PG(1, qn). Now P = ρ∗1((s, t)Fqn ) and Q = ρ∗2((u, v)Fqn ) for some s, t, u, v ∈ F∗qn ,
such that s/t, u/v ∈ Fqn\Fq. Note that s/t /∈ Fq2 , for otherwise P would be
contained in the Fq2-extension of C1.

Hence a normal rational scroll exists if and only if there exists a ψ ∈ PGL(2, qn)
fixing l (hence ψ ∈ PGL(2, q)) and mapping (s, t)Fqn to (u, v)Fqn . We will show
that the stabiliser of the point (s, t)Fqn under the action of PGL(2, q) is trivial
unless s/t ∈ Fq2 , and hence the result follows. This statement is obtained, by
considering the following equality

(
s 1

)(a b

c d

)
=
(
ks k

)
.

By eliminating k we obtain the equation bs2 + (d− a)s− c = 0. One can obtain a
solution for this equation, different from (a, b, c, d) = (k, 0, 0, k), only if s ∈ Fq2 .

The map σ fixes Σ pointwise and hence also fixes C1 pointwise. As C∗1 is the unique
extension of C1, the curve C∗1 is stabilised by σ. This means σ induces a collineation
σ′ on PG(1, qn) such that (ρ∗1((s, t)Fqn ))σ = ρ∗1((s, t)σ′Fqn

). As PG(1, q) ⊂ PG(1, qn)
must be fixed pointwise by σ′, we have that σ′ corresponds to an element of the
naturally embedded group Aut(Fqn/Fq) in PΓL(2, q). Hence, σ′ commutes with
an element ψ mapping (s, t)Fqn to (u, v)Fqn , that is ψ((s, t)σ′Fqn

) = (u, v)σ′Fqn
. It

follows that the obtained scroll contains 〈Pσi

, Qσ
i〉 for each i.

It has been shown ([14] for n = 3 and [77] for general n) that the ABB-representation
of a tangent subplane is a normal rational scroll. We are now ready to show when
the converse is true. We will fully characterise tangent subplanes in PG(2, qn),
extending the result of [14] for n = 3 to general n.

Theorem 6.4.5. A set S of affine points of PG(2n, q), n ≤ q − 2, is the ABB-
representation of the affine points of a tangent Fq-subplane µ if and only if S
consists of the affine points of a normal rational scroll defined by curves {C,N}
satisfying the following conditions for some k|n:

(i) C is a normal rational curve of degree k contained in an affine k-space π, for
which π∩H∞ is an element E1 of Dk, such that its Fqn -extension C∗ contains
all conjugate points {P, P σ, . . . , P σk−1} generating the spread element E1,

(ii) N is a normal rational curve of degree k − 1 contained in an element E2
of Dk, where E1 and E2 are not contained in the same element of D, such
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that its Fqn -extension N ∗ contains all conjugate points {Q,Qσ, . . . , Qσk−1}
generating the spread element E2,

(iii) the Fqn -extension of the normal rational scroll contains the lines 〈Pσj

, Qσ
j 〉,

each line contained in an indicator space Πσj of Dk, for all j ∈ {0, 1, . . . , k−
1}.

Moreover, in that case the smallest subplane containing µ and secant to l∞ is an
Fqk -subplane.

Proof. First, suppose the smallest secant subplane containing µ is an Fq2 -subplane.
From Theorem 6.4.1, the affine points of µ are contained in a 4-dimensional affine
space intersecting H∞ in a 3-space partitioned by lines of D1. In this case, we
can use the characterisation of the ABB-representation in PG(4, q) of a tangent
Baer subplane of PG(2, q2) considered in [12, Theorems 3.19, 3.20 and 3.21]. This
corresponds to a normal rational scroll satisfying (i), (ii), (iii) with k = 2, and
vice versa; proving our claim. Note that the normal rational curve N of degree 1
is just a projective line of D1.

We can now consider k > 2. From Lemmas 6.4.2 and 6.4.3, the tangent Fq-
subplane µ is equivalent to πω,0, where Fq(ω) = Fqk , under an element of the
stabiliser G of l∞ in PGL(3, qn), say χ0(πω,0) = µ for χ0 ∈ G. Note that πω,0
consists of the following points:

πω,0 =
{(

s

ω + t
,

1
ω + t

, 1
)

Fqn

∣∣∣∣∣ s, t ∈ Fq

}
∪ {(t, 0, 1)Fqn | t ∈ Fq} ∪ {(1, 0, 0)Fqn }.

In the ABB-representation, the point (1, 0, 0)Fqn ∈ πω,0 corresponds to the spread
element {(x, 0, 0)Fq | x ∈ F∗qn} ∈ D. By definition of the ABB-map φ, the affine
points of πω,0 in the ABB-representation form a set W defined as follows:

W =
{(

s

ω + t
,

1
ω + t

, 1
)

Fq

∣∣∣∣∣ s, t ∈ Fq

}
∪
{

(t, 0, 1)Fq
| t ∈ Fq

}
.

This is a set of q + 1 affine lines; we can see this more clearly when we consider
the set W consisting of the projective completions of all lines of W .

W =
{〈(

1
ω + t

, 0, 0
)

Fq

,

(
0, 1
ω + t

, 1
)

Fq

〉∣∣∣∣∣ t ∈ Fq

}
∪
〈

(1, 0, 0)Fq
, (0, 0, 1)Fq

〉
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From the proof of Theorem 6.3.5, we know that the set

Cω =
{(

0, 1
ω + t

, 1
)

Fq

∣∣∣∣∣ t ∈ Fq

}
∪
{

(0, 0, 1)Fq

}
is a normal rational curve satisfying the conditions in (i).

Consider the following set of points of H∞, all contained in W :

Nω =
{(

1
ω + t

, 0, 0
)

Fq

∣∣∣∣∣ t ∈ Fq

}
∪
{

(1, 0, 0)Fq

}
=


(
k−1∏
i=1

(ωq
i

+ t), 0, 0
)

Fq

∣∣∣∣∣∣ t ∈ Fq

 ∪ {(1, 0, 0)Fq

}
.

A similar calculation shows that Nω is a normal rational curve of degree k − 1,
contained in a projective (k−1)-space E2 of Dk, as claimed. In fact, this has been
shown in e.g. [60, 61]. Note that the spread element of D in which E2 is contained
is not equal to the one associated to Cω.

Using the map ι to embed Nω in PG(2n, qn) gives the points

(1, . . . , 1; 0, . . . , 0; 0)Fqn
,

and (
k−1∏
i=1

(ωq
i

+ t),
k−1∏
i=1

(ωq
i+1

+ t), . . . ,
k−1∏
i=1

(ωq
i+n−1

+ t); 0, 0, . . . , 0; 0
)

Fqn

,

for t ∈ Fq. Since Fq(ω) = Fqk , the (n + j)-th entry is equal to the (n + j + k)-th
entry for all 0 ≤ j ≤ n− 1. The extension N ∗ω of Nω is the normal rational curve
obtained by allowing t to range over Fqn . As before, one can see that N ∗ω contains
the conjugate points of the indicator set of Dk generating the (k − 1)-space in
which Nω lies, and hence Nω satisfies the condition of (ii).

Clearly, the points of W are precisely the affine points of the normal rational scroll
Bω defined by the curves {Cω,Nω} and the identity element of PGL(2, q), and Bω
satisfies (iii).

To prove that the converse is also valid, it is again sufficient to use a counting
argument.

We know from Theorem 6.3.5 that sublines l0 external to l∞ are in one-to-one
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correspondence with normal rational curves satisfying (i). The number of tangent
Fq-subplanes containing a fixed external Fq-subline and a fixed point R of l∞ (not
on the extension of this fixed external subline) is qn−1

q−1 .
Therefore it suffices to show that for a fixed normal rational curve C satisfying (i)
and a fixed element E of D (for which C does not lie in an n-space containing E),
there are precisely qn−1

q−1 curves N contained in E satisfying (ii) for which there
exists a normal rational scroll B defined by {C,N} and satisfying (iii).
Using the induced action of the stabiliser G of the line l∞ in PGL(3, qn) on
PG(2n, qn), we can choose w.l.o.g. C = Cω, where Fq(ω) = Fqk , with k > 2
by our assumption, and E = ιφ(1, 0, 0)Fqn . Consider a point A = ι(a, 0, 0)Fq of
E and the element E2 of Dk containing A. We will prove that there are q(q + 1)
choices for a point B ∈ E2 such that A,B and the points of Cω lie on a normal
rational scroll satisfying (i), (ii), (iii). We let B = ι(b, 0, 0)Fq

for some b ∈ Fqn .
The conjugate points generating E2 are {R,Rσ, . . . , Rσk−1}, where R = (v)Fqn

with

v = (1, 0, . . . , 0, aq
k−1, 0, . . . , 0, aq

n−k−1, 0, . . . , 0; 0, . . . , 0; 0)

= (1, 0, . . . , 0, bq
k−1, 0, . . . , 0, bq

n−k−1, 0, . . . , 0; 0, . . . , 0; 0).

Now there exists a unique normal rational curve NAB satisfying (ii), i.e. such that
its extension contains {A,B,R,Rσ, . . . , Rσk−1}. We can see that it must be the
curve defined by the following map:

η(s, t) =

k−1∑
i=0

k−1∏
j=0,j 6=i

(a−q
j

s− b−q
j

t)vσ
i


Fqn

.

We have Rσi = η(b−qi

, a−q
i), A = η(1, 0), B = η(0, 1), and NAB = η(Fq × Fq).

From the proof of Theorem 6.3.5, the curve C∗ω can be parametrised by a map
ρ : Fqn × Fqn → PG(2n, q) such that Cω = ρ(Fq × Fq), and the intersection of C∗ω
with the indicator sets are the points Qσi = ρ(1,−ωqi), i ∈ {0, . . . , k− 1}. By the
proof of Lemma 6.4.4, there exists a normal rational scroll defined by {Cω,NAB}
such that its Fqn -extension contains the lines 〈Qσi

, Rσ
i〉 (hence satisfies (iii)) if

and only if there exists an element ψ of PGL(2, qn) which fixes the canonical Fq-
subline (defined by Fq × Fq), whence ψ ∈ PGL(2, q), and which maps (1,−ω)Fqn

to (1, b
−1

a−1 )Fqn . Since ω /∈ Fq2 , there are |PGL(2, q)| = q(q2− 1) points in the orbit
of (1,−ω)Fqn under PGL(2, q), and hence q(q2 − 1) choices for b. As ι(b, 0, 0)Fq

=
ι(λb, 0, 0)Fq for all λ ∈ F∗q , we get that there are q(q+ 1) allowable points B ∈ E2.
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6.4. The ABB-representation of subplanes

Since there are qn−1
q−1 choices for A, and each NAB contains q(q+1) ordered pairs of

distinct points {A,B}, we have that there are precisely qn−1
q−1 q(q+1) 1

q(q+1) = qn−1
q−1

curves satisfying (ii) which define a scroll satisfying (iii), proving the claim.

Remark. In [14], in the case n = 3, a curve satisfying (i) was referred to as a
special normal rational curve, while a curve satisfying (ii) was referred to as a
special conic.
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7
Unitals with many

Baer secants through
a fixed point

In this chapter, we show that a unital U in PG(2, q2) containing a point P , such
that at least q2 − ε of the secant lines through P intersect U in a Baer subline, is
an ovoidal Buekenhout-Metz unital (where ε ≈ 2q for q even and ε ≈ q3/2/2 for q
odd).

These results were obtained in collaboration with G. Van de Voorde [100].

7.1 Introduction

We study unitals in the Desarguesian projective plane PG(2, q2), more specifi-
cally, we study ovoidal Buekenhout-Metz unitals. This class of unitals was first
constructed by Buekenhout [27] and later extended by Metz [83]. Every known
unital can be obtained by this construction, however, it remains an open problem
whether all unitals arise as ovoidal Buekenhout-Metz unitals.

Combining the results of [35] (for q > 2 even and q = 3), and [95] (for q > 3) the
following characterisation of ovoidal Buekenhout-Metz unitals was obtained.

Theorem 7.1.1. [35, 95] If U is a unital in PG(2, q2), q > 2, containing a point
P such that all secants through P intersect U in a Baer subline, then U is an
ovoidal Buekenhout-Metz unital with special point P .

Moreover, two related characterisations were found for classical unitals.

Theorem 7.1.2. [15] Let U be an ovoidal Buekenhout-Metz unital in PG(2, q2)
with special point P . If U contains a secant not through P intersecting U in a
Baer subline, then U is classical.

157



Chapter 7. Unitals with many Baer secants through a fixed point

Theorem 7.1.3. [5] Let U be a unital in PG(2, p2), p prime, such that p(p2 − 2)
secants intersect U in a Baer subline, then U is classical.

Concerning these three results, in [41, Open problems 4], the following question
was posed:

What is the minimum required number of secants being Baer sublines,
to conclude that a unital is an ovoidal Buekenhout-Metz unital?

We will improve the result of Theorem 7.1.1 by finding a new upper bound on the
minimum required number of Baer secants through a fixed point of the unital. It
is worth noticing that our theorem implies the result of [35] and [95] for q ≥ 16.

Theorem 7.3.10. Suppose q and ε satisfy the conditions of Table 7.1. Let U be
a unital in PG(2, q2) containing a point P such that at least q2 − ε of the secants
through P intersect U in a Baer subline, then U is an ovoidal Buekenhout-Metz
unital with special point P .

ε Conditions

ε ≤ q − 3 q even, q ≥ 16

ε ≤ 2q − 7 q even, q ≥ 128

ε ≤
√
qq

4 −
39q
64 −O(√q) + 1 q odd, q ≥ 17, q = p2e, e ≥ 1

ε ≤
√
qq

2 − 2q q odd, q ≥ 17, q = p2e+1, e ≥ 0

ε ≤
√
qq

2 −
67q
16 + 5√q

4 −
1
12 q odd, q ≥ 17, q = ph, p ≥ 5

ε ≤
√
qq

2 −
35q
16 −O(√q) + 1 q odd, q ≥ 232, q 6= 55, 36, q = ph, h

even for p = 3

Table 7.1: Conditions for Theorem 7.3.10
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7.2. Preliminaries

7.2 Preliminaries

7.2.1 Subgeometries in the ABB-representation

In this chapter, we will use the following conventions. Consider the projective
plane PG(2, q2) and fix a line l∞ at infinity. Consider the ABB-representation
of PG(2, q2) in PG(4, q) with respect to this line. The hyperplane at infinity of
PG(4, q), corresponding to l∞, will be denoted by H∞ and the Desarguesian spread
in H∞ defining PG(2, q2) will be denoted by D.

We will call a Baer subline of PG(2, q2) tangent (to l∞) if it has one point in com-
mon with l∞, and external if it has no such intersection point. Recall that in the
ABB-representation, tangent sublines of PG(2, q2) are in one-to-one correspon-
dence with lines of PG(4, q) intersecting H∞ in exactly one point. An external
subline corresponds to a non-degenerate conic of PG(4, q), called a Baer conic,
contained in a plane which meets H∞ in a spread line of D, external to this conic,
such that the Fq2-extension of the conic has two points in common with the indi-
cator set defining D (see Theorem 6.3.5). Note that, unless q = 2, not every conic
is a Baer conic. Moreover, since any two distinct Baer sublines have at most two
points in common, any two distinct Baer conics share at most 2 points.

A Baer subplane will be called secant (to l∞) if it meets l∞ in q + 1 points, and
tangent if it meets l∞ in one point. In the ABB-representation, secant subplanes
are in one-to-one correspondence with planes of PG(4, q) intersecting H∞ in a line
not contained in D. A tangent Baer subplane corresponds to the point set of q+ 1
disjoint lines, called generator lines, forming a ruled cubic surface, called a Baer
ruled cubic. Such a Baer ruled cubic has a spread line T ∈ D as line directrix,
where T corresponds to the intersection point of the tangent Baer subplane with
l∞. As a base, it has a Baer conic C in a plane disjoint from T . For each point of
T , there is a unique generator line on the Baer ruled cubic through this point and
a point of C. A plane through a line of D \ {T} intersects the Baer ruled cubic
in a point or a Baer conic. For more information on the ABB-representation of
sublines and subplanes of PG(2, q2), we refer to [12, Section 3.4.2] or Chapter 6.

It is well known that two distinct Baer sublines spanning the plane PG(2, q2), that
have a common point, are contained in a unique Baer subplane. The following
lemma, in terms of lines of PG(4, q) in the ABB-representation, can be deduced.

Lemma 7.2.1. Two lines of PG(4, q), not contained in a plane through a line of
D, intersecting H∞ in the same point, lie in a unique plane intersecting H∞ not
in a line of D, i.e. they define a unique secant subplane to l∞.
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Chapter 7. Unitals with many Baer secants through a fixed point

Two lines of PG(4, q), not in H∞, through different points P1, P2 of H∞, such
that P1P2 is a spread line of D, lie in a unique Baer ruled cubic, i.e. they define
a unique tangent subplane to l∞.

7.2.2 Unitals in PG(2, q2)

Recall that a unital in PG(2, q2) is a set of q3 +1 points such that every line meets
U in 1 or q + 1 points. It is easy to see that a point P of U lies on exactly one
tangent line to U and on q2 lines meeting U in q + 1 points (including P ). These
last lines are called the (q + 1)-secants, or short secants, to U . If a secant line
meets a unital in a Baer subline, then we call this line a Baer secant.

A classical unital (or Hermitian curve) in PG(2, q2) corresponds to the set of
absolute points of a unitary polarity. Note that every unital in PG(2, 4) is classical.
In PG(2, q2), q > 2, there are examples of non-classical unitals.

An ovoidal Buekenhout-Metz unital in PG(2, q2) arises from the following con-
struction (see [27]). Consider the ABB-representation in PG(4, q) of PG(2, q2)
with respect to the line l∞, with line spread D of H∞ corresponding to the points
of l∞. Let O be an ovoid in a 3-space of PG(4, q), such that H∞ contains exactly
one point A ∈ O and such that the tangent plane of O at A does not contain the
spread line T ∈ D incident with A. Let V be a point on T , V 6= A. Consider the
ovoidal cone with vertex V and base O, this point set corresponds to a unital U
in PG(2, q2). The line l∞ is the tangent line to U at the point P∞ of l∞, where
P∞ is the point corresponding to the spread line T . We will call P∞ the special
point of the ovoidal Buekenhout-Metz unital U . Clearly, all secants to U at P∞
are Baer secants.

All known unitals in PG(2, q2), including the classical unital, arise as ovoidal
Buekenhout-Metz unitals. Moreover, every unital in PG(2, q2), with q = 2, 3, 4,
corresponds to an ovoidal Buekenhout-Metz unital, see [7, 93]. For q > 4, the
classification of unitals is an open problem.

7.2.3 Caps and ovoids in PG(3, q)

We will need the following extendability results for caps in PG(3, q).

Theorem 7.2.2. A cap in PG(3, q) of size at least q2− δ, with δ and q satisfying
the conditions of Table 7.2, can be extended to an ovoid.
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δ Conditions Ref.

δ ≤ q
2 +

√
q

2 − 1 q even, q > 2 [66]

δ ≤ q − 4 q even, q ≥ 8 [37]

δ ≤ 2q − 8 q even, q ≥ 128 [29]

δ ≤
√
qq

4 −
39q
64 −O(√q) q odd, q ≥ 17, q = p2e, e ≥ 1 [65]

δ ≤ pe+1q
4 − 119pq

64 +O(pe+2) q odd, q ≥ 17, q = p2e+1, e ≥ 1 [65]

δ ≤ 359q2

2700 + 4q
135 −

94
27 q odd, q ≥ 17 prime [65]

δ ≤
√
qq

2 −
67q
16 + 5√q

4 −
13
12 q odd, q ≥ 17, q = ph, p ≥ 5 [65]

δ ≤
√
qq

2 −
35q
16 −O(√q) q odd, q ≥ 232, q 6= 55, 36, q =

ph (h even for p = 3)
[65]

Table 7.2: Conditions for Theorem 7.2.2

Moreover, the following theorem shows that the ovoids obtained in the previous
theorem are unique.

Theorem 7.2.3. [110, Theorem 2.2]

If K is a k-cap in PG(n, q), n ≥ 3, q even, having size k > (qn−1 + · · ·+ q+
2)/2, then K can be extended in a unique way to a complete cap.
If K is a k-cap in PG(n, q), n ≥ 3, q odd, of size k > 2(qn−1 + · · ·+q+2)/3,
then K can be extended in a unique way to a complete cap.

7.3 Proof of the main theorem

We will need the following lemma which can be shown by a simple counting argu-
ment.

Lemma 7.3.1. [35, Theorem 2.1] A Baer subplane tangent to l∞ meets a unital
in PG(2, q2) (where the unital has l∞ as a tangent line) in at most 2q + 2 points.
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Chapter 7. Unitals with many Baer secants through a fixed point

A Baer subplane secant to l∞ meets a unital in PG(2, q2) (where the unital has
l∞ as a tangent line) in at most 2q + 1 points.

Throughout this section, we use the following notations and conventions. Let U be
a unital in PG(2, q2) containing a point P∞ such that a set of at least q2−ε, ε ≤ q2,
of the (q+1)-secants through P∞ are Baer secants. Say l∞ is the tangent line of U
at P∞ and consider the ABB-representation of PG(2, q2) with respect to l∞, such
that the points of l∞ correspond to the elements of the Desarguesian spread D in
the hyperplane H∞ of PG(4, q). By abuse of notation, we will use the notation
Uaff for both the point set U \ {P∞} in PG(2, q2) and for the corresponding affine
point set in PG(4, q).
Suppose P∞ corresponds to the spread line T of D. Let L be the set of q2− ε lines
in PG(4, q) corresponding to Baer secants through P∞. Every line of L intersects
H∞ in a point of T . Note that any plane intersecting H∞ in T contains exactly q
points of Uaff .
Given a unital U and its corresponding line set L, we will consider a set S(U) in
the plane Π = PG(4, q)/T , consisting of points with labels, induced by the lines
of L. This point set is defined as follows.

Definition 7.3.2. Consider the quotient space Π = PG(4, q)/T , isomorphic to
PG(2, q), and let v1, . . . , vq+1 be the points of T . The points of S(U) are the
points of Π corresponding to the planes through T which contain a line of L. We
label a point R of S(U) with vj , if the line of L in the plane 〈T,R〉 passes through
vj .

Lemma 7.3.3. The set S(U) is a point set in AG(2, q) such that each point has
exactly one label. Moreover, S(U) has the property that if a point Q of S(U)
belongs to a line of AG(2, q) containing two points of S(U) with the same label v,
then Q also has label v.

Proof. First note that the points of S(U) are contained in an affine plane of Π =
PG(4, q)/T , since H∞/T is a line in Π and since no plane through T in H∞
contains a line of L. Each point of S(U) has exactly one label, as a plane through
T contains at most one line of L.
If a line m in Π contains two points of S(U) with the same label, say vk, then the
3-space 〈T,m〉 contains two lines l1, l2 of L through the point vk. Suppose that
there is a point of S(U) on the line m with label vj , j 6= k. This implies that there
is a line of L, say l3, through vj , contained in 〈T,m〉. Thus, the line l3 meets the
plane 〈l1, l2〉 in an affine point, which means that the secant subplane defined by
l1, l2 contains 2q + 2 points, a contradiction by Lemma 7.3.1.
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7.3. Proof of the main theorem

Next, we show that the configuration of points of S(U) must satisfy one of three
conditions.

Lemma 7.3.4. Suppose q > 2 and k ∈ N, k < √q − 1. Let S be a set of q2 − ε,
ε ≤ kq, points in AG(2, q), and consider a set of labels V = {v1, . . . , vq+1}, such
that each point of S has exactly one label. Denote the subset of S containing all
points with label v by Sv.

Suppose that the set S has the property that if a point Q of S belongs to a line of
AG(2, q) containing two points of S with the same label v, then Q also has label v.
Then the set S satisfies one of the following conditions.

(i) All points of S have the same label.
(ii) There are 2 distinct labels v1 and v2 each occurring at least q − k times as

labels of points of S. For i = 1, 2, the points of Svi
lie on an affine line.

These two affine lines go through a common affine point.
(iii) There is a subset V∗ ⊆ V of labels, each occurring at least twice, such that

for every label v ∈ V∗, the points of Sv lie on an affine line. These affine
lines are all parallel (i.e. their projective completions go through a common
point Q∞ at infinity). The subset S∗ ⊆ S, consisting of points with a label
in V∗, has size at least q2 − ε− (k2 + k)(k2 + k − 1)− 1.

Proof. First, make the following two observations.

• Suppose that there is a label v appearing q + 2 times or more. Take a point
P ∈ S, then at least one line through P contains at least two points of S
with label v. Hence, the point P also has label v, thus, all points of S have
label v. We find that S has configuration (i).

• Suppose that there is a label v, such that q points of Sv lie on a line L.
If S does not have configuration (i), then clearly no other point of S has
label v. Moreover, if another label appears at least two times, then the
line spanned by the corresponding points must be parallel to L. Hence, any
label appears at most q times. There is a subset V∗ ⊆ V containing at least
q − k labels, such that every label appears at least twice; otherwise, there
would be at most (q − k − 1)q + (k + 2)1 = q2 − kq − q + k + 2 < q2 − kq
points in S. There are at most k + 1 points having a label appearing only
once. The subset S∗ ⊆ S of points having a label in V∗ has size at least
q2 − ε − k − 1 ≥ q2 − ε − (k2 + k)(k2 + k − 1) − 1. Hence, S has the
configuration described in (iii).
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Chapter 7. Unitals with many Baer secants through a fixed point

Now, there exists a label v occurring at least q − k times, otherwise, there would
be at most (q+ 1)(q−k−1) = q2−kq−k−1 < q2−kq points in S. Suppose that
there are three non-collinear points in Sv. Choose a point P1 ∈ Sv and consider
the set Z of all lines containing P1 and another point of Sv. Every line of Z can
only contain points with label v. Consider the set Z ′ ⊆ Z of all lines of Z that
contain at most k points of S different from P1; suppose |Z ′| = x. Hence, the lines
of Z ′ each contain at least q − k − 1 affine points not in S. Since the lines of Z ′
contain at most all kq points not in S, we see that

x ≤ kq

q − k − 1 .

However, the upper bound on the number of points of Sv, different from P1, covered
by the lines of Z ′ is equal to xk. We see that

xk ≤ k2q

q − k − 1 .

Moreover, when k <
√
q − 1, we have

xk ≤ k2q

q − k − 1 < q − k − 1.

As there are at least q− k− 1 points in Sv, different from P1, there exists a point
P2 ∈ Sv not on a line of Z ′. Hence, the line P1P2 contains at least k+ 1 points of
S, different from P1.
Consider a point P3 ∈ Sv, but not on P1P2. There are at least k+ 2 lines through
P3 and a point of Sv ∩ P1P2 containing only points of Sv. These lines cover at
least 1 + (k + 2)(q − 1) − kq = 2q − k − 1 ≥ q + 2 points of S, when k <

√
q − 1

and q > 2. Since the label v appears at least q+ 2 times, it follows that all points
of S have label v, hence, S has configuration (i).
We can now assume that if a label v appears at least q − k times, then the points
of Sv belong to a line. Moreover, since q points with a fixed label on a line imply
configuration (i) or (iii), we can pose that ∀v ∈ V : |Sv| < q. We can count that
there are at least two labels v1 and v2 each occurring at least q − k times, since
otherwise there would be at most 1(q − 1) + q(q − k − 1) = q2 − kq − 1 < q2 − kq
points in S. Consider the lines L1 and L2 containing all points of Sv1 and Sv2

respectively.
If L1 and L2 intersect in an affine point Q, then S satisfies configuration (ii).
Now, suppose L1 and L2 are parallel, i.e. their projective completions intersect in
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a point Q∞ at infinity. There are at least q− k+ 1 labels occurring at least twice,
since otherwise there would be at most (q−k)(q−1)+(k+1)1 = q2−kq−q+2k+1 <
q2 − kq points in S. A line spanned by two points with the same label (different
from v1 and v2) must intersect both lines Li in a point not in S. However, the line
Li, i = 1, 2, contains at most k affine points not in S. Hence, there are at most k2

lines intersecting both lines Li, i = 1, 2, not in Q∞ and not in a point of S. This
means that, of all the labels appearing at least twice, there are at most k2 labels
such that two points with the same label do not necessarily span a line containing
Q∞. Hence, there is a subset V∗ ⊆ V of at least q− k2 − k+ 1 labels occurring at
least twice such that points with the same label do lie on a line containing Q∞.

It follows that there are at most k2 + k− 1 affine lines through Q∞, such that the
points of S on such a line do not have the same label. However, there are at most
(q+ 1)− (q−k2−k+ 1) = k2 +k labels that could occur this way. Hence, at most
(k2 +k−1)(k2 +k) points of S have the property that a line spanned by two points
with the same label does not necessarily contain Q∞. It follows that there is a
subset S∗ ⊆ S of at least q2−ε−(k2+k)(k2+k−1) > q2−ε−(k2+k)(k2+k−1)−1
points, having the property that a line spanned by two points with the same label
does contain Q∞, i.e. they have a label in V∗. This means that S has configuration
(iii).

The following three lemmas will show that the affine point set S(U), defined by
the unital U , must satisfy the first configuration of Lemma 7.3.4.

Lemma 7.3.5. Suppose q > 2 and k ∈ N, k < √q−1. Let U be a unital containing
a point P∞ such that q2 − ε, ε ≤ kq, of the (q + 1)-secants through P∞ are Baer
secants. The corresponding point set S(U) cannot have the form (ii) of Lemma
7.3.4.

Proof. The subset of S(U) containing all points with label vi, will be denoted by
Svi

(U). Suppose that S(U) is of the form (ii) of Lemma 7.3.4. There are two
distinct labels, say v1 and v2, occurring at least q− k times, such that for i = 1, 2,
the points of Svi(U) lie on an affine line Li. The affine lines L1 and L2 intersect
in an affine point A.

Let T be the spread line corresponding to P∞. A line of L through v1 induces a
point of L1 in the quotient space PG(4, q)/T . Hence, all the lines of L containing v1
are contained in the three-space Σ1 = 〈T, L1〉. Similarly, the lines of L containing
v2 are contained in the three-space Σ2 = 〈T, L2〉. Let α be the plane 〈T,A〉, then
clearly α is the intersection Σ1 ∩Σ2. Moreover, as the plane α is not contained in
H∞, there are q points of Uaff contained in α.
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Chapter 7. Unitals with many Baer secants through a fixed point

There are at most k + 1 lines, say n1, . . . , nk+1, of α through v1 which do not
occur as the intersection 〈li, lj〉 ∩ α, where li, lj are lines of L through v1 in the
three-space Σ1. Similarly, there are at most k + 1 lines n′1, . . . , n′k+1 of α through
v2 which do not occur as the intersection 〈li, lj〉 ∩ α, where li, lj are lines of L
through v2 in the three-space Σ2.

Suppose that a point of U in α belongs to a plane 〈li, lj〉, where li, lj are lines of
L through the same point of T , then the secant subplane defined by li, lj contains
2q+2 points of U , a contradiction by Lemma 7.3.1. This implies that each of the q
points of U in α necessarily lies on one of the lines n1, . . . , nk+1 and on one of the
lines n′1, . . . n′k+1. However, there are only (k + 1)2 such points and q > (k + 1)2,
a contradiction.

Consider a Baer subplane π of PG(2, q2) containing the point P∞. It is clear
that π/P∞ defines a Baer subline in the quotient space PG(2, q2)/P∞. This
can be translated to the ABB-representation in the following way. Recall that
a Baer subplane π, tangent to l∞ at P∞, corresponds to a Baer ruled cubic B with
line directrix T . It follows that B/T defines a Baer conic in the quotient space
PG(4, q)/T .

Lemma 7.3.6. Suppose q ≥ 16 and k ∈ N, k ≤ √q/2 − 2. Let U be a unital
containing a point P∞ such that q2 − ε, ε ≤ kq, of the (q + 1)-secants through
P∞ are Baer secants. Suppose S(U) is as described in Lemma 7.3.4 case (iii),
with subset S∗(U) ⊆ S(U). Then there exists a Baer ruled cubic B in PG(4, q),
containing two lines of L = {l1, . . . , lq2−ε}, such that the corresponding Baer conic
in PG(4, q)/T contains at least b q+7

2 c points of S∗(U).

Proof. Consider S(U) as described in Lemma 7.3.4 case (iii), with point Q∞ at
infinity. There is a subset S∗(U) ⊆ S(U) of at least q2−kq−(k2 +k)(k2 +k−1)−1
points of S(U), such that points of S∗(U) with the same label lie on an affine line
containing the point Q∞.

Choose a point R ∈ S∗(U) having label v, this label v occurs at most q times.
Hence, there are at least

q2 − (k + 1)q − (k2 + k)(k2 + k − 1)− 1

points of S∗(U), not with label v. We will call these points good points. The affine
points which are not good, are called bad points.

Consider the line l ∈ L defined by R. We want to find a Baer ruled cubic,
containing l, such that the corresponding Baer conic in PG(4, q)/T contains at
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least b q+7
2 c points of S∗(U). Since such a conic always contains R ∈ S∗(U), we

want to find a conic with at least b q+5
2 c good points and at most d q−3

2 e bad points
(one of which is R).

Consider a good point R1 and its corresponding line l1 ∈ L. As all good points
have a label different from v, the points R1 and R have a different label. Hence,
the lines l and l1 intersect T in distinct points, so they are contained in a unique
Baer ruled cubic (by Lemma 7.2.1). Consider the corresponding Baer conic C1 in
PG(4, q)/T . If the conic C1 contains at least b q+5

2 c good points, the result follows.
Now, suppose that C1 contains at most b q+3

2 c good points. Then there are at least
q2 − (k + 1)q − (k2 + k)(k2 + k − 1)− 1− q+3

2 good points that do not belong to
C1. Since q ≥ 4(k + 1)2, this number is larger than zero.

Hence, we can find a good point R2 that does not lie on C1. The point R2 defines a
line l2 of L. Again, we know that the lines l and l2 intersect T in a different point.
Take the Baer ruled cubic defined by l and l2, and consider the corresponding
Baer conic C2 in PG(4, q)/T . Recall that two distinct Baer conics intersect in at
most two points, hence C2 meets C1 in R and in at most one other point. If the
conic C2 contains at least b q+5

2 c good points, the result follows. So, suppose that
at most b q+3

2 c points of C2 are good points.

Since q2− (k+ 1)q− (k2 + k)(k2 + k− 1)− 1− 2 q+3
2 > 0, we can find a good point

R3, not contained in C1 ∪ C2. Applying the same reasoning to R3, we find a new
Baer ruled cubic containing l. The corresponding Baer conic C3 contains R and
R3, and is different from both C1 and C2. Thus, C3 meets both in at most 1 point
different from R.

Continuing this reasoning, suppose we have m Baer conics C1, . . . , Cm through R,
each containing at most b q+3

2 c good points. Hence, there are still at least

q2 − (k + 1)q − (k2 + k)(k2 + k − 1)− 1−mq + 3
2

good points not contained in one of the conics Ci, i = 1, . . . ,m. When m = 2k2+4,
we obtain the parabola

q2 − (k2 + k + 3)q − (k4 + 2k3 + 3k2 − k + 7)

with largest zero point equal to

q = q0 =
(k2 + k + 3) +

√
(k2 + k + 3)2 + 4(k4 + 2k3 + 3k2 − k + 7)

2 .
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Since, by assumption,

q ≥ 4(k + 2)2

> q0 =
(k2 + k + 3) +

√
(k2 + k + 3)2 + 4(k4 + 2k3 + 3k2 − k + 7)

2 ,

there is at least one good point not on C1 ∪ . . .∪Cm, say Rm+1. Consider the line
lm+1 ∈ L corresponding to Rm+1. The Baer ruled cubic B defined by l and lm+1
induces a Baer conic Cm+1 in PG(4, q)/T .

There are at most (k + 1)q + (k2 + k)(k2 + k − 1) + 1 bad points contained in
PG(4, q)/T . Each conic Ci, i = 1, . . . ,m, contains at most b q+3

2 c good points,
hence at least d q−1

2 e bad points, one of which is R. Since two conics have at most
one bad point in common different from R, the conics C1, . . . , Cm cover at least
1 + md q−3

2 e −
m(m−1)

2 bad points. The conic Cm+1 can intersect each conic Ci,
i = 1, . . . ,m, in at most one bad point. Hence, there are at most

1 +m+
[
(k + 1)q + (k2 + k)(k2 + k − 1) + 1

]
−
[
1 +m

q − 3
2 − m(m− 1)

2

]
= 1 +m+ (k + 1)q + (k2 + k)(k2 + k − 1)−mq − 3

2 + m(m− 1)
2

bad points contained in Cm+1. To check that this number is strictly smaller than
q−1

2 , we consider the inequality

(−m+ 2k + 1)q + 2(k2 + k)(k2 + k − 1) +m2 + 4m+ 3 < 0.

This is equivalent to

q >
2(k2 + k)(k2 + k − 1) +m2 + 4m+ 3

m− 2k − 1 ,

which is valid when q ≥ 16, since

q ≥ 4(k + 2)2 >
2(k2 + k)(k2 + k − 1) +m2 + 4m+ 3

m− 2k − 1 .

Hence, the Baer ruled cubic B has at most d q−3
2 e bad points, that is, at least b q+5

2 c
good points. It follows that B contains at least b q+7

2 c points of S∗(U) and thus
satisfies the conditions of the statement.

Lemma 7.3.7. Suppose q ≥ 16 and k ∈ N, k ≤ √q/2 − 2. Let U be a unital
containing a point P∞ such that q2 − ε, ε ≤ kq, of the (q + 1)-secants through P∞
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are Baer secants. The corresponding affine point set S(U) cannot have the form
(iii) of Lemma 7.3.4.

Proof. Suppose that the set S(U) has the form (iii) of Lemma 7.3.4 with point Q∞
at infinity. Let l1 and l2 be the lines of L defining the Baer ruled cubic B of Lemma
7.3.6. A tangent subplane contains (at most) 2q+ 2 points of U , hence B contains
(at most) one point of Uaff not on l1 and l2. Let µ be a plane (necessarily skew
from T ) containing a Baer conic C contained in B. We can identify PG(4, q)/T
with µ, and so the intersection points of U ∩ B define the points R1, R2 in C

(corresponding to l1 and l2 respectively) and at most one extra point R in C.

By Lemma 7.3.6, there are at least b q+7
2 c points of the Baer conic C contained in

S∗(U), that is, two points of S∗(U) with the same label lie on a line containing
Q∞. Hence, we find at least two lines LA and LB through Q∞, each intersecting
C in two points with the same label. At most one of these lines, say LB , contains
the point R. Hence, LA intersects C \ {R} in two points Q1, Q2, having the same
label v. The points Q1 and Q2 are each contained in a generator line of the Baer
ruled cubic, say n1 and n2. Since Q1 and Q2 are different from R, for i = 1, 2, the
line ni either has no affine intersection point with the lines of L or is equal to l1
or l2.

Both points Qi, i = 1, 2, have label v, hence, the planes 〈T, ni〉, i = 1, 2, each
contain a line of L through v, say lk1 and lk2 respectively. Since the line ni is
either equal to lki or does not have an affine intersection point with lki , both lines
ni, i = 1, 2, have to meet T in v. This implies that we find two generator lines
of the same Baer ruled cubic having a point in common, a contradiction by the
definition of a ruled cubic surface, which concludes the proof.

As a combination of previous lemmas, we have found that S(U) must satisfy
configuration (i) of Lemma 7.3.4. We will show that in this case, the points
of U on the q2 − ε Baer secants are contained in a unique unital, namely an
ovoidal Buekenhout-Metz unital. This leads to the conclusion that U is an ovoidal
Buekenhout-Metz unital.

First, we prove that q2 − ε Baer secants of an ovoidal Buekenhout-Metz unital
are never contained in any other unital. We need the definition of an O’Nan
configuration, this is a collection of four distinct lines meeting in six distinct points,
as illustrated in the following picture.
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It is known that an ovoidal Buekenhout-Metz unital contains no O’Nan configu-
rations through its special point. A simple proof of this can be found in the proof
of [12, Lemma 7.42].

We will call a line of PG(2, q2) which is secant to a unital U ′, a U ′-secant.

Lemma 7.3.8. Consider in PG(2, q2) an ovoidal Buekenhout-Metz unital U ′ with
special point P∞, and consider a set {L1, . . . , Lε} of U ′-secants through P∞. Sup-
pose a unital U of PG(2, q2) contains P∞ and all points of U ′ that do not lie on
one of the ε secant lines Li. If ε ≤ (q−1)q

2 , then U and U ′ coincide.

Proof. We will show that the result holds when ε = (q−1)q
2 , then the result easily

follows for all ε ≤ (q−1)q
2 .

Consider the set U0 consisting of all points contained in U ′, but not on one of
the U ′-secants Li, i = 1, . . . , ε. By assumption, all these points are contained in
U ∩ U ′. Recall that for every unital Ũ , a point of Ũ lies on q2 Ũ -secants and a
point not on Ũ lies on only q2 − q Ũ -secants. This means, if a point Q belongs
to strictly more than q2 − q lines intersecting U0 in at least two points, then Q

is contained in any unital containing all points of U0. Hence, in that case, Q is
contained in U ∩ U ′.

Consider a point R ∈ U ′\U0 and say L1 = P∞R. We will prove that there are at
most q− 2 U ′-secants Mj , containing R but different from L1, having at most one
point in common with U0. If that is the case, then there are at least q2 − q + 1
U ′-secants through R containing at least two points of U0, and hence, the point
R is contained in U ∩ U ′.

Consider a U ′-secant M1, different from L1, containing R and (at most) one point
of U0. This line intersects at least q−1 U ′-secants Li, different from L1, in a point
of U ′, say L2, . . . , Lq.

Take a U ′-secant M2 through R, different from L1 and M1, containing at most
1 point of U0. Since U ′ contains no O’Nan configurations through the point P∞,
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there is at most one U ′-secant Li, i 6= 1, containing P∞, such that the points
Li∩M1 and Li∩M2 are both points of U ′. Hence, M2 intersects at least q−2 new
U ′-secants Li (i.e. different from L1, . . . , Lq) in a point of U ′, say Lq+1, . . . , L2q−2.

Consider a third U ′-secant M3 through R, different from L1,M1,M2. With the
same reasoning as above, the lineM3 intersects at least q−3 U ′-secants Li (different
from L1, . . . , L2q−2) in a point of U ′, say L2q−1, . . . , L3q−5.

If there are at most q − 2 U ′-secants Mj , containing R and having 0 or 1 points
in common with U0, the result follows. Otherwise, by continuing this process, the
U ′-secant Mq−1 intersects at least q− (q− 1) = 1 U ′-secant Li, different from the
previously enumerated lines L1, . . . , Lm. We have found m+ 1 distinct U ′-secants
Lj where

m+ 1 = 1 + (q − 1) + (q − 2) + · · ·+ (q − (q − 2)) + 1 = q(q − 1)
2 + 1.

This is in contradiction with the restriction on the number of U ′-secants Lj , since

q(q − 1)
2 + 1 >

q(q − 1)
2 = ε.

We have proved that there are at most q − 2 U ′-secants through R containing 0
or 1 points of U0. Hence, the point R belongs to U ∩U ′. It follows that all points
R ∈ U ′ are contained in U ∩ U ′, which proves the result.

Lemma 7.3.9. Suppose q and δ satisfy the conditions of Table 7.2. Consider a
unital U containing a point P∞ such that at least q2 − δ − 1 of the (q + 1)-secants
through P∞ are Baer secants. If S(U) satisfies configuration (i) of Lemma 7.3.4,
then U is an ovoidal Buekenhout-Metz unital with special point P∞.

Proof. If the set S(U) satisfies configuration (i) of Lemma 7.3.4, then all points of
S(U) have the same label. This implies that all q2 − δ − 1 lines of L go through
a common point, say v of the line T . By Lemma 7.2.1, two lines li and lj of
L define a unique secant subplane. By Lemma 7.3.1, such a subplane has no
affine intersection with any other line of L. This means that in the 3-dimensional
quotient space PG(4, q)/v, the lines of L define a set K of q2−δ−1 points forming
a cap. As a plane through T contains at most one line of L, the line T defines a
point in this quotient space, which extends the cap K to a cap K ′ of size q2 − δ.
By Theorems 7.2.2 and 7.2.3, the cap K can be extended to a unique ovoid O.
The cone with vertex v and base O defines an ovoidal Buekenhout-Metz unital U ′
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which has q2 − δ − 1 secant lines in common with U . Since δ + 1 ≤ (q−1)q
2 , by

Lemma 7.3.8, U is an ovoidal Buekenhout-Metz unital.

Theorem 7.3.10. Suppose that q and ε satisfy the conditions of Table 7.1. Let
U be a unital containing a point P∞ such that at least q2− ε of the (q+ 1)-secants
through P∞ are Baer secants, then U is an ovoidal Buekenhout-Metz unital with
special point P∞.

Proof. When q and ε satisfy the conditions of Table 7.1, we have q ≥ 16 and
ε ≤ min(δ + 1,√qq/2− 2q), with q and δ satisfying the conditions of Table 7.2.

Consider the set S(U) defined by the Baer secants to U at P∞. By Lemma
7.3.3, this set satisfies the conditions of Lemma 7.3.4. Hence, since q > 2 and
ε < (√q − 1)q, the set S(U) has one of the three configurations of Lemma 7.3.4.
By Lemma 7.3.5 (q > 2 and ε < (√q − 1)q) and Lemma 7.3.7 (q ≥ 16 and
ε ≤ √qq/2 − 2q), only the first configuration is possible. Since ε ≤ δ + 1, by
Lemma 7.3.9, U is an ovoidal Buekenhout-Metz unital.

Combining Theorem 7.3.10 with Theorem 7.1.2, we obtain the following corollary.

Corollary 7.3.11. Suppose that q and ε satisfy the conditions of Table 7.1. Let
U be a unital in PG(2, q2). If there is a point P∞ in U that belongs to at least
q2 − ε Baer secants, and there exists a Baer secant of U not through P∞, then U

is a classical unital.
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This appendix provides a summary of the new results obtained in this thesis. We
only define the concepts necessary to understand the statements and we refer to
the original text for more details.

In Chapter 1, basic concepts and definitions in finite geometry are recalled. Note
that the projective space corresponding to the vector space V (n, q) is denoted by
PG(n − 1, q). We use the following notation for the points of projective spaces.
Consider the vector space V ' Fqn0 × · · · × Fqns of rank n =

∑s
i=0 ni over Fq,

for some positive integers ni. A point P of the corresponding projective space
defined by the vector (a0, . . . , as), where ai ∈ Fqni , will be written as (a0, . . . , as)Fq

,
emphasizing the fact that every Fq-multiple of (a0, . . . , as) gives rise to the point
P , i.e. (a0, . . . , as)Fq

= {(λa0, . . . , λas) | λ ∈ F∗q}.

Part I

Part I consists of two chapters, providing characterisations of elementary pseudo-
caps (Chapter 2) and Desarguesian spreads (Chapter 3), both in terms of spread
inducing elements.

Characterisations of elementary pseudo-caps

In Chapter 2, we study the higher dimensional equivalents of caps, arcs and ovoids.

Definition. A pseudo-cap is a set A of (n− 1)-spaces in PG(2n+m− 1, q) such
that any three elements of A span a (3n− 1)-space.

Examples of pseudo-caps in PG(kn − 1, q) arise by applying field reduction to
caps in PG(k− 1, qn) and if a pseudo-cap is obtained by field reduction, we call it
elementary. Every element Ei of a pseudo-cap A of PG(2n+m− 1, q) induces a
partial spread

Si := {E1, . . . , Ei−1, Ei+1, . . . , E|A|}/Ei

in the quotient space PG(n+m− 1, q) ∼= PG(2n+m− 1, q)/Ei. Obviously, every
element of an elementary pseudo-cap induces a partial spread which extends to a
Desarguesian spread.

This chapter focusses on the characterisation of two types of pseudo-caps, namely
pseudo-(hyper)ovals in PG(3n− 1, q) and (weak) eggs in PG(4n− 1, q).
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Definition. A pseudo-cap in PG(3n− 1, q) of size qn + 1, respectively qn + 2, is
called a pseudo-oval, respectively pseudo-hyperoval.

Using the connection between pseudo-ovals and elation Laguerre planes, we obtain
the following theorem and deduce a natural corollary.

Theorem 2.3.22. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian, then
O is elementary.

Corollary 2.3.23. Let H be a pseudo-hyperoval in PG(3n−1, q), q = 2h, h > 1, n
prime, such that the spread induced by at least qn+1 elements of H is Desarguesian,
then H is elementary.

Definition. A weak egg in PG(2n+m− 1, q) is a pseudo-cap of size qm + 1.

A weak egg E in PG(2n + m − 1, q) is called an egg if each element E ∈ E is
contained in an (n + m − 1)-space, TE , which is skew from every element of E
different from E.

An important tool in the investigation of (weak) eggs, is the following concept. A
(weak) egg E in PG(2n + m − 1, q), m > n, is good at an element E ∈ E if every
(3n− 1)-space containing E and at least two other elements of E , contains exactly
qn + 1 elements of E . A (weak) egg that has at least one good element is called a
good (weak) egg.

We provide a connection between good weak eggs and weak eggs that contain an
element that induces a Desarguesian spread.

Theorem 2.4.2.

(i) If a weak egg E in PG(2n+m−1, q) is good at an element E, then E induces
a partial spread which extends to a Desarguesian spread.

(ii) Let E be a weak egg in PG(2n+m−1, q) for q odd or an egg in PG(2n+m−
1, q) for q even. If an element E ∈ E induces a partial spread which extends
to a Desarguesian spread, then E is good at E.

We use this connection to obtain two characterisation results of weak eggs in
PG(4n− 1, q).

Theorem 2.4.5. Suppose n > 1, qn > 4, consider a weak egg E in PG(4n− 1, q).
Then E is elementary if and only if the following three properties hold:

• E is good at an element E,
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• there exists a (3n− 1)-space, disjoint from E, containing at least 5 elements
E1, E2, E3, E4, E5 of E,

• all pseudo-ovals of E containing {E,E1}, {E,E2} or {E,E3} are elementary.

Theorem 2.4.9. Consider a pseudo-cap E in PG(4n − 1, q), q > 2, with |E| >
qn+k + qn − qk + 1, q odd, and |E| > qn+k + qn + 2, q even, where k is the largest
divisor of n with k 6= n. The pseudo-cap E is elementary if and only if two of its
elements induce a partial spread which extends to a Desarguesian spread.

Corollary 2.4.10. A weak egg in PG(4n − 1, q) which is good at two distinct
elements is elementary.

A geometric characterisation of normal spreads

In Chapter 3, we obtain characterisations of spreads in terms of their normal
elements.

Definition. We say that an element E of an (n−1)-spread S of Π = PG(rn−1, q)
is normal if S induces a spread in the (2n− 1)-space spanned by E and any other
element of S, or equivalently, if S/E induces an (n − 1)-spread in the quotient
space Π/E ∼= PG((r − 1)n− 1, q).

A spread is called normal if and only if all of its elements are normal. Moreover,
for r > 2, it is well known that a spread is normal if and only if it is Desarguesian.

Definition. A (matrix) spread set is a family M of qn n×n-matrices over Fq such
that, for every two distinct A,B ∈M, the matrix A−B is also non-singular.

With every spread set M, there corresponds an (n− 1)-spread S(M) in PG(2n−
1, q):

S(M) = {EA | A ∈M} ∪ {E∞} ,

where
EA = (I, A) = {(x, xA)Fq

| x ∈ Fnq }

and
E∞ = (0, I) = {(0, x)Fq

| x ∈ Fnq }.

The following connections are known.
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S is a nearfield spread ⇔ S ∼= S(M) with M
closed under multiplication;

S is a semifield spread ⇔ S ∼= S(M) with M
closed under addition;

S is a Desarguesian spread ⇔ S ∼= S(M) with M
closed under multiplication
and under addition.

Note that, given Fq-linear maps a1, . . . , ar from Fqn to itself, the set

{(a1(x), . . . , ar(x))Fq | x ∈ Fqn}

corresponds to an (n − 1)-space of PG(rn − 1, q). When choosing a basis for
Fqn ∼= Fnq over Fq, the Fq-linear map ai, i = 1, . . . , r, is represented by an n × n-
matrix Ai, i = 1, . . . , r, over Fq acting on row vectors of Fnq from the right. We
abuse notation and write the corresponding (n− 1)-space of PG(rn− 1, q) as

(A1, . . . , Ar) := {(xA1, . . . , xAr)Fq | x ∈ Fnq }.

We obtain the following characterisations of spreads in terms of their normal ele-
ments.

Theorem 3.3.1. An (n − 1)-spread S in PG(rn − 1, q), r > 2, having r normal
elements in general position is PΓL-equivalent to

Sr(M) = {(A1, A2, . . . , Ar) | Ai ∈M},

for some nearfield spread set M.

Theorem 3.4.3. Consider an (n − 1)-spread S in PG(rn − 1, q), r > 2. If S
contains r + 1 normal elements in general position, then S is a Desarguesian
spread.

Theorem 3.5.5. Consider an (n − 1)-spread S in PG(3n − 1, q), q odd. If S
contains 3 normal elements contained in the same (2n− 1)-space, then S is PΓL-
equivalent to

T3(M,M0) = {(A,B, I) | A,B ∈M}
∪ {(I, C, 0) | C ∈M0} ∪ {(0, I, 0)},

for some spread set M0 and a semifield spread set M.
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Part II

In Part II, we consider linear representations (Chapter 4) and their graphs (Chap-
ter 5).

Definition. Let K be a point set in a hyperplane H∞ ∼= PG(n, q) of PG(n+1, q).
The linear representation T ∗n(K) of K is a point-line incidence structure (P,L)
with natural incidence, point set P and line set L as follows:

P : the affine points of PG(n+ 1, q), i.e. not contained in H∞,
L : the lines of PG(n+ 1, q) intersecting H∞ exactly in a point of K.

The isomorphism problem for linear representations

In Chapter 4, we study the isomorphism problem for linear representations. For
this we need the definition of the closure of a point set.

Definition. If a point set S contains a frame of PG(n, q), then its closure Ŝ

consists of the points of the smallest n-dimensional subgeometry of PG(n, q) con-
taining all points of S.

We make the distinction between the case where the closure of K is H∞ or a
non-trivial subgeometry of H∞. The following result is obtained for K̂′ = H∞.

Theorem 4.2.10. Let q > 2. Let K and K′ denote point sets in H∞ = PG(n, q)
such that

• there is no plane of H∞ intersecting K in two intersecting lines, or in two
intersecting lines minus their intersection point;

• the closure K̂′ is equal to H∞.

If α is an isomorphism of incidence structures between T ∗n(K) and T ∗n(K′), then α

is induced by an element of PΓL(n+ 2, q)H∞ mapping K to K′.

When K̂′ is equal to a subgeometry of H∞, we need to view the linear repre-
sentation in an other setting, that is, we need to consider the generalised linear
representation isomorphic to T ∗n(K).

Definition. Let K be a set of disjoint (t − 1)-dimensional subspaces in Π∞ ∼=
PG(m, q), q a prime power. Embed Π∞ as a hyperplane in PG(m + 1, q). The
generalised linear representation T ∗m,t−1(K) of K is the incidence structure (P ′,L′)
with natural incidence for which:
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P ′ : the affine points of PG(m+ 1, q), i.e. not contained in Π∞,
L′ : the t-spaces of PG(m + 1, q) containing a (t − 1)-space of K, but not lying

in Π∞.

Consider a point set K in H∞ ∼= PG(n, qt) such that its closure K̂′ is an n-
dimensional Fq-subgeometry S of H∞. Consider the linear representation T ∗n(K)
embedded in PG(n + 1, qt). The points of the hyperplane H∞ ∼= PG(n, qt) in
PG(n + 1, qt) can be represented as (t− 1)-dimensional spaces of a Desarguesian
spread D∞ in J∞ ∼= PG(t(n+ 1)− 1, q) under a field reduction map F . The affine
points of PG(n+ 1, qt) with respect to H∞ can be identified with the affine points
of the space PG(t(n + 1), q) \ J∞. The lines of PG(n + 1, qt) intersecting H∞ in
a point of K correspond to the t-dimensional spaces of PG(t(n + 1), q) meeting
J∞ in an element of F(K) ⊂ D∞. In this way we obtain the generalised linear
representation T ∗t(n+1)−1,t−1(F(K)), which is thus clearly isomorphic to T ∗n(K).

Theorem 4.5.1. Let K and K′ denote point sets in H∞ ∼= PG(n, qt), t > 1, such
that the closures K̂′ and K̂′ are non-trivial n-dimensional subgeometries of H∞.
Suppose K̂′ ∼= PG(n, q) and let α be an isomorphism between T ∗n(K) and T ∗n(K′).
Then α is induced by an element of PΓL(t(n + 1) + 1, q)J∞ mapping F(K) onto
F(K′).

Using these results, we obtain that, under a mild condition, isomorphic linear
representations T ∗n(K) and T ∗n(K′) lead to isomorphic point sets K and K′.

Theorem 4.5.3. Let K and K′ be two point sets of H∞ = PG(n, q), q > 2, n > 1,
each containing a frame, such that 〈K〉 = 〈K′〉 = H∞. If K̂′ = H∞, suppose
furthermore that there is no plane of H∞ intersecting K in two intersecting lines,
or in two intersecting lines minus their intersection point. The linear representa-
tions T ∗n(K) and T ∗n(K′) are isomorphic if and only if the point sets K and K′ are
PΓL-equivalent.

Infinite families of semisymmetric graphs

In Chapter 5 we give a general construction leading to non-isomorphic families
Γn,q(K) of connected q-regular semisymmetric graphs of order 2qn+1 embedded in
PG(n+ 1, q), by using the linear representation T ∗n(K) of a particular point set K
of size q.

Definition. We say that a graph is vertex-transitive if its automorphism group
acts transitively on the vertices. Similarly, a graph is edge-transitive if its auto-
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morphism group acts transitively on the edges. A graph is semisymmetric if it is
regular and edge-transitive but not vertex-transitive.

We introduce the concept of the incidence graph of a linear representation.

Definition. The point-line incidence graph Γn,q(K) of the linear representation
T ∗n(K) is the bipartite graph with as classes the point set P and line set L of T ∗n(K)
and adjacency corresponding to the natural incidence of the structure T ∗n(K).

Theorem 5.5.1. Let K be a point set of H∞ = PG(n, q) of size q spanning H∞
such that every point of H∞\K belongs to at least one tangent line to K, and such
that PΓL(n + 1, q)K acts transitively on the points of K. Then the graph Γn,q(K)
is a connected semisymmetric graph.

In this summary, we only give a brief overview of all constructions of Chapter 5.
These are represented in Table 5.1. Note that we use the abbreviation NRC for
a normal rational curve. If q = p is prime with |K| = q and K contains a frame,
then every automorphism of T ∗n(K) is geometric, that is, every automorphism is
induced by a collineation of the ambient space. When q = ph is not prime and the
closure K̂′ is isomorphic to a subgeometry PG(n, q0), where q0 statisfies q = qk0
for some k, then one can obtain an automorphism group which is ng(q0, k) :=
1
k q

k(k−1)
2

0
∏k−1
i=1 (qi0 − 1) times larger than the geometric one. When K contains a

frame, this is the full automorphism group.

K Condition |Aut(Γn,q(K))| Ref.

basis q = n+ 1 > hqn+1(q − 1)q!ng(p, h) §5.4.1

frame q = n+ 2 hqn+1(q − 1)nq!ng(p, h) §5.4.1

⊂ NRC q ≥ n+ 3 hqn+2(q − 1)2 §5.4.2

⊂ q-arc q > 4 even hq5(q − 1)2 §5.4.3

⊂ Glynn-arc q = 9 9682 §5.4.4

⊂ Q−(3, q) q > 4 square 2hq5(q − 1)2ng(√q, 2) §5.5.1

⊂ Tits ovoid q = 22(2e+1) hq5(q − 1)(√q − 1)ng(√q, 2) §5.5.2

⊂ Q+(3, q) q > 4 square 2hq5(q − 1)(√q − 1)2ng(√q, 2) §5.5.3

⊂ cone VO q = qk0 kq2n+1(q − 1)2|PΓL(n, q0)O|ng(q0, k) §5.5.4

Table 5.1: Overview of all constructions of Chapter 5
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Part III

In Part III, we consider substructures in the André/Bruck-Bose representation or
ABB-representation of PG(2, qn) in PG(2n, q). This representation is obtained
as follows. Let D be a Desarguesian (n − 1)-spread in PG(2n − 1, q). Embed
PG(2n− 1, q) as a hyperplane H∞ in PG(2n, q). Consider the following incidence
structure A(D) = (P,L), where incidence is natural:

P : the affine points, i.e. the points of PG(2n, q)\H∞,
L : the n-spaces of PG(2n, q) intersecting H∞ in an element of D.

The incidence structure A(D) is a Desarguesian affine plane AG(2, qn). Its pro-
jective completion A(D) ∼= PG(2, qn) can be found by adding H∞ as the line l∞
at infinity where the elements of D correspond to the points of l∞.

Subgeometries in the ABB-representation

In Chapter 6, we investigate the ABB-representation of Fqk -sublines and Fqk -
subplanes of PG(2, qn). We will settle the characterisation of the following cases:

• Fqk -sublines tangent to or contained in the line at infinity:
for general k and n (Theorem 6.3.3 and Theorem 6.3.8),

• Fq-sublines external to the line at infinity:
for general n (Theorem 6.3.5),

• Fqk -subplanes secant to the line at infinity:
for general k and n (Theorem 6.4.1),

• Fq-subplanes tangent to the line at infinity:
for general n (Theorem 6.4.5).

These characterisations involve the unique indicator set of a Desarguesian spread,
which is obtained as follows. Embed Λ = PG(rn − 1, q) as a subgeometry of
Λ∗ = PG(rn−1, qn). The subgroup of PΓL(rn, qn) fixing Λ pointwise is isomorphic
to Aut(Fqn/Fq); take a generator σ of this group. Consider a Desarguesian (n−1)-
spread D in Λ. There exists an (r − 1)-space ν in Λ∗ skew to the subgeometry Λ,
such that for every point P ∈ ν, the (n− 1)-space 〈P, P σ, . . . , P σn−1〉 intersects Λ
in an element of D. The set {ν, νσ, . . . , νσn−1} is called the indicator set of D and
is unique.
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We prove that a Desarguesian (n − 1)-spread D of PG(rn − 1, q) has a unique
Desarguesian (k − 1)-subspread Dk for each k|n, that is, a Desarguesian (k − 1)-
spread of PG(rn− 1, q) that induces a (k − 1)-spread in each element of D.

We start with the characterisations of sublines.

Theorem 6.3.3.

(i) The affine points of an Fqk -subline in PG(2, qn) tangent to l∞ correspond
to the points of a k-dimensional affine space π in the ABB-representation,
such that π ∩H∞ is an element of Dk.

(ii) Conversely, let π be a k-dimensional affine space of Σ such that π intersects
H∞ in a spread element of Dk. Then the points of π correspond to the affine
points of an Fqk -subline tangent to l∞.

Recall that a normal rational curve in PG(k, q), 2 ≤ k ≤ q − 2, is a (q + 1)-arc
PGL-equivalent to the (q + 1)-arc

{(0, . . . , 0, 1)Fq} ∪ {(1, t, t2, t3, . . . , tk)Fq | t ∈ Fq}.

We say that a point set C in PG(N, q) is a normal rational curve of degree (or
order) l if and only if it is a normal rational curve in a l-dimensional subspace
of PG(N, q). Consider a normal rational curve C of PG(k, q), 2 ≤ k ≤ q − 2,
and the embedding of PG(k, q) as a subgeometry of PG(k, qn). There is a unique
normal rational curve C∗ in PG(k, qn) containing the points of C and we call this
the Fqn -extension C∗ of C.

Theorem 6.3.5. A set of points C in PG(2n, q), n ≤ q−2, is the ABB-representation
of an Fq-subline m of PG(2, qn) external to l∞ if and only if

(i) C is a normal rational curve of degree k contained in a k-space intersecting
H∞ in an element of Dk,

(ii) its extension C∗ to PG(2n, qn) intersects the indicator set
{Π,Πσ, . . . ,Πσk−1} of Dk in k conjugate points.

Moreover, the smallest subline containing m and tangent to l∞ is an Fqk -subline.

Theorem 6.3.8. Let S be a set of qk + 1 elements of the Desarguesian spread D
of H∞ = PG(2n− 1, q), q > 2. Then the following statements are equivalent:

(i) S is the ABB-representation of an Fqk -subline of l∞,
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(ii) for any three elements of S, the unique regulus through them is contained in
S,

(iii) there exists a (2k−1)-dimensional subspace of H∞ intersecting each element
of S in a (k − 1)-dimensional space,

(iv) there exists a (2k−1)-dimensional subspace of H∞ intersecting each element
of S in a (k − 1)-dimensional space of Dk.

Secondly, we consider the characterisations of subplanes.

Theorem 6.4.1. A set Π of affine points in PG(2n, q) is the ABB-representation
of the affine points of an Fqk -subplane in PG(2, qn) secant to l∞ if and only if

(i) Π is a 2k-dimensional affine space,

(ii) its projective completion Π intersects H∞ in a (2k−1)-space which intersects
qk + 1 elements of D in exactly a (k − 1)-space.

Moreover, this (2k− 1)-space intersects each of the qk + 1 spread elements of D in
a (k − 1)-space of Dk.

Consider two normal rational curves C1 and C2 of degree k and l respectively.
Embed both curves in PG(N, q), N ≥ k+ l+1, such that the subspaces they span,
of dimension k and l respectively, are disjoint.

Let ρ1, ρ2 be maps from PG(1, q)→ PG(N, q) defined by

ρ1 : (s, t)Fq
7→

(
k∑
i=0

sk−itiei

)
Fq

,

ρ2 : (s, t)Fq
7→

(
l∑
i=0

sl−itifi

)
Fq

,

for defining vectors ei, fi such that C1 = Im(ρ1) and C2 = Im(ρ2).

A normal rational scroll of bidegree {k, l} defined by {C1, C2} consists of the set of
lines of PG(N, q) defined as follows

{〈ρ1(P ), ρ2(ψ(P ))〉 | P ∈ PG(1, q)} ,

where ψ is an element of PGL(2, q).
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Theorem 6.4.5. A set S of affine points of PG(2n, q), n ≤ q− 2, corresponds to
the affine points of a tangent Fq-subplane µ if and only if S consists of the affine
points of a normal rational scroll defined by curves {C,N} satisfying for some k|n:

(i) C is a normal rational curve of degree k contained in an affine k-space π, for
which π∩H∞ is an element E1 of Dk, such that its Fqn -extension C∗ contains
all conjugate points {P, P σ, . . . , P σk−1} generating the spread element E1,

(ii) N is a normal rational curve of degree k − 1 contained in an element E2
of Dk, where E1 and E2 are not contained in the same element of D, such
that its Fqn -extension N ∗ contains all conjugate points {Q,Qσ, . . . , Qσk−1}
generating the spread element E2,

(iii) the Fqn -extension of the normal rational scroll contains the lines 〈Pσj

, Qσ
j 〉,

each line contained in an indicator space Πσj of Dk, for all j ∈ {0, 1, . . . , k−
1}.

Moreover, in that case the smallest subplane containing µ and secant to l∞ is an
Fqk -subplane.

Unitals with many Baer secants through a fixed point

In Chapter 7 we obtain a characterisation of ovoidal Buekenhout-Metz unitals in
PG(2, q2). A unital U in PG(2, q2) is a set of q3 + 1 points such that every line
meets U in 1 or q + 1 points. All known unitals in PG(2, q2) arise as ovoidal
Buekenhout-Metz unitals.

An ovoidal Buekenhout-Metz unital in PG(2, q2) can be constructed as follows.
Consider the ABB-representation in PG(4, q) of PG(2, q2) with respect to the line
l∞, with line spread D of H∞ corresponding to the points of l∞. Let O be an
ovoid in a 3-space of PG(4, q), such that H∞ contains exactly one point A ∈ O
and such that the tangent plane of O at A does not contain the spread line T ∈ D
incident with A. Let V be a point on T , V 6= A. Consider the ovoidal cone with
vertex V and base O, this point set corresponds to a unital U in PG(2, q2). The
point P∞ of l∞, corresponding to the spread line T ∈ D, is called the special point
of the ovoidal Buekenhout-Metz unital U .

First, we consider a lemma on the intersection of ovoidal Buekenhout-Metz unitals
with other unitals.

Lemma 7.3.8. Consider in PG(2, q2) an ovoidal Buekenhout-Metz unital U ′ with
special point P∞, and consider a set {L1, . . . , Lε} of U ′-secants through P∞. Sup-
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pose a unital U of PG(2, q2) contains P∞ and all points of U ′ that do not lie on
one of the ε secant lines Li. If ε ≤ (q−1)q

2 , then U and U ′ coincide.

A secant of a unital U is a Baer secant to U if it intersects U in a Baer subline
of PG(2, q2). The main result of Chapter 7 is the following characterisation of
ovoidal Buekenhout-Metz unitals in terms of Baer secants. This result relies on
extension results saying that large caps in PG(3, q) are contained in unique ovoids.

Theorem 7.3.10. Suppose q and ε satisfy the conditions of Table 7.1. Let U be
a unital in PG(2, q2) containing a point P lying on at least q2 − ε Baer secants to
U , then U is an ovoidal Buekenhout-Metz unital with special point P .

As a corollary, we obtain a characterisation for the classical unital.

Corollary 7.3.11. Suppose that q and ε satisfy the conditions of Table 7.1. Let
U be a unital in PG(2, q2). If there is a point P∞ in U that belongs to at least
q2 − ε Baer secants, and there exists a Baer secant of U not through P∞, then U

is a classical unital.

ε Conditions

ε ≤ q − 3 q even, q ≥ 16

ε ≤ 2q − 7 q even, q ≥ 128

ε ≤
√
qq

4 −
39q
64 −O(√q) + 1 q odd, q ≥ 17, q = p2e, e ≥ 1

ε ≤
√
qq

2 − 2q q odd, q ≥ 17, q = p2e+1, e ≥ 0

ε ≤
√
qq

2 −
67q
16 + 5√q

4 −
1
12 q odd, q ≥ 17, q = ph, p ≥ 5

ε ≤
√
qq

2 −
35q
16 −O(√q) + 1 q odd, q ≥ 232, q 6= 55, 36, q = ph, h

even for p = 3

Table 7.1: Conditions for Theorem 7.3.10 and Corollary 7.3.11
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Samenvatting

Deze appendix geeft een beknopte samenvatting van de resultaten bekomen in
deze thesis. Voor meer details verwijzen we naar de originele tekst.
Hoofdstuk 1 introduceert de algemene notaties en definities in eindige meetkunde.
De projectieve ruimte die overeenkomt met de vectorruimte V (n, q) wordt geno-
teerd als PG(n− 1, q).
Deel I bestaat uit twee hoofdstukken. We beschouwen twee karakterisaties, ener-
zijds van elementaire pseudo-caps in Hoofdstuk 2, anderzijds van Desarguesiaanse
spreads in Hoofdstuk 3. Beide karakterisaties werden bekomen door te kijken naar
spreads in deelruimten, namelijk in de quotiëntruimten van (sommige) elementen.
In Hoofdstuk 2 bestuderen we het equivalent van caps, bogen en ovöıden in
hogere dimensie. Een pseudo-cap is een verzameling A van (n − 1)-ruimten in
PG(m − 1, q) waarvoor geldt dat elke drie elementen uit A een (3n − 1)-ruimte
opspannen. Elementaire voorbeelden van pseudo-caps in PG(kn − 1, q) ontstaan
door veldreductie toe te passen op caps in PG(k − 1, qn). Elk element E van een
pseudo-cap in PG(2n + m − 1, q) induceert een partiële spread S in de quotiënt-
ruimte PG(n+m−1, q) ∼= PG(2n+m−1, q)/E. Door te veronderstellen dat som-
mige elementen Desarguesiaanse spreads induceren, bekomen we karakterisaties
van elementaire pseudo-hyperovalen in PG(3n−1, q) (Sectie 2.3) en van elementaire
eieren in PG(4n− 1, q) (Sectie 2.4).
In Hoofdstuk 3 verkrijgen we karakterisaties van (n−1)-spreads in PG(rn−1, q)
in termen van hun normale elementen. Een element E van een (n − 1)-spread S
in PG(rn − 1, q) is normaal als S een spread induceert in elke (2n − 1)-ruimte
opgespannen door E en een ander element van S. Het is welbekend dat, als r > 2,
een spread Desarguesiaans is als en slechts als al zijn elementen normaal zijn. We
tonen aan dat dit ook waar is onder een zwakkere veronderstelling, namelijk, een
(n − 1)-spread S in PG(rn − 1, q), r > 2, is Desarguesiaans als en slechts als hij
ten minste r + 1 normale elementen in algemene positie heeft.
In Deel II beschouwen we lineaire representaties (Hoofdstuk 4) en hun correspon-
derende grafen (Hoofdstuk 5). Een lineaire representatie T ∗n(K) is een punt-rechte
incidentiestructuur ingebed in een projectieve ruimte PG(n+1, q), volledig bepaald
door een puntenverzameling K bevat in een hypervlak H∞.
Hoofdstuk 4 bestudeert het isomorfisme probleem voor lineaire representaties.
Onder de voorwaarde dat K een geraamte bevat en dat geen enkel vlak K snijdt in
enkel twee snijdende rechten, bewijzen we dat twee lineaire representaties T ∗n(K)
en T ∗n(K′) isomorf zijn als en slechts als de puntenverzamelingen K en K′ isomorf
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zijn. Onder dezelfde voorwaarden, bepalen we de volledige automorfismegroep van
T ∗n(K). Als de sluiting van K gelijk is aan het hypervlak H∞, dan correspondeert
elk automorfisme met een collineatie van de omringende ruimte. Als de sluiting
van K gelijk is aan een niet-triviale deelmeetkunde van H∞, dan bestaan er steeds
automorfismen die niet overeenkomen met collineaties.

In Hoofdstuk 5 beschouwen we de incidentiegraaf van een lineaire representatie
T ∗n(K). Hierdoor bekomen we een algemene constructie die leidt tot niet-isomorfe
families van samenhangende q-reguliere semisymmetrische grafen van orde 2qn+1.
Gebruikmakende van de resultaten van het vorige hoofdstuk, kunnen we in de
meeste gevallen de volledige automorfismegroep van deze grafen bepalen.

In Deel III bestuderen we deelstructuren in de André/Bruck-Bose representatie,
kortweg ABB-representatie, van PG(2, qn) in PG(2n, q).

Hoofdstuk 6 onderzoekt de ABB-representatie van Fqk -deelrechten en Fqk -deel-
vlakken van PG(2, qn). We bekomen een karakterisatie in de volgende gevallen:
Fqk -deelrechten die raken aan of bevat zijn in de rechte op oneindig; Fq-deelrechten
disjunct aan de rechte op oneindig; Fqk -deelvlakken die een deelrechte gemeen-
schappelijk hebben met de rechte op oneindig; en Fq-deelvlakken die een punt
gemeenschappelijk hebben met de rechte op oneindig.

In Hoofdstuk 7 bekomen we een karakterisatie van Buekenhout-Metz unitalen in
PG(2, q2). Een unitaal U in PG(2, q2) is een verzameling van q3 + 1 punten zodat
elke rechte U snijdt in 1 of q+ 1 punten. Elke gekende unitaal correspondeert met
een Buekenhout-Metz unitaal, deze unitalen komen overeen met ovöıdale kegels in
de ABB-representatie van PG(2, q2) in PG(4, q). We tonen aan dat een unitaal
U in PG(2, q2) een Buekenhout-Metz unitaal is als en slechts als U een punt P
bezit waarvoor er minstens q2 − ε secanten door P de unitaal U snijden in een
deelrechte, waarbij ε orde 2q heeft voor q even en orde q3/2

2 voor q oneven.
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Everything will be okay in the end.
If it’s not okay, it’s not the end.

– Fernando Sabino
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